JP2007307678A - Shot peening method - Google Patents

Shot peening method Download PDF

Info

Publication number
JP2007307678A
JP2007307678A JP2006141124A JP2006141124A JP2007307678A JP 2007307678 A JP2007307678 A JP 2007307678A JP 2006141124 A JP2006141124 A JP 2006141124A JP 2006141124 A JP2006141124 A JP 2006141124A JP 2007307678 A JP2007307678 A JP 2007307678A
Authority
JP
Japan
Prior art keywords
shot
hardness
residual stress
compressive residual
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006141124A
Other languages
Japanese (ja)
Inventor
Yuji Yasusaka
雄二 安坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Kokyukoki Manufacturing Co Ltd
Original Assignee
Kanzaki Kokyukoki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Kokyukoki Manufacturing Co Ltd filed Critical Kanzaki Kokyukoki Manufacturing Co Ltd
Priority to JP2006141124A priority Critical patent/JP2007307678A/en
Publication of JP2007307678A publication Critical patent/JP2007307678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a value itself of compressive residual stress of a generated surface layer is low, and fatigue strength is not sufficient since hardness of a shot grain is low or a grain size of the shot grain is large in a conventional shot peening. <P>SOLUTION: In this shot peening method to be performed after performing carburizing treatment for a surface of a steel member, first shot peening is performed by the first shot grain having hardness ≥HRC60 in Rockwell hardness and the grain size ≥200μm and ≤400μm, and second shot peening is performed by the small second shot grain having hardness ≥HRC60 in Rockwell hardness and a grain size ratio ≥0.1 and ≤0.3 to the first shot grain. More preferably, both of the hardness of the first shot grain and the second shot grain are made ≤HRC65 in Rockwell hardness. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、歯車等の鋼部材の表面に浸炭処理を施した後に行い、該鋼部材の疲労特性を著しく改善させることが可能な、ショットピーニング処理方法に関するものである。     The present invention relates to a shot peening treatment method that can be carried out after carburizing the surface of a steel member such as a gear to significantly improve the fatigue characteristics of the steel member.

従来より、歯車等の鋼部材には高い疲労強度が要求されており、特に、近年のエンジンの高出力化と小形化ニーズから、鋼部材にかかる負荷が増大してきているため、疲労強度の一層の向上が求められている。このような疲労強度を向上させる技術としては、浸炭処理を施した鋼部材もしくは浸炭処理後に再加熱した鋼部材にショットピーニング処理を施し、表面を硬化させると共に高い圧縮残留応力を生成する技術が知られている。   Conventionally, steel members such as gears have been required to have high fatigue strength, and in particular, due to the recent demand for higher output and smaller engines, the load on steel members has been increasing, so that fatigue strength is further increased. Improvement is demanded. As a technique for improving such fatigue strength, a technique is known in which a steel member subjected to carburizing treatment or a steel member reheated after carburizing treatment is subjected to shot peening treatment to harden the surface and generate high compressive residual stress. It has been.

このショットピーニング処理方法では、真空浸炭処理を施した鋼部材に微小な鉄系ショット粒子を用いてショットピーニングを施すことにより、圧縮残留応力のピーク位置を疲労起点のある表面近傍に設定し、疲労強度の向上を図る技術が公知となっている(例えば、特許文献1参照。)。
また、第一ショット粒子による第一ショットピーニングを施した後、該第一ショット粒子に対し所定粒径比を有する小さい第二ショット粒子を用いて第二ショットピーニングを施すことにより、圧縮残留応力の深さ方向分布を改善し、疲労強度の向上を図る技術が公知となっている(例えば、特許文献2参照。)。
更に、所定粒径の第一ショット粒子による第一ショットピーニングを施した後、該第一ショット粒子に比べて非常に小さい第二ショット粒子を用いて第二ショットピーニングを施すことにより、高い圧縮残留応力を表面に導入して、疲労強度の向上を図る技術も公知となっている(例えば、特許文献3参照。)。
特公平6−72254号公報 特許2723150号公報 特開2002−30344号公報
In this shot peening treatment method, the peak position of the compressive residual stress is set near the surface where fatigue starts, by performing shot peening using fine iron-based shot particles on a steel member that has been subjected to vacuum carburization. A technique for improving the strength is known (for example, see Patent Document 1).
In addition, after performing the first shot peening with the first shot particles, the second shot peening is performed using the small second shot particles having a predetermined particle size ratio with respect to the first shot particles, thereby reducing the compressive residual stress. A technique for improving the distribution in the depth direction and improving the fatigue strength is known (for example, see Patent Document 2).
Furthermore, after the first shot peening is performed with the first shot particles having a predetermined particle size, the second shot peening is performed using the second shot particles that are very small compared to the first shot particles, thereby achieving high compression residual. A technique for improving fatigue strength by introducing stress to the surface is also known (see, for example, Patent Document 3).
Japanese Examined Patent Publication No. 6-72254 Japanese Patent No. 2723150 JP 2002-30344 A

しかしながら、前述のショットピーニング処理のうち、微小な鉄系ショット粒子を用いたショットピーニングでは、使用するショット粒子の硬さがロックウェル硬さでHRC50以上58未満と低いために、生成する圧縮残留応力の値そのものが低く、疲労強度も十分ではない、という問題があった。
また、第一ショット粒子の所定粒径比に相当する小さい第二ショット粒子を用いた二段ショットピーニングにおいても、圧縮残留応力の分布は改善されるものの、第一ショット粒子と第二ショット粒子の硬さはロックウェル硬さでHRC50以上58未満と低いため、やはり、圧縮残留応力の値そのものが低く、十分な疲労強度が得られない、という問題があった。
更に、第一ショット粒子に比べて非常に小さい第二ショット粒子を用いた二段ショットピーニングでは、第一ショット粒子、第二ショット粒子の硬さはHRC60と高いものの、第一ショット粒子の粒径が400〜800μmと大きくて圧縮残留応力のピーク位置が内部へ移行するため、表面切欠きの影響が最小限に抑えられるφ60μm以下の微小粒子を用いると、圧縮残留応力分布に不連続が生じ、必要とする20〜30μm深さの残留応力が低下し、やはり十分な疲労強度が得られない、という問題があった。
However, in shot peening using the fine iron-based shot particles among the above-described shot peening treatments, the hardness of shot particles used is as low as HRC50 or more and less than 58 in terms of Rockwell hardness. The value itself was low and the fatigue strength was not sufficient.
Also, in the two-stage shot peening using a small second shot particle corresponding to a predetermined particle size ratio of the first shot particle, the distribution of compressive residual stress is improved, but the first shot particle and the second shot particle Since the hardness is as low as HRC50 or more and less than 58 in terms of Rockwell hardness, there is still a problem that the value of the compressive residual stress itself is low and sufficient fatigue strength cannot be obtained.
Furthermore, in the two-stage shot peening using the second shot particle which is very small compared to the first shot particle, the hardness of the first shot particle and the second shot particle is as high as HRC60, but the particle size of the first shot particle Is 400 to 800 μm, and the peak position of compressive residual stress shifts to the inside. Therefore, when fine particles with a diameter of 60 μm or less that can minimize the influence of the surface notch are used, discontinuity occurs in the compressive residual stress distribution, The required residual stress at a depth of 20 to 30 μm is lowered, and there is a problem that sufficient fatigue strength cannot be obtained.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
すなわち、請求項1においては、鋼部材の表面に浸炭処理を施した後に行うショットピーニング処理方法において、硬さがロックウェル硬さでHRC60以上で、粒径が200μm以上400μm以下の第一ショット粒子により第一ショットピーニングを施し、次に、硬さがロックウェル硬さでHRC60以上で、前記第一ショット粒子との粒径比が0.1以上0.3以下の小さい第二ショット粒子により第二ショットピーニングを施すものである。
請求項2においては、前記第一ショット粒子と第二ショット粒子の硬さは、いずれもロックウェル硬さでHRC65以下とするものである。
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
That is, in Claim 1, in the shot peening treatment method performed after carburizing the surface of the steel member, the first shot particles having a hardness of Rockwell hardness of HRC 60 or more and a particle size of 200 μm or more and 400 μm or less. The first shot peening is performed by the second shot particles having a Rockwell hardness of HRC 60 or more and a particle size ratio of 0.1 to 0.3 with the first shot particles. Two shot peening is applied.
According to a second aspect of the present invention, the hardness of the first shot particles and the second shot particles are both Rockwell hardnesses of HRC 65 or less.

本発明は、以上のように構成したので、以下に示す効果を奏する。
すなわち、請求項1においては、鋼部材の表面に浸炭処理を施した後に行うショットピーニング処理方法において、硬さがロックウェル硬さでHRC60以上で、粒径が200μm以上400μm以下の第一ショット粒子により第一ショットピーニングを施し、次に、硬さがロックウェル硬さでHRC60以上で、前記第一ショット粒子との粒径比が0.1以上0.3以下の小さい第二ショット粒子により第二ショットピーニングを施すので、鋼部材の表面とその近傍に生成される圧縮残留応力の値を大幅に増加させることができ、鋼部材に十分な疲労強度を付与することができる。
また、請求項2においては、前記第一ショット粒子と第二ショット粒子の硬さは、いずれもロックウェル硬さでHRC65以下とするので、ショット粒子の硬さをできるだけ低めに抑えることにより、特殊なショット粒子の使用によるコスト高を防止すると共に、ショット粒子の衝突による鋼部材表面への圧痕形成を最小限に抑えて表面粗さをできるだけ小さくし、表面品質の向上を図ることができる。
Since this invention was comprised as mentioned above, there exists an effect shown below.
That is, in Claim 1, in the shot peening treatment method performed after carburizing the surface of the steel member, the first shot particles having a hardness of Rockwell hardness of HRC 60 or more and a particle size of 200 μm or more and 400 μm or less. The first shot peening is performed by the second shot particles having a Rockwell hardness of HRC 60 or more and a particle size ratio of 0.1 to 0.3 with the first shot particles. Since two shot peening is performed, the value of the compressive residual stress produced | generated on the surface of a steel member and its vicinity can be increased significantly, and sufficient fatigue strength can be provided to a steel member.
Further, in claim 2, since the hardness of each of the first shot particles and the second shot particles is HRC65 or less in Rockwell hardness, the hardness of the shot particles is suppressed as low as possible. In addition to preventing high costs due to the use of appropriate shot particles, surface roughness can be minimized by minimizing the formation of indentations on the steel member surface due to collision of shot particles, thereby improving the surface quality.

次に、発明の実施の形態について説明する。
図1は本発明に係わるショットピーニング処理を施す鋼部材の製造工程を示すフローチャート、図2は残留応力分布に及ぼす繰り返し数の影響を示す説明図、図3は一段だけのショットピーニング時の残留応力分布に及ぼすショット粒子の硬さと粒径の影響を示す説明図、図4は残留応力分布に及ぼすショット粒子の粒径の影響と、二段ショットピーニング後の残留応力分布状況とを示す説明図、図5は最大圧縮残留応力に及ぼすショット粒子の硬さの影響を示す説明図、図6は高圧縮残留応力域の表面からの深さに及ぼす第一ショット粒子の粒径の影響を示す説明図、図7は表面粗さに及ぼす第一ショット粒子の粒径の影響を示す説明図、図8は疲労寿命に及ぼす第一ショット粒子と第二ショット粒子との粒径比の影響を示す説明図、図9は真空浸炭処理でのヒートサイクルを示す説明図であって、図9(a)は熱処理1のヒートサイクルの説明図、図9(b)は熱処理2のヒートサイクルの説明図、図10は疲労試験装置の構成を示すブロック図である。なお、ここで、前記高圧縮残留応力域とは、−1400MPaよりも高い圧縮残留応力が存在する層を示す。
Next, embodiments of the invention will be described.
FIG. 1 is a flowchart showing a manufacturing process of a steel member subjected to shot peening according to the present invention, FIG. 2 is an explanatory diagram showing the effect of the number of repetitions on the residual stress distribution, and FIG. 3 is a residual stress at the time of only one stage of shot peening. FIG. 4 is an explanatory diagram showing the effect of shot particle hardness and particle size on the distribution, FIG. 4 is an explanatory diagram showing the effect of shot particle size on the residual stress distribution, and the residual stress distribution after two-stage shot peening, FIG. 5 is an explanatory diagram showing the effect of shot particle hardness on the maximum compressive residual stress, and FIG. 6 is an explanatory diagram showing the effect of the particle size of the first shot particle on the depth from the surface of the high compressive residual stress region. FIG. 7 is an explanatory diagram showing the effect of the particle size of the first shot particles on the surface roughness, and FIG. 8 is an explanatory diagram showing the effect of the particle size ratio between the first shot particles and the second shot particles on the fatigue life. , FIG. FIG. 9A is an explanatory diagram showing a heat cycle in vacuum carburizing treatment, FIG. 9A is an explanatory diagram of a heat cycle of heat treatment 1, FIG. 9B is an explanatory diagram of a heat cycle of heat treatment 2, and FIG. 10 is a fatigue test. It is a block diagram which shows the structure of an apparatus. Here, the high compressive residual stress region indicates a layer having a compressive residual stress higher than −1400 MPa.

まず、本発明に係わるショットピーニングを施す鋼部材の製造工程について、図1により説明する。
材料は浸炭処理に適したSCM420H等の合金鋼を準備し、所定の大きさに切断(ステップS1)した後、切削や熱間鍛造等によって粗形品に加工する(ステップ2)。この際、必要に応じて、熱によって粗大化した結晶組織を標準組織に戻すために焼ならし処理を施す(ステップS3)。次に、前記粗形品に所定の加工、例えば歯車であれば旋削、歯切り等を施すことにより、製品形状に加工(ステップS4)すると鋼部材が得られ、引き続いて、該鋼部材には真空浸炭焼入れ処理(ステップS5)と、該焼入れによる脆性と歪みを除去するための焼戻し処理(ステップS6)とを施し、その後、本発明に係わる二段ショットピーニング処理を施すのである。
First, the manufacturing process of the steel member which performs shot peening according to the present invention will be described with reference to FIG.
As the material, alloy steel such as SCM420H suitable for carburizing treatment is prepared, cut into a predetermined size (step S1), and then processed into a rough product by cutting or hot forging (step 2). At this time, if necessary, a normalizing process is performed to return the crystal structure coarsened by heat to the standard structure (step S3). Next, a steel member is obtained by processing the rough shape product into a product shape (step S4) by performing predetermined processing such as turning, gear cutting, etc. for a gear, and subsequently, the steel member A vacuum carburizing and quenching process (step S5) and a tempering process (step S6) for removing brittleness and distortion caused by the quenching are performed, and then a two-stage shot peening process according to the present invention is performed.

該二段ショットピーニング処理は、硬さがロックウェル硬さでHRC60以上で、粒径が200μm以上400μm以下の第一ショット粒子により第一ショットピーニングを施し、次に、硬さがロックウェル硬さでHRC60以上で、前記第一ショット粒子との粒径比が0.1以上0.3以下の小さい第二ショット粒子により第二ショットピーニングを施すことによって行う。   The two-stage shot peening treatment is performed by first shot peening with first shot particles having a Rockwell hardness of HRC 60 or more and a particle size of 200 μm or more and 400 μm or less, and then the hardness is Rockwell hardness. The second shot peening is performed with small second shot particles having an HRC of 60 or more and a particle size ratio of 0.1 to 0.3 with respect to the first shot particles.

各ショット粒子の硬さと粒径をこのように限定したのは、本発明者が鋭意研究した以下の結果に基づくものである。
鋼部材に繰り返し応力がかかるとマイクロクラックが発生し、該マイクロクラックを起点としてクラックが伸展していき、疲労破壊に至る。そこで、疲労強度を一層向上させるには、疲労起点となるマイクロクラックの発生限界応力を高くしてマイクロクラックの発生そのものを抑制すると共に、このマイクロクラックが伸展して疲労クラックへ成長することを抑制することが重要であり、それには、マイクロクラックの発生起点の圧縮残留応力を高めると同時に、マイクロクラックの発生に伴う圧縮残留応力の低下を最小限に抑えクラックの伝播を抑制することが有効といえる。
The reason why the hardness and particle size of each shot particle are limited in this way is based on the following results which the present inventors have earnestly studied.
When a stress is repeatedly applied to the steel member, microcracks are generated, and the cracks extend starting from the microcracks, leading to fatigue failure. Therefore, in order to further improve the fatigue strength, the microcrack generation limit stress, which is the starting point of fatigue, is increased to suppress the microcrack generation itself, and the microcrack is prevented from extending and growing into a fatigue crack. It is important to increase the compressive residual stress at the starting point of microcracks and to suppress the propagation of cracks while minimizing the decrease in compressive residual stress associated with microcracks. I can say that.

ここで、本実施例では鋼部材には真空浸炭処理を施すので、粒界酸化による表面異常層が存在しないため、前記マイクロクラックは表面から発生する。そのため、表面における圧縮残留応力と、表面近傍における圧縮残留応力低下域先端の圧縮残留応力とを、同時に高めることが重要となる。   Here, in this embodiment, since the steel member is subjected to vacuum carburization, there is no surface abnormal layer due to grain boundary oxidation, so the microcracks are generated from the surface. For this reason, it is important to simultaneously increase the compressive residual stress on the surface and the compressive residual stress at the tip of the compressive residual stress reduction region near the surface.

そこで、この観点から、更に高い疲労強度を得る方法について種々検討したところ、ショット粒子の硬さを増加させると同時に粒径を小さくすることが極めて有効であることが判明した。つまり、ショット粒子を硬くすることにより、生成される圧縮残留応力の値そのものを高めることが出来、又、粒径に関しては粒径が大きいと、圧縮残留応力が広い分布幅をもって生成される一方、そのピーク位置が鋼部材内部寄りに移動することから、逆に粒径を小さくして、ピーク位置を鋼部材表面寄りにある圧縮残留応力低下域先端に設定するのである。   From this point of view, various methods for obtaining a higher fatigue strength have been studied, and it has been found that it is extremely effective to increase the hardness of the shot particles and simultaneously reduce the particle size. In other words, by making the shot particles hard, the value of the generated compressive residual stress itself can be increased, and with regard to the particle size, if the particle size is large, the compressive residual stress is generated with a wide distribution width, Since the peak position moves closer to the inside of the steel member, the particle size is conversely reduced, and the peak position is set at the front end of the compressive residual stress lowering region closer to the steel member surface.

しかしながら、このような高硬度小径ショット粒子による一段だけのショットピーニングでは、表面の圧縮残留応力は依然として低いままである。そこで、表面の圧縮残留応力の改善方法を検討したところ、第一ショット粒子と特定範囲の粒径比を有する第二ショット粒子を用いて二段ショットピーニングを施すことにより、改善できることが判明した。つまり、第二ショット粒子の粒径は、表面の圧縮残留応力を高めるために第一ショット粒子よりも小さくし、この際、圧縮残留応力の分布を最適化するために、粒径比の適正範囲を規定するのである。   However, the single stage shot peening with such high hardness small diameter shot particles still leaves the surface compressive residual stress low. Then, when the improvement method of the surface compressive residual stress was examined, it turned out that it can improve by performing two-stage shot peening using the 1st shot particle and the 2nd shot particle which has a particle size ratio of a specific range. That is, the particle size of the second shot particle is made smaller than that of the first shot particle in order to increase the compressive residual stress on the surface, and in this case, in order to optimize the distribution of the compressive residual stress, the appropriate range of the particle size ratio is set. Is prescribed.

ここで、HRC63で粒径55μmの高硬度小径ショット粒子による一段だけのショットピーニングを施した鋼部材について、ローラピッチング試験を行った場合の、残留応力の深さ方向分布の変化を図2に示す。   Here, FIG. 2 shows a change in the depth direction distribution of residual stress when a roller pitching test is performed on a steel member subjected to one-step shot peening with high hardness small diameter shot particles having a particle size of 55 μm by HRC63. .

これによると、試験早期(繰り返し数:1×10)にマイクロクラックが発生して表面近傍の圧縮残留応力が開放され、該圧縮残留応力は、繰り返し数が増すに従って次第に低下していく。そして、この減少が認められなくなる表面からの深さ、つまり、マイクロクラック発生に伴う圧縮残留応力低下域は表面から約15μmまでに存在することがわかる。 According to this, microcracks occur early in the test (number of repetitions: 1 × 10 4 ), and the compressive residual stress near the surface is released, and the compressive residual stress gradually decreases as the number of repetitions increases. Then, it can be seen that the depth from the surface at which this decrease is not recognized, that is, the region where the compressive residual stress is reduced due to the occurrence of microcracks exists from the surface to about 15 μm.

また、硬さHRC53で粒径600μm、硬さHRC63で粒径600μm、硬さHRC63で粒径250μmの3種類のショット粒子による一段だけのショットピーニングを施した鋼部材について、その残留応力の深さ方向分布の変化を図3に示す。   Further, the depth of the residual stress of a steel member subjected to only one stage of shot peening with three types of shot particles having a hardness HRC53 of 600 μm, a hardness of HRC63 of 600 μm, and a hardness of HRC63 of 250 μm The change in the direction distribution is shown in FIG.

同じ粒径600μmのショット粒子で硬さをHRC53からHRC63に増加させると、圧縮残留応力は広い分布幅も持ったまま増加するが表面近傍での増加量は十分とはいえず、更に、そのピーク位置も表面から内部へと移動する(曲線1、2参照)。そこで、同じ硬さHRC63のショット粒子で粒径を600μmから250μmに減少させると、圧縮残留応力のピーク位置は、内部から表面寄りに大きく移動して深さ約15μmとなる(曲線2、3参照)。つまり、ショット粒子の高硬度化・微小化によって、前記圧縮残留応力低下域における圧縮残留応力を高くできることがわかる。   When the hardness is increased from HRC53 to HRC63 with shot particles having the same particle size of 600 μm, the compressive residual stress increases with a wide distribution width, but the increase in the vicinity of the surface is not sufficient, and the peak The position also moves from the surface to the inside (see curves 1 and 2). Therefore, when the particle size is reduced from 600 μm to 250 μm with shot particles having the same hardness HRC63, the peak position of the compressive residual stress moves greatly from the inside toward the surface to a depth of about 15 μm (see curves 2 and 3). ). That is, it can be seen that the compression residual stress in the compression residual stress reduction region can be increased by increasing the hardness and miniaturization of the shot particles.

更に、この硬さHRC63で粒径250μmの高硬度小径第一ショット粒子による第一ショットピーニングに続いて、硬さHRC63で粒径55μmの第二ショット粒子による第二ショットピーニングを行う二段ショットピーニングを施した鋼部材について、その残留応力の深さ方向分布の変化を図4に示す。   Further, the second shot peening is performed with the second shot peening with the hardness HRC63 and the second shot particles with the particle size of 55 μm, following the first shot peening with the high hardness small diameter first shot particles with the particle size of 250 μm. FIG. 4 shows a change in the distribution of residual stress in the depth direction of the steel member subjected to.

二段ショットピーニングの場合の圧縮残留応力分布は、各段のショット粒子による一段だけのショットピーニングをした場合の圧縮残留応力分布を合成した形状となっており、前述の高硬度小径第一ショット粒子による第一ショットピーニングの圧縮残留応力分布に比べて、表層の圧縮残留応力が著しく高くなっていることがわかる(曲線3、4、5参照)。   The compressive residual stress distribution in the case of two-stage shot peening is a shape that combines the compressive residual stress distribution in the case where only one stage of shot peening is performed with each stage of shot particles. It can be seen that the compressive residual stress of the surface layer is significantly higher than the compressive residual stress distribution of the first shot peening due to (see curves 3, 4, and 5).

以上の知見に基づき、ショット粒子の硬さと大きさが疲労強度に及ぼす影響について精査したところ、第一ショット粒子と第二ショット粒子の硬さはHRC60以上が好ましいことが判明した。HRC60未満では、衝突時のショット粒子の変形によって衝突エネルギーの損失が大きくなり、十分な圧縮残留応力が得られず、疲労強度の顕著な向上が望めないからである。   Based on the above findings, the effects of the hardness and size of the shot particles on the fatigue strength were investigated, and it was found that the hardness of the first shot particles and the second shot particles is preferably HRC 60 or higher. If it is less than HRC60, the loss of collision energy increases due to deformation of shot particles at the time of collision, sufficient compressive residual stress cannot be obtained, and a significant improvement in fatigue strength cannot be expected.

また、前記第一ショット粒子と第二ショット粒子の硬さを、いずれもHRC60以上65以下の範囲に限定してもよい。HRC65超えでは、高速度鋼、非晶質鋼、超硬合金等の特殊なショット粒子が必要となりコスト高になるからであり、更に、衝突による鋼部材表面への圧痕形成が著しくなり表面粗さが大きくなるからである。   In addition, the hardness of the first shot particles and the second shot particles may be limited to a range of HRC 60 or more and 65 or less. If HRC65 is exceeded, special shot particles such as high-speed steel, amorphous steel, and cemented carbide will be required, resulting in high cost. Furthermore, the formation of indentations on the steel member surface due to impact becomes significant, resulting in surface roughness. This is because it becomes larger.

また、第一ショット粒子の粒径は200μm以上400μm以下であることが好ましい。200μm未満では、表面寄りに圧縮残留応力の高いピーク値が得られるが、その分布幅は狭いため、第二ショットピーニング後も、運転後の圧縮残留応力低下域先端での圧縮残留応力は低いままであり、高い疲労強度が得られないからである。一方、400μm超えでは、生成される圧縮残留応力の分布幅は広くなるものの、表面粗さが大きくなるからである。   The particle size of the first shot particles is preferably 200 μm or more and 400 μm or less. If it is less than 200 μm, a high peak value of compressive residual stress is obtained near the surface, but the distribution width is narrow. This is because high fatigue strength cannot be obtained. On the other hand, if it exceeds 400 μm, the distribution width of the generated compressive residual stress becomes wide, but the surface roughness becomes large.

更に、本発明のようにHRC60以上の高硬度のショット粒子を用いる場合には、第二ショット粒子の粒径は第一ショット粒子との粒径比で0.1以上0.3以下であることが好ましい。粒径比0.1未満では、第一ショット粒子により生成される圧縮残留応力と、第二ショット粒子により生成される圧縮残留応力との差が大きすぎて、二段ショットピーニング後の圧縮残留応力の分布に不連続性が生じ、必要とする20〜30μm深さ位置の圧縮残留応力値の増加が少なく、高い疲労強度が得られないからである。一方、粒径比0.3超えでは、第一ショット粒子により生成される圧縮残留応力と、第二ショット粒子により生成される圧縮残留応力との差が小さく、第一ショット粒子で形成された表層の圧縮残留応力を、第二ショット粒子によりバックアップできないからである。   Furthermore, when using high-hardness shot particles of HRC 60 or higher as in the present invention, the particle size of the second shot particles is 0.1 to 0.3 in terms of the particle size ratio with the first shot particles. Is preferred. If the particle size ratio is less than 0.1, the difference between the compressive residual stress generated by the first shot particles and the compressive residual stress generated by the second shot particles is too large, and the compressive residual stress after two-stage shot peening This is because a discontinuity occurs in the distribution of, and the increase in the compressive residual stress value at the required 20-30 μm depth is small, and high fatigue strength cannot be obtained. On the other hand, when the particle size ratio exceeds 0.3, the difference between the compressive residual stress generated by the first shot particles and the compressive residual stress generated by the second shot particles is small, and the surface layer formed by the first shot particles This is because the compressive residual stress cannot be backed up by the second shot particles.

なお、本発明における適正粒径比0.1以上0.3以下は、従来の低硬度のショット粒子を用いる場合の適正粒径比、例えば前記特許文献2の適正粒径比と比べて、全体的に低粒径比側に移行しているが、これは、高硬度小径第一ショット粒子による第一ショットピーニングによって圧縮残留応力の値全体が大きく増加するので、第二ショットピーニングにおいては表面の圧縮残留応力も同等に大きく増加させる必要があるが、そのためには、低硬度のショット粒子の場合に比べて、より微小な第二ショット粒子を用いることにより、表面に極めて高い圧縮残留応力を導入しなければならないからと推測される。   The appropriate particle size ratio in the present invention is 0.1 or more and 0.3 or less as compared with the appropriate particle size ratio in the case of using conventional low hardness shot particles, for example, the appropriate particle size ratio in Patent Document 2 above. However, this is because the overall value of compressive residual stress is greatly increased by the first shot peening with the high-hardness small-diameter first shot particles. The compressive residual stress also needs to be increased to the same extent, but for that purpose, extremely high compressive residual stress is introduced on the surface by using smaller second shot particles than in the case of low hardness shot particles. I guess it must be done.

以下に、本発明の実施例について説明する。
まず、表1に示す組成から成る3種類の合金鋼を、前述した図1に示す製造工程に従って加工して歯車(モジュール:2.25、歯数:13、歯幅:28mm)を製作し、供試歯車A〜Dとした。なお、供試歯車A、Bは、同一組成の合金鋼で熱処理条件を変えたものである。
Examples of the present invention will be described below.
First, three types of alloy steels having the compositions shown in Table 1 were processed according to the manufacturing process shown in FIG. 1 to produce gears (module: 2.25, number of teeth: 13, tooth width: 28 mm), Test gears A to D were used. Note that the test gears A and B are alloy steels having the same composition with different heat treatment conditions.

なお、図9に示すように、表1の熱処理1においては、980℃で2時間真空浸炭した後、850℃で油焼入れを行い(前記ステップS5)、引き続き、160℃で2時間加熱後に空冷して焼戻しを行う(前記ステップS6)。そして、熱処理2では、熱処理1での真空浸炭の時間を2時間から3.5時間に延長することにより、浸炭の量や厚みを増加させている。   As shown in FIG. 9, in heat treatment 1 of Table 1, after vacuum carburizing at 980 ° C. for 2 hours, oil quenching was performed at 850 ° C. (step S5), followed by air cooling at 160 ° C. for 2 hours. Then, tempering is performed (step S6). In heat treatment 2, the amount and thickness of carburization are increased by extending the time of vacuum carburization in heat treatment 1 from 2 hours to 3.5 hours.

本実施例では、このような真空浸炭処理を適用しているが、真空浸炭処理以外に真空イオン浸炭処理等を適用してもよく、マイクロクラックの発生起点にショット粒子の衝突エネルギーが作用する際の障壁となる表面異常層をできるだけ薄くできる浸炭処理であれば、本発明の効果を有効に発揮することができる。   In this embodiment, such a vacuum carburizing process is applied, but a vacuum ion carburizing process or the like may be applied in addition to the vacuum carburizing process, and when the collision energy of shot particles acts on the starting point of microcracks. If the carburizing treatment can make the surface abnormal layer serving as a barrier of the thickness as thin as possible, the effect of the present invention can be effectively exhibited.

次に、前記供試歯車A〜Dに、ショット条件を種々変化させてショットピーニング処理を行い、処理後の供試歯車について、表面粗さRmax(最大粗さ:μm)の測定、並びに、次のような疲労試験を行った。   Next, the test gears A to D are subjected to shot peening treatment with various shot conditions changed, and the surface roughness Rmax (maximum roughness: μm) is measured for the test gear after the treatment. A fatigue test was conducted.

図10に示すように、疲労試験装置6において、供試歯車8は相手歯車9(モジュール:2.25、歯数:62、歯幅:28mm)とギアボックス10内で噛合され、このうちの供試歯車8は、モータ7からの入力軸12に連動連結されると共に、相手歯車9の出力軸13は、動力吸収式の負荷装置11に連動連結されており、該負荷装置11によって、前記供試歯車8には転がり面圧Keで84MPaの一定負荷を付与できるようにしている。   As shown in FIG. 10, in the fatigue test apparatus 6, the test gear 8 is meshed with the counterpart gear 9 (module: 2.25, number of teeth: 62, tooth width: 28 mm) in the gear box 10, The test gear 8 is linked to the input shaft 12 from the motor 7, and the output shaft 13 of the counterpart gear 9 is linked to the power absorption type load device 11. The test gear 8 can be given a constant load of 84 MPa with a rolling contact pressure Ke.

この定負荷状態にて、供試歯車8を前記モータ7によって180rpmで定速回転させ、噛合する相手歯車9を回転駆動する。そして、前記供試歯車8の歯に進行性ピッティングによる欠損が発生するまでモータ7を駆動させ、該欠損が発生するまでの噛合い繰り返し回数を求めて疲労寿命とし、該疲労寿命に及ぼす各ショットピーニング条件の効果を比較検討した。なお、本試験での欠損形態は全て歯面の疲労によるものであった。   In this constant load state, the test gear 8 is rotated at a constant speed of 180 rpm by the motor 7, and the mating gear 9 to be engaged is rotationally driven. Then, the motor 7 is driven until the teeth of the test gear 8 are damaged by progressive pitting, the number of meshing repetitions until the defects are generated is determined as the fatigue life, and each of the effects on the fatigue life is determined. The effects of shot peening conditions were compared. In addition, all the defect | deletion forms in this test were due to the tooth surface fatigue.

最大圧縮残留応力に及ぼすショット粒子の硬さの影響、高圧縮残留応力域の表面からの深さに及ぼす第一ショット粒子の粒径の影響等について調査した結果を、図5乃至図8に示す。   The results of investigating the influence of the hardness of shot particles on the maximum compressive residual stress and the influence of the particle size of the first shot particles on the depth from the surface of the high compressive residual stress region are shown in FIGS. .

図5には、供試歯車:A、第一ショット粒子の粒径(以下、「D1」とする):300μmの硬さを変化させた場合に得られる最大圧縮残留応力の変化を曲線14として示す。   In FIG. 5, the change in the maximum compressive residual stress obtained when the test gear: A, the particle size of the first shot particle (hereinafter referred to as “D1”): 300 μm is changed is shown as a curve 14. Show.

該曲線14によると、ショット粒子の硬さがHRC60以上になると、最大圧縮残留応力は急激に増加するが、HRC60未満では、最大圧縮残留応力は1000MPaと低くなり、大きな疲労寿命の向上は見込めない。一方、HRC65を超えると、表面粗さが大きくなり、表面品質の低下が懸念されるためショット硬さはHRC65以下が望ましい。   According to the curve 14, the maximum compressive residual stress increases rapidly when the hardness of the shot particles becomes HRC60 or higher, but if the shot particle hardness is less than HRC60, the maximum compressive residual stress is as low as 1000 MPa, and a great improvement in fatigue life cannot be expected. . On the other hand, if it exceeds HRC65, the surface roughness becomes large and there is a concern about the deterioration of the surface quality. Therefore, the shot hardness is desirably HRC65 or less.

図6には、供試歯車:A、D1と第二ショット粒子の粒径(以下、「D2」とする)との粒径比D2/D1:0.20〜0.25で略一定、第一ショット粒子と第二ショット粒子の硬さ:HRC63の基本条件で、D1を変化させた場合の、高圧縮残留応力域の表面からの深さの変化を曲線15として示し、図7には、同条件で、D1を変化させた場合の表面粗さの変化を曲線16として示す。   FIG. 6 shows that the test gears: A, D1 and the particle size ratio of the second shot particles (hereinafter referred to as “D2”) D2 / D1: substantially constant at 0.20 to 0.25, Hardness of one shot particle and second shot particle: The change in depth from the surface of the high compressive residual stress region when D1 is changed under the basic condition of HRC63 is shown as a curve 15, FIG. The change in surface roughness when D1 is changed under the same condition is shown as a curve 16.

前記曲線15よると、運転中に生じる、図2に示す圧縮残留応力の低下域よりも深い位置に高い圧縮残留応力を存在させ、クラックの伝播を阻止するには、φ200μm以上のD1が必要であることがわかる。一方、前記曲線16より、D1がφ400μmを超えると、本条件ではD2がφ100μm以上となり、表面粗さが大きくなり表面品質が低下する。   According to the curve 15, in order to prevent a crack from propagating by causing a high compressive residual stress to exist at a position deeper than the compressive residual stress reduction region shown in FIG. 2 that occurs during operation, D1 of φ200 μm or more is required. I know that there is. On the other hand, from the curve 16, when D1 exceeds φ400 μm, D2 becomes φ100 μm or more under these conditions, the surface roughness increases and the surface quality deteriorates.

また、図8には、供試歯車:A、D2:55μm、第一ショット粒子と第二ショット粒子の硬さ:HRC63の基本条件で、粒径比D2/D1を変化させた場合の疲労寿命の変化を曲線17として示すと共に、該曲線17との比較データとしてプロット18・19・20を併記する。   Further, FIG. 8 shows fatigue life when the particle size ratio D2 / D1 is changed under the basic conditions of test gear: A, D2: 55 μm, hardness of the first shot particle and second shot particle: HRC63. Is shown as a curve 17, and plots 18, 19, and 20 are also written as comparison data with the curve 17.

前記曲線17によると、第一ショット粒子と第二ショット粒子の粒径比ついて適正範囲が存在し、本発明に係わる高硬度条件下、例えばHRC63では、この適正範囲は0.1以上0.3以下であり、該適正範囲より小さくても大きくても、疲労寿命が大きく低下するのがわかる。   According to the curve 17, there is an appropriate range for the particle size ratio between the first shot particles and the second shot particles. In the high hardness conditions according to the present invention, for example, HRC63, this appropriate range is 0.1 or more and 0.3. It can be seen that the fatigue life is greatly reduced regardless of whether it is smaller or larger than the appropriate range.

更に、曲線17とプロット18・19・20とを比較すると、合金鋼の組成や熱処理条件を種々変えた供試歯車であっても、本発明に係わるショットピーニング処理を施すことにより、十分な疲労寿命を確保できているのがわかる。   Further, when the curve 17 and the plots 18, 19, and 20 are compared, even if the test gear has various alloy steel compositions and heat treatment conditions, sufficient fatigue can be obtained by performing the shot peening treatment according to the present invention. It can be seen that the lifetime is secured.

すなわち、鋼部材の表面に浸炭処理を施した後に行うショットピーニング処理方法において、硬さがロックウェル硬さでHRC60以上で、粒径が200μm以上400μm以下の第一ショット粒子により第一ショットピーニングを施し、次に、硬さがロックウェル硬さでHRC60以上で、前記第一ショット粒子との粒径比が0.1以上0.3以下の小さい第二ショット粒子により第二ショットピーニングを施すので、鋼部材の表面とその近傍に生成される圧縮残留応力の値を大幅に増加させることができ、鋼部材に十分な疲労強度を付与することができるのである。   That is, in the shot peening treatment method performed after carburizing the surface of the steel member, the first shot peening is performed with the first shot particles having a hardness of Rockwell hardness of HRC 60 or more and a particle size of 200 μm or more and 400 μm or less. Next, the second shot peening is performed with small second shot particles having a Rockwell hardness of HRC 60 or more and a particle size ratio of 0.1 to 0.3 with respect to the first shot particles. The value of the compressive residual stress produced | generated on the surface of a steel member and its vicinity can be increased significantly, and sufficient fatigue strength can be provided to a steel member.

更に、前記第一ショット粒子と第二ショット粒子の硬さは、いずれもロックウェル硬さでHRC65以下とするので、ショット粒子の硬さをできるだけ低めに抑えることにより、特殊なショット粒子の使用によるコスト高を防止すると共に、ショット粒子の衝突による鋼部材表面への圧痕形成を最小限に抑えて表面粗さをできるだけ小さくし、表面品質の向上を図ることができる。   Further, since the hardness of the first shot particle and the second shot particle are both HRC65 or less in Rockwell hardness, the hardness of the shot particle is kept as low as possible, thereby using the special shot particle. In addition to preventing an increase in cost, surface roughness can be minimized by minimizing the formation of indentations on the steel member surface due to shot particle collisions, thereby improving the surface quality.

本発明は、鋼部材の疲労強度を大きく向上可能なショットピーニング処理方法であり、浸炭処理を施した鋼部材に限らず、ショット粒子の衝突エネルギーによって表面近傍に圧縮残留応力を付与可能な表面処理を施した鋼部材であればよく、例えば、浸炭処理以外に、浸炭窒化処理、鋼部材表面への炭素富化層のめっき処理等を施した種々の鋼部材に対して、本発明を適用することが可能である。   The present invention is a shot peening treatment method capable of greatly improving the fatigue strength of a steel member, and is not limited to a steel member subjected to carburizing treatment, but a surface treatment capable of imparting compressive residual stress in the vicinity of the surface by shot particle collision energy. For example, in addition to carburizing treatment, the present invention is applied to various steel members subjected to carbonitriding treatment, plating treatment of a carbon-enriched layer on the steel member surface, and the like. It is possible.

本発明に係わるショットピーニング処理を施す鋼部材の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the steel member which performs the shot peening process concerning this invention. 残留応力分布に及ぼす繰り返し数の影響を示す説明図である。It is explanatory drawing which shows the influence of the repetition number which acts on residual-stress distribution. 一段だけのショットピーニング時の残留応力分布に及ぼすショット粒子の硬さと粒径の影響を示す説明図である。It is explanatory drawing which shows the influence of the hardness of a shot particle and a particle size on the residual stress distribution at the time of shot peening of only one step. 残留応力分布に及ぼすショット粒子の粒径の影響と、二段ショットピーニング後の残留応力分布状況とを示す説明図である。It is explanatory drawing which shows the influence of the particle size of the shot particle which acts on a residual stress distribution, and the residual stress distribution situation after two-step shot peening. 最大圧縮残留応力に及ぼすショット粒子の硬さの影響を示す説明図である。It is explanatory drawing which shows the influence of the hardness of the shot particle which acts on the maximum compressive residual stress. 高圧縮残留応力域の表面からの深さに及ぼす第一ショット粒子の粒径の影響を示す説明図である。It is explanatory drawing which shows the influence of the particle size of the 1st shot particle | grains which acts on the depth from the surface of a high compressive residual stress area | region. 表面粗さに及ぼす第一ショット粒子の粒径の影響を示す説明図である。It is explanatory drawing which shows the influence of the particle size of the 1st shot particle | grains which acts on surface roughness. 疲労寿命に及ぼす第一ショット粒子と第二ショット粒子との粒径比の影響を示す説明図である。It is explanatory drawing which shows the influence of the particle size ratio of the 1st shot particle and the 2nd shot particle which has on a fatigue life. 真空浸炭処理でのヒートサイクルを示す説明図であって、図9(a)は熱処理1のヒートサイクルの説明図、図9(b)は熱処理2のヒートサイクルの説明図である。FIG. 9A is an explanatory diagram showing a heat cycle in vacuum carburizing treatment, FIG. 9A is an explanatory diagram of a heat cycle of heat treatment 1, and FIG. 9B is an explanatory diagram of a heat cycle of heat treatment 2. FIG. 疲労試験装置の構成を示すブロック図である。It is a block diagram which shows the structure of a fatigue test apparatus.

Claims (2)

鋼部材の表面に浸炭処理を施した後に行うショットピーニング処理方法において、硬さがロックウェル硬さでHRC60以上で、粒径が200μm以上400μm以下の第一ショット粒子により第一ショットピーニングを施し、次に、硬さがロックウェル硬さでHRC60以上で、前記第一ショット粒子との粒径比が0.1以上0.3以下の小さい第二ショット粒子により第二ショットピーニングを施すことを特徴とするショットピーニング処理方法。   In the shot peening treatment method performed after carburizing the surface of the steel member, the first shot peening is performed with the first shot particles having a hardness of Rockwell hardness of HRC60 or more and a particle size of 200 μm or more and 400 μm or less, Next, the second shot peening is performed with small second shot particles having a Rockwell hardness of HRC 60 or more and a particle size ratio of 0.1 to 0.3 with respect to the first shot particles. The shot peening processing method. 前記第一ショット粒子と第二ショット粒子の硬さは、いずれもロックウェル硬さでHRC65以下であることを特徴とする請求項1記載のショットピーニング処理方法。
2. The shot peening processing method according to claim 1, wherein the hardness of each of the first shot particles and the second shot particles is Rockwell hardness of HRC 65 or less.
JP2006141124A 2006-05-22 2006-05-22 Shot peening method Pending JP2007307678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141124A JP2007307678A (en) 2006-05-22 2006-05-22 Shot peening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141124A JP2007307678A (en) 2006-05-22 2006-05-22 Shot peening method

Publications (1)

Publication Number Publication Date
JP2007307678A true JP2007307678A (en) 2007-11-29

Family

ID=38840979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141124A Pending JP2007307678A (en) 2006-05-22 2006-05-22 Shot peening method

Country Status (1)

Country Link
JP (1) JP2007307678A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236822A (en) * 2008-03-28 2009-10-15 Komatsu Ltd Compressive residual stress evaluation method of gear and gear design method
WO2010137607A1 (en) * 2009-05-27 2010-12-02 住友金属工業株式会社 Carburized component and manufacturing method therefor
WO2012073628A1 (en) * 2010-11-30 2012-06-07 Udトラックス株式会社 Method for improving fatigue strength of cast iron material
WO2012073631A1 (en) * 2010-11-30 2012-06-07 Udトラックス株式会社 Method for improving fatigue strength of cast iron material
WO2012073629A1 (en) * 2010-12-02 2012-06-07 Udトラックス株式会社 Method for improving fatigue strength of cast iron material
JP2014210294A (en) * 2013-04-17 2014-11-13 大同特殊鋼株式会社 Shot-peening method for forming gear excellent in abrasion resistance and pitching strength
US9457451B2 (en) 2010-09-09 2016-10-04 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a gear
CN110629155A (en) * 2019-10-29 2019-12-31 江西省科学院应用物理研究所 Preparation method of hard wear-resistant coating for mechanical chemical carburization treatment on surface of nickel-chromium-molybdenum steel
CN114523422A (en) * 2022-03-10 2022-05-24 福建宏贯路桥防腐科技股份有限公司 Novel shot blasting machine and shot blasting process for powder zinc impregnation component

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236822A (en) * 2008-03-28 2009-10-15 Komatsu Ltd Compressive residual stress evaluation method of gear and gear design method
JP5378512B2 (en) * 2009-05-27 2013-12-25 新日鐵住金株式会社 Carburized parts and manufacturing method thereof
WO2010137607A1 (en) * 2009-05-27 2010-12-02 住友金属工業株式会社 Carburized component and manufacturing method therefor
EP2436795A4 (en) * 2009-05-27 2016-08-10 Nippon Steel & Sumitomo Metal Corp Carburized component and manufacturing method therefor
US8961710B2 (en) 2009-05-27 2015-02-24 Nippon Steel & Sumitomo Metal Corporation Carburized component and manufacturing method
KR101371929B1 (en) 2009-05-27 2014-03-07 신토고교 가부시키가이샤 Carburized component and manufacturing method therefor
US9457451B2 (en) 2010-09-09 2016-10-04 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a gear
US9340846B2 (en) 2010-11-30 2016-05-17 Ud Trucks Corporation Method for improving fatigue strength of cast iron material
JP2012115925A (en) * 2010-11-30 2012-06-21 Ud Trucks Corp Method for improving fatigue strength of cast iron material
JP2012117095A (en) * 2010-11-30 2012-06-21 Ud Trucks Corp Method for improving fatigue strength of cast iron material
WO2012073631A1 (en) * 2010-11-30 2012-06-07 Udトラックス株式会社 Method for improving fatigue strength of cast iron material
WO2012073628A1 (en) * 2010-11-30 2012-06-07 Udトラックス株式会社 Method for improving fatigue strength of cast iron material
US9464335B2 (en) 2010-11-30 2016-10-11 Ud Trucks Corporation Method for improving fatigue strength of cast iron material
US9102992B2 (en) 2010-12-02 2015-08-11 Ud Trucks Corporation Method for improving fatigue strength of cast iron material
WO2012073629A1 (en) * 2010-12-02 2012-06-07 Udトラックス株式会社 Method for improving fatigue strength of cast iron material
JP2014210294A (en) * 2013-04-17 2014-11-13 大同特殊鋼株式会社 Shot-peening method for forming gear excellent in abrasion resistance and pitching strength
CN110629155A (en) * 2019-10-29 2019-12-31 江西省科学院应用物理研究所 Preparation method of hard wear-resistant coating for mechanical chemical carburization treatment on surface of nickel-chromium-molybdenum steel
CN114523422A (en) * 2022-03-10 2022-05-24 福建宏贯路桥防腐科技股份有限公司 Novel shot blasting machine and shot blasting process for powder zinc impregnation component

Similar Documents

Publication Publication Date Title
JP2007307678A (en) Shot peening method
US9464335B2 (en) Method for improving fatigue strength of cast iron material
JP5164539B2 (en) Shot peening method
KR101170248B1 (en) Material for projecting material for shot-peening, finished wire, production process, and projecting material for shot-peening
JP2011036949A (en) Method for manufacturing die steel tool, and form rolling die
JP5332517B2 (en) Manufacturing method of carburizing steel
US11780052B2 (en) Shot peening method
WO2007023936A1 (en) Method of shot peening
JP5569588B2 (en) gear
JP5381171B2 (en) Manufacturing method of high strength case hardening steel parts
JP2005264331A (en) Machine structural components
JP5614887B2 (en) Method for improving fatigue strength of cast iron material
WO2017170540A1 (en) Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JP2004346424A (en) Method for producing helical spring and helical spring
WO2012073629A1 (en) Method for improving fatigue strength of cast iron material
JP5357521B2 (en) Gear strength improvement method
JPS63227791A (en) Surface treatment for steel member
JP2839481B2 (en) Heat-treated steel part and method of manufacturing the same
JP6326933B2 (en) Ring manufacturing method
JP2013220509A (en) Shot peening method and gear material using the same
JP2014213441A (en) Shot-peening method obtaining high compressive residual stress
JPH07109005B2 (en) Method for manufacturing heat-treated steel parts
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor
JPH11207522A (en) Manufacture of high fatigue strength gear
JP2022099521A (en) Surface hardened steel component and production method thereof