JP4487254B2 - Selection method of peening strength for steel parts - Google Patents

Selection method of peening strength for steel parts Download PDF

Info

Publication number
JP4487254B2
JP4487254B2 JP2004297049A JP2004297049A JP4487254B2 JP 4487254 B2 JP4487254 B2 JP 4487254B2 JP 2004297049 A JP2004297049 A JP 2004297049A JP 2004297049 A JP2004297049 A JP 2004297049A JP 4487254 B2 JP4487254 B2 JP 4487254B2
Authority
JP
Japan
Prior art keywords
peening
shot
distribution curve
residual stress
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004297049A
Other languages
Japanese (ja)
Other versions
JP2006110634A (en
Inventor
祐次 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2004297049A priority Critical patent/JP4487254B2/en
Publication of JP2006110634A publication Critical patent/JP2006110634A/en
Application granted granted Critical
Publication of JP4487254B2 publication Critical patent/JP4487254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description


本発明は、鉄鋼部品に対するピーニング強度の選定方法に係り、より詳しくは浸炭焼入れした鉄鋼部品をショットピーニング処理するに当り、少なくともショットの粒径および投射速度に基づき決定される各種のピーニング強度から最適なものを選定可能にする方法に関する。

The present invention relates to a method for selecting peening strength for steel parts, and more specifically, it is optimal from various peening strengths determined based on at least the grain size of the shot and the projection speed when carburizing and quenching steel parts. The present invention relates to a method for making things selectable.

従来、浸炭焼入れした鉄鋼部品の疲れ強さを向上させる方法の一つとしてショットピーニング法があり、このショットピーニング法は、圧縮空気または遠心力を利用して鉄鋼等の粒子であるショットを鉄鋼部品の表面に投射し、その表面層を塑性変形によって硬化させ、これにより鉄鋼部品表面に圧縮残留応力を形成するようにしたものである。 Conventionally, there is a shot peening method as one of the methods for improving the fatigue strength of carburized and hardened steel parts. This shot peening method uses compressed air or centrifugal force to shoot shots that are particles of steel, etc. And the surface layer is hardened by plastic deformation, thereby forming a compressive residual stress on the surface of the steel part.

ところで、ショットピーニングによる鉄鋼部品の表面層の塑性変形においては、投射されたショットのもつエネルギーが鉄鋼部品に圧縮残留応力として蓄積される一方、浸炭焼入れよって鉄鋼部品表面に生成した残留オーステナイトは、ショットの衝突により部分的にマルテンサイト化してその含有率が減少する。
また、投射されたショットのもつエネルギーを鉄鋼部品が圧縮残留応力として蓄積できる量には限界があり、そのため、投射されたショットのエネルギーは、鉄鋼部品に圧縮残留応力として蓄積される外に、鉄鋼部品表面に熱を発生されたり、鉄鋼部品に衝突音を生じさせたりする。
しかし、鉄鋼部品に圧縮残留応力として蓄積されたり、鉄鋼部品の表面に熱を発生させたり、鉄鋼部品に衝突音を生じさせたりして消費される以上に、投射されたショットのエネルギーの量が大きい場合には、このショットのエネルギーは鉄鋼部品の表面を削食するためにも消費され、無駄で過剰なものとなる上に害にもなる。
By the way, in the plastic deformation of the surface layer of steel parts by shot peening, the energy of the projected shot is accumulated as compressive residual stress in the steel part, while the residual austenite generated on the steel part surface by carburizing and quenching is shot. Due to the collision, it becomes partly martensite and its content decreases.
In addition, there is a limit to the amount of energy that the shot shot can store as a compressive residual stress in steel parts. Therefore, the shot shot energy is stored in the steel part as compressive residual stress. Heat is generated on the surface of the part, and impact noise is generated on the steel part.
However, the amount of energy of the shot shot is more than it is consumed as it is accumulated as compressive residual stress in steel parts, heat is generated on the surface of steel parts, and impact noise is generated in steel parts. If it is large, the energy of this shot is also consumed to scrape the surface of the steel part, which is wasteful and excessive, and is also harmful.

そこで、本願の発明者は、浸炭焼入れした鉄鋼部品のショットピーニング処理の実験を、ショットの粒径および投射速度を様々変更して行った結果、各種の残留応力に基づく残留応力分布曲線による面積および各種の残留オーステナイト(含有率)に基づく残留オーステナイト分布曲線による面積は、所定値になるとショットの粒径および投射速度で成るピーニング強度を大きくしても増加しないことを発見した。
本発明はこの発見に基づくものである。
Therefore, the inventors of the present application conducted an experiment of shot peening treatment of carburized and hardened steel parts by changing the shot particle size and the projection speed in various ways, and as a result, the area by the residual stress distribution curve based on various residual stresses and It was found that the area by the retained austenite distribution curve based on various retained austenite (content ratio) does not increase even when the peening strength composed of the shot particle size and the projection speed is increased when it reaches a predetermined value.
The present invention is based on this discovery.


解決しようとする問題点は、任意に決定したピーニング強度に基づき投射されたショットのエネルギーが鉄鋼部品の表面を削食するためにも消費され、無駄で過剰なものとなる上に害にもなる点である。

The problem to be solved is that the shot energy based on the arbitrarily determined peening strength is also consumed to scrape the surface of the steel part, which is wasteful and excessive and also harmful. Is a point.


上記の課題を解消するために請求項1における鉄鋼部品のショットピーニング処理方法は、浸炭焼入れした鉄鋼部品をショットピーニング処理するに当り、予め複数種用意した少なくともショットの粒径および投射速度により決定される大きさの異なる複数のピーニング強度から最適なものを選定可能にする方法であって、予め用意した複数種のショットの粒径および投射速度により大きさの異なる複数のピーニング強度を算出する工程と、
浸炭焼入れによって鉄鋼部品に生成した残留応力について、横軸を表面からの距離とし縦軸を残留応力の強さとしたグラフを用意し、ピーニング処理前の鉄鋼部品内に存在する残留応力を曲線で表した残留応力分布曲線を実測により準備する工程と、前記算出した複数のピーニング強度のうち当業者の常識を基にして選択したピーニング強度を生成するショットの粒径および投射速度により前記鉄鋼部品をショットピーニング処理してその時に生成した圧縮残留応力について、横軸を表面からの距離とし縦軸を圧縮残留応力の強さとしたグラフを用意し、ピーニング処理後の鉄鋼部品内に存在する圧縮残留応力を曲線で表した圧縮残留応力分布曲線を実測により準備する工程と、前記準備したピーニング処理前の残留応力分布曲線と前記ピーニング処理後の圧縮残留応力分布曲線によって囲まれた面積を算出する工程と、前記算出した複数のピーニング強度の根拠となるショットの粒径および投射速度により前記工程を前記ピーニング強度毎にそれぞれ行って前記鉄鋼部品をショットピーニング処理してピーニング処理前の残留応力分布曲線とピーニング処理後の圧縮残留応力分布曲線によって囲まれた面積を複数算出する工程と、前記残留応力分布曲線と圧縮残留応力分布曲線によって囲まれた複数の面積を前記複数のピーニング強度に基づき整理して、前記複数の面積を前記ピーニング強度の小さいものから順に並べる工程と、この並べた複数の面積と前記複数のピーニング強度との関係において前記複数の面積がほぼ一定に成り始めるピーニング強度を最適なピーニング強度として選定する工程と、
を含むことを特徴とする。

In order to solve the above problems, the shot peening treatment method for steel parts in claim 1 is determined by the particle size and the projection speed of at least a plurality of shots prepared in advance for shot peening treatment of carburized and quenched steel parts. a method of enabling selection of optimal from a plurality of peening intensities of different sizes that, calculating a plurality of peening intensities of different sizes by particle size and projection speed of the plurality of types of shots previously prepared ,
For residual stress generated in the iron and steel parts by carburizing and quenching, the horizontal axis providing a distance graph in which the the intensity of the residual stress and the vertical axis from the surface, the residual stresses present in the steel part before peening by curve The step of preparing the represented residual stress distribution curve by actual measurement , and the steel parts by the grain size and the projection speed of the shot that generates the peening strength selected based on the common knowledge of those skilled in the art among the plurality of calculated peening strengths For the compressive residual stress generated at the time of shot peening treatment, a graph with the horizontal axis as the distance from the surface and the vertical axis as the strength of the compressive residual stress is prepared, and the compressive residual stress existing in steel parts after peening is prepared. wherein the step of preparing by measuring the compressive residual stress distribution curves, expressed by a curve, the residual stress distribution curve before the preparation was peening Phi A step of calculating the area enclosed by the compressive residual stress distribution curve after ring treatment, performed each said step for each of the peening intensity by particle size and projection speed of the shot as a basis of a plurality of peening intensity the calculated A step of calculating a plurality of areas surrounded by the residual stress distribution curve before the peening process and the compressive residual stress distribution curve after the peening process by shot peening the steel part, and the residual stress distribution curve and the compressive residual stress distribution curve a plurality of areas enclosed by organizes based on the plurality of peening intensity, a step of arranging the plurality of areas in ascending order of the peening intensity, the plurality of areas the the side-by-side with the plurality of peening intensity optimum peening intensity peening intensity begin almost become a constant plurality of areas in the relationship And a step of selecting and,
It is characterized by including.


また、請求項2における鉄鋼部品のショットピーニング処理方法は、浸炭焼入れした鉄鋼部品をショットピーニング処理するに当り、予め複数種用意した少なくともショットの粒径および投射速度により決定される大きさの異なる複数のピーニング強度から最適なものを選定可能にする方法であって、予め用意した複数種ショットの粒径および投射速度により大きさの異なる複数のピーニング強度を算出する工程と、浸炭焼入れによって鉄鋼部品に生成した残留オーステナイトについて、横軸を表面からの距離とし、縦軸を残留オーステナイトとしたグラフを用意しピーニング処理前の鉄鋼部品内に存在する残留オーステナイトを曲線で表した残留オーステナイト分布曲線を実測により準備する工程と、
前記算出した複数のピーニング強度のうち当業者の常識を基にして選択したピーニング強度を生成するショットの粒径および投射速度により前記鉄鋼部品をショットピーニング処理してその時に生成した圧縮残留オーステナイトについて、横軸を表面からの距離とし縦軸を圧縮残留オーステナイトとしたグラフを用意し、ピーニング処理後の鉄鋼部品内に存在する圧縮残留オーステナイトを曲線で表した圧縮残留オーステナイト分布曲線を実測により準備する工程と、前記準備したピーニング処理前の残留オーステナイト分布曲線と前記ピーニング処理後の圧縮残留オーステナイト分布曲線によって囲まれた面積を算出する工程と、前記算出した複数のピーニング強度の根拠となるショットの粒径および投射速度により前記工程を前記ピーニング強度毎にそれぞれ行って前記鉄鋼部品をショットピーニング処理してピーニング処理前の残留オーステナイト分布曲線とピーニング処理後の圧縮残留オーステナイト分布曲線によって囲まれた面積を複数算出する工程と、前記残留オーステナイト分布曲線と圧縮残留オーステナイト分布曲線によって囲まれた複数の面積を前記複数のピーニング強度に基づき整理して、前記複数の面積を前記ピーニング強度の小さいものから順に並べる工程と、この並べた複数の面積と前記複数のピーニング強度との関係において前記複数の面積がほぼ一定に成り始めるピーニング強度を最適なピーニング強度として選定する工程と、を含むことを特徴とする。

















Further, in the shot peening treatment method for steel parts according to claim 2, a plurality of different sizes determined by at least the grain size and the projection speed of the shots prepared in advance when performing the shot peening treatment on the carburized and quenched steel parts. It is a method that makes it possible to select the optimum one from the peening strength of the steel, and a process of calculating a plurality of peening strengths of different sizes depending on the particle size and the projection speed of a plurality of shots prepared in advance , and carburizing and quenching to steel parts For the generated retained austenite , prepare a graph with the horizontal axis as the distance from the surface and the vertical axis as the retained austenite, and measure the residual austenite distribution curve that represents the residual austenite existing in the steel part before peening treatment as a curve The step of preparing by
For compressive residual austenite generated at that time by shot peening the steel component by particle size and projection speed of the shot for generating a peening intensity selected based on common knowledge of those skilled in the art of the plurality of peening intensity the calculated, Preparing a graph with the horizontal axis as the distance from the surface and the vertical axis as the compressed retained austenite, and preparing the compressed retained austenite distribution curve by measuring the compressed retained austenite existing in the steel part after peening And a step of calculating an area surrounded by the prepared retained austenite distribution curve before the peening treatment and the compressed retained austenite distribution curve after the peening treatment, and a particle size of the shot which is a basis for the plurality of calculated peening strengths And the process by the projection speed. A step of calculating a plurality of areas surrounded by the residual austenite distribution curve before the peening treatment and the compressed austenite distribution curve after the peening treatment by performing shot peening on each of the steel parts for each of the strengths, and the residual austenite distribution a plurality of areas surrounded by the compressive residual austenite distribution curve curve to organize based on the plurality of peening intensity, a step of arranging the plurality of areas in ascending order of the peening intensity, a plurality of area this that side-by-side characterized in that it comprises a and a step of selecting the peening intensity begin almost become a constant plurality of areas in relation to the plurality of peening intensity as the optimum peening intensity.
















なお、本発明においてピーニング強度は、投射されるショットの衝突強さを検出する検出装置や、使用するショットの粒径およびショットの投射速度に基づき算出する計算式によって求める。すなわち、前者の検出装置としては、特開平7-214472号公報で開示されるように、投射されたショットの衝突により弾性波を発生するショット衝突部と、弾性波を伝播する伝播部と、伝播部の弾性波を受信して高周波電気信号に変換し出力する変換器と、変換器に電気的に接続した計測回路とを備えており、計測回路おいては、高周波電気信号を包路線検波に変換する包路線検波回路に、包路線検波の発生回数を検出するカウンタ回路と、包路線検波のピーク値を検出するピーク値測定回路とを並列に接続し、カウンタ回路とピーク値測定回路とには演算回路を接続したものがある。
また、後者の計算式としては、いわゆる運動エネルギの計算式:1/2mv、および、いわゆる運動量の計算式:mvなどがある。
ここで、mはショットの質量、vはショットの投射速度である。
In the present invention, the peening intensity is obtained by a detection device that detects the collision strength of the shot to be projected, or a calculation formula that is calculated based on the particle size of the shot to be used and the shot projection speed. That is, as the former detection device, as disclosed in Japanese Patent Application Laid-Open No. 7-214472, a shot collision unit that generates an elastic wave by a collision of a projected shot, a propagation unit that propagates an elastic wave, and a propagation A converter that receives the elastic wave of the part, converts it into a high-frequency electrical signal and outputs it, and a measurement circuit electrically connected to the converter. In the measurement circuit, the high-frequency electrical signal is subjected to envelope detection. A counter circuit that detects the number of occurrences of envelope detection and a peak value measurement circuit that detects the peak value of envelope detection are connected in parallel to the envelope detection circuit to be converted into a counter circuit and a peak value measurement circuit. Some have connected arithmetic circuits.
The latter calculation formula includes a so-called kinetic energy calculation formula: 1/2 mv 2 , a so-called momentum calculation formula: mv, and the like.
Here, m is a shot mass, and v is a shot projection speed.

またなお、本発明において鉄鋼部品に生成した残留応力分布曲線および圧縮残留応力分布曲線は、鉄鋼部品の表面を電解研磨により除去しながらX線残留応力測定器を用いて、浸炭焼入れによる残留応力およびショットピーニング処理による圧縮残留応力を測定する工程を複数回を繰り返したのち、これらの測定値をプロットすることにより求める。

またなお、本発明において残留オーステナイト分布曲線は、鉄鋼部品の表面を電解研磨により除去しながらX線残留応力測定器を用いて残留オーステナイト(含有率)を測定する工程を複数回繰り返したのち、これらの測定値をプロットすることにより求める。

またなお、本発明において残留応力分布曲線と圧縮残留応力分布曲線によって囲まれた面積、および減少残留オーステナイト分布曲線による面積は、実測して求める。
In addition, the residual stress distribution curve and the compressive residual stress distribution curve generated in the steel part in the present invention are the residual stress caused by carburizing and quenching using an X-ray residual stress measuring instrument while removing the surface of the steel part by electrolytic polishing. After repeating the process of measuring the compressive residual stress by the shot peening process a plurality of times, it is obtained by plotting these measured values.

Further, in the present invention, the residual austenite distribution curve is obtained by repeating the process of measuring the residual austenite (content) using an X-ray residual stress measuring device while removing the surface of the steel part by electrolytic polishing, and then repeating these steps. Is obtained by plotting the measured values of.

In the present invention, the area surrounded by the residual stress distribution curve and the compressive residual stress distribution curve, and the area of the reduced residual austenite distribution curve are obtained by actual measurement.


またなお、本発明において各種の応力分布曲線による面積および各種の残留オーステナイト分布曲線による面積と、各種のピーニング強度との相関関係を求めたのち、これらの面積を前記各種のピーニング強度に基づき整理してピーニング強度の小さいものから順に並べると、図2で表示するグラフのようになる。

またなお、本発明においては各種の応力分布曲線による面積および各種の残留オーステナイト分布曲線による面積のうち少なくともどちらか一方を利用すればよい。

Further, in the present invention, after obtaining the correlation between the areas of various stress distribution curves and the areas of various retained austenite distribution curves and various peening strengths, these areas are arranged based on the various peening strengths. If the peening strengths are arranged in ascending order, the graph shown in FIG. 2 is obtained.

Furthermore, in the present invention, at least one of an area based on various stress distribution curves and an area based on various residual austenite distribution curves may be used.



上記の説明から明らかなように、請求項1および2によって選定したピーニング強度に基づき投射されたショットのエネルギーは、ほとんどが鉄鋼部品に圧縮残留応力を付与するために消費され、従来のこの種のショットピーニング処理のように、鉄鋼部品の表面を削食するのにも消費されたりすることを防止することができるなどの優れた実用的効果を奏する。


As is apparent from the above description, most of the shot energy projected on the basis of the peening strength selected according to claims 1 and 2 is consumed to impart compressive residual stress to the steel part. As in the shot peening process, the present invention has excellent practical effects such as being able to prevent consumption even when the surface of steel parts is etched.

ショットの粒径および投射速度により各種のピーニング強度を算出する。浸炭焼入れによって鉄鋼部品に生成した残留応力における深さ方向の残留応力に基づく残留応力分布曲線を求めたのち、算出した各種のピーニング強度に基づき鉄鋼部品をショットピーニング処理してその時に生成した各種の圧縮残留応力における深さ方向の圧縮残留応力に基づく圧縮残留応力分布曲線を求めるか、または、浸炭焼入れによって鉄鋼部品に生成した残留オーステナイトにおける深さ方向の残留オーステナイトに基づく残留オーステナイト分布曲線を求めたのち、算出した各種のピーニング強度に基づき鉄鋼部品をショットピーニング処理してその時の各種の残留オーステナイトに基づく深さ方向の残留オーステナイト分布曲線を求める。 Various peening intensities are calculated based on the shot particle size and the projection speed. After obtaining the residual stress distribution curve based on the residual stress in the depth direction in the residual stress generated in the steel parts by carburizing and quenching, the steel parts are shot peened based on the various calculated peening strengths, and various types of Obtained compressive residual stress distribution curve based on compressive residual stress in the depth direction or obtained residual austenite distribution curve based on depth retained austenite in retained austenite generated in steel parts by carburizing and quenching After that, the steel part is shot peened based on the calculated various peening strengths, and a residual austenite distribution curve in the depth direction based on the various retained austenites at that time is obtained.

求めた残留応力分布曲線と圧縮残留応力分布曲線によって囲まれた面積、または、求めた残留オーステナイト分布曲線によって囲まれる面積を算出し、算出した各種の応力分布曲線による面積、または各種の残留オーステナイト分布曲線による面積と、算出した各種のピーニング強度との相関関係を求めたのち、これらの面積を前記各種のピーニング強度に基づき整理してピーニング強度の小さいものから順に並べる。並べた各種の面積と各種のピーニング強度との関係において各種の応力分布曲線による面積、または、各種の残留オーステナイト分布曲線による面積がほぼ一定に成り始めるピーニング強度を最適なピーニング強度として選定する。 Calculate the area enclosed by the obtained residual stress distribution curve and compression residual stress distribution curve, or the area enclosed by the obtained residual austenite distribution curve, and calculate the area by various stress distribution curves or various residual austenite distributions After obtaining the correlation between the area by the curve and the calculated various peening intensities, these areas are arranged on the basis of the various peening intensities and arranged in order from the smallest peening intensity. The peening strength at which the area due to the various stress distribution curves or the area due to the various retained austenite distribution curves begins to become almost constant in the relationship between the various areas arranged and the various peening strengths is selected as the optimum peening strength.


本発明の特許請求の範囲に対応したフローチャートである。It is a flowchart corresponding to the claims of the present invention. 各種の応力分布曲線による面積および各種の残留オーステナイト分布曲線による面積を各種のピーニング強度に基づき整理してピーニング強度の小さいものから順に並べて作成したグラフである。FIG. 5 is a graph created by arranging areas based on various stress distribution curves and areas based on various retained austenite distribution curves based on various peening strengths and arranging them in order from the smallest peening strength.

Claims (2)

浸炭焼入れした鉄鋼部品をショットピーニング処理するに当り、予め複数種用意した少なくともショットの粒径および投射速度により決定される大きさの異なる複数のピーニング強度から最適なものを選定可能にする方法であって、
予め用意した複数種のショットの粒径および投射速度により大きさの異なる複数のピーニング強度を算出する工程と、
浸炭焼入れによって鉄鋼部品に生成した残留応力について、横軸を表面からの距離とし縦軸を残留応力の強さとしたグラフを用意し、ピーニング処理前の鉄鋼部品内に存在する残留応力を曲線で表した残留応力分布曲線を実測により準備する工程と、
前記算出した複数のピーニング強度のうち当業者の常識を基にして選択したピーニング強度を生成するショットの粒径および投射速度により前記鉄鋼部品をショットピーニング処理してその時に生成した圧縮残留応力について、横軸を表面からの距離とし縦軸を圧縮残留応力の強さとしたグラフを用意し、ピーニング処理後の鉄鋼部品内に存在する圧縮残留応力を曲線で表した圧縮残留応力分布曲線を実測により準備する工程と、
前記準備したピーニング処理前の残留応力分布曲線と前記ピーニング処理後の圧縮残留応力分布曲線によって囲まれた面積を算出する工程と、
前記算出した複数のピーニング強度の根拠となるショットの粒径および投射速度により前記工程を前記ピーニング強度毎にそれぞれ行って前記鉄鋼部品をショットピーニング処理してピーニング処理前の残留応力分布曲線とピーニング処理後の圧縮残留応力分布曲線によって囲まれた面積を複数算出する工程と、
前記残留応力分布曲線と圧縮残留応力分布曲線によって囲まれた複数の面積を前記複数のピーニング強度に基づき整理して、前記複数の面積を前記ピーニング強度の小さいものから順に並べる工程と、
この並べた複数の面積と前記複数のピーニング強度との関係において前記複数の面積がほぼ一定に成り始めるピーニング強度を最適なピーニング強度として選定する工程と、
を含むことを特徴とする鉄鋼部品に対するピーニング強度の選定方法。
When shot peening treatment of carburized and hardened steel parts, it is a method that makes it possible to select an optimal one from a plurality of peening strengths of different sizes determined by at least the shot grain size and the projection speed prepared in advance. And
A step of calculating a plurality of peening intensities having different sizes according to the particle diameter and the projection speed of a plurality of types of shots prepared in advance ;
For residual stress generated in the iron and steel parts by carburizing and quenching, the horizontal axis providing a distance graph in which the the intensity of the residual stress and the vertical axis from the surface, the residual stresses present in the steel part before peening by curve Preparing the represented residual stress distribution curve by actual measurement ;
About the compression residual stress generated at that time by shot peening the steel part by the particle size and the shot speed of the shot to generate the peening strength selected based on the common knowledge of those skilled in the art among the plurality of calculated peening strengths , Prepare a graph with the horizontal axis as the distance from the surface and the vertical axis as the strength of the compressive residual stress, and prepare a compressive residual stress distribution curve that shows the compressive residual stress existing in the steel part after peening by measurement. And a process of
Calculating the area surrounded by the prepared residual stress distribution curve before the peening treatment and the compressive residual stress distribution curve after the peening treatment ;
Residual stress distribution curve and peening treatment before peening treatment by performing shot peening treatment of the steel part by performing the above steps for each of the peening strengths according to the shot particle size and the projection speed which are the basis of the plurality of calculated peening strengths Calculating a plurality of areas surrounded by a subsequent compressive residual stress distribution curve;
Arranging a plurality of areas surrounded by the residual stress distribution curve and the compressive residual stress distribution curve based on the plurality of peening strengths, and arranging the plurality of areas in order from the smallest peening strength;
A step of selecting a substantially peening intensity begins to constant the plurality of areas in the context of this side-by-side with a plurality of areas and the plurality of peening intensity as the optimum peening intensity,
A method for selecting peening strength for steel parts characterized by comprising:
浸炭焼入れした鉄鋼部品をショットピーニング処理するに当り、予め複数種用意した少なくともショットの粒径および投射速度により決定される大きさの異なる複数のピーニング強度から最適なものを選定可能にする方法であって、
予め用意した複数種ショットの粒径および投射速度により大きさの異なる複数のピーニング強度を算出する工程と、
浸炭焼入れによって鉄鋼部品に生成した残留オーステナイトについて、横軸を表面からの距離とし、縦軸を残留オーステナイトとしたグラフを用意しピーニング処理前の鉄鋼部品内に存在する残留オーステナイトを曲線で表した残留オーステナイト分布曲線を実測により準備する工程と、
前記算出した複数のピーニング強度のうち当業者の常識を基にして選択したピーニング強度を生成するショットの粒径および投射速度により前記鉄鋼部品をショットピーニング処理してその時に生成した圧縮残留オーステナイトについて、横軸を表面からの距離とし縦軸を圧縮残留オーステナイトとしたグラフを用意し、ピーニング処理後の鉄鋼部品内に存在する圧縮残留オーステナイトを曲線で表した圧縮残留オーステナイト分布曲線を実測により準備する工程と、
前記準備したピーニング処理前の残留オーステナイト分布曲線と前記ピーニング処理後の圧縮残留オーステナイト分布曲線によって囲まれた面積を算出する工程と、
前記算出した複数のピーニング強度の根拠となるショットの粒径および投射速度により前記工程を前記ピーニング強度毎にそれぞれ行って前記鉄鋼部品をショットピーニング処理してピーニング処理前の残留オーステナイト分布曲線とピーニング処理後の圧縮残留オーステナイト分布曲線によって囲まれた面積を複数算出する工程と、
前記残留オーステナイト分布曲線と圧縮残留オーステナイト分布曲線によって囲まれた複数の面積を前記複数のピーニング強度に基づき整理して、前記複数の面積を前記ピーニング強度の小さいものから順に並べる工程と、
この並べた複数の面積と前記複数のピーニング強度との関係において前記複数の面積がほぼ一定に成り始めるピーニング強度を最適なピーニング強度として選定する工程と、
を含むことを特徴とする鉄鋼部品に対するピーニング強度の選定方法。
When shot peening treatment of carburized and hardened steel parts, it is a method that makes it possible to select an optimal one from a plurality of peening strengths of different sizes determined by at least the shot grain size and the projection speed prepared in advance. And
A step of calculating a plurality of peening intensities having different sizes depending on a particle size and a projection speed of a plurality of types of shots prepared in advance ;
For retained austenite generated in steel parts by carburizing and quenching, a graph with the horizontal axis as the distance from the surface and the vertical axis as the retained austenite is prepared , and the residual austenite existing in the steel part before peening is represented by a curve Preparing a residual austenite distribution curve by actual measurement ;
For compressive residual austenite generated at that time by shot peening the steel component by particle size and projection speed of the shot for generating a peening intensity selected based on common knowledge of those skilled in the art of the plurality of peening intensity the calculated, Preparing a graph with the horizontal axis as the distance from the surface and the vertical axis as the compressed retained austenite, and preparing the compressed retained austenite distribution curve by measuring the compressed retained austenite existing in the steel part after peening When,
Calculating the area surrounded by the prepared retained austenite distribution curve before the peening treatment and the compressed retained austenite distribution curve after the peening treatment ;
The above steps are performed for each of the peening strengths based on the shot particle diameters and the projection speeds that serve as the basis for the plurality of calculated peening strengths, and the steel part is shot peened to obtain a residual austenite distribution curve and a peening treatment before the peening treatment. Calculating a plurality of areas surrounded by the compressed residual austenite distribution curve later,
Arranging a plurality of areas surrounded by the retained austenite distribution curve and the compressed retained austenite distribution curve based on the plurality of peening strengths, and arranging the plurality of areas in order from the smallest peening strength;
A step of selecting a substantially peening intensity begins to constant the plurality of areas in the context of this side-by-side with a plurality of areas and the plurality of peening intensity as the optimum peening intensity,
A method for selecting peening strength for steel parts characterized by comprising:
JP2004297049A 2004-10-12 2004-10-12 Selection method of peening strength for steel parts Active JP4487254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297049A JP4487254B2 (en) 2004-10-12 2004-10-12 Selection method of peening strength for steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297049A JP4487254B2 (en) 2004-10-12 2004-10-12 Selection method of peening strength for steel parts

Publications (2)

Publication Number Publication Date
JP2006110634A JP2006110634A (en) 2006-04-27
JP4487254B2 true JP4487254B2 (en) 2010-06-23

Family

ID=36379572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297049A Active JP4487254B2 (en) 2004-10-12 2004-10-12 Selection method of peening strength for steel parts

Country Status (1)

Country Link
JP (1) JP4487254B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020146B2 (en) * 2008-03-28 2012-09-05 株式会社小松製作所 Compressive residual stress evaluation method and gear design method for gears
CN109583037A (en) * 2018-11-06 2019-04-05 西北工业大学 A kind of parameter control method of blade of aviation engine shot-peening machining deformation
CN111079234B (en) * 2019-12-03 2023-06-06 广州市昊志机电股份有限公司 Shot blasting optimal strength determining method, system, device and storage medium

Also Published As

Publication number Publication date
JP2006110634A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
Amanov et al. Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304
Astaraee et al. Incorporating the principles of shot peening for a better understanding of surface mechanical attrition treatment (SMAT) by simulations and experiments
Akiniwa et al. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime
Kobayashi et al. Mechanism of creation of compressive residual stress by shot peening
CN107858501B (en) A kind of workpiece surface laser-impact technique removing residual stress hole
CN107229783A (en) A kind of potassium steel shot blast machine blade stress peening process determination method for parameter
CN106446517B (en) A kind of modeling of laser impact intensified alloy plastic deformation's depth and method of discrimination
WO2007116871A1 (en) Process for producing metallic member and structural member
JP4487254B2 (en) Selection method of peening strength for steel parts
WO2010061816A1 (en) Method for manufacturing blasting material for shot-peening
Lundberg et al. Influence of shot peening parameters on residual stresses in flake and vermicular cast irons
CA2450369A1 (en) Method for processing welded metalwork joints by high-frequency hummering
US9457451B2 (en) Method of manufacturing a gear
JP2009236822A (en) Compressive residual stress evaluation method of gear and gear design method
Ahmadi et al. Finite element simulation of shot peening of an aluminum alloy considering hardening models
Manchoul et al. A predictive approach to investigate the effect of ultrasonic shot peening on a high-cycle fatigue performance of an AISI 316L target
CN106337111B (en) A kind of surface reinforcing method based on heat radiation and laser impact intensified combination
Manchoul et al. Prediction and comparison of high-cycle fatigue behavior of ultrasonic and conventional shot-peened parts
CN115157128B (en) Method and device for reconstructing surface morphology of shot blasting part
US20200269388A1 (en) Electronic method for calibrating peening intensity
Yarar et al. Effect of vibration parameters on the shot velocity in SMAT process using dynamic finite element analysis
Meguid et al. The effect of peening and re-peening upon partially fatigued components
JP2833675B2 (en) Stress measurement method for metal members
Santa-aho et al. Surface layer characterization of shot peened gear specimens
Slim et al. Prediction of residual stresses due to shot peening using modelling of the material behavior

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250