JP5020146B2 - Compressive residual stress evaluation method and gear design method for gears - Google Patents

Compressive residual stress evaluation method and gear design method for gears Download PDF

Info

Publication number
JP5020146B2
JP5020146B2 JP2008085653A JP2008085653A JP5020146B2 JP 5020146 B2 JP5020146 B2 JP 5020146B2 JP 2008085653 A JP2008085653 A JP 2008085653A JP 2008085653 A JP2008085653 A JP 2008085653A JP 5020146 B2 JP5020146 B2 JP 5020146B2
Authority
JP
Japan
Prior art keywords
residual stress
compressive residual
gear
average value
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008085653A
Other languages
Japanese (ja)
Other versions
JP2009236822A (en
Inventor
学樹 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2008085653A priority Critical patent/JP5020146B2/en
Publication of JP2009236822A publication Critical patent/JP2009236822A/en
Application granted granted Critical
Publication of JP5020146B2 publication Critical patent/JP5020146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Gears, Cams (AREA)

Description

本発明は、熱処理後にショットピーニングされた歯車の疲労強度に対する圧縮残留応力を評価する歯車の圧縮残留応力評価方法および該圧縮残留応力評価方法を用いた歯車設計方法に関するものである。   The present invention relates to a compression residual stress evaluation method for a gear that evaluates the compression residual stress with respect to the fatigue strength of a shot peened gear after heat treatment, and a gear design method using the compression residual stress evaluation method.

従来、歯車の歯元部における曲げ疲労強度を向上するために、ショットピーニングを行い、歯元部に圧縮残留応力を付加することが行われている(例えば、特許文献1,2参照。)。また、特許文献3には、浸炭焼入れした鉄鋼部品にショットピーニング処理を施し、該鉄鋼部品の深さ方向の圧縮残留応力に基づく圧縮残留応力分布曲線で囲まれる面積から最適なピーニング強度を求める技術が開示されている。   Conventionally, in order to improve the bending fatigue strength in the tooth root portion of the gear, shot peening is performed and compressive residual stress is applied to the tooth root portion (see, for example, Patent Documents 1 and 2). Patent Document 3 discloses a technique for subjecting a carburized and quenched steel part to shot peening and obtaining an optimum peening strength from an area surrounded by a compressive residual stress distribution curve based on a compressive residual stress in the depth direction of the steel part. Is disclosed.

特開平6−145785号公報JP-A-6-145785 特開2002−166366号公報JP 2002-166366 A 特開2006−110634号公報JP 2006-110634 A

ところで、歯車の歯元部が疲労によって折損に至るまでには、歯元部の最表面に初期亀裂が発生する第1段階と、亀裂が深さ方向に伝播する第2段階と、亀裂が急速に進展する第3段階とがある。圧縮残留応力は、初期亀裂の発生を抑制する効果(開口に対する抵抗力として作用する)や、初期亀裂発生後の亀裂進展を防止する効果を有している。歯元曲げ疲労のメカニズムを考えた場合、まず初めに歯元部最表面において初期亀裂が発生するため、歯元部最表面の圧縮残留応力が最も重要となる(亀裂の発生がなければ、亀裂の進展もない)。つまり、初期亀裂の封じ込めに着眼した場合、あくまで歯元部表面近傍の圧縮残留応力が歯元曲げ疲労強度に対して支配的であり、内部に進むほど、相対的に圧縮残留応力の効果は低減していくと考えられる。   By the way, before the tooth root part of the gear is broken due to fatigue, a first stage in which an initial crack is generated on the outermost surface of the tooth root part, a second stage in which the crack propagates in the depth direction, and a crack is rapid. There is a third stage to progress to. The compressive residual stress has an effect of suppressing the occurrence of the initial crack (acts as a resistance force against the opening) and an effect of preventing the crack propagation after the initial crack is generated. Considering the mechanism of root bending fatigue, the initial crack is first generated on the outermost surface of the tooth root, so the compressive residual stress on the outermost surface of the tooth root is the most important. No progress). In other words, when focusing on the containment of the initial crack, the compressive residual stress near the tooth root surface is dominant to the root bending fatigue strength, and the effect of the compressive residual stress is relatively reduced as it goes inside. It is thought that it will do.

ところが、特許文献3に係る技術では、圧縮残留応力の効果が表面から内部まで同等であるとの前提に立って単に圧縮残留応力分布の面積を求め、求めた面積を疲労強度に対する圧縮残留応力の評価パラメータとしている。この評価パラメータは疲労強度と圧縮残留応力との関係を正確に反映していないものであるため、疲労強度に対して圧縮残留応力がどの程度有効であるかを正確に評価することができないという問題点がある。そして、該評価パラメータを用いて歯車の設計を行った場合には、所望品質の歯車を得ることができないという問題点がある。   However, in the technique according to Patent Document 3, the area of the compressive residual stress distribution is simply obtained on the assumption that the effect of the compressive residual stress is equivalent from the surface to the inside, and the obtained area is calculated as the compressive residual stress relative to the fatigue strength. It is an evaluation parameter. Since this evaluation parameter does not accurately reflect the relationship between fatigue strength and compressive residual stress, it is impossible to accurately evaluate how effective the compressive residual stress is with respect to fatigue strength. There is a point. When a gear is designed using the evaluation parameter, there is a problem that a gear having a desired quality cannot be obtained.

本発明は、このような問題点を解消するためになされたもので、歯車の疲労強度に対して圧縮残留応力がどの程度有効であるかを正確に評価することのできる歯車の圧縮残留応力評価方法を提供するとともに、該圧縮残留応力評価方法を用いて所望品質の歯車を得ることのできる歯車設計方法を提供することを目的とするものである。   The present invention has been made to solve such problems, and it is possible to accurately evaluate how effective the compressive residual stress is with respect to the fatigue strength of the gear. An object of the present invention is to provide a gear design method capable of obtaining a gear having a desired quality by using the compression residual stress evaluation method.

前記目的を達成するために、第1発明による歯車の圧縮残留応力評価方法は、
熱処理後にショットピーニングされた歯車の圧縮残留応力を評価する歯車の圧縮残留応力評価方法において、
歯車の歯元部表面から深さ方向における圧縮残留応力の測定値に基づいて圧縮残留応力分布曲線を求める工程と、
前記歯元部表面から所定深さまでを評価対象深度として該評価対象深度を複数の閉区間に分割し、各閉区間における圧縮残留応力に対して付す重みが前記歯元部表面に近い閉区間の方が大きな値となるように各閉区間での重み付けを決定する工程と、
前記圧縮残留応力分布曲線の各閉区間における積分値に各閉区間毎に決定された前記重みを乗じた値を総和して全閉区間の総和値とし、該総和値を歯車の圧縮残留応力を評価する評価パラメータとして算定する工程と
を含むことを特徴とするものである。
In order to achieve the above object, a method for evaluating the compressive residual stress of a gear according to the first invention comprises:
In the compression residual stress evaluation method for gears, which evaluates the compression residual stress of gears shot-peened after heat treatment,
Obtaining a compressive residual stress distribution curve based on a measured value of compressive residual stress in the depth direction from the tooth root surface of the gear;
The evaluation target depth is divided into a plurality of closed sections from the root surface to a predetermined depth, and the weight applied to the compressive residual stress in each closed section is a close section close to the root section surface. Determining a weight in each closed section so that the one has a larger value;
A sum of values obtained by multiplying the integral value in each closed section of the compressive residual stress distribution curve by the weight determined for each closed section is a total value in the fully closed section, and the total value is a compression residual stress of the gear. And a step of calculating as an evaluation parameter to be evaluated.

次に、第2発明による歯車設計方法は、
第1発明に係る歯車の圧縮残留応力評価方法を用いた歯車設計方法であって、
熱処理条件とショットピーニング条件との組み合わせが異なる複数の歯車のそれぞれについて前記評価パラメータを算定し、算定された各評価パラメータを前記評価対象深度で除して各歯車についての圧縮残留応力の平均値を求める工程と、
前記複数の歯車のそれぞれについて歯元曲げ疲労強度を求める工程と、
前記圧縮残留応力の平均値と前記歯元曲げ疲労強度との関係に基づいて、要求された歯元曲げ疲労強度に対応する圧縮残留応力の平均値を必要圧縮残留応力の平均値として算定する工程と、
前記複数の歯車の中から、前記必要圧縮残留応力の平均値より大きい圧縮残留応力の平均値を有する歯車を選定し、選定された歯車の熱処理条件とショットピーニング条件との組み合わせに基づいて歯車設計上の熱処理条件とショットピーニング条件との組み合わせを決定する工程と
を含むことを特徴とするものである。
Next, the gear design method according to the second invention is:
A gear design method using the compression residual stress evaluation method for a gear according to the first invention,
The evaluation parameter is calculated for each of a plurality of gears having different combinations of heat treatment conditions and shot peening conditions, and the calculated evaluation parameters are divided by the evaluation target depth to obtain an average value of the compressive residual stress for each gear. The desired process;
Obtaining a root bending fatigue strength for each of the plurality of gears;
A step of calculating an average value of the compressive residual stress corresponding to the requested root bending fatigue strength as an average value of the required compressive residual stress based on the relationship between the average value of the compressive residual stress and the root bending fatigue strength. When,
A gear having an average value of compressive residual stress greater than the average value of the required compressive residual stress is selected from the plurality of gears, and the gear is designed based on a combination of heat treatment conditions and shot peening conditions of the selected gear. And a step of determining a combination of the above heat treatment condition and shot peening condition.

第1発明の歯車の圧縮残留応力評価方法においては、歯車の歯元部表面から深さ方向における圧縮残留応力の測定値に基づいて圧縮残留応力分布曲線が求められる。また、歯元部表面から所定深さまでを評価対象深度として該評価対象深度が複数の閉区間に分割され、各閉区間における圧縮残留応力に対して付す重みが歯元部表面に近い閉区間の方が大きな値となるように各閉区間での重み付けが決定される。そして、圧縮残留応力分布曲線の各閉区間における積分値に各閉区間毎に決定された重みを乗じた値を総和することにより、歯車の圧縮残留応力を評価する評価パラメータが求められる。こうして求められた評価パラメータは、歯元部表面近傍の圧縮残留応力が歯元曲げ疲労強度に対して支配的で内部に進むほど相対的に圧縮残留応力の効果が低減していくという歯元曲げ疲労強度と圧縮残留応力効果との関係を正確に反映したものである。したがって、歯車の疲労強度に対して圧縮残留応力がどの程度有効であるかを正確に評価することができる。   In the gear compressive residual stress evaluation method according to the first aspect of the invention, a compressive residual stress distribution curve is obtained based on the measured value of the compressive residual stress in the depth direction from the tooth root surface of the gear. Further, the evaluation target depth is divided into a plurality of closed sections from the tooth root surface to a predetermined depth as an evaluation target depth, and the weight attached to the compressive residual stress in each closed section is a closed section close to the tooth root surface. The weighting in each closed section is determined so that the value becomes larger. Then, an evaluation parameter for evaluating the compressive residual stress of the gear is obtained by summing a value obtained by multiplying the integral value in each closed section of the compressive residual stress distribution curve by the weight determined for each closed section. The evaluation parameters thus obtained are based on the fact that the compressive residual stress near the root surface is dominant to the root flexural fatigue strength, and that the effect of compressive residual stress decreases relatively as it goes inward. It accurately reflects the relationship between fatigue strength and compressive residual stress effect. Therefore, it is possible to accurately evaluate how effective the compressive residual stress is with respect to the fatigue strength of the gear.

第2発明の歯車設計方法においては、歯車の疲労強度に対して圧縮残留応力がどの程度有効であるかを正確に評価した第1発明の評価パラメータを基にして熱処理条件とショットピーニング条件との組み合わせが異なる複数の歯車のそれぞれについての圧縮残留応力の平均値が求められるとともに、複数の歯車のそれぞれについて歯元曲げ疲労強度が求められる。また、圧縮残留応力の平均値と歯元曲げ疲労強度との関係に基づいて、要求された歯元曲げ疲労強度に対応する圧縮残留応力の平均値が必要圧縮残留応力の平均値として算定される。そして、複数の歯車の中から、必要圧縮残留応力の平均値より大きい圧縮残留応力の平均値を有する歯車が選定され、選定された歯車の熱処理条件とショットピーニング条件との組み合わせに基づいて歯車設計上の熱処理条件とショットピーニング条件との組み合わせが決定される。これにより、所望品質の歯車を得ることができる。   In the gear design method of the second invention, the heat treatment conditions and the shot peening conditions are calculated based on the evaluation parameters of the first invention that accurately evaluate how effective the compressive residual stress is with respect to the fatigue strength of the gear. An average value of compressive residual stress for each of a plurality of gears with different combinations is obtained, and a root bending fatigue strength is obtained for each of the plurality of gears. Based on the relationship between the average value of compressive residual stress and the root bending fatigue strength, the average value of compressive residual stress corresponding to the requested root bending fatigue strength is calculated as the average value of the required compressive residual stress. . A gear having an average value of compressive residual stress larger than the average value of necessary compressive residual stress is selected from the plurality of gears, and the gear design is based on a combination of the heat treatment condition and shot peening condition of the selected gear. A combination of the above heat treatment conditions and shot peening conditions is determined. Thereby, the gear of desired quality can be obtained.

次に、本発明による歯車の圧縮残留応力評価方法および歯車設計方法の具体的な実施の形態について、図面を参照しつつ説明する。なお、以下の説明に用いる図面において、残留応力は、圧縮方向に−(マイナス)で表わす。   Next, specific embodiments of a method for evaluating compressive residual stress and a method for designing a gear according to the present invention will be described with reference to the drawings. In the drawings used for the following description, the residual stress is represented by-(minus) in the compression direction.

図1には、熱処理後にショットピーニングされた歯車の深さ方向における圧縮残留応力分布の一例を表わす図が示されている。また、図2には、X線による圧縮残留応力測定法の説明図が示され、図3には、疲労亀裂進展のメカニズムの説明図が示されている。   FIG. 1 is a diagram showing an example of a compressive residual stress distribution in the depth direction of a gear shot peened after heat treatment. FIG. 2 is an explanatory diagram of a method for measuring compressive residual stress by X-ray, and FIG. 3 is an explanatory diagram of a mechanism of fatigue crack growth.

図1に示される圧縮残留応力分布曲線CLは、熱処理後にショットピーニングされた歯車1における歯元部1aの表面を電解研磨にて除去しながら例えばX線残留応力測定装置を用いて図2に示されるようにX線を10°間隔で5方向から照射(並傾法)して圧縮残留応力を測定する工程を複数回繰り返したのち、これらの測定値をプロットすることにより求められる。   The compressive residual stress distribution curve CL shown in FIG. 1 is shown in FIG. 2 using, for example, an X-ray residual stress measuring device while removing the surface of the tooth root 1a of the gear 1 subjected to shot peening after heat treatment by electropolishing. As described above, X-rays are irradiated from 10 directions at intervals of 10 ° (parallel tilt method), and the process of measuring the compressive residual stress is repeated a plurality of times, and then these measured values are plotted.

歯車1の歯元部1aが図3(a)に示される疲労亀裂Kによって折損に至るまでには、同図(b)に示されるように歯元部1aの最表面に初期亀裂K′が発生する第1段階と、同図(c)に示されるように亀裂が深さ方向に伝播する第2段階と、同図(d)に示されるように亀裂が急速に進展する第3段階とがある。圧縮残留応力は、初期亀裂K′の発生を抑制する効果(開口に対する抵抗力として作用する)や、初期亀裂K′の発生後の亀裂進展を防止する効果を有している。歯元曲げ疲労のメカニズムを考えた場合、まず初めに歯元部1aの最表面において初期亀裂K′が発生するため、歯元部1aの最表面の圧縮残留応力が最も重要となる(亀裂の発生がなければ、亀裂の進展もない)。つまり、初期亀裂K′の封じ込めに着眼した場合、あくまで歯元部1aの表面近傍の圧縮残留応力が歯元曲げ疲労強度に対して支配的であり、内部に進むほど、相対的に圧縮残留応力の効果は低減していくと考えられる。   Until the tooth root portion 1a of the gear 1 is broken by the fatigue crack K shown in FIG. 3A, an initial crack K ′ is formed on the outermost surface of the tooth root portion 1a as shown in FIG. A first stage that occurs, a second stage in which the crack propagates in the depth direction as shown in FIG. 3C, and a third stage in which the crack rapidly progresses as shown in FIG. There is. The compressive residual stress has an effect of suppressing the generation of the initial crack K ′ (acts as a resistance force against the opening) and an effect of preventing the crack propagation after the generation of the initial crack K ′. Considering the mechanism of root bending fatigue, the initial crack K ′ is first generated on the outermost surface of the tooth root portion 1a, and therefore, the compressive residual stress on the outermost surface of the tooth root portion 1a is the most important (cracking stress). If there is no occurrence, there will be no crack growth). That is, when focusing on the containment of the initial crack K ′, the compressive residual stress in the vicinity of the surface of the tooth root portion 1a is dominant to the tooth root bending fatigue strength. This effect is expected to decrease.

そこで、図3(b)〜(d)に示される疲労亀裂進展のメカニズムに基づいて、図1に示されるように、歯元部1aの表面から所定深さまでを評価対象深度Dとして該評価対象深度Dを第1閉区間D、第2閉区間Dおよび第3閉区間Dの三つの閉区間に分割する。さらに、歯元曲げ疲労強度に最も影響を及ぼす第1閉区間Dの圧縮残留応力に対しては最大の重みWを付し、歯元曲げ疲労強度への影響が第1閉区間Dの圧縮残留応力よりも低い第2閉区間Dの圧縮残留応力に対しては第1閉区間Dでの重みWよりも小さい重みWを付し、歯元曲げ疲労強度への影響が第2閉区間Dの圧縮残留応力よりも低い第3閉区間Dの圧縮残留応力に対しては第2閉区間Dでの重みWよりも小さい重みWを付すことにより、歯元曲げ疲労強度に対する圧縮残留応力の効果の観点から妥当な重み付けを行うことができる。 Therefore, based on the mechanism of fatigue crack growth shown in FIGS. 3B to 3D, the evaluation object is defined as the evaluation object depth D from the surface of the tooth root part 1a to the predetermined depth as shown in FIG. The depth D is divided into three closed sections, a first closed section D 1 , a second closed section D 2, and a third closed section D 3 . Furthermore, the maximum weight W 1 is assigned to the compressive residual stress in the first closed section D 1 that has the greatest influence on the root bending fatigue strength, and the influence on the root bending fatigue strength is the first closed section D 1. given the small weight W 2 than the weight W 1 of the first closed interval D 1 for the lower second closed interval D 2 of the compressive residual stress than the compressive residual stress, influence of the dedendum bending fatigue strength By applying a weight W 3 smaller than the weight W 2 in the second closed section D 2 to the compressive residual stress in the third closed section D 3 , which is lower than the compressive residual stress in the second closed section D 2 , Appropriate weighting can be performed from the viewpoint of the effect of compressive residual stress on the root bending fatigue strength.

図1に示される圧縮残留応力分布曲線CLにおいて、第1閉区間Dにおける積分値がS、第2閉区間Dにおける積分値がS、第3閉区間Dにおける積分値がSであるとすると、歯車1の圧縮残留応力を評価する評価パラメータPaは、次式(1)より求められる。

Pa=S×W+S×W+S×W ・・・(1)

すなわち、圧縮残留応力分布曲線CLの各閉区間D,D,Dにおける積分値S,S,Sに各閉区間D,D,D毎に決定された重みW,W,Wを乗じた値を総和して全閉区間D〜Dの総和値とし、該総和値を評価パラメータPaとして算定する。
なお、積分値S〜Sは、図中の各閉区間の面積を求めても良いし、各閉区間を複数の区間に分割し、区分求積によって求めても良い。
こうして求められた評価パラメータPaは、歯元部1aの表面近傍の圧縮残留応力が歯元曲げ疲労強度に対して支配的で内部に進むほど相対的に圧縮残留応力の効果が低減していくという歯元曲げ疲労強度と圧縮残留応力との関係を正確に反映したものである。
したがって、この評価パラメータPaを基にして歯車1の疲労強度に対して圧縮残留応力がどの程度有効であるかを正確に評価することができる。
In the compressive residual stress distribution curve CL shown in FIG. 1, the integrated value in the first closed section D 1 is S 1 , the integrated value in the second closed section D 2 is S 2 , and the integrated value in the third closed section D 3 is S. If it is 3 , the evaluation parameter Pa for evaluating the compressive residual stress of the gear 1 is obtained from the following equation (1).

Pa = S 1 × W 1 + S 2 × W 2 + S 3 × W 3 (1)

That is, the weight W determined for each closed section D 1 , D 2 , D 3 in the integral values S 1 , S 2 , S 3 in each closed section D 1 , D 2 , D 3 of the compressive residual stress distribution curve CL. The values obtained by multiplying 1 , W 2 , and W 3 are summed to obtain the sum value of the fully closed sections D 1 to D 3 , and the sum value is calculated as the evaluation parameter Pa.
Note that the integral values S 1 to S 3 may be obtained by calculating the area of each closed section in the figure, or by dividing each closed section into a plurality of sections and performing division quadrature.
The evaluation parameter Pa thus determined is that the compressive residual stress in the vicinity of the surface of the tooth root portion 1a is dominant with respect to the tooth root bending fatigue strength, and the effect of the compressive residual stress is relatively reduced as it goes inward. It accurately reflects the relationship between root bending fatigue strength and compressive residual stress.
Therefore, it is possible to accurately evaluate how effective the compressive residual stress is with respect to the fatigue strength of the gear 1 based on the evaluation parameter Pa.

次に、評価パラメータPaを利用した歯車設計方法について以下に説明する。図4には、圧縮残留応力の平均値と歯元曲げ疲労強度との関係の一例を表わす図が示されている。   Next, a gear design method using the evaluation parameter Pa will be described below. FIG. 4 is a diagram showing an example of the relationship between the average value of compressive residual stress and the root bending fatigue strength.

評価パラメータPaを利用した歯車設計方法においては、熱処理条件とショットピーニング条件との組み合わせが異なる複数の歯車のそれぞれについて前述した手法により評価パラメータPaを算定し、算定された各評価パラメータPaを評価対象深度D(図1参照)で除して各歯車についての圧縮残留応力の平均値σaveを求める。また、複数の歯車のそれぞれについて例えば歯元曲げ疲労試験を実施して各歯車の歯元曲げ疲労強度σstrを求める。こうして求められた圧縮残留応力の平均値σaveと歯元曲げ疲労強度σstrとが図4中記号SLで示される直線で近似することができるとき、この直線SLに基づいて、要求された歯元曲げ疲労強度σstr:Aに対応する圧縮残留応力の平均値σave:−aを必要圧縮残留応力の平均値として算定する。そして、複数の歯車の中から、絶対値の比較で、必要圧縮残留応力の平均値σave:−aより大きい圧縮残留応力の平均値σaveを有する歯車を選定し、選定された1または複数の歯車の熱処理条件とショットピーニング条件との組み合わせに基づいて歯車設計上の熱処理条件とショットピーニング条件との組み合わせを決定する。この歯車設計方法によれば、所望の強度をもった、所望品質の歯車を得ることができる。 In the gear design method using the evaluation parameter Pa, the evaluation parameter Pa is calculated by the above-described method for each of a plurality of gears having different combinations of heat treatment conditions and shot peening conditions, and each calculated evaluation parameter Pa is evaluated. By dividing by the depth D (see FIG. 1), an average value σ ave of compressive residual stress for each gear is obtained. Further, for example, a tooth root bending fatigue test is performed on each of the plurality of gears to determine a tooth root bending fatigue strength σ str of each gear. When the average value σ ave of the compressive residual stress and the root bending fatigue strength σ str thus obtained can be approximated by a straight line indicated by a symbol SL in FIG. 4, the required tooth is obtained based on the straight line SL. Original bending fatigue strength σ str : Average compressive residual stress value σ ave : -a corresponding to A is calculated as an average value of necessary compressive residual stress. Then, a gear having an average value σ ave of the required compressive residual stress σ ave : -a greater than the average value σ ave of the compressive residual stress is selected from the plurality of gears by comparing the absolute values, and the selected one or more gears The combination of the heat treatment condition and the shot peening condition in the gear design is determined based on the combination of the heat treatment condition and shot peening condition of the gear. According to this gear design method, a desired quality gear having a desired strength can be obtained.

次に、本発明による歯車の圧縮残留応力評価方法および歯車設計方法の具体的な実施例について、図面を参照しつつ説明する。なお、本発明は、以下に述べる実施例に限定されるものではない。また、以下の説明に用いる図面において、残留応力は、圧縮方向に−(マイナス)で表わす。   Next, specific examples of the method for evaluating the compressive residual stress of a gear and the method for designing a gear according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the Example described below. In the drawings used for the following description, the residual stress is represented by-(minus) in the compression direction.

(実施例1)
表1に示されるように、熱処理条件やショットピーニング条件、ギヤモジュールなどが異なるNo.1〜No.12の各種供試ギヤを準備した。
Example 1
As shown in Table 1, the heat treatment conditions, shot peening conditions, gear modules and the like are different. 1-No. Twelve test gears were prepared.

Figure 0005020146
Figure 0005020146

各種供試ギヤに対して、X線残留応力測定装置を用いて図2に示されるような並傾法により圧縮残留応力を測定する工程を5回繰り返したのち、これらの測定値をプロットして各種供試ギヤのそれぞれについて図6(a)に示されるような残留応力分布曲線CLを求めた。亀裂が概ね60μm以上に成長すると、その後は一気に最終破断まで至ることから、実施例1においては、評価対象深度Dを最表面から60μmまでとした。また、図3(b)〜(d)に示される疲労亀裂進展のメカニズムに基づいて、図6(a)に示されるように、歯元部最表面0μmから深さ60μmまでを、第1閉区間:0〜10μm、第2閉区間:10〜30μm、第3閉区間:30〜60μmの三つの閉区間に分割した。さらに、第1閉区間:0〜10μmの圧縮残留応力に対しては重み0.7を付し、第2閉区間:10〜30μmの圧縮残留応力に対しては重み0.2を付し、第3閉区間:30〜60μmの圧縮残留応力に対しては重み0.1を付した。そして、前記式(1)より評価パラメータPaを求め、求めた評価パラメータPaを次式(2)に示されるように評価対象深度D(=60μm)で除することにより圧縮残留応力の平均値σaveを算出した。

σave=Pa/D ・・・(2)
After repeating the process of measuring the compressive residual stress by the parallel tilt method as shown in FIG. 2 using an X-ray residual stress measuring device for various test gears, plot these measured values. A residual stress distribution curve CL as shown in FIG. 6A was obtained for each of the various test gears. When the crack grows to approximately 60 μm or more, it reaches the final fracture all at once. Therefore, in Example 1, the evaluation target depth D was set to 60 μm from the outermost surface. Further, based on the mechanism of fatigue crack growth shown in FIGS. 3B to 3D, as shown in FIG. 6A, from the tooth surface outermost surface 0 μm to the depth 60 μm, the first closed The section was divided into three closed sections: 0 to 10 μm, second closed section: 10 to 30 μm, and third closed section: 30 to 60 μm. Further, the first closed section: a weight of 0.7 is applied to the compressive residual stress of 0 to 10 μm, the second closed section: a weight of 0.2 is applied to the compressive residual stress of 10 to 30 μm, Third closed section: A weight of 0.1 was applied to the compressive residual stress of 30 to 60 μm. Then, the evaluation parameter Pa is obtained from the above equation (1), and the obtained evaluation parameter Pa is divided by the evaluation target depth D (= 60 μm) as shown in the following equation (2) to obtain the average value σ of the compressive residual stress. The ave was calculated.

σ ave = Pa / D (2)

各種供試ギヤを対して図5に示される歯元曲げ疲労試験を行い、各種供試ギヤのそれぞれについて歯元曲げ疲労強度σstrを求めた。
以下に歯元曲げ疲労試験の試験方法を示す。
〔試験方法〕
(1)図5に示されるように、汎用サーボパルサーを用い、上下2ヶの治具で供試ギヤの2歯を挟み込み、繰り返し荷重を作用させて片側の歯を折損させる。
(2)試験荷重:供試ギヤの歯元に歪みゲージを貼って所望の応力が発生するような荷重を負荷する。
ここで、歯元曲げ疲労強度σstrは、供試ギヤに対して図5に示される歯元曲げ疲労試験を実施した際において、歯元部にある応力を発生させる荷重を例えば4×10回繰り返し作用させた場合においても歯が折損しなかったときのその応力値であると定義する。
The tooth root bending fatigue test shown in FIG. 5 was performed on the various test gears, and the tooth root bending fatigue strength σ str was determined for each of the various test gears.
The test method of the root bending fatigue test is shown below.
〔Test method〕
(1) As shown in FIG. 5, using a general-purpose servo pulser, the two teeth of the test gear are sandwiched between two upper and lower jigs, and a load is applied repeatedly to break a tooth on one side.
(2) Test load: A strain gauge is attached to the tooth base of the test gear and a load that generates a desired stress is applied.
Here, the root bending fatigue strength σ str is, for example, 4 × 10 6, which is a load that generates a stress in the root portion when the root bending fatigue test shown in FIG. 5 is performed on the test gear. It is defined as the stress value when the tooth does not break even when it is repeatedly applied.

横軸に評価パラメータPaに基づく圧縮残留応力の平均値σaveをとり、縦軸に歯元曲げ疲労強度σstrをとって、No.1〜No.12の各種供試ギヤのそれぞれについてプロットすると、図6(b)に示されるような関係図が得られた。図6(b)に示されるように、歯元曲げ疲労強度σstrと、評価パラメータPaに基づく圧縮残留応力の平均値σaveとの関係は、図中記号SLの直線で示されるように、ほぼ直線近似することができ、両者は強い相関関係を有している。この図6(b)に示される直線SLに基づいて、要求された歯元曲げ疲労強度σstrに対して歯元曲げ疲労強度を満足するために必要となる圧縮残留応力(「必要圧縮残留応力」という)の平均値σaveを容易に求めることができる。こうして求められた必要圧縮残留応力の平均値より大きい圧縮残留応力の平均値σave(絶対値比較)を有する供試ギヤを各種供試ギヤの中から選び、選ばれた供試ギヤの熱処理条件やショットピーニング条件から歯車設計上所望品質のギヤを得るための熱処理条件やショットピーニング条件を決定することができる。 The average value σ ave of compressive residual stress based on the evaluation parameter Pa is taken on the horizontal axis, and the root bending fatigue strength σ str is taken on the vertical axis. 1-No. When plotting each of the 12 various test gears, a relationship diagram as shown in FIG. 6B was obtained. As shown in FIG. 6B, the relationship between the root bending fatigue strength σ str and the average value σ ave of the compressive residual stress based on the evaluation parameter Pa is as shown by the straight line SL 1 in the figure. Can be approximated by a straight line, and both have a strong correlation. Based on the straight line SL 1 shown in this FIG. 6 (b), the requested dedendum bending fatigue strength sigma str against compressive residual stress needed to satisfy the dedendum bending fatigue strength ( "necessary compressive residual The average value σ ave of “stress”) can be easily obtained. A test gear having an average value σ ave (comparative absolute value) of compressive residual stresses larger than the average value of necessary compressive residual stresses thus determined is selected from various test gears, and the heat treatment conditions for the selected test gears Further, heat treatment conditions and shot peening conditions for obtaining a gear having a desired quality in terms of gear design can be determined from the shot peening conditions.

例えば、要求された歯元曲げ疲労強度が「A」である場合、直線SLに基づいて、その要求歯元曲げ疲労強度:Aに対応する圧縮残留応力の平均値が「−a」であることを求めることができ、これが必要圧縮残留応力の平均値となる。この必要圧縮残留応力の平均値:−aより大きい圧縮残留応力の平均値(絶対値比較)を有する供試ギヤはNo.1からNo.6の供試ギヤである。これらNo.1からNo.6の供試ギヤのうち、例えば圧縮残留応力の平均値σaveの絶対値が最も小さいNo.6の供試ギヤの熱処理条件やショットピーニング条件に基づいて歯車設計上の熱処理条件やショットピーニング条件を決定することにより、所望品質の歯車を得ることができる。 For example, when the requested root bending fatigue strength is “A”, the average value of the compressive residual stress corresponding to the required root bending fatigue strength: A is “−a” based on the straight line SL 1. This is an average value of the necessary compressive residual stress. The average value of the necessary compressive residual stress: The test gear having an average value (absolute value comparison) of compressive residual stress greater than -a is No. 1 to No. 6 test gears. These No. 1 to No. Among the test gears of No. 6, No. 6 having the smallest absolute value of the average value σ ave of the compressive residual stress, for example. By determining the heat treatment conditions and shot peening conditions in the gear design based on the heat treatment conditions and shot peening conditions of the test gear of No. 6, a gear having a desired quality can be obtained.

(実施例2)
実施例2においては、図7(a)に示されるように、評価対象深度Dを最表面から70μmまでとし、歯元部最表面0μmから深さ70μmまでを、第1閉区間:0〜20μm、第2閉区間:20〜40μm、第3閉区間:40〜70μmの三つの閉区間に分割した。以下、実施例1と同様にして図7(b)に示されるような圧縮残留応力の平均値σaveと歯元曲げ疲労強度σstrとの関係図を得た。図7(b)に示されるように、歯元曲げ疲労強度σstrと、評価パラメータPaに基づく圧縮残留応力の平均値σaveとの関係は、図中記号SLの直線で示されるように、ほぼ直線近似することができ、両者は強い相関関係を有している。実施例2によっても基本的に実施例1と同様の効果を得ることができる。
(Example 2)
In Example 2, as shown in FIG. 7A, the evaluation target depth D is set to 70 μm from the outermost surface, and the first closed section: 0 to 20 μm from the uppermost surface of the tooth base part to 70 μm in depth. The second closed section was divided into three closed sections of 20 to 40 μm and the third closed section: 40 to 70 μm. Hereinafter, in the same manner as in Example 1, a relationship diagram between the average value σ ave of compressive residual stress and the root bending fatigue strength σ str as shown in FIG. 7B was obtained. As shown in FIG. 7B, the relationship between the root bending fatigue strength σ str and the average value σ ave of the compressive residual stress based on the evaluation parameter Pa is as indicated by the straight line SL 2 in the figure. Can be approximated by a straight line, and both have a strong correlation. According to the second embodiment, basically the same effect as that of the first embodiment can be obtained.

(実施例3)
実施例3においては、図8(a)に示されるように、評価対象深度Dを最表面から70μmまでとし、歯元部最表面0μmから深さ70μmまでを、第1閉区間:0〜40μm、第2閉区間:40〜60μm、第3閉区間:60〜70μmの三つの閉区間に分割した。以下、実施例1と同様にして図8(b)に示されるような圧縮残留応力の平均値σaveと歯元曲げ疲労強度σstrとの関係図を得た。図8(b)に示されるように、歯元曲げ疲労強度σstrと、評価パラメータPaに基づく圧縮残留応力の平均値σaveとの関係は、図中記号SLの直線で示されるように、ほぼ直線近似することができ、両者は強い相関関係を有している。実施例3によっても基本的に実施例1と同様の効果を得ることができる。
(Example 3)
In Example 3, as shown in FIG. 8 (a), the evaluation target depth D is 70 μm from the outermost surface, and the first closed section: 0 to 40 μm from the uppermost surface of the tooth root portion to 70 μm in depth. The second closed section: 40 to 60 μm and the third closed section: 60 to 70 μm were divided into three closed sections. Hereinafter, in the same manner as in Example 1, a relationship diagram between the average value σ ave of compressive residual stress and the root bending fatigue strength σ str as shown in FIG. 8B was obtained. As shown in FIG. 8B, the relationship between the root bending fatigue strength σ str and the average value σ ave of the compressive residual stress based on the evaluation parameter Pa is as shown by the straight line SL 3 in the figure. Can be approximated by a straight line, and both have a strong correlation. According to the third embodiment, basically the same effect as that of the first embodiment can be obtained.

(比較例1)
比較例1においては、図9(a)に示されるように、実施例1と同様に歯元部最表面0μmから深さ60μmまでを、第1閉区間:0〜10μm、第2閉区間:10〜30μm、第3閉区間:30〜60μmの三つの閉区間に分割した。そして、各閉区間における圧縮残留応力に対しては重み0.33を一律に付した。以下、実施例1と同様にして図9(b)に示されるような圧縮残留応力の平均値σaveと歯元曲げ疲労強度σstrとの関係図を得た。図9(b)に示されるように、歯元曲げ疲労強度σstrと、評価パラメータPaに基づく圧縮残留応力の平均値σaveとの関係は、直線的な関係とならず、相関が見られない。したがって、要求された歯元曲げ疲労強度σstrに対して必要となる圧縮残留応力の平均値σaveを求めることができず、所望品質のギヤを得るための熱処理条件やショットピーニング条件を決定することができない。
(Comparative Example 1)
In Comparative Example 1, as shown in FIG. 9A, the first closed section: 0 to 10 μm, the second closed section from 0 μm to 60 μm in depth, similar to the first embodiment, as in Example 1. Divided into three closed sections of 10 to 30 μm and third closed section: 30 to 60 μm. A weight of 0.33 was uniformly applied to the compressive residual stress in each closed section. Hereinafter, in the same manner as in Example 1, a relationship diagram between the average value σ ave of compressive residual stress and the root bending fatigue strength σ str as shown in FIG. 9B was obtained. As shown in FIG. 9B, the relationship between the root bending fatigue strength σ str and the average value σ ave of the compressive residual stress based on the evaluation parameter Pa is not a linear relationship, but a correlation is seen. Absent. Therefore, the average value σ ave of the compressive residual stress necessary for the required root bending fatigue strength σ str cannot be obtained, and heat treatment conditions and shot peening conditions for obtaining gears of desired quality are determined. I can't.

(比較例2)
比較例2においては、図10(a)に示されるように、実施例1と同様に歯元部最表面0μmから深さ60μmまでを、第1閉区間:0〜10μm、第2閉区間:10〜30μm、第3閉区間:30〜60μmの三つの閉区間に分割した。そして、第1閉区間:0〜10μmの圧縮残留応力に対しては重み0.1を付し、第2閉区間:10〜30μmの圧縮残留応力に対しては重み0.2を付し、第3閉区間:30〜60μmの圧縮残留応力に対しては重み0.7を付し、実施例1とは真逆の重み付けを行った。以下、実施例1と同様にして図10(b)に示されるような圧縮残留応力の平均値σaveと歯元曲げ疲労強度σstrとの関係図を得た。図10(b)に示されるように、歯元曲げ疲労強度σstrと、評価パラメータPaに基づく圧縮残留応力の平均値σaveとの関係は、直線的な関係とならず、相関が見られない。したがって、要求された歯元曲げ疲労強度σstrに対して必要となる圧縮残留応力の平均値σaveを求めることができず、所望品質のギヤを得るための熱処理条件やショットピーニング条件を決定することができない。
(Comparative Example 2)
In Comparative Example 2, as shown in FIG. 10 (a), the same as in Example 1, from the top surface of the tooth root part to 0 μm to the depth of 60 μm, the first closed section: 0 to 10 μm, the second closed section: Divided into three closed sections of 10 to 30 μm and third closed section: 30 to 60 μm. The first closed section: a weight of 0.1 is applied to a compressive residual stress of 0 to 10 μm, the second closed section: a weight of 0.2 is applied to a compressive residual stress of 10 to 30 μm, Third closed section: A weight of 0.7 was applied to the compressive residual stress of 30 to 60 μm, and a weight opposite to that in Example 1 was applied. Hereinafter, in the same manner as in Example 1, a relationship diagram between the average value σ ave of compressive residual stress and the root bending fatigue strength σ str as shown in FIG. 10B was obtained. As shown in FIG. 10B, the relationship between the root bending fatigue strength σ str and the average value σ ave of the compressive residual stress based on the evaluation parameter Pa is not a linear relationship, but a correlation is observed. Absent. Therefore, the average value σ ave of the compressive residual stress necessary for the required root bending fatigue strength σ str cannot be obtained, and heat treatment conditions and shot peening conditions for obtaining gears of desired quality are determined. I can't.

以上、本発明の歯車の圧縮残留応力評価方法および歯車設計方法について、一実施形態および複数の実施例に基づいて説明したが、本発明は上記実施例等に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   The gear residual compression stress evaluation method and gear design method according to the present invention have been described based on one embodiment and a plurality of examples. However, the present invention is not limited to the configurations described in the above examples. However, the configuration can be changed as appropriate without departing from the spirit of the invention.

熱処理後にショットピーニングされた歯車の深さ方向における圧縮残留応力分布の一例を表わす図Diagram showing an example of compressive residual stress distribution in the depth direction of gears shot-peened after heat treatment X線による圧縮残留応力測定法の説明図Illustration of X-ray compression residual stress measurement method 疲労亀裂進展のメカニズムの説明図Illustration of fatigue crack growth mechanism 圧縮残留応力の平均値と歯元曲げ疲労強度との関係の一例を表わす図Diagram showing an example of the relationship between the average value of compressive residual stress and the root bending fatigue strength 歯車の歯元曲げ疲労試験の概略説明図Schematic illustration of gear tooth root bending fatigue test 実施例1における各閉区間での重み付けの説明図(a)および圧縮残留応力の平均値と歯元曲げ疲労強度との関係を表わす図(b)Explanatory drawing (a) of the weighting in each closed section in Example 1, and the figure showing the relationship between the average value of compressive residual stress, and tooth root bending fatigue strength (b) 実施例2における各閉区間での重み付けの説明図(a)および圧縮残留応力の平均値と歯元曲げ疲労強度との関係を表わす図(b)Explanatory drawing (a) of the weighting in each closed section in Example 2, and the figure showing the relationship between the average value of compressive residual stress, and tooth root bending fatigue strength (b) 実施例3における各閉区間での重み付けの説明図(a)および圧縮残留応力の平均値と歯元曲げ疲労強度との関係を表わす図(b)Explanatory drawing (a) of weighting in each closed section in Example 3, and the figure showing the relationship between the average value of compressive residual stress, and tooth root bending fatigue strength (b) 比較例1における各閉区間での重み付けの説明図(a)および圧縮残留応力の平均値と歯元曲げ疲労強度との関係を表わす図(b)Explanatory drawing of weighting in each closed section in Comparative Example 1 (a) and a diagram showing the relationship between the average value of compressive residual stress and root bending fatigue strength (b) 比較例2における各閉区間での重み付けの説明図(a)および圧縮残留応力の平均値と歯元曲げ疲労強度との関係を表わす図(b)Explanatory drawing (a) of the weighting in each closed section in the comparative example 2, and the figure showing the relationship between the average value of compressive residual stress, and tooth root bending fatigue strength (b)

符号の説明Explanation of symbols

1 歯車
1a 歯元部
CL 圧縮残留応力分布曲線
D 評価対象深度
第1閉区間
第2閉区間
第3閉区間
重み(第1閉区間)
重み(第2閉区間)
重み(第3閉区間)
積分値(第1閉区間)
積分値(第2閉区間)
積分値(第3閉区間)
σave 圧縮残留応力の平均値
σstr 歯元曲げ疲労強度
DESCRIPTION OF SYMBOLS 1 Gear 1a Root part CL Compression residual stress distribution curve D Evaluation object depth D 1 1st closed area D 2 2nd closed area D 3 3rd closed area W 1 weight (1st closed area)
W 2 weight (second closed section)
W 3 weight (third closed section)
S 1 integral value (first closed section)
S 2 integral value (between second closed interval)
S 3 integral value (third closed section)
σ ave average compressive residual stress σ str root bending fatigue strength

Claims (2)

熱処理後にショットピーニングされた歯車の圧縮残留応力を評価する歯車の圧縮残留応力評価方法において、
歯車の歯元部表面から深さ方向における圧縮残留応力の測定値に基づいて圧縮残留応力分布曲線を求める工程と、
前記歯元部表面から所定深さまでを評価対象深度として該評価対象深度を複数の閉区間に分割し、各閉区間における圧縮残留応力に対して付す重みが前記歯元部表面に近い閉区間の方が大きな値となるように各閉区間での重み付けを決定する工程と、
前記圧縮残留応力分布曲線の各閉区間における積分値に各閉区間毎に決定された前記重みを乗じた値を総和して全閉区間の総和値とし、該総和値を歯車の圧縮残留応力を評価する評価パラメータとして算定する工程と
を含むことを特徴とする歯車の圧縮残留応力評価方法。
In the compression residual stress evaluation method for gears, which evaluates the compression residual stress of gears shot-peened after heat treatment,
Obtaining a compressive residual stress distribution curve based on a measured value of compressive residual stress in the depth direction from the tooth root surface of the gear;
The evaluation target depth is divided into a plurality of closed sections from the root surface to a predetermined depth, and the weight applied to the compressive residual stress in each closed section is a close section close to the root section surface. Determining a weight in each closed section so that the one has a larger value;
A sum of values obtained by multiplying the integral value in each closed section of the compressive residual stress distribution curve by the weight determined for each closed section is a total value in the fully closed section, and the total value is a compression residual stress of the gear. And a step of calculating as an evaluation parameter to be evaluated.
請求項1に記載の歯車の圧縮残留応力評価方法を用いた歯車設計方法であって、
熱処理条件とショットピーニング条件との組み合わせが異なる複数の歯車のそれぞれについて前記評価パラメータを算定し、算定された各評価パラメータを前記評価対象深度で除して各歯車についての圧縮残留応力の平均値を求める工程と、
前記複数の歯車のそれぞれについて歯元曲げ疲労強度を求める工程と、
前記圧縮残留応力の平均値と前記歯元曲げ疲労強度との関係に基づいて、要求された歯元曲げ疲労強度に対応する圧縮残留応力の平均値を必要圧縮残留応力の平均値として算定する工程と、
前記複数の歯車の中から、前記必要圧縮残留応力の平均値より大きい圧縮残留応力の平均値を有する歯車を選定し、選定された歯車の熱処理条件とショットピーニング条件との組み合わせに基づいて歯車設計上の熱処理条件とショットピーニング条件との組み合わせを決定する工程と
を含むことを特徴とする歯車設計方法。
A gear design method using the compression residual stress evaluation method for a gear according to claim 1,
The evaluation parameter is calculated for each of a plurality of gears having different combinations of heat treatment conditions and shot peening conditions, and the calculated evaluation parameters are divided by the evaluation target depth to obtain an average value of the compressive residual stress for each gear. The desired process;
Obtaining a root bending fatigue strength for each of the plurality of gears;
A step of calculating an average value of the compressive residual stress corresponding to the requested root bending fatigue strength as an average value of the required compressive residual stress based on the relationship between the average value of the compressive residual stress and the root bending fatigue strength. When,
A gear having an average value of compressive residual stress greater than the average value of the required compressive residual stress is selected from the plurality of gears, and the gear is designed based on a combination of heat treatment conditions and shot peening conditions of the selected gear. And a step of determining a combination of the above heat treatment condition and shot peening condition.
JP2008085653A 2008-03-28 2008-03-28 Compressive residual stress evaluation method and gear design method for gears Expired - Fee Related JP5020146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085653A JP5020146B2 (en) 2008-03-28 2008-03-28 Compressive residual stress evaluation method and gear design method for gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085653A JP5020146B2 (en) 2008-03-28 2008-03-28 Compressive residual stress evaluation method and gear design method for gears

Publications (2)

Publication Number Publication Date
JP2009236822A JP2009236822A (en) 2009-10-15
JP5020146B2 true JP5020146B2 (en) 2012-09-05

Family

ID=41250937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085653A Expired - Fee Related JP5020146B2 (en) 2008-03-28 2008-03-28 Compressive residual stress evaluation method and gear design method for gears

Country Status (1)

Country Link
JP (1) JP5020146B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975121A (en) * 2019-04-19 2019-07-05 中国工程物理研究院化工材料研究所 A kind of fast appraisement method characterizing PBX modeling powder compressibility

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5705553B2 (en) * 2011-01-04 2015-04-22 山陽特殊製鋼株式会社 Shot peening method with excellent projectile life
US9486894B2 (en) 2012-06-27 2016-11-08 Sintokogio, Ltd. Shot peening method, shot peening evaluation method, and shot peening evaluation assembly structure
JP5955301B2 (en) 2013-11-14 2016-07-20 株式会社神戸製鋼所 Residual stress calculation method
JP2017036772A (en) * 2015-08-07 2017-02-16 本田技研工業株式会社 Continuously variable transmission
CN109271711B (en) * 2018-09-25 2023-03-28 重庆大学 Finite element modeling method for carburizing and hardening gear considering uneven characteristics
CN113742859B (en) * 2021-08-13 2024-03-08 湖南磐钴传动科技有限公司 Composite stress field construction method based on tooth surface residual stress and contact stress

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170511A (en) * 1985-01-24 1986-08-01 Toyota Motor Corp Manufacture of high strength gear
JP2593739B2 (en) * 1990-11-20 1997-03-26 新日本製鐵株式会社 Surface processing and evaluation device for gears with shafts
JPH06768A (en) * 1992-06-23 1994-01-11 Nissan Diesel Motor Co Ltd Shot peening method
JPH08278208A (en) * 1995-03-31 1996-10-22 Sumitomo Metal Ind Ltd Method for measuring distribution of residual stress on surface of aluminum alloy material
JP2000345238A (en) * 1999-03-31 2000-12-12 Showa Corp Production of suspension spring for motor car
JP2006009877A (en) * 2004-06-24 2006-01-12 Nissan Motor Co Ltd Gear
JP4487254B2 (en) * 2004-10-12 2010-06-23 新東工業株式会社 Selection method of peening strength for steel parts
JP2007307678A (en) * 2006-05-22 2007-11-29 Kanzaki Kokyukoki Mfg Co Ltd Shot peening method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975121A (en) * 2019-04-19 2019-07-05 中国工程物理研究院化工材料研究所 A kind of fast appraisement method characterizing PBX modeling powder compressibility
CN109975121B (en) * 2019-04-19 2021-07-27 中国工程物理研究院化工材料研究所 Rapid evaluation method for representing compressibility of PBX molding powder

Also Published As

Publication number Publication date
JP2009236822A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5020146B2 (en) Compressive residual stress evaluation method and gear design method for gears
Solberg et al. Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness
Hassani-Gangaraj et al. Finite element approach toward an advanced understanding of deep rolling induced residual stresses, and an application to railway axles
CN107885961A (en) Machine Components Strength evaluation method
Umapathi et al. Measurement of residual stresses in titanium alloys using synchrotron radiation
EP2759744A1 (en) System and method for improving a workpiece
Ghannoum et al. Low-Cycle Fatigue Performance of High-Strength Steel Reinforcing Bars.
Nykänen et al. Fatigue assessment of welded joints under variable amplitude loading using a novel notch stress approach
WO2021004501A1 (en) Fatigue-strength-based structural full-field lightweight level quantitative evaluation method
JP4375245B2 (en) Method for creating fatigue limit diagram of cast member
JP5569588B2 (en) gear
Yoon et al. Improvement of low-cycle fatigue life of austenitic stainless steel by multiple high-density pulsed electric currents
Van Es et al. TIG-dressing of high strength butt welded connections–Part 2: physical testing and modelling
Wang et al. The stress intensity factor calculation for combined sliding wear and fatigue of GH4169 superalloy based on three-dimensional simulation
Dai et al. Modelling the interpass temperature effect on residual stress in low transformation temperature stainless steel welds
Vukelic et al. Failure analysis of a crane gear shaft
Rajesh et al. Balanced bending fatigue life for helical gear drives to enhance the power transmission capacity through novel rack cutters
Xiao et al. Influence of laser shock peening on fatigue life of transmission gears in aeroengine
Millot-Méheux et al. Alternative to Ni-Bearing Carburizing Steels
Irvine Estimation fatigue damage from stress power spectral density functions revision A
JP7204585B2 (en) Surface treatment condition derivation device, surface treatment system and surface treatment method
Comandini et al. FATIGUE PERFORMANCE OF SHOT-PEENED GEARS INVESTIGATED BY EXPERIMENTAL AND NUMERICAL METHODS.
Koh et al. Fatigue design of an autofrettaged thick-walled pressure vessel using CAE techniques
Im et al. Examination on Flaw Interactions in a Plate Subjected to Tensile and Bending Loads
Breuer et al. Adaptation of shot peen parameters for gear geometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5020146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees