JP2005172445A - Flow sensor - Google Patents

Flow sensor Download PDF

Info

Publication number
JP2005172445A
JP2005172445A JP2003408639A JP2003408639A JP2005172445A JP 2005172445 A JP2005172445 A JP 2005172445A JP 2003408639 A JP2003408639 A JP 2003408639A JP 2003408639 A JP2003408639 A JP 2003408639A JP 2005172445 A JP2005172445 A JP 2005172445A
Authority
JP
Japan
Prior art keywords
thin film
flow sensor
flow
flow path
film resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003408639A
Other languages
Japanese (ja)
Inventor
Shuichi Murakami
修一 村上
Koji Inoue
幸二 井上
Yasuhiro Sasai
泰弘 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Kofloc KK
Original Assignee
Osaka Prefecture
Kofloc KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Kofloc KK filed Critical Osaka Prefecture
Priority to JP2003408639A priority Critical patent/JP2005172445A/en
Publication of JP2005172445A publication Critical patent/JP2005172445A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow sensor in which miniaturization can be realized without receiving limitation in installation attitude, without causing convection flow even using a shunt structure. <P>SOLUTION: The flow sensor is constituted in such a manner that a flat surface section of top face of silicon substrate 11, and an inverse U groove of upper case 2, form the inverse U shape sensing flow path 10, and on a flat part of upstream side of the mutually parallel sensing flow path 10 in an inverse U shape on the silicon substrate 11 thin film resistors 6a, and 6b are provided, and on the flat part of downstream side on the silicon substrate 11 the thin film resistor 7a, and 7b are provided. Then, the thin film resistors 6a, and 7a, and the thin film resistors 6b, and 7b are serially connected respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、流体の流量を測定する熱式のフローセンサに関する。   The present invention relates to a thermal type flow sensor for measuring a flow rate of a fluid.

熱を利用したフローセンサは、流路に1個の発熱抵抗素子又は複数個の発熱及び又は測温抵抗素子を配置して流れによる発熱抵抗素子の熱の流出を電気的に検出して、流量を測定する。特に流れがゼロのときの出力の精度を確保するため、流路の上流側と下流側にヒータを配置し、上流側と下流側で流れ無しで、熱平衡を保ち、流れにより、熱的平衡が崩れると、これを検出して流量を測定するものがある。この種のフローセンサにおいて、従来、シリコン基板上にパターン形成された金属膜からなる2つのヒータを形成し、一方のヒータから他方のヒータへガスを流通するためのガス流路を形成するようにしたものが知られている(例えば、特許文献1参照)。   A flow sensor using heat is provided with one heating resistance element or a plurality of heat generation and / or temperature measurement resistance elements arranged in the flow path to electrically detect heat flow of the heating resistance element due to the flow, Measure. In order to ensure the accuracy of output especially when the flow is zero, heaters are arranged on the upstream side and downstream side of the flow path, maintaining thermal equilibrium without flow on the upstream side and downstream side, and thermal equilibrium is achieved by the flow. When it breaks down, there is one that detects this and measures the flow rate. In this type of flow sensor, conventionally, two heaters made of a metal film patterned on a silicon substrate are formed, and a gas flow path for flowing gas from one heater to the other heater is formed. Is known (for example, see Patent Document 1).

また、シリコン基板上に発熱抵抗体、測温抵抗体をパターン形成してなるフローセンサも開示されている(例えば、特許文献2参照)。   Also disclosed is a flow sensor formed by patterning a heating resistor and a resistance temperature detector on a silicon substrate (see, for example, Patent Document 2).

また、熱線を形成した測定チップを基板に実装し、主流路とは別に、センサ流路を測定チップと基板との間に溝で形成し、かつセンサ流路に熱線を橋設したものが知られている(例えば、特許文献3参照)。   In addition, it is also known that a measurement chip on which heat rays are formed is mounted on a substrate, a sensor flow path is formed as a groove between the measurement chip and the substrate, and a heat line is bridged in the sensor flow path separately from the main flow path. (For example, see Patent Document 3).

また、流路に熱伝導性の良い、一般には金属材の細管に感熱抵抗線を巻設する方式のフローセンサで細管を逆U字状にして、一方の垂直部分に第1と第2の感熱抵抗線を巻設し、他の垂直部分に第3と第4の感熱抵抗線を巻設したものが知られている(例えば、特許文献4参照)。
特開2002−340646号公報 特開2000−146652号公報 特開2002−168669号公報 特開平7−27582号公報
In addition, a flow sensor having a good thermal conductivity in the flow path, generally a method of winding a heat-sensitive resistance wire around a thin tube made of a metal material, makes the narrow tube in an inverted U shape, and the first and second portions are formed in one vertical portion. It is known that a thermal resistance wire is wound and third and fourth thermal resistance wires are wound around other vertical portions (for example, see Patent Document 4).
JP 2002-340646 A Japanese Patent Application Laid-Open No. 2000-146652 JP 2002-168669 A JP-A-7-27582

上記した特許文献1に記載のフローセンサでは、図20の(a)に示すように、上流用ヒータ30aと下流用ヒータ30bを水平に置いたとき、流れ無しで熱分布が平衡しており、流れが生じると、図20の(b)に示すように、熱分布が崩れてブリッジ回路により流量を検出できるが、図20の(c)に示すように、垂直置きにすると、流れ無しの場合でも、対流によって熱分布が崩れるという問題がある。特許文献2に記載のフローセンサでも、同様の問題がある。   In the flow sensor described in Patent Document 1 described above, as shown in FIG. 20A, when the upstream heater 30a and the downstream heater 30b are placed horizontally, the heat distribution is balanced without flow, When a flow occurs, as shown in FIG. 20 (b), the heat distribution collapses and the flow rate can be detected by a bridge circuit. However, as shown in FIG. However, there is a problem that heat distribution collapses due to convection. The flow sensor described in Patent Document 2 has the same problem.

また、特許文献1では、この問題を解決する方法として、ヒータ下方を空洞にせず、シリコンを残すことで温度均一を保ち、外乱影響を回避するようにしている。しかし、これは熱分布のなだらかさをもたらすシリコンの熱伝導性が良いことが、ヒータ温度を上げるには相当のパワーが必要として、この種のセンサの特徴である省電力を実現できない。   In Patent Document 1, as a method for solving this problem, the temperature is kept uniform by leaving silicon below the heater without leaving a cavity, and the influence of disturbance is avoided. However, this is because the thermal conductivity of silicon, which brings about the smoothness of heat distribution, requires a considerable amount of power to raise the heater temperature, and the power saving characteristic of this type of sensor cannot be realized.

また、このようなフローセンサを主流路に並設されるセンサ流路に適用したり、特許文献3に記載のフローセンサ等では、図19の(a)に示すように、水平置きにし、流れ無しの場合、熱分布は平衡しているが、図19の(b)に示すように、垂直置きにすると、検出部周辺の温められた流体が垂直上方に移動し、熱分布が崩れ、センサ流路32と主流路31間で対流による循環流が起こる。したがって、上流側と下流側の感熱抵抗体を水平に配置したものでは、設置姿勢に制限を受けるという問題がある。   Further, such a flow sensor is applied to a sensor flow path arranged in parallel with the main flow path, or in the flow sensor described in Patent Document 3, as shown in FIG. When there is no sensor, the heat distribution is balanced, but as shown in FIG. 19 (b), when it is placed vertically, the warmed fluid around the detector moves vertically upward, the heat distribution collapses, and the sensor A circulation flow by convection occurs between the channel 32 and the main channel 31. Therefore, in the case where the upstream and downstream thermal resistors are arranged horizontally, there is a problem that the installation posture is limited.

また、特許文献4の技術では、姿勢による制限は不要であるが、逆U字状の流路は原理的に良熱伝導性材の細管を用いるので、両抵抗体間の伝導熱対応が問題になる他、抵抗体が巻線であるため抵抗体リード線の処理が実用上煩雑になる、電力消費が大、設置スペースなど小型化に問題がある。   In addition, in the technique of Patent Document 4, there is no need to restrict the posture, but the inverted U-shaped flow path uses a thin tube made of a highly heat-conductive material in principle. In addition, since the resistor is a winding, the processing of the resistor lead wire becomes practically complicated, power consumption is large, and there is a problem in downsizing such as installation space.

本願発明者等は、上記問題点を解消するために、流路を前記流路ベースの表面、表面から裏面及び裏面にわたり形成し、前記流路ベースの表面あるいは裏面のいずれか一方の流路に上流用の薄膜抵抗体を配置し、前記流路ベースの表面あるいは裏面のいずれか一方の流路に対する他方の流路に下流用の薄膜抵抗体を配置したフローセンサを創出し、すでに出願している(特願2003−002729)。   In order to solve the above problems, the inventors of the present invention form a flow path from the surface of the flow path base, from the front surface to the back surface and the back surface, and to either the front surface or the back surface of the flow path base. Created a flow sensor in which a thin film resistor for upstream is arranged, and a thin film resistor for downstream is arranged in the other flow path with respect to either the front or back surface of the flow path base. (Japanese Patent Application 2003-002729).

この出願に係るフローセンサは、取り付け姿勢に制限を受けることなく、分流構造としても対流を起こすことなく、かつ小型化を実現し得るものが得られたが、フローセンサは、流路ベースとなるシリコン基板の表裏両面に流路及び薄膜抵抗体を形成するか、あるいはシリコン基板の一面に流路及び薄膜抵抗体を形成したものを接合するかの構造を取るものであり、なお、簡素、小型化する道が残されていた。   The flow sensor according to this application is not limited by the mounting posture, and a flow dividing structure that does not cause convection and can achieve downsizing is obtained. However, the flow sensor is a flow path base. It has a structure of forming a flow path and a thin film resistor on both front and back sides of a silicon substrate, or joining a structure in which a flow path and a thin film resistor are formed on one surface of a silicon substrate. There was still a way to turn.

この発明は上記問題点に着目してなされたものであって、取り付け姿勢に制限を受けることなく、分流構造としても対流を起こすことなく、かつ小型化を実現し得るフローセンサを提供することを目的としている。   The present invention has been made paying attention to the above-mentioned problems, and is intended to provide a flow sensor that can be reduced in size without being restricted by the mounting posture, without causing convection even as a shunt structure. It is aimed.

この発明のフローセンサは、薄膜基板上に形成された検出を行う薄膜抵抗体の1個又は複数個の組合せを検出流路内に設置して、流体の薄膜抵抗体に対する熱作用を検出するものにおいて、前記検出流路を、前記薄膜基板の平面部を流路に含んでU字状に形成し、このU字状の互いに平行な流路部分の前記平面部分に、それぞれ1組の薄膜抵抗体を設置している。   In the flow sensor of the present invention, one or a plurality of combinations of thin film resistors for detection formed on a thin film substrate are installed in a detection flow path to detect a thermal action of a fluid on the thin film resistor. The detection flow path is formed in a U shape including the flat portion of the thin film substrate in the flow path, and a pair of thin film resistors is provided on the flat portions of the U-shaped parallel flow path portions. The body is installed.

この発明のフローセンサにおいて、平行部分に設置された両薄膜抵抗体組合せは、発熱の形を互いに等しくなるようにする。例えば、双方の対応する薄膜抵抗体の形を同形状にすれば良い。   In the flow sensor of the present invention, the combination of the two thin film resistors installed in the parallel portion makes the heat generation form equal to each other. For example, the shape of the corresponding thin film resistors may be the same.

この発明のフローセンサにおいて、双方の検出出力を互いに加算する。   In the flow sensor of the present invention, both detection outputs are added to each other.

この発明のフローセンサにおいて、薄膜抵抗体は、ヒータ兼検出用であり、自己発熱型のものであっても良い。   In the flow sensor of the present invention, the thin film resistor is for detection as a heater and may be of a self-heating type.

また、この発明のフローセンサにおいて、薄膜抵抗体は、検出用とヒータ用とを備える傍熱型であっても良い。   In the flow sensor of the present invention, the thin film resistor may be an indirectly heated type including a detector and a heater.

この傍熱型のフローセンサでは、前記ヒータ用の薄膜抵抗体は、上流側と下流側のそれぞれの流路部分で1組の検出用薄膜抵抗体の間に配置すると良い。   In this indirectly heated flow sensor, the thin film resistor for the heater may be disposed between a pair of thin film resistors for detection in the respective flow path portions on the upstream side and the downstream side.

この発明によれば、流路のU字の平行部分に、それぞれ1組の発熱形式の薄膜抵抗体を配置することで、垂直置きにし、流れ無しの場合でも、検出部周辺で温められた流体の垂直方向に移動する力が平衡するので、センサ流路にバイパスなどの流路が並設されても、対流による循環流が起こらない。また、前記姿勢において、平行部分双方の薄膜抵抗体組合せの検出出力を加算することにより、双方の流量感度は倍増し、双方の対流による出力誤差は相殺される。   According to the present invention, a pair of heat generation type thin film resistors are arranged in the U-shaped parallel portion of the flow path, respectively, so that the fluid heated in the vicinity of the detection unit even in the case of no vertical flow. Therefore, even if a flow path such as a bypass is provided in parallel with the sensor flow path, a circulation flow due to convection does not occur. Further, in the above posture, by adding the detection outputs of the combination of the thin film resistors in both the parallel portions, the flow sensitivity of both is doubled, and the output error due to both convections is canceled out.

更に、上流側流路の薄膜抵抗体と下流側流路の薄膜抵抗体を一平面部に形成することで、簡素化ができ、また形成位置を圧倒的に小さくできるので、より小型化が実現できる。   Furthermore, by forming the thin film resistor in the upstream flow channel and the thin film resistor in the downstream flow channel on one flat surface, it can be simplified and the formation position can be overwhelmingly reduced, resulting in further downsizing. it can.

以下、実施の形態により、この発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments.

図1、図2、図3は、この発明の一実施形態フローセンサ1の概略構成を示す図であり、図1はこの実施形態フローセンサ1の正面図、図2は同フローセンサ1の裏面図、図3は図1のX−X’で切断した断面図である。この実施形態フローセンサ1は、上部筐体2と下部筐体3が接合される。   1, 2, and 3 are diagrams showing a schematic configuration of a flow sensor 1 according to an embodiment of the present invention. FIG. 1 is a front view of the flow sensor 1 according to the embodiment, and FIG. FIG. 3 and FIG. 3 are sectional views cut along XX ′ in FIG. In the flow sensor 1 of this embodiment, an upper housing 2 and a lower housing 3 are joined.

下部筐体3には表面にシリコン基板(センサチップ)11が設けられるとともに、検出流路10の入口と出口となる貫通孔20が設けられている。一方、上部筐体2には形状が平面視してU字である部分を有した溝穴10が形成され、この上部筐体2の溝穴10の形成面と下部筐体3のシリコン基板11の面とを接合し、U字状の流路10を形成している。U字状の流路10の両端が、下部筐体3の貫通孔20に連通している。したがって、貫通孔20は、フローセンサ1の流体の入口と出口を構成している。この実施形態フローセンサ1の要部を構成するU字状の流路10、シリコン基板11は、図1に破線で示している。   The lower housing 3 is provided with a silicon substrate (sensor chip) 11 on the surface and through holes 20 that serve as inlets and outlets of the detection flow path 10. On the other hand, a slot 10 having a U-shaped portion in plan view is formed in the upper casing 2, and the formation surface of the slot 10 of the upper casing 2 and the silicon substrate 11 of the lower casing 3 are formed. And a U-shaped flow path 10 is formed. Both ends of the U-shaped flow path 10 communicate with the through hole 20 of the lower housing 3. Accordingly, the through hole 20 constitutes an inlet and an outlet for the fluid of the flow sensor 1. The U-shaped flow path 10 and the silicon substrate 11 constituting the main part of the flow sensor 1 of this embodiment are indicated by broken lines in FIG.

上部筐体2には、外部からシリコン基板11まで連通する貫通孔13を有する。この貫通孔13より、電極9に接続するためのリード線が挿通され、貫通孔13を導電性接着材等で封止する。図4は同実施形態フローセンサ1のシリコン基板11の表面図、図5は同実施形態フローセンサ1の上部筐体2をシリコン基板11の表面に平行に切断した一部断面図である。シリコン基板11の上面(表面)には、図4、図5に示すように、上流側の薄膜抵抗体6a、6bと下流側の薄膜抵抗体7a、7bが形成配置されている。   The upper housing 2 has a through hole 13 that communicates from the outside to the silicon substrate 11. A lead wire for connecting to the electrode 9 is inserted through the through hole 13, and the through hole 13 is sealed with a conductive adhesive or the like. 4 is a surface view of the silicon substrate 11 of the flow sensor 1 of the embodiment, and FIG. 5 is a partial cross-sectional view of the upper housing 2 of the flow sensor 1 of the embodiment cut in parallel to the surface of the silicon substrate 11. As shown in FIGS. 4 and 5, upstream thin film resistors 6 a and 6 b and downstream thin film resistors 7 a and 7 b are formed and arranged on the upper surface (surface) of the silicon substrate 11.

上部筐体2には、U字状部10aと、U字状先端で外方に向けられた入口10b、出口10cを有する溝10を有し、この上部筐体2の溝10をシリコン基板11の表面とを向かい合わせて接合すると、図1、図3に示すようにU字状の検出流路10が形成される。上部筐体2は、樹脂、ガラス、半導体、金属材他で構成され、機械加工又は金型による成型又は半導体基板をマイクロマシン技術で製作する。シリコン基板11が載置埋設される下部筐体3も同様の材料で構成されている。シリコン基板11の薄膜抵抗体6a、6bは、検出流路10の上流側に、薄膜抵抗体7a、7bは検出流路10の下流側に位置するように配置される。これら薄膜抵抗体6a、6b、7a、7bはヒータ用と検出用を兼用している。 シリコン基板11における薄膜形成は、周知マイクロマシン技術によって製作する。薄膜抵抗体6a、6b及び7a、7bの近傍に、この下方部に空洞を形成するための異方性エッチング用のホール(図4の斜線部)を形成している。このホール8は、保護膜、絶縁膜を、例えばウェットエッチングやRIE等で除去して形成する。その後、例えばTMAHのエッチャントでシリコンの異方性エッチングを行うことで、図6、図7に示される長穴(空洞)12を形成できる。この長穴12の上方に、絶縁膜と保護膜に挟まれた薄膜抵抗体6a、7b、7a、7bが形成されている。シリコン基板11に空洞12を設けることにより、薄膜抵抗体6a、7b、7a、7bを有する薄膜部の熱絶縁性が確保できる。   The upper housing 2 has a U-shaped portion 10a and a groove 10 having an inlet 10b and an outlet 10c directed outward at the U-shaped tip, and the groove 10 of the upper housing 2 is formed in the silicon substrate 11. When facing each other and joining, a U-shaped detection flow path 10 is formed as shown in FIGS. The upper housing 2 is made of resin, glass, semiconductor, metal material, or the like, and is machined or molded by a mold, or a semiconductor substrate is manufactured by micromachine technology. The lower housing 3 in which the silicon substrate 11 is placed and buried is also made of the same material. The thin film resistors 6 a and 6 b of the silicon substrate 11 are disposed on the upstream side of the detection flow path 10, and the thin film resistors 7 a and 7 b are disposed on the downstream side of the detection flow path 10. These thin film resistors 6a, 6b, 7a and 7b are used both for heaters and for detection. The thin film formation on the silicon substrate 11 is manufactured by a well-known micromachine technique. In the vicinity of the thin film resistors 6a, 6b and 7a, 7b, holes for anisotropic etching (shaded portions in FIG. 4) for forming cavities are formed in the lower portions. The hole 8 is formed by removing the protective film and the insulating film by, for example, wet etching or RIE. Thereafter, by performing anisotropic etching of silicon using, for example, a TMAH etchant, the long hole (cavity) 12 shown in FIGS. 6 and 7 can be formed. Thin film resistors 6a, 7b, 7a, 7b sandwiched between an insulating film and a protective film are formed above the elongated hole 12. By providing the cavity 12 in the silicon substrate 11, the thermal insulation of the thin film portion having the thin film resistors 6a, 7b, 7a, 7b can be ensured.

薄膜抵抗体6a、6b、7a、7bは、図4に示すように、上流側流路の上流側の薄膜抵抗体6aと、下流側流路の上流側の薄膜抵抗体7aが直列に接続され、また上流側流路の下流側の薄膜抵抗体6bと下流側流路の下流側の薄膜抵抗体7bが直列に接続されている。これは双方の薄膜抵抗体の検出出力を互いに加算する方法の基本的な一例であり、検出回路を減らし、簡素化できる有効な手段である。但し、この図4の表面図は、薄膜抵抗体から薄膜抵抗体、薄膜抵抗体から電極への配線を簡略化して描いている。実際、この部分の配線は、直接検出には関連しない部分であり、電気的接続機能のため、出来るだけ抵抗値が小さく、上下流の抵抗差の小さくなるように形成するような配線パターンとする。   As shown in FIG. 4, the thin film resistors 6a, 6b, 7a, and 7b are connected in series with the thin film resistor 6a on the upstream side of the upstream channel and the thin film resistor 7a on the upstream side of the downstream channel. Further, the thin film resistor 6b on the downstream side of the upstream channel and the thin film resistor 7b on the downstream side of the downstream channel are connected in series. This is a basic example of a method of adding the detection outputs of both thin film resistors to each other, and is an effective means that can reduce and simplify the detection circuit. However, the surface view of FIG. 4 depicts a simplified wiring from the thin film resistor to the thin film resistor and from the thin film resistor to the electrode. Actually, this part of the wiring is a part not directly related to detection, and because of the electrical connection function, the wiring pattern is formed so that the resistance value is as small as possible and the resistance difference between upstream and downstream is small. .

この実施形態における薄膜抵抗体6a、6b、7a、7bは、ブリッジ回路接続として、図8の(b)が使用できる。この回路は薄膜抵抗体6a、7aの直列回路と、薄膜抵抗体6b、7bの直列回路とを、一端で直接接続している。もちろん、薄膜抵抗体6a、7aの直列接続と、薄膜抵抗体6b、7bの直列接続で、直接ブリッジ回路を構成しない配線パターンに変更して、図9に示すように、それぞれ上流側と下流側で個別にヒータ駆動兼温度差検出回路を構成しても良い。また、図8の(a)のように、薄膜抵抗6a、6bで上流側流路のブリッジ回路を構成し、下流側流路のブリッジ回路として、図8の(a)に示す回路の6a、6bを、7a、7bに代えた別の回路を使用しても良い。   The thin film resistors 6a, 6b, 7a, and 7b in this embodiment can use FIG. 8B as a bridge circuit connection. In this circuit, a series circuit of thin film resistors 6a and 7a and a series circuit of thin film resistors 6b and 7b are directly connected at one end. Of course, the thin film resistors 6a and 7a are connected in series and the thin film resistors 6b and 7b are connected in series so as not to directly form a bridge circuit, as shown in FIG. The heater drive / temperature difference detection circuit may be configured individually. Further, as shown in FIG. 8A, the thin film resistors 6a and 6b constitute a bridge circuit of the upstream flow path, and the bridge circuit of the downstream flow path is configured as 6a of the circuit shown in FIG. Another circuit in which 6b is replaced with 7a and 7b may be used.

上記のように、上流側流路の上流側薄膜抵抗体と下流側流路の上流側薄膜抵抗体を直列接続し、上流側流路の下流側薄膜抵抗体と下流側流路の下流側薄膜抵抗体を直列接続することによって、直列接続しない場合に比し、電力消費が若干大となるが、感度が倍になる。   As described above, the upstream thin film resistor of the upstream flow channel and the upstream thin film resistor of the downstream flow channel are connected in series, and the downstream thin film resistor of the upstream flow channel and the downstream thin film of the downstream flow channel By connecting the resistors in series, the power consumption is slightly higher than in the case of not connecting them in series, but the sensitivity is doubled.

この実施形態フローセンサ1において、図18は従来の設置姿勢に制限を持たないフローセンサの形状であるが、この実施形態フローセンサ1に当てはめて検討すると、30aに6a、6bが、30bに7a、7bが位置され、薄膜抵抗体6a、7aが上流、薄膜抵抗体6b、7bが下流抵抗体となる。ここで、18の(b)に示すようU字流路が水平となるよう配置した場合の(b)は当然問題なし。18の(a)に示すようにU字流路が垂直となるように設置した場合は、薄膜抵抗体6a、6b及び7a、7bによって暖められた周囲の流体は対流により垂直上部ほど高い温度となるが、周囲検出出力は薄膜抵抗体6a、6bではプラス側へシフトし、薄膜抵抗体7a、7bではマイナス側にシストする。それぞれ1組の薄膜抵抗体は同形状で、発熱状態も等しくしているので、この出力を加算することで、検出出力全体のシフトがキャンセルされる。   In the flow sensor 1 of this embodiment, FIG. 18 shows the shape of a conventional flow sensor that has no restriction on the installation posture. However, when applied to the flow sensor 1 of this embodiment, 6a and 6b are shown in 30a and 7a in 30b. 7b, the thin film resistors 6a and 7a are upstream, and the thin film resistors 6b and 7b are downstream resistors. Here, as shown in 18 (b), there is no problem in (b) in the case where the U-shaped flow path is arranged horizontally. When the U-shaped channel is installed so as to be vertical as shown in FIG. 18A, the surrounding fluid heated by the thin film resistors 6a, 6b and 7a, 7b has a higher temperature in the vertical upper part due to convection. However, the ambient detection output shifts to the plus side in the thin film resistors 6a and 6b, and cystes to the minus side in the thin film resistors 7a and 7b. Since each pair of thin film resistors has the same shape and the same heat generation state, adding this output cancels the shift of the entire detection output.

この実施形態フローセンサと本発明者が比較用に作成したフローセンサ〔図16の(b)〕とを比較するため、図13に示すガスラインで、それぞれ感度特性と応答特性を測定した。図13は、テスト用流体をMFC(マス・フロー・コントローラ)41、パイプ42を介して、サンプルフローセンサ(被測定フローセンサ)43に与え、特性測定を行う場合を示している。その測定結果は、応答特性が図12に示すように、ほとんど変わらない(a:本実施形態フローセンサ、b:比較用フローセンサ)のに、感度特性では、図11に示すように(特性a)、この実施形態フローセンサの方が高感度の結果が得られた。   In order to compare the flow sensor of this embodiment with the flow sensor [FIG. 16 (b)] created by the present inventor for comparison, the sensitivity characteristic and the response characteristic were measured with the gas lines shown in FIG. FIG. 13 shows a case where a test fluid is supplied to a sample flow sensor (measured flow sensor) 43 via an MFC (mass flow controller) 41 and a pipe 42 to perform characteristic measurement. The measurement result shows that the response characteristics are almost the same as shown in FIG. 12 (a: the flow sensor of the present embodiment, b: the flow sensor for comparison), but the sensitivity characteristics are as shown in FIG. 11 (characteristic a ), The flow sensor of this embodiment gave a higher sensitivity result.

また、図14に示す図18形状の従来の、設置姿勢に制限を持たせないフローセンサの感度特性と、図11の感度特性を比較すると、図14では低流速域での感度が低いのに対し、この実施形態フローセンサでは、低流速域での感度が非常に高くなっている。これは従来の設置姿勢に制限を持たないフローセンサは1組の薄膜抵抗体が形状的に接近して形成するのが難しいため、低流速域では上流側の薄膜抵抗体で奪われた熱が下流側の薄膜抵抗体へ伝わる前に冷めてしまうことが原因にある。しかし、この実施形態フローセンサは1組の薄膜抵抗体が接近して形成できるため、低流速域でも十分に熱授受が可能となり、高感度となる。これは低流速域での精度向上には非常に有利となる。   In addition, when comparing the sensitivity characteristics of the conventional flow sensor having the shape of FIG. 18 shown in FIG. 14 that does not restrict the installation posture with the sensitivity characteristics of FIG. 11, the sensitivity in the low flow velocity region is low in FIG. On the other hand, in the flow sensor of this embodiment, the sensitivity in the low flow velocity region is very high. This is because it is difficult for a conventional flow sensor that has no restrictions on the installation posture to form a pair of thin film resistors close to each other in shape. This is due to cooling before being transmitted to the thin film resistor on the downstream side. However, since the flow sensor of this embodiment can be formed close to a pair of thin film resistors, it can sufficiently transfer heat even in a low flow rate region, and has high sensitivity. This is very advantageous for improving the accuracy in the low flow velocity region.

図15は、この発明の他の実施形態を示す図である。この図15は上記図1〜図3の実施形態フローセンサの図5に対応するものであり、この実施形態フローセンサ1のシリコン基板11に平行に上部筐体2を切断した横断面図である。この実施形態フローセンサ1は、シリコン基板(下部筐体3の上面に埋設された)11と上部筐体2とから構成される点、上部筐体2にはU字状部10aとし、U字状先端で外方に向けられた入口10b、出口10cの溝10を有し、この上部筐体2の溝10をシリコン基板11の表面に向かい合わせて接合することは、図4、図5に示すフローセンサと同様である。   FIG. 15 is a diagram showing another embodiment of the present invention. FIG. 15 corresponds to FIG. 5 of the embodiment flow sensor of FIGS. 1 to 3 described above, and is a cross-sectional view in which the upper housing 2 is cut parallel to the silicon substrate 11 of the embodiment flow sensor 1. . In this embodiment, the flow sensor 1 includes a silicon substrate 11 (embedded in the upper surface of the lower housing 3) and an upper housing 2, and the upper housing 2 has a U-shaped portion 10a. FIG. 4 and FIG. 5 show that the groove 10 of the inlet 10b and the outlet 10c directed outward at the tip end and the groove 10 of the upper housing 2 are joined to face the surface of the silicon substrate 11. This is the same as the flow sensor shown.

この実施形態フローセンサでは、図4、図5に示すフローセンサと相違して、シリコン基板11の上面の検出流路10の上流側に薄膜抵抗体6a、6b、6cと、下流側に薄膜抵抗体7a、7b、7cを形成したことである。上流側と下流側で、それぞれの中心にヒータ用の薄膜抵抗体6c、7cを配置し、その同薄膜上の上下流に温度検出用の薄膜抵抗体6a、6b、7a、7bを配置している。この実施形態フローセンサの薄膜抵抗体6a、6b、6c及び7a、7b、7cは、例えば図10に示す検出、駆動回路を使用すると良い。   In the flow sensor of this embodiment, unlike the flow sensors shown in FIGS. 4 and 5, the thin film resistors 6a, 6b, 6c are provided upstream of the detection flow path 10 on the upper surface of the silicon substrate 11, and the thin film resistors are provided downstream. That is, the bodies 7a, 7b and 7c are formed. The heater thin film resistors 6c and 7c are arranged at the center on the upstream side and the downstream side, respectively, and the temperature detecting thin film resistors 6a, 6b, 7a and 7b are arranged on the upper and lower sides of the thin film. Yes. For the thin film resistors 6a, 6b, 6c and 7a, 7b, 7c of the flow sensor of this embodiment, for example, a detection and drive circuit shown in FIG. 10 may be used.

これにより、設置姿勢の垂直水平に係わらず、熱分布を平衡に保つことができる。また、上流同士の薄膜抵抗体6aと7a、下流同士の薄膜抵抗体6bと7b、更にヒータ同士の薄膜抵抗体6cと7cを直列に接続することで、駆動回路を簡素化できる。   As a result, the heat distribution can be kept in balance regardless of the vertical and horizontal orientation of the installation posture. Moreover, the drive circuit can be simplified by connecting the thin film resistors 6a and 7a upstream to each other, the thin film resistors 6b and 7b downstream from each other, and the thin film resistors 6c and 7c between heaters in series.

ここで、実施形態フローセンサと従来のフローセンサの設置姿勢による影響を比較するために、図16の(a)に示す実施形態フローセンサと図16の(b)に示す比較用フローセンサ(いずれも分流型)を用い、傾斜影響が大きく現れる流体SF6(六フッ化イオウ)を用い、封入圧力:0.1MPaと、0.2MPaで、図16の辺A、B、C、Dに着目し、(1)C手前−A奥〔水平、基準姿勢〕、(2)B上−D下〔垂直〕、(3)D上−B下〔垂直〕、(4)A上−C下〔垂直〕の4つの姿勢で、その影響を調べたところ、図17に示す結果が得られた。   Here, in order to compare the influence of the installation flow sensor of the embodiment and the conventional flow sensor, the embodiment flow sensor shown in FIG. 16A and the comparison flow sensor shown in FIG. Is also used. Fluid SF6 (sulfur hexafluoride) in which the influence of inclination appears greatly is used, and the enclosure pressures are 0.1 MPa and 0.2 MPa, and attention is paid to sides A, B, C, and D in FIG. , (1) C front-A back [horizontal, standard posture], (2) B top-D bottom [vertical], (3) D top-B bottom [vertical], (4) A top-C bottom [vertical] When the influences were investigated in the four postures, the results shown in FIG. 17 were obtained.

その結果は、基準姿勢であるC手前−A奥が0のとき、A上−C下の場合は、影響無しであるが、B上−D下、B下−D上の場合には、図16の(b)の従来の場合の影響を1とすると、図16の(a)の本発明の実施形態では−0.16、0.16と、実施形態のフローセンサの方が設置姿勢の影響が少ないという確認が得られた。   As a result, there is no effect in the case where the reference posture, C front-A back, is 0, and A up-C down, but in the case of B up-D down, B down-D, Assuming that the influence of the conventional case of 16 (b) is 1, in the embodiment of the present invention of FIG. 16 (a), −0.16 and 0.16, the flow sensor of the embodiment has an installation posture. It was confirmed that the impact was small.

この発明の一実施形態であるフローセンサの概略構成を示す正面図である。It is a front view which shows schematic structure of the flow sensor which is one Embodiment of this invention. 同実施形態フローセンサの裏面図である。It is a reverse view of the same embodiment flow sensor. 同実施形態フローセンサの図1に示すX−X’で切断した断面図である。It is sectional drawing cut | disconnected by X-X 'shown in FIG. 1 of the same embodiment flow sensor. 同実施形態フローセンサのシリコン基板の上面図である。It is a top view of the silicon substrate of the same embodiment flow sensor. 同実施形態フローセンサのシリコン基板に平行に、筐体部分を切断した横断面図である。It is the cross-sectional view which cut | disconnected the housing | casing part parallel to the silicon substrate of the same embodiment flow sensor. 同実施形態フローセンサの流路部を流路方向に平行に切断した断面図である。It is sectional drawing which cut | disconnected the flow-path part of the same embodiment flow sensor in parallel with the flow-path direction. 同実施形態フローセンサの流路部を流路に直行する方向に切断した断面図である。It is sectional drawing which cut | disconnected the flow-path part of the same embodiment flow sensor in the direction orthogonal to a flow path. 同実施形態フローセンサの薄膜抵抗体の接続回路例を示す回路図である。It is a circuit diagram which shows the example of a connection circuit of the thin film resistor of the same embodiment flow sensor. 同実施形態フローセンサの薄膜抵抗体の他の接続回路例を示す回路図である。It is a circuit diagram which shows the other connection circuit example of the thin film resistor of the same embodiment flow sensor. 同実施形態フローセンサの薄膜抵抗体の更に他の接続回路例を示す回路図である。It is a circuit diagram which shows the further another connection circuit example of the thin film resistor of the same embodiment flow sensor. 従来例と本発明のフローセンサの感度特性を示す図である。It is a figure which shows the sensitivity characteristic of a prior art example and the flow sensor of this invention. 従来例と本発明のフローセンサの応答特性を示す図である。It is a figure which shows the response characteristic of the conventional example and the flow sensor of this invention. 従来例と本発明のフローセンサの特性特徴を説明する図である。It is a figure explaining the characteristic feature of the flow sensor of a prior art example and this invention. 従来の設置姿勢に制限を持たないフローセンサの感度特性を示す図である。It is a figure which shows the sensitivity characteristic of the flow sensor which does not have a restriction | limiting in the conventional installation attitude | position. この発明の他の実施形態フローセンサのシリコン基板に平衡に筐体部分を切断した横断面図である。It is the cross-sectional view which cut | disconnected the housing | casing part in equilibrium with the silicon substrate of the flow sensor of other embodiment of this invention. 従来例と本発明のフローセンサの設置姿勢評価を説明するための図である。It is a figure for demonstrating the installation attitude | position evaluation of a prior art example and the flow sensor of this invention. 同従来例と本発明のフローセンサの設置姿勢の影響の比較を示す図である。It is a figure which shows the comparison of the influence of the installation attitude | position of the flow sensor of the conventional example and this invention. 従来の設置姿勢に制限を持たないフローセンサの設置姿勢を変更した場合を説明する図である。It is a figure explaining the case where the installation attitude | position of the flow sensor which does not have a restriction | limiting in the conventional installation attitude | position is changed. 従来のフローセンサの設置姿勢を変更した場合の問題点を説明する図である。It is a figure explaining the problem at the time of changing the installation attitude | position of the conventional flow sensor. 従来の他のフローセンサの設置姿勢を変更した場合の問題点を説明する図である。It is a figure explaining the problem at the time of changing the installation attitude | position of the other conventional flow sensor.

符号の説明Explanation of symbols

1 フローセンサ
2 上部筐体
3 下部筐体
4 固定用穴
6、7 一対の薄膜抵抗体
6a、6b、6c、7a、7b、7c 薄膜抵抗体
8 エッチングホール
9 電極
10 流路
11 シリコン基板
12 空洞部
20 流路入口、出口用貫通穴
22 シール材
DESCRIPTION OF SYMBOLS 1 Flow sensor 2 Upper housing | casing 3 Lower housing | casing 4 Fixing hole 6, 7 A pair of thin film resistor 6a, 6b, 6c, 7a, 7b, 7c Thin film resistor 8 Etching hole 9 Electrode 10 Channel 11 Silicon substrate 12 Cavity Part 20 Channel inlet / outlet through hole 22 Sealing material

Claims (2)

薄膜基板上に形成された検出を行う薄膜抵抗体の1個又は複数個の組合せを検出流路内に設置して、流体の薄膜抵抗体に対する熱作用を検出するフローセンサにおいて、
前記検出流路を、前記薄膜基板の平面部を流路に含んでU字状に形成し、このU字状の互いに平行な流路部分の前記平面部分に、それぞれ1組の薄膜抵抗体を設置したことを特徴とするフローセンサ。
In a flow sensor for detecting a thermal action of a fluid on a thin film resistor by installing one or more combinations of thin film resistors for detection formed on a thin film substrate in a detection flow path,
The detection flow path is formed in a U shape including the flat surface portion of the thin film substrate in the flow path, and a pair of thin film resistors are provided on the flat surface portions of the U-shaped parallel flow path portions. A flow sensor characterized by installation.
前記U字状流路の平行部分に設置された2組の薄膜抵抗体は、形状あるいは発熱量を熱的に等しく形成し、その検出出力は互いに加算するようにしたことを特徴とする請求項1記載のフローセンサ。   The two sets of thin film resistors installed in the parallel part of the U-shaped flow path are formed so that their shapes or heat generation are thermally equal, and their detection outputs are added to each other. 1. The flow sensor according to 1.
JP2003408639A 2003-12-08 2003-12-08 Flow sensor Pending JP2005172445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408639A JP2005172445A (en) 2003-12-08 2003-12-08 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408639A JP2005172445A (en) 2003-12-08 2003-12-08 Flow sensor

Publications (1)

Publication Number Publication Date
JP2005172445A true JP2005172445A (en) 2005-06-30

Family

ID=34730266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408639A Pending JP2005172445A (en) 2003-12-08 2003-12-08 Flow sensor

Country Status (1)

Country Link
JP (1) JP2005172445A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127466A (en) * 2005-11-02 2007-05-24 Nippon M K S Kk Flow sensor
JP2010048753A (en) * 2008-08-25 2010-03-04 Tokiko Techno Kk Thermal flowmeter
KR101114303B1 (en) * 2007-02-28 2012-03-14 가부시키가이샤 야마다케 Sensor, sensor temperature control method and abnormality recovery method
JP2016217814A (en) * 2015-05-18 2016-12-22 アズビル株式会社 Thermal type flow meter and inclination error improvement method thereof
JP2019049863A (en) * 2017-09-11 2019-03-28 Koa株式会社 Sensor unit and multiple string type sensor using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141621A (en) * 1988-11-22 1990-05-31 Oval Eng Co Ltd Heat type flow rate sensor
JPH0727582A (en) * 1993-07-10 1995-01-27 Stec Kk Mass flow sensor
DE19906100A1 (en) * 1999-02-13 2000-09-07 Joerg Mueller Micro-system flow sensor comprises a metallic resistive layer which is structured and under-etched to form free-standing temperature sensor and heater structures
JP2000310552A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Air flowmeter
JP2001255188A (en) * 2000-03-13 2001-09-21 Ngk Spark Plug Co Ltd Flow rate and flowing velocity measuring apparatus
JP2002340646A (en) * 2001-05-11 2002-11-27 Horiba Ltd Flow sensor for mass flow controller, and method of manufacturing flow sensor
JP2003315126A (en) * 2002-04-18 2003-11-06 Hitachi Ltd Air flow meter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141621A (en) * 1988-11-22 1990-05-31 Oval Eng Co Ltd Heat type flow rate sensor
JPH0727582A (en) * 1993-07-10 1995-01-27 Stec Kk Mass flow sensor
DE19906100A1 (en) * 1999-02-13 2000-09-07 Joerg Mueller Micro-system flow sensor comprises a metallic resistive layer which is structured and under-etched to form free-standing temperature sensor and heater structures
JP2000310552A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Air flowmeter
JP2001255188A (en) * 2000-03-13 2001-09-21 Ngk Spark Plug Co Ltd Flow rate and flowing velocity measuring apparatus
JP2002340646A (en) * 2001-05-11 2002-11-27 Horiba Ltd Flow sensor for mass flow controller, and method of manufacturing flow sensor
JP2003315126A (en) * 2002-04-18 2003-11-06 Hitachi Ltd Air flow meter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127466A (en) * 2005-11-02 2007-05-24 Nippon M K S Kk Flow sensor
KR101114303B1 (en) * 2007-02-28 2012-03-14 가부시키가이샤 야마다케 Sensor, sensor temperature control method and abnormality recovery method
JP2010048753A (en) * 2008-08-25 2010-03-04 Tokiko Techno Kk Thermal flowmeter
JP2016217814A (en) * 2015-05-18 2016-12-22 アズビル株式会社 Thermal type flow meter and inclination error improvement method thereof
JP2019049863A (en) * 2017-09-11 2019-03-28 Koa株式会社 Sensor unit and multiple string type sensor using the same
JP7054328B2 (en) 2017-09-11 2022-04-13 Koa株式会社 Sensor unit and multiple sensors using it
US11525720B2 (en) 2017-09-11 2022-12-13 Koa Corporation Sensor unit, and multiple-type sensor using the same

Similar Documents

Publication Publication Date Title
JP5210491B2 (en) Thermal flow sensor
JP4888040B2 (en) Thermal mass flow meter
JP5315304B2 (en) Thermal flow meter
KR20040012529A (en) Flow sensor
JP4558647B2 (en) Thermal fluid flow meter
JP2006058078A (en) Thermal air flowmeter
US9810586B2 (en) Temperature sensor and thermal, flow measuring device
JP5656191B2 (en) Flow rate sensor
US6725716B1 (en) Thermo-sensitive flow rate sensor and method of manufacturing the same
KR100408199B1 (en) Heat generation type flow sensor
JP3705681B2 (en) Flow sensor
JP2005172445A (en) Flow sensor
US6571623B1 (en) Measuring instrument with rectangular flow channel and sensors for measuring the mass of a flowing medium
JP5029509B2 (en) Flow sensor
WO2020158155A1 (en) Detection device
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
TWI664396B (en) Thermal Barometric Altimeter
JPH11258021A (en) Thermal type air flow sensor
JP2004117157A (en) Thermal flowmeter
US11802784B1 (en) Single heater MEMS-CMOS based flow sensor
US5351537A (en) Heat-sensitive flow rate sensor having a longitudinal wiring pattern for uniform temperature distribution
JP4139149B2 (en) Gas sensor
JP5319744B2 (en) Thermal flow sensor
JP2011209038A (en) Flow sensor
JP3740026B2 (en) Flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030