JP5019958B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP5019958B2
JP5019958B2 JP2007153129A JP2007153129A JP5019958B2 JP 5019958 B2 JP5019958 B2 JP 5019958B2 JP 2007153129 A JP2007153129 A JP 2007153129A JP 2007153129 A JP2007153129 A JP 2007153129A JP 5019958 B2 JP5019958 B2 JP 5019958B2
Authority
JP
Japan
Prior art keywords
fluid
flow
measured
flow path
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007153129A
Other languages
Japanese (ja)
Other versions
JP2008304395A (en
Inventor
正憲 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007153129A priority Critical patent/JP5019958B2/en
Priority to CN200880017957XA priority patent/CN101680789B/en
Priority to PCT/JP2008/001245 priority patent/WO2008152769A1/en
Priority to US12/663,196 priority patent/US8181513B2/en
Priority to EP08751763A priority patent/EP2157411A1/en
Publication of JP2008304395A publication Critical patent/JP2008304395A/en
Application granted granted Critical
Publication of JP5019958B2 publication Critical patent/JP5019958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、流量測定を行う気体を整流する流路構造体を有する流量計に関するものである。   The present invention relates to a flow meter having a flow path structure that rectifies a gas for flow rate measurement.

図8及び図9に示すように、従来の流量計に用いられる流路構造体90は、導入孔91から流入した流体を上昇させる平面略L字形状の導入縦溝92、主流路に平行に形成されている第1副流路93及び第3副流路95、主流路に直行する方向に形成されている第2副流路94及び第4副流路96、流体を排出口98から主流路Aに排出する排出縦溝97から構成されている。導入縦溝92は平面L字形状を有しているので、流入した流体の一部は主流路Aの流れと逆方向に流れるが、塵埃等は期待に比べて質量が大きいので逆方向に流れにくく、塵埃等は第1副流路93を介して排出縦溝97に流れる。流入した流体の一部は2つの第2副流路94を流れ、合流した後、検出流路である第3流路95に連通する。第3流路95の両側に設けられた仕切り壁99に設けられたと突部99aが対向するように巾狭の検出区域を形成し、流路を絞ることにより流体の流れの不均一を是正する。検出後の流体は2つの第4の流路96に分岐して排出縦溝97に連通する。最後に排出出口98を介して主流路Aに連通する(例えば、特許文献1参照)。   As shown in FIGS. 8 and 9, the flow path structure 90 used in the conventional flow meter is parallel to the main flow path and the substantially vertical L-shaped introduction vertical groove 92 that raises the fluid flowing in from the introduction hole 91. The first sub-channel 93 and the third sub-channel 95 that are formed, the second sub-channel 94 and the fourth sub-channel 96 that are formed in a direction orthogonal to the main channel, and the main flow of fluid from the discharge port 98 It is comprised from the discharge vertical groove 97 discharged to the path A. Since the introduction vertical groove 92 has a planar L shape, a part of the fluid that flows in flows in the opposite direction to the flow in the main flow path A, but dust and the like flow in the opposite direction because their mass is larger than expected. It is difficult for dust and the like to flow into the discharge vertical groove 97 via the first sub-flow channel 93. Part of the fluid that has flowed in flows through the two second sub-channels 94 and merges, and then communicates with the third channel 95 that is the detection channel. A narrow detection area is formed so that the protrusion 99a faces the partition wall 99 provided on both sides of the third flow path 95, and the non-uniform flow of the fluid is corrected by narrowing the flow path. . The detected fluid branches into two fourth flow paths 96 and communicates with the discharge vertical groove 97. Finally, it communicates with the main flow path A through the discharge outlet 98 (see, for example, Patent Document 1).

特開2006−308518号公報JP 2006-308518 A

しかしながら、上述した特許文献1に開示された流量計では、流路を小型化して形成した場合には流体を十分に整流するスペースを確保することが困難であり、流量検出流路において流体に乱れが生じるという課題があった。また、流体の整流効果を向上させる金網を上流側に設けるスペースを確保することも困難であり、また配置できたとしても十分に整流効果を得る金網数を配置することが困難であった。   However, in the flow meter disclosed in Patent Document 1 described above, it is difficult to secure a space for sufficiently rectifying the fluid when the channel is formed in a small size, and the fluid is disturbed in the flow rate detection channel. There was a problem that occurred. Moreover, it is difficult to secure a space for providing a wire mesh for improving the fluid rectifying effect on the upstream side, and even if it is possible to arrange the wire mesh, it is difficult to arrange the number of wire meshes that sufficiently obtain the rectifying effect.

この発明は、上記のような課題を解決するためになされたもので、流路を小型化した流量計においても、十分な整流効果を発揮することができる流路構造体を有する流量計を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a flow meter having a flow channel structure that can exhibit a sufficient rectifying effect even in a flow meter with a small flow channel. The purpose is to do.

この発明に係る流量計は、被測定流体を検出するセンサと、前記センサの検出結果に基づいて被測定流体の流量を計測する流体計測部とを備えた流量計において、被測定流体が流れるボディ部と前記流体計測部の間に設けた板状部材からなり、前記ボディ部から分流させた被測定流体が入出するボディ部側の面に形成した第1の流路と、前記ボディ部側および前記流体計測部側を連通する連通孔部と、流体計測部側の面に形成され、前記第1の流路および前記連通孔部を介して入出する被測定流体を前記センサに晒す第2の流路とを有する流路構造部を備え、前記流路構造部は、被測定流体の流れの上流側の第1の整流部と下流側の第2の整流部とに仕切る仕切り壁と、前記ボディ部から流入した被測定流体が溜まる凹部からなるバッファ部と、前記第1の整流部および第2の整流部に設けられ、前記バッファ部から前記連通孔部に向けて流れる被測定流体の流れを整える整流子とを備えるものである。   A flow meter according to the present invention is a flow meter including a sensor that detects a fluid to be measured and a fluid measurement unit that measures a flow rate of the fluid to be measured based on a detection result of the sensor. A first flow path formed on the surface of the body part side through which the fluid to be measured separated from the body part enters and exits, the body part side, and a plate-like member provided between the part and the fluid measurement part A communication hole portion communicating with the fluid measurement portion side and a second fluid formed on the surface of the fluid measurement portion side and exposed to the sensor through the first flow path and the communication hole portion are exposed to the sensor. A flow path structure having a flow path, the flow path structure being divided into a first rectification section on the upstream side of the flow of the fluid to be measured and a second rectification section on the downstream side, and A buffer part consisting of a recess where the fluid to be measured flowing from the body part accumulates The provided first rectifying portion and second rectifying portion, in which and a commutator to arrange the flow of the fluid to be measured flows from the buffer unit to the communication hole.

この発明に係る流量計は、ボディ部の主流路を流れる被測定流体の流速ベクトルと、第2の流路においてセンサに晒す被測定流体の流速ベクトルが略直交する。   In the flowmeter according to the present invention, the flow velocity vector of the fluid to be measured flowing through the main flow channel of the body portion and the flow velocity vector of the fluid to be measured exposed to the sensor in the second flow channel are substantially orthogonal.

この発明に係る流量計は、整流子が連通孔部の開口部から延びた複数の凸所であり、前記複数の凸所が、前記連通孔部からの長さがバッファ部に近づくにつれて短く形成されており、前記バッファ部からの被測定流体の流れを、前記凸所間を通り前記連通孔部に導くものである。   In the flowmeter according to the present invention, the commutator is a plurality of convex portions extending from the opening portion of the communication hole portion, and the plurality of convex portions are formed shorter as the length from the communication hole portion approaches the buffer portion. The flow of the fluid to be measured from the buffer portion is guided to the communication hole portion through the convex portions.

この発明に係る流量計は、第2の流路をセンサ側に流れる被測定流体を整流する金網を係止する金網係止片を備えるものである。   The flow meter according to the present invention includes a wire mesh locking piece for locking a wire mesh that rectifies the fluid to be measured flowing through the second flow path to the sensor side.

この発明によれば、第1の流路、連通孔及び第2の流路を設けて流路を折り返し、さらにボディ部から流入する被測定流体が溜まる凹部であるバッファ部で被測定流体の流速を下げてから整流子により被測定流体の流れを整える整流子を備えるように構成したので、被測定流体が流通する流路長を十分に確保して整流を行うことができ、正確な流量測定が実現できる。さらに流量計を小型化することができる。   According to the present invention, the first flow path, the communication hole, and the second flow path are provided, the flow path is folded back, and the flow rate of the fluid to be measured is a buffer portion that is a recess in which the fluid to be measured flowing from the body portion accumulates. Since the commutator is used to adjust the flow of the fluid to be measured by the commutator after lowering the flow rate, the flow length through which the fluid to be measured flows can be sufficiently secured to perform rectification, and accurate flow measurement Can be realized. Furthermore, the flow meter can be reduced in size.

この発明によれば、ボディ部の主流路を流れる被測定流体の流速ベクトルと、第2の流路においてセンサに晒す被測定流体の流速ベクトルが略直交するように構成したので、垂直配管に流量計を取り付けるなど、前記主流路を通流する被測定流体が重力方向に流れるようにボディ部を配置した場合でも、前記センサに晒す被測定流体の流速ベクトルと平行するようにセンサに備えられた上流と下流の抵抗の周囲における被測定流体の温度分布がいずれかの抵抗の方へ偏らなくてすむ。さらに、被測定流体が流通する流路長を十分に確保することができる。   According to the present invention, since the flow velocity vector of the fluid to be measured flowing through the main flow channel of the body portion and the flow velocity vector of the fluid to be measured exposed to the sensor in the second flow channel are configured to be substantially orthogonal to each other, Even when the body portion is arranged so that the fluid to be measured flowing through the main flow path flows in the direction of gravity, such as by attaching a meter, the sensor is provided so as to be parallel to the flow velocity vector of the fluid to be measured exposed to the sensor. The temperature distribution of the fluid to be measured around the upstream and downstream resistances does not have to be biased toward either resistance. Furthermore, it is possible to sufficiently secure the flow path length through which the fluid to be measured flows.

この発明によれば、連通孔部の開口部から延びた複数の凸所である整流子の連通孔部からの長さをバッファ部に近づくにつれて短く形成しているので、バッファ部から第1の整流部または第2の整流部に向かう流路の入口が広がり、前記整流部を通過する被測定流体を極力均一に流すことができ、整流効果を得られる。   According to this invention, since the length from the communicating hole portion of the commutator, which is a plurality of convex portions extending from the opening portion of the communicating hole portion, is shortened as it approaches the buffer portion, the first from the buffer portion. The inlet of the flow path toward the rectifying unit or the second rectifying unit is widened, and the fluid to be measured that passes through the rectifying unit can flow as evenly as possible to obtain a rectifying effect.

この発明によれば、第2の流路をセンサ側に流れる被測定流体を整流する金網を係止する金網係止片を備えるように構成したので、被測定流体をセンサに晒す前にさらに十分な整流を行うことができる。   According to the present invention, since the wire mesh locking piece for locking the wire mesh for rectifying the fluid to be measured flowing in the second flow path to the sensor side is provided, it is further sufficient before the fluid to be measured is exposed to the sensor. Rectification can be performed.

実施の形態1.
図1は、この発明の実施の形態1に係る流量計の分解斜視図である。図1に示すように流量計1は、フィルタ2、流路構造部3、金網4、破断面が楕円のゴムパッキン5、流量センサ6と計測部7と支持板7a,7bと表示部8を備えたセンサユニット(流体計測部)9から構成されている。
フィルタ2は、流路構造部3に着脱可能に取り付けられ、後述するボディ部から導入される被測定流体のダスト(異物)を除去する。なお、必要に応じてフィルタを設けずに構成してもよい。流路構造部3は、支持板7aに両面テープや接着剤などにより固定され、ボディ部から導入される被測定流体の流速を下げると共に、被測定流体の偏流や乱れを整流して流量センサ6に導入する楕円に形成された調節体である。また、流路構造部3を設けることにより、センサユニット9をボディ部から取外した際に流量センサ6を覆う蓋体として機能し、センサユニット9の流量センサ6部分が露出して破損するのを防止することができる。なお、流路構造部3は、支持板7aに両面テープや接着剤により取り付けられる以外にも、その他の方法により容易に支持板7aから脱落しないように取り付けても良い。
Embodiment 1 FIG.
1 is an exploded perspective view of a flow meter according to Embodiment 1 of the present invention. As shown in FIG. 1, the flow meter 1 includes a filter 2, a flow path structure portion 3, a metal mesh 4, a rubber packing 5 having an elliptical fracture surface, a flow rate sensor 6, a measurement portion 7, support plates 7 a and 7 b, and a display portion 8. The sensor unit (fluid measuring unit) 9 is provided.
The filter 2 is detachably attached to the flow path structure portion 3 and removes dust (foreign matter) of the fluid to be measured introduced from the body portion described later. In addition, you may comprise without providing a filter as needed. The flow path structure portion 3 is fixed to the support plate 7a with a double-sided tape, an adhesive, or the like, reduces the flow velocity of the fluid to be measured introduced from the body portion, and rectifies the drift or turbulence of the fluid to be measured, thereby controlling the flow rate sensor 6. It is the adjustment body formed in the ellipse to introduce into. In addition, by providing the flow path structure portion 3, it functions as a lid that covers the flow rate sensor 6 when the sensor unit 9 is removed from the body portion, and the flow rate sensor 6 portion of the sensor unit 9 is exposed and damaged. Can be prevented. In addition to being attached to the support plate 7a with a double-sided tape or an adhesive, the flow path structure unit 3 may be attached so as not to easily fall off the support plate 7a by other methods.

金網4は、流量センサ6に導入される前の被測定流体の偏流や乱れを整流するための整流素子であり、複数枚が一定間隔に流量センサ6の上流側に配置されている。流量センサに供給する被測定流体の流速等を考慮して、配置する金網4の枚数、目の粗さ、または配置間隔を変更してもよい。ゴムパッキン5は弾性体であり、流路構造部3と同様に楕円で形成されている。センサユニット9の支持板7aの中央部には流量センサ6が配置されており、支持板7bには流路構造部3及びゴムパッキン5と同様の楕円状の孔部が形成されている。流路構造部3及びセンサユニット9はボディ部対して着脱可能であるが、流路構造部3はセンサユニット9の支持板7aに両面テープなどにより固定されているため、容易に外れない。流量センサ6は、金網4で整流された被測定流体の流量を検出し、検出信号をリード線(図示せず)などから計測部7に出力する。   The metal mesh 4 is a rectifying element for rectifying the drift or turbulence of the fluid to be measured before being introduced into the flow sensor 6, and a plurality of pieces are arranged on the upstream side of the flow sensor 6 at regular intervals. In consideration of the flow velocity of the fluid to be measured supplied to the flow sensor, the number of wire meshes 4 to be arranged, the roughness of the mesh, or the arrangement interval may be changed. The rubber packing 5 is an elastic body and is formed in an ellipse like the flow path structure 3. The flow rate sensor 6 is disposed at the center of the support plate 7a of the sensor unit 9, and the support plate 7b is formed with an elliptical hole similar to the flow path structure 3 and the rubber packing 5. Although the flow path structure 3 and the sensor unit 9 can be attached to and detached from the body part, the flow path structure 3 is not easily removed because it is fixed to the support plate 7a of the sensor unit 9 with a double-sided tape or the like. The flow sensor 6 detects the flow rate of the fluid to be measured rectified by the wire mesh 4 and outputs a detection signal to the measuring unit 7 from a lead wire (not shown) or the like.

図2は、この発明の実施の形態1に係る流量計のセンサユニットの正面図である。
計測部7は、外部装置と接続するネットワークケーブル等を挿入するコネクタ71を有している。また支持板7a,7bには、センサユニット9とボディ部9aとを接続する際に固定するネジ72が設けられている。センサユニット9とボディ部9aをネジ72によりネジ止めすることにより、ゴムパッキン5が支持板7aとボディ部9aの取り付け面に当接して気密性が保たれる。表示部8は、設定入力を行う設定スイッチと81と、設定スイッチ81による設定内容などを表示する表示器82とを備えている。図2の例では、センサユニット9に表示部8を装備した場合を示したが、表示部を有さない構成であっても構わない。
FIG. 2 is a front view of the sensor unit of the flowmeter according to Embodiment 1 of the present invention.
The measuring unit 7 has a connector 71 for inserting a network cable or the like for connecting to an external device. The support plates 7a and 7b are provided with screws 72 that are fixed when the sensor unit 9 and the body portion 9a are connected. By screwing the sensor unit 9 and the body portion 9a with the screw 72, the rubber packing 5 comes into contact with the mounting surfaces of the support plate 7a and the body portion 9a to maintain airtightness. The display unit 8 includes a setting switch 81 that performs setting input, and a display 82 that displays the setting content of the setting switch 81 and the like. In the example of FIG. 2, the case where the sensor unit 9 is equipped with the display unit 8 is shown, but a configuration without the display unit may be used.

図3は、この発明の実施の形態1に係るセンサユニットのボディ部への取り付けを示す図である。ボディ部9aは、主流路9b、オリフィス9c及び分流路9d,9eから構成されている。また、主流路9b内に記載した矢印は、主流路9bを流れる被測定流体の流速ベクトルを示している。分流路9d,9eは、オリフィス9cの前後に主流路9bに連通するように形成されている。また、分流路9d,9eは、図3中に矢印で示した被測定流体の流速ベクトルと平行となる位置に形成されている。オリフィス9cで生じた差圧によって分流路9dを介して被測定流体が流路構造部3へ分流され、流路構造部3を通った被測定流体が分流路9eを介して主流路9bへ流出する。なお、以下では分流路9dから流路構造部3に向かう被測定流体の流れを順流、分流路9eから流路構造部3に向かう被測定流体の流れを逆流と称する。   FIG. 3 is a diagram showing attachment of the sensor unit according to Embodiment 1 of the present invention to the body portion. The body portion 9a includes a main channel 9b, an orifice 9c, and branch channels 9d and 9e. Moreover, the arrow described in the main flow path 9b has shown the flow velocity vector of the to-be-measured fluid which flows through the main flow path 9b. The branch channels 9d and 9e are formed so as to communicate with the main channel 9b before and after the orifice 9c. Further, the diversion channels 9d and 9e are formed at positions parallel to the flow velocity vector of the fluid to be measured indicated by arrows in FIG. The fluid to be measured is diverted to the flow channel structure 3 through the flow dividing channel 9d by the differential pressure generated in the orifice 9c, and the fluid to be measured that has passed through the flow channel structural unit 3 flows out to the main flow channel 9b through the flow dividing channel 9e. To do. In the following description, the flow of the fluid to be measured traveling from the branch channel 9d toward the flow channel structure 3 is referred to as forward flow, and the flow of the fluid to be measured from the flow channel 9e toward the flow channel structure 3 is referred to as reverse flow.

図4は、この発明の実施の形態1に係る流量計の流路構造部の斜視図であり、図4(a)はボディ部側面の構成、図4(b)は計測部側面の構成、図4(c)は流路構造部を支持板の孔部に取り付けた図を示している。
流路構造部3は、樹脂等を用いて型抜き成形され、図4(a)に示すようにはボディ部側面(第1の流路)3aの中央部分には、略S字形の仕切り壁10が設けられ、この仕切り壁10により仕切られた上流側流路(第1の整流部)11、下流側流路12(第2の整流部)12及びバッファ用凹部(バッファ部)13,14及で構成されている。また、ボディ部側面3aの外周部分には、仕切り壁10と連設されるように外周壁15が構成されており、センサユニット9をボディ部9aに取り付けた際に導入された被測定流体が漏出するのを防ぐ。なお、流路構造部3は、金属を切削して成形されても良い。
4 is a perspective view of a flow path structure portion of the flowmeter according to the first embodiment of the present invention, FIG. 4 (a) is a configuration of a body portion side surface, FIG. 4 (b) is a configuration of a measurement portion side surface, FIG. 4C shows a view in which the channel structure is attached to the hole of the support plate.
The flow path structure 3 is die-cut using resin or the like, and as shown in FIG. 4A, a substantially S-shaped partition wall is provided at the center of the body side surface (first flow path) 3a. 10, an upstream flow path (first rectification unit) 11, a downstream flow path 12 (second rectification unit) 12, and buffer recesses (buffer units) 13 and 14 partitioned by the partition wall 10. It is composed of An outer peripheral wall 15 is formed on the outer peripheral portion of the body side surface 3a so as to be connected to the partition wall 10, and the fluid to be measured introduced when the sensor unit 9 is attached to the body portion 9a. Prevent leakage. The flow path structure 3 may be formed by cutting a metal.

また、図4(a)に示すように下流側流路12の面積は上流側流路11よりも小さくなるように構成してもよいし、上流側流路11の面積と下流側流路12の面積が均等になるように構成してもよい。図4(a)に示した構成は、逆流の被測定流体を測定する場合に、導入された被測定流体は下流側流路12において整流された後流量センサ6に導入されるが、下流側流路12に導入される被測定流体が順流方向の測定と比較して少量であるため、下流側流路12の面積を上流側流路11よりも小さくしている。なお、必要に応じて、下流側流路12の面積を上流側流路11の面積よりも小さくせずとも良い。   4A, the area of the downstream flow path 12 may be configured to be smaller than that of the upstream flow path 11, or the area of the upstream flow path 11 and the downstream flow path 12 may be configured. You may comprise so that the area of may become equal. In the configuration shown in FIG. 4A, when measuring a fluid to be measured in a reverse flow, the introduced fluid to be measured is rectified in the downstream flow path 12 and then introduced into the flow sensor 6. Since the fluid to be measured introduced into the flow path 12 is a small amount compared to the measurement in the forward flow direction, the area of the downstream flow path 12 is made smaller than that of the upstream flow path 11. If necessary, the area of the downstream channel 12 need not be smaller than the area of the upstream channel 11.

上流側流路11には、長さの異なる3本の整流片(整流子)11a、11b及び11cと被測定流体をボディ部側面3aから計測部側面(第2の流路)3bに導入する流路折り曲げ孔(連通孔部)11dが形成されている。整流片11aは外周壁15に連設されており、バッファ用凹部13によるバッファ効果を高めるために整流片11b及び11cよりも片の高さが高くなるように構成されている。また、各整流片11a,11b,11c間で被測定流体が連通可能なように、各整流片の長さは11a<11b<11cとなるように構成されている。整流片11aの長さを最も短くすることで、バッファ用凹部13から流路折り曲げ孔11bへ向かう流路の入口が広がり、上流側流路11に形成された整流片11a、11b及び11cで仕切られた3本の流路それぞれに被測定流体を極力均一に流すことができ、整流効果を得られる。   In the upstream flow path 11, three rectifying pieces (commutators) 11 a, 11 b and 11 c having different lengths and a fluid to be measured are introduced from the body side surface 3 a to the measurement unit side surface (second flow path) 3 b. A channel bending hole (communication hole portion) 11d is formed. The rectifying piece 11 a is connected to the outer peripheral wall 15, and is configured such that the height of the rectifying pieces 11 b and 11 c is higher than the rectifying pieces 11 b and 11 c in order to enhance the buffer effect by the buffer recess 13. In addition, the length of each rectifying piece is configured to satisfy 11a <11b <11c so that the fluid to be measured can communicate between the respective rectifying pieces 11a, 11b, and 11c. By making the length of the rectifying piece 11a the shortest, the inlet of the flow path from the buffer recess 13 toward the flow path bending hole 11b widens, and the rectifying pieces 11a, 11b, and 11c formed in the upstream flow path 11 are partitioned. The fluid to be measured can be made to flow as uniformly as possible through each of the three flow paths, and a rectifying effect can be obtained.

下流側流路12も同様に、長さの異なる3本の整流片(整流子)12a、12b及び12cと被測定流体を計測部側面3bからボディ部側面3aに導入する流路折り曲げ孔(連通孔部)12dが形成されている。整流片12aは、外周壁15に連設されており、バッファ用凹部14によるバッファ効果を高めるために整流片12b及び12cよりも片の高さが高くなるように構成されている。また、各整流片12a,12b,12c間で被測定流体が連通可能なように、各整流片の長さは、12a<12b<12cとなるように構成されている。整流片12aの長さを最も短くすることで、バッファ用凹部14から流路折り曲げ孔12bへ向かう流路の入口が広がり、下流側流路12に形成された整流片12a、12b及び12cで仕切られた3本の流路それぞれに被測定流体を極力均一に流すことができ、整流効果を得られる。   Similarly, the downstream flow path 12 has three flow straightening pieces (commutators) 12a, 12b and 12c having different lengths and flow path bending holes (communication) for introducing the fluid to be measured from the measurement unit side surface 3b to the body side surface 3a. A hole 12d is formed. The rectifying piece 12 a is connected to the outer peripheral wall 15, and is configured such that the height of the rectifying pieces 12 b and 12 c is higher than that of the rectifying pieces 12 b and 12 c in order to enhance the buffer effect by the buffer recess 14. Further, the length of each rectifying piece is configured to satisfy 12a <12b <12c so that the fluid to be measured can communicate between the respective rectifying pieces 12a, 12b, and 12c. By making the length of the rectifying piece 12a the shortest, the inlet of the flow path from the buffer recess 14 toward the flow path bending hole 12b widens, and the rectifying pieces 12a, 12b and 12c formed in the downstream flow path 12 are partitioned. The fluid to be measured can be made to flow as uniformly as possible through each of the three flow paths, and a rectifying effect can be obtained.

下流側流路12が上流側流路11と異なる点は、整流片12b及び12cが流路折り曲げ孔12dを跨ぐように形成され、流路折り曲げ孔12dが3つに分割されている点である。流路折り曲げ孔は整流片により分割されない方がより被測定流体の整流効果を向上させることができるが、順流方向の被測定流体の流量測定に影響の少ない下流側流路12の流路折り曲げ孔12dを跨ぐように整流片12b及び12cを形成してもよい。   The downstream channel 12 is different from the upstream channel 11 in that the rectifying pieces 12b and 12c are formed so as to straddle the channel folding hole 12d, and the channel folding hole 12d is divided into three. . The flow path bending hole can improve the flow straightening effect of the fluid to be measured more if it is not divided by the flow straightening piece, but the flow path bending hole of the downstream flow path 12 has little influence on the flow rate measurement of the fluid to be measured in the forward flow direction. The rectifying pieces 12b and 12c may be formed so as to straddle 12d.

次に計測部側面3bの構成について、図4(b)を用いて説明する。計測部側面3bの両端には、図4(a)の説明において示した流路折り曲げ孔11d,12dが形成されている。また、計測部側面3bの中央部には、金網4を係止する4つの金網係止片16、2つの壁部17a,17b及び2つの敷居片18a,18bが設けられている。なお、本実施例では、順流の流体計測の計測範囲は、順流の流体計測の計測範囲に比べて広いので、更に整流効果を得るべく、前記金網を流路に設けた。   Next, the structure of the measurement part side surface 3b is demonstrated using FIG.4 (b). Flow path bending holes 11d and 12d shown in the description of FIG. 4A are formed at both ends of the measurement unit side surface 3b. Further, four wire mesh locking pieces 16, two wall portions 17 a and 17 b, and two sill pieces 18 a and 18 b for locking the wire mesh 4 are provided at the center of the measurement unit side surface 3 b. In the present embodiment, the measurement range of the forward flow fluid measurement is wider than the measurement range of the forward flow fluid measurement, and thus the wire mesh is provided in the flow path in order to obtain a further rectifying effect.

金網4を敷居片18a,18bの流路折り曲げ孔11d側の端部と4つの金網係止片16との間に差し込むことで、図4(c)に示すように流量センサ6の上流側に複数枚の金網4が一定間隔で配置される。壁部17a,17b及び敷居片18a,18bは流量センサ6部分に導入された被測定流体の流速ベクトルを均一に調整することができ、整流効果を得ることができる。敷居片18a,18bは流路折り曲げ孔12dを跨ぐように形成されている。   By inserting the wire mesh 4 between the ends of the sill pieces 18a and 18b on the flow path bending hole 11d side and the four wire mesh locking pieces 16, as shown in FIG. A plurality of wire meshes 4 are arranged at regular intervals. The walls 17a and 17b and the sill pieces 18a and 18b can uniformly adjust the flow velocity vector of the fluid to be measured introduced into the flow sensor 6 and can obtain a rectifying effect. The sill pieces 18a, 18b are formed so as to straddle the flow path bending hole 12d.

次に、流量センサ6について説明する。流量センサ6は、例えば本願出願人が特願平3−106528号に係る明細書等において開示した半導体ダイヤフラム構成のものを使用することができる。図5は、この発明の実施の形態1に係る流量計の流量センサの構成を示す図であり、図5(a)は流量センサの斜視図、図5(b)は図5(a)のA−A断面図である。流量センサ6は、一辺が1.7mm、厚さ0.5mmのシリコンチップなどの基材からなる基台60の表面に、ヒータ61、上流側温度センサ62、下流側温度センサ63、周囲温度センサ64を、白金などのパターンを用いて薄膜形成し、絶縁膜層65で覆ったものである。白金薄膜は温度に応じて抵抗値が変化し、測温抵抗体として機能する。   Next, the flow sensor 6 will be described. As the flow sensor 6, for example, the one having a semiconductor diaphragm configuration disclosed by the applicant of the present application in the specification of Japanese Patent Application No. 3-106528 can be used. FIG. 5 is a diagram showing the configuration of the flow sensor of the flow meter according to the first embodiment of the present invention. FIG. 5 (a) is a perspective view of the flow sensor, and FIG. 5 (b) is a diagram of FIG. 5 (a). It is AA sectional drawing. The flow sensor 6 has a heater 61, an upstream temperature sensor 62, a downstream temperature sensor 63, an ambient temperature sensor on the surface of a base 60 made of a base material such as a silicon chip having a side of 1.7 mm and a thickness of 0.5 mm. 64 is formed as a thin film using a pattern such as platinum and covered with an insulating film layer 65. The resistance value of the platinum thin film changes depending on the temperature and functions as a resistance temperature detector.

ヒータ61は基台60の中央に配置され、その流体の流れ方向に対してヒータ61の上流側に上流側温度センサ62が配置され、反対側の下流側に下流側温度センサ63が配置されている。また、周囲温度センサ64は、基台60の上流側周辺部に配置されている。基台60の中央部は、異方性エッチングなどの工程により基材の一部が除去されてキャビティー(凹部空間)66が形成されており、ヒータ61、上流側温度センサ62、下流側温度センサ63は基台60から熱的に遮断されたダイヤフラム67上に形成されている。   The heater 61 is disposed at the center of the base 60, an upstream temperature sensor 62 is disposed upstream of the heater 61 with respect to the fluid flow direction, and a downstream temperature sensor 63 is disposed downstream of the opposite side. Yes. In addition, the ambient temperature sensor 64 is disposed in the upstream peripheral portion of the base 60. In the central portion of the base 60, a part of the base material is removed by a process such as anisotropic etching to form a cavity (recessed space) 66, and a heater 61, an upstream temperature sensor 62, and a downstream temperature are formed. The sensor 63 is formed on a diaphragm 67 that is thermally insulated from the base 60.

流量センサ6の動作原理は、周囲温度センサ64で計測された流体温度より一定温度、例えば数10℃だけ高くなるようにヒータ61で流体を熱して所定の温度分布を発生させ、その温度分布を上流側温度センサ62および下流側温度センサ63で計測することにより、流体流量を計測するものである。流体が静止している場合、上流側温度センサ62および下流側温度センサ63で得られる温度分布は対称となるが、流体が流れている場合、その対称性が崩れ、上流側温度センサ62に比べて下流側温度センサ63で得られる温度が高くなる。この温度差をブリッジ回路で検出することにより、流体の熱伝導率などの物性値に基づき流体流量が得られる。   The operation principle of the flow sensor 6 is that the fluid is heated by the heater 61 so as to be higher than the fluid temperature measured by the ambient temperature sensor 64 by a certain temperature, for example, several tens of degrees centigrade, and a predetermined temperature distribution is generated. By measuring with the upstream temperature sensor 62 and the downstream temperature sensor 63, the fluid flow rate is measured. When the fluid is stationary, the temperature distribution obtained by the upstream temperature sensor 62 and the downstream temperature sensor 63 is symmetric. However, when the fluid is flowing, the symmetry is lost and compared with the upstream temperature sensor 62. Thus, the temperature obtained by the downstream temperature sensor 63 increases. By detecting this temperature difference with a bridge circuit, a fluid flow rate can be obtained based on physical properties such as the thermal conductivity of the fluid.

流量センサ6はサイズが小さいだけでなく、熱絶縁された極めて薄いダイヤフラム構造を採用しているため、高感度分析、高速応答及び低消費電力という特長を備えている。また、ヒータ61を挟んだ上流側温度センサ62と下流側温度センサ63の配置が左右対称になっているため、順流だけではなく逆流の測定も可能となる。   The flow sensor 6 is not only small in size but also has the features of high sensitivity analysis, high speed response and low power consumption because it employs an extremely thin diaphragm structure that is thermally insulated. Moreover, since the arrangement of the upstream temperature sensor 62 and the downstream temperature sensor 63 with the heater 61 interposed therebetween is symmetrical, not only forward flow but also reverse flow can be measured.

図6は、この発明の実施の形態1に係る流量計の動作を示す図である。図6(a)は被測定流体の順流の流れを示した流路構造部のボディ部側面の正面図であり、図6(b)は被測定流体の順流の流れを示した流路構造部の計測部側面の正面図である。図6において、実線矢印は流量測定前の被測定流体の流れを示し、破線矢印は流量測定後の被測定流体の流れを示す。
まず、図6(a)の実線矢印で示す分流路9dからバッファ用凹部13に導入された被測定流体は、一定角度の広がりを持ち、上流側流路11に導入される。導入される被測定流体は、仕切り壁10と整流片11aとの間隔が広く構成していることから流速が抑えられ、一定角度の広がりを持って導入される。導入された被測定流体は仕切り壁10によって流れの向きが変えられ、各整流片11a,11b及び11cの間を通過して整流される。被測定流体は整流されると共に流速ベクトルが徐々に変化し、流路折り曲げ孔11dにおいて流れの向きが変えられ、計測部側面3bに導入される。
FIG. 6 is a diagram showing the operation of the flow meter according to Embodiment 1 of the present invention. FIG. 6A is a front view of the side surface of the body portion of the flow path structure portion showing the forward flow of the fluid to be measured, and FIG. 6B is a flow path structure portion showing the forward flow of the fluid to be measured. It is a front view of the measurement part side. In FIG. 6, the solid line arrows indicate the flow of the fluid to be measured before the flow rate measurement, and the broken line arrows indicate the flow of the fluid to be measured after the flow rate measurement.
First, the fluid to be measured introduced from the branch channel 9d indicated by the solid line arrow in FIG. 6A to the buffer recess 13 has a certain angle spread and is introduced into the upstream channel 11. The fluid to be measured to be introduced is introduced with a constant angle spread because the gap between the partition wall 10 and the rectifying piece 11a is wide, so that the flow velocity is suppressed. The introduced fluid to be measured has its flow direction changed by the partition wall 10 and passes between the rectifying pieces 11a, 11b and 11c to be rectified. The fluid to be measured is rectified and the flow velocity vector gradually changes, the flow direction is changed in the flow path bending hole 11d, and the fluid is introduced into the measurement unit side surface 3b.

図6(b)の実線矢印で示すように、ボディ部側面3aから導入された被測定流体は、金網4によって整流された後、壁部17a,17bによって流入する面積が決定され、敷居片18a,18bにより流量センサ6部分に流入される被測定流体の流速ベクトルが均一化され、流量センサ6によって流量を検出される。流量センサ6に流入する被測定流体の流速ベクトルは、主流路9bを流れる被測定流体の流速ベクトルに対して略直交する方向に変化している。流量センサ6で検出された検出信号は計測部7へ出力される。   As shown by the solid line arrow in FIG. 6 (b), the fluid to be measured introduced from the body side surface 3a is rectified by the wire mesh 4, and then the flow-in area is determined by the walls 17a and 17b. 18b, the flow velocity vector of the fluid to be measured flowing into the flow sensor 6 is made uniform, and the flow rate is detected by the flow sensor 6. The flow velocity vector of the fluid to be measured flowing into the flow sensor 6 changes in a direction substantially orthogonal to the flow velocity vector of the fluid to be measured flowing through the main flow path 9b. A detection signal detected by the flow sensor 6 is output to the measurement unit 7.

その後、被測定流体は再び流路折り曲げ孔12dで流れの向きが変えられ、ボディ部側面3aに導入される。図6(a)の点線矢印で示すように、計測部側面3bから導入された被測定流体は、各整流片12a,12b及び12cの間を通過して整流される。整流された被測定流体は、バッファ用凹部14及びフィルタ2を経由して分流路9eから主流路9bの気体流に合流する。   Thereafter, the direction of the flow of the fluid to be measured is changed again in the flow path bending hole 12d and introduced into the body side surface 3a. As shown by the dotted arrows in FIG. 6A, the fluid to be measured introduced from the measurement unit side surface 3b passes between the rectifying pieces 12a, 12b and 12c and is rectified. The rectified fluid to be measured joins the gas flow from the branch flow path 9e to the main flow path 9b via the buffer recess 14 and the filter 2.

次に、逆流方向の被測定流体の流量を測定する流量計の動作を説明する。
図7は、この発明の実施の形態1に係る流量計の動作を示す図である。図7(a)は被測定流体の逆流の流れを示した流路構造部のボディ部側面の斜視図であり、図7(b)は被測定流体の逆流の流れを示した流路構造部の計測部側面の斜視図である。図7において、実線矢印は流量測定前の被測定流体の流れを示し、破線矢印は流量測定後の被測定流体の流れを示す。
Next, the operation of the flow meter that measures the flow rate of the fluid to be measured in the reverse flow direction will be described.
FIG. 7 is a diagram showing the operation of the flow meter according to the first embodiment of the present invention. FIG. 7A is a perspective view of the side of the body portion of the flow channel structure showing the back flow of the fluid to be measured, and FIG. 7B is the flow path structure showing the back flow of the fluid to be measured. It is a perspective view of the measurement part side surface. In FIG. 7, the solid line arrows indicate the flow of the fluid to be measured before the flow rate measurement, and the broken line arrows indicate the flow of the fluid to be measured after the flow rate measurement.

まず、図7(a)の実線矢印で示す分流路9eからバッファ用凹部14に導入された被測定流体は、一定角度の広がりを持ち、下流側流路12に導入される。導入された被測定流体は、仕切り壁10と整流片12aとの間隔を広く構成していることから流速が抑えられ、一定角度の広がりを持って導入される。導入された被測定流体は仕切り壁10によって流れの向きが変えられ、各整流片12a,12b及び12cの間を通過して整流される。被測定流体は整流されると共に流速ベクトルが徐々に変化し、流路折り曲げ孔12dにおいて流れの向きが変えられ、計測部側面3bに導入される。   First, the fluid to be measured introduced into the buffer recess 14 from the branch channel 9e indicated by the solid line arrow in FIG. 7A has a certain angle spread and is introduced into the downstream channel 12. Since the introduced fluid to be measured has a wide space between the partition wall 10 and the rectifying piece 12a, the flow velocity is suppressed and the fluid to be measured is introduced with a certain angular spread. The introduced fluid to be measured has its flow direction changed by the partition wall 10 and passes between the rectifying pieces 12a, 12b and 12c to be rectified. The fluid to be measured is rectified and the flow velocity vector gradually changes, the flow direction is changed in the flow path bending hole 12d, and the fluid is introduced into the measurement unit side surface 3b.

図7(b)の実線矢印で示すように、ボディ部側面3aから導入された被測定流体は、壁部17a,17b及び敷居片18a,18bにより流量センサ6部分に流入される被測定流体の流速ベクトルが均一化され、流量センサ6によって流量を検出される。流量センサ6に流入する被測定流体の流速ベクトルは、主流路9bを流れる被測定流体の流速ベクトルに対して略直交する方向に変化している。流量センサ6で検出された検出信号は計測部7へ出力される。   As shown by the solid line arrow in FIG. 7B, the fluid to be measured introduced from the body side surface 3a is the fluid to be measured that flows into the flow sensor 6 through the walls 17a and 17b and the sill pieces 18a and 18b. The flow velocity vector is made uniform, and the flow rate is detected by the flow rate sensor 6. The flow velocity vector of the fluid to be measured flowing into the flow sensor 6 changes in a direction substantially orthogonal to the flow velocity vector of the fluid to be measured flowing through the main flow path 9b. A detection signal detected by the flow sensor 6 is output to the measurement unit 7.

その後、被測定流体は金網4によって整流された後、再び流路折り曲げ孔11dで流れの向きが変えられ、ボディ部側面3aに導入される。図6(a)の点線矢印で示すように、計測部側面3bから導入された被測定流体は、各整流片11a,11b及び11cの間を通過して整流される。整流された被測定流体は、バッファ用凹部13及びフィルタ2を経由して分流路9dから主流路9bの気体流に合流する。   After that, the fluid to be measured is rectified by the wire mesh 4, and then the flow direction is changed again at the flow path bending hole 11d and introduced into the body side surface 3a. As shown by the dotted arrows in FIG. 6A, the fluid to be measured introduced from the measurement unit side surface 3b passes between the rectifying pieces 11a, 11b, and 11c and is rectified. The rectified fluid to be measured joins the gas flow in the main channel 9b from the branch channel 9d via the buffer recess 13 and the filter 2.

以上のように、実施の形態1によれば、流路構造体にボディ部側面、計測部側面及び流路折り曲げ孔を設け、被測定流体の流路を折り返し、さらにバッファ用凹部で被測定流体の流速を下げた後、整流子により被測定流体の流れを整える整流子を設けるように構成したので、被測定流体が流通する流路長を十分に確保して整流を行うことができ、正確な流量測定が可能となる。また、流量計を小型化することができる。   As described above, according to the first embodiment, the flow channel structure is provided with the body part side surface, the measurement unit side surface, and the flow path bending hole, and the flow path of the fluid to be measured is folded back. Since the commutator for adjusting the flow of the fluid to be measured is provided by the commutator after the flow velocity of the fluid is reduced, the flow path through which the fluid to be measured flows can be sufficiently secured and rectified. It is possible to measure the flow rate. In addition, the flow meter can be reduced in size.

垂直配管に流量計を取り付けるなど、主流路を通流する被測定流体が重力方向に流れるようにボディ部を配置した場合、主流路を流れる被測定流体の流速ベクトルと、流量センサに晒す被測定流体の流速ベクトルが同一であると、前記流量センサに晒す被測定流体の流速ベクトルと平行するようにセンサに備えられた上流と下流の抵抗の周囲における被測定流体の温度分布が垂直上方側の抵抗の方へ偏ることが知られている。この場合、低流量や流量ゼロの際は特に、測定誤差やゼロ点のドリフトが目立つように生じるが、この実施の形態1によれば、主流路を流れる被測定流体の流速ベクトルと、計測部側面において流量センサに流入する被測定流体の流速ベクトルが略直交するように構成したので、流量センサに晒す被測定流体の流速ベクトルを重力方向と直交するように構成することが可能となり、前記センサに晒す被測定流体の流速ベクトルと平行するようにセンサに備えられた上流と下流の抵抗の周囲における被測定流体の温度分布がいずれかの抵抗の方へ偏らなくてすむ。低流量の際の測定誤差や流量ゼロの際のゼロ点のドリフトを抑制することができる。さらに、被測定流体が流通する流路長を十分に確保することができる。   When the body is arranged so that the fluid to be measured flowing through the main flow path flows in the direction of gravity, such as by attaching a flow meter to the vertical pipe, the flow velocity vector of the fluid to be measured flowing through the main flow path and the measurement to be exposed to the flow sensor When the flow velocity vector of the fluid is the same, the temperature distribution of the fluid to be measured around the upstream and downstream resistances provided in the sensor is parallel to the flow velocity vector of the fluid to be measured exposed to the flow sensor. It is known to bias towards resistance. In this case, especially when the flow rate is low or zero, the measurement error and the drift of the zero point are conspicuous. According to the first embodiment, the flow velocity vector of the fluid to be measured flowing through the main flow path and the measurement unit Since the flow velocity vector of the fluid to be measured flowing into the flow sensor on the side surface is substantially orthogonal, the flow velocity vector of the fluid to be measured exposed to the flow sensor can be configured to be orthogonal to the direction of gravity. The temperature distribution of the fluid to be measured around the upstream and downstream resistances provided in the sensor so as to be parallel to the flow velocity vector of the fluid to be measured exposed to is not required to be biased toward either resistance. Measurement errors at low flow rates and zero point drift at zero flow rates can be suppressed. Furthermore, it is possible to sufficiently secure the flow path length through which the fluid to be measured flows.

さらに、実施の形態1によれば、ボディ部側面に複数の整流片を設け、ボディ部の分流路から導入された被測定流体の流速を下げた後、さらに各整流片により被測定流体の流れを整流するように構成したので、安定した被測定流体の流量測定を行うことが可能となる。また、整流片の長さをバッファ用凹部に近づくにつれて短く形成しているので、バッファ用凹部第1の整流部または第2の整流部に向かう流路に入口が広がり、複数の整流片で仕切られた流路にそれぞれ被測定流体を極力均一に流すことができ、整流効果を得られる。   Furthermore, according to the first embodiment, a plurality of rectifying pieces are provided on the side surface of the body part, and after the flow rate of the fluid to be measured introduced from the branch channel of the body part is lowered, the flow of the fluid to be measured is further flown by each rectifying piece. The flow rate of the fluid to be measured can be stably measured. In addition, since the length of the rectifying piece is shortened as it approaches the buffer recess, the inlet extends to the flow path toward the buffer rectification first rectification unit or the second rectification unit, and the rectification piece is partitioned by a plurality of rectification pieces. The fluid to be measured can be made to flow as uniformly as possible in the respective flow paths, and a rectifying effect can be obtained.

また、実施の形態1によれば、ボディ部側面の下流側流路に複数の整流片及び流路折り曲げ孔を設け、さらに左右対称構造である流量センサを設けるように構成したので、下流側流路から流量センサに向かう被測定流体の流れである逆流の流量も測定することができる。   Further, according to the first embodiment, since the plurality of rectifying pieces and the channel bending holes are provided in the downstream channel on the side surface of the body part, and the flow sensor having a bilaterally symmetric structure is provided, It is also possible to measure the flow rate of the reverse flow, which is the flow of the fluid to be measured, from the path toward the flow sensor.

さらに、実施の形態1によれば、流量センサを覆う位置に流路構造部を設け、ボディ部側から導入された被測定流体を折り返して流量センサに供給するように構成したので、センサユニットをボディ部から取り外した場合でも、流路構造部が流量センサに対して蓋体として機能し、流量センサが露出して傷ついたり破損することを防止できる。   Furthermore, according to the first embodiment, the flow path structure portion is provided at a position covering the flow rate sensor, and the fluid to be measured introduced from the body portion side is folded and supplied to the flow rate sensor. Even when it is removed from the body portion, the flow path structure portion functions as a lid for the flow rate sensor, and it is possible to prevent the flow rate sensor from being exposed and damaged or damaged.

なお、上記実施の形態1では、流路構造部、ゴムパッキン及び支持板の孔部を楕円状に形成する例を示したが、楕円状に限定されるものではなく被測定流体を導入するボディ部の分流路の形状に合わせて構成してよい。   In the first embodiment, an example in which the flow path structure portion, the rubber packing, and the hole portions of the support plate are formed in an elliptical shape is shown. However, the shape is not limited to the elliptical shape, and the body into which the fluid to be measured is introduced You may comprise according to the shape of the partial flow path of a part.

なお、上記実施の形態1では、流路折り曲げ孔11d付近に金網を設ける構成を示したが、流路折り曲げ孔12dの直後にもさらに金網を設け、下流側流路12から導入された逆流の被測定流体を該金網で整流した後に流量センサ6に供給するように構成してもよい。   In the first embodiment, a configuration is shown in which a wire mesh is provided in the vicinity of the flow path folding hole 11d. However, a wire mesh is also provided immediately after the flow path bending hole 12d, so that a reverse flow introduced from the downstream flow path 12 is prevented. The fluid to be measured may be supplied to the flow sensor 6 after being rectified by the wire mesh.

この発明の実施の形態1に係る流量計の分解斜視図である。It is a disassembled perspective view of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計のセンサユニットの正面図である。It is a front view of the sensor unit of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るセンサユニットのボディ部への取り付けを示す図である。It is a figure which shows the attachment to the body part of the sensor unit which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計の流路構造部の斜視図である。It is a perspective view of the flow-path structure part of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計の流量センサの構成を示す図である。It is a figure which shows the structure of the flow sensor of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計の動作を示す図である。It is a figure which shows operation | movement of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計の動作を示す図である。It is a figure which shows operation | movement of the flowmeter which concerns on Embodiment 1 of this invention. 従来の流量計の部分断面図である。It is a fragmentary sectional view of the conventional flowmeter. 従来の流量計の部分断面図である。It is a fragmentary sectional view of the conventional flowmeter.

符号の説明Explanation of symbols

1 流量計
2 フィルタ
3 流路構造部
3a ボディ部側面
3b 計測部側面
4 金網
5 ゴムパッキン
6 流量センサ
7 計測部
7a,7b 支持板
8 表示部
9 センサユニット
9a ボディ部
9b 主流路
9c オリフィス
9d,9e 分流路
10 仕切り壁
11 上流側流路
12 下流側流路
11a,11b,11c,12a,12b,12c 整流片
11d,12d 流路折り曲げ孔
13,14 バッファ用凹部
15 外周壁
16a,16b,16c,16d 金網係止片
17a,17b 壁部
18a,18b 敷居片
60 基台
61 ヒータ
62 上流側温度センサ
63 下流側温度センサ
64 周囲温度センサ
65 絶縁膜層
66 キャビティー(凹部空間)
67 ダイヤフラム
71 コネクタ
72 ネジ
81 設定スイッチ
82 表示器
90 流量計
91 先端デバイス
92 セラミック基板
93 導体パターン
94 チップ部品
95 回路基板
96 U字形流路
DESCRIPTION OF SYMBOLS 1 Flowmeter 2 Filter 3 Flow path structure part 3a Body part side surface 3b Measurement part side surface 4 Wire mesh 5 Rubber packing 6 Flow sensor 7 Measurement part 7a, 7b Support plate 8 Display part 9 Sensor unit 9a Body part 9b Main flow path 9c Orifice 9d, 9e Dividing channel 10 Partition wall 11 Upstream channel 12 Downstream channel 11a, 11b, 11c, 12a, 12b, 12c Rectifying piece 11d, 12d Channel bending hole 13, 14 Buffer recess 15 Outer wall 16a, 16b, 16c , 16d Wire mesh locking piece 17a, 17b Wall 18a, 18b Sill piece 60 Base 61 Heater 62 Upstream temperature sensor 63 Downstream temperature sensor 64 Ambient temperature sensor 65 Insulating film layer 66 Cavity (recessed space)
67 Diaphragm 71 Connector 72 Screw 81 Setting switch 82 Display 90 Flowmeter 91 Advanced device 92 Ceramic substrate 93 Conductor pattern 94 Chip component 95 Circuit board 96 U-shaped flow path

Claims (4)

被測定流体を検出するセンサと、前記センサの検出結果に基づいて被測定流体の流量を計測する流体計測部とを備えた流量計において、
被測定流体が流れるボディ部と前記流体計測部の間に設けた板状部材からなり、前記ボディ部から分流させた被測定流体が入出するボディ部側の面に形成した第1の流路と、前記ボディ部側および前記流体計測部側を連通する連通孔部と、流体計測部側の面に形成され、前記第1の流路および前記連通孔部を介して入出する被測定流体を前記センサに晒す第2の流路とを有する流路構造部を備え、
前記流路構造部は、被測定流体の流れの上流側の第1の整流部と下流側の第2の整流部とに仕切る仕切り壁と、
前記ボディ部から流入した被測定流体が溜まる凹部からなるバッファ部と、
前記第1の整流部および第2の整流部に設けられ、前記バッファ部から前記連通孔部に向けて流れる被測定流体の流れを整える整流子とを備えたことを特徴とする流量計。
In a flow meter comprising a sensor for detecting a fluid to be measured and a fluid measuring unit for measuring a flow rate of the fluid to be measured based on a detection result of the sensor,
A first flow path formed on a surface of the body portion side into which the fluid to be measured enters and exits from the body portion, the plate portion being provided between the body portion through which the fluid to be measured flows and the fluid measuring portion; The fluid to be measured is formed on the surface on the fluid measurement unit side and the communication hole part communicating the body part side and the fluid measurement unit side, and enters and exits through the first flow path and the communication hole unit. A flow path structure having a second flow path exposed to the sensor;
The flow path structure section includes a partition wall that divides the first rectification section on the upstream side and the second rectification section on the downstream side of the flow of the fluid to be measured,
A buffer portion consisting of a concave portion in which the fluid to be measured flowing from the body portion accumulates;
A flowmeter comprising: a commutator provided in the first rectifying unit and the second rectifying unit, for adjusting a flow of a fluid to be measured flowing from the buffer unit toward the communication hole.
ボディ部の主流路を流れる被測定流体の流速ベクトルと、第2の流路においてセンサに晒す被測定流体の流速ベクトルが略直交することを特徴とする請求項1記載の流量計。   2. The flowmeter according to claim 1, wherein the flow velocity vector of the fluid to be measured flowing through the main flow path of the body portion and the flow velocity vector of the fluid to be measured exposed to the sensor in the second flow path are substantially orthogonal. 整流子は、連通孔部の開口部から延びた複数の凸所であり、
前記複数の凸所は、前記連通孔部からの長さがバッファ部に近づくにつれて短く形成されており、前記バッファ部からの被測定流体の流れを、前記凸所間を通り前記連通孔部に導くことを特徴とする請求項1または請求項2記載の流量計。
The commutator is a plurality of convex portions extending from the opening of the communication hole,
The plurality of convex portions are formed shorter as the length from the communication hole portion approaches the buffer portion, and the flow of the fluid to be measured from the buffer portion passes between the convex portions to the communication hole portion. The flowmeter according to claim 1, wherein the flowmeter is guided.
第2の流路をセンサ側に流れる被測定流体を整流する金網を係止する金網係止片を備えたことを特徴とする請求項1から請求項3のうちのいずれか1項記載の流量計。   The flow rate according to any one of claims 1 to 3, further comprising a wire mesh locking piece for locking a wire mesh that rectifies the fluid to be measured flowing through the second flow path to the sensor side. Total.
JP2007153129A 2007-06-08 2007-06-08 Flowmeter Active JP5019958B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007153129A JP5019958B2 (en) 2007-06-08 2007-06-08 Flowmeter
CN200880017957XA CN101680789B (en) 2007-06-08 2008-05-19 Flow rate meter
PCT/JP2008/001245 WO2008152769A1 (en) 2007-06-08 2008-05-19 Flow rate meter
US12/663,196 US8181513B2 (en) 2007-06-08 2008-05-19 Flow meter
EP08751763A EP2157411A1 (en) 2007-06-08 2008-05-19 Flow rate meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153129A JP5019958B2 (en) 2007-06-08 2007-06-08 Flowmeter

Publications (2)

Publication Number Publication Date
JP2008304395A JP2008304395A (en) 2008-12-18
JP5019958B2 true JP5019958B2 (en) 2012-09-05

Family

ID=40233241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153129A Active JP5019958B2 (en) 2007-06-08 2007-06-08 Flowmeter

Country Status (1)

Country Link
JP (1) JP5019958B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419268B2 (en) * 1974-05-02 1979-07-13
JPH0466819A (en) * 1990-07-09 1992-03-03 Hitachi Metals Ltd Large flow rate mass flow meter
US6655207B1 (en) * 2000-02-16 2003-12-02 Honeywell International Inc. Flow rate module and integrated flow restrictor
JP2002005710A (en) * 2000-06-20 2002-01-09 Ngk Spark Plug Co Ltd Bypass type measuring device for flow and flow velocity in pipe of small diameter

Also Published As

Publication number Publication date
JP2008304395A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US8181513B2 (en) Flow meter
JP5652315B2 (en) Flow measuring device
EP1879004B1 (en) Flow rate measuring device
US7520051B2 (en) Packaging methods and systems for measuring multiple measurands including bi-directional flow
US9696191B2 (en) Thermal, flow measuring device
CN106840296A (en) Flow sensor assembly with integrated bypass passage
CN102620792A (en) Flow sensor with enhanced flow range capability
KR100419360B1 (en) Thermal flow meter
WO2010022021A2 (en) Mass-flow sensor with a molded flow restrictor
EP2600116A1 (en) Flow measurement structure and flow measurement device
US9810586B2 (en) Temperature sensor and thermal, flow measuring device
JP2000146652A (en) Mass flow sensor
JP5019958B2 (en) Flowmeter
JP5273950B2 (en) Flowmeter
JP5477446B2 (en) Air flow measurement device
JP5575359B2 (en) Thermal flow meter
CN210123295U (en) Flow rate measuring device
CN113252124A (en) Flow rate measurement device, flow rate measurement method, and flow rate measurement program
JP3597527B2 (en) Thermal flow meter
JP2005172445A (en) Flow sensor
CN111693105B (en) Flow rate measuring device
JP2021144002A (en) Flow measurement device
JP5364059B2 (en) Thermal flow meter
JPH1054840A (en) Flow velocity measuring method and flowmeter
JP2004053325A (en) Electrostatic capacity liquid densimeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5019958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3