JP5019157B2 - Rock wool - Google Patents
Rock wool Download PDFInfo
- Publication number
- JP5019157B2 JP5019157B2 JP2006270506A JP2006270506A JP5019157B2 JP 5019157 B2 JP5019157 B2 JP 5019157B2 JP 2006270506 A JP2006270506 A JP 2006270506A JP 2006270506 A JP2006270506 A JP 2006270506A JP 5019157 B2 JP5019157 B2 JP 5019157B2
- Authority
- JP
- Japan
- Prior art keywords
- rock wool
- mass
- sio
- raw material
- cao
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011490 mineral wool Substances 0.000 title claims description 38
- 239000002994 raw material Substances 0.000 claims description 30
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 26
- 239000000835 fiber Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 17
- 239000002893 slag Substances 0.000 claims description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 15
- 239000000155 melt Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000011810 insulating material Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 5
- 239000011491 glass wool Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 229910004261 CaF 2 Inorganic materials 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/06—Mineral fibres, e.g. slag wool, mineral wool, rock wool
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Description
本発明は、軽量で高断熱性を有する断熱材であるロックウールに関する。 The present invention relates to rock wool, which is a lightweight and highly heat-insulating heat insulating material.
近年、住宅の熱効率向上の観点から高断熱化が進んでおり、住宅の建築材料として、従来よりも熱伝導率の低い断熱材が要求されている。同時に、住宅建築時の作業性やコスト低下の観点から、断熱材が軽量であることも要求されている。 In recent years, heat insulation has been promoted from the viewpoint of improving the thermal efficiency of houses, and as a building material for houses, a heat insulating material having a lower thermal conductivity than before has been required. At the same time, the heat insulating material is also required to be lightweight from the viewpoint of workability at the time of housing construction and cost reduction.
代表的な断熱材としては無機質繊維の集合体があり、グラスウールやロックウール等が市販されている。このうち、ロックウールは、高炉スラグを主原料として成分調整をした無機質繊維であり、産業副生物を主原料とする点で環境に配慮した材料である。加えて、グラスウールに比べて、軟化する温度が高いため、耐熱性に優れているという特徴がある。 A typical heat insulating material is an aggregate of inorganic fibers, and glass wool, rock wool, and the like are commercially available. Among these, rock wool is an inorganic fiber whose components are adjusted using blast furnace slag as a main raw material, and is an environmentally friendly material in that it uses industrial by-products as the main raw material. In addition, since the softening temperature is higher than that of glass wool, it is characterized by excellent heat resistance.
また、このロックウールは、高炉スラグを主成分とする融体を回転するホイール上に注ぎ、ホイールの回転力により回転方向に飛散させることにより線状体とすることで製造されるが、飛散した線状体の先端にショットと呼ばれる未繊維化部分が残留してしまうという問題がある。このショットの存在により、同体積の繊維を含む集合体としてロックウールとグラスウールとを比較した場合、ショットのほとんどないグラスウールに比べて、ロックウールは重くなっている。逆に、同じ質量の集合体としてロックウールとグラスウールとを比較すると、ロックウールでは繊維の容積が減少して空隙が増えて空気層内で対流が起きたり、空気そのものの出入りが起こったりしてしまうので、急激に断熱性が悪化する。そのため、ロックウールで軽量化と断熱性とを両立させることは難しく、ロックウールで製作した断熱材は、軽量が望ましい用途には余り使われていないのが実情である。 In addition, this rock wool is manufactured by pouring a melt mainly composed of blast furnace slag onto a rotating wheel and scattering it in the rotational direction by the rotational force of the wheel. There is a problem that an unfiberized portion called a shot remains at the tip of the linear body. Due to the presence of this shot, when rock wool and glass wool are compared as an aggregate containing fibers of the same volume, rock wool is heavier than glass wool with almost no shot. Conversely, when comparing rock wool and glass wool as an aggregate of the same mass, rock wool reduces the volume of fibers and increases voids, causing convection in the air layer, and air in and out. As a result, the heat insulation properties deteriorate rapidly. For this reason, it is difficult to achieve both weight reduction and heat insulation with rock wool, and the fact is that the heat insulating material manufactured with rock wool is not used much in applications where light weight is desirable.
上記の問題を解決するために、ロックウールの繊維の細径化や、未繊維化部分の減少が試みられている。繊維が細い場合には、同じ質量でも繊維が複雑に絡み合った状態になるので、空気の対流が抑えられるし、未繊維化部分を減少させた場合には、繊維構造を変えずに単純に軽量化できるためである。これらの改善を実現するために、ロックウールの化学組成を調整する種々の研究が行なわれている。化学組成を調整することで、ロックウール原料の融体の粘度を調整することができる。 In order to solve the above-mentioned problems, attempts have been made to reduce the diameter of rock wool fibers and to reduce the non-fibrous portion. When the fibers are thin, the fibers are intricately entangled even with the same mass, so air convection is suppressed, and when the unfibrinated parts are reduced, the fiber structure is not changed and the weight is simply reduced. It is because it can be made. In order to realize these improvements, various studies have been conducted to adjust the chemical composition of rock wool. By adjusting the chemical composition, the viscosity of the rock wool raw material melt can be adjusted.
従来よりも、繊維の径を細くするには、ロックウール製造時に融体の1400〜1600℃における粘度を下げることが有効であることが知られている。これは、回転ホイールから飛散を開始する際の融体の初期条件を特定するものであり、融体の粘度を下げることによって、ホイール上で融体が細かく振動し、これにより細い繊維が形成されるという方法である。 In order to make the fiber diameter thinner than before, it is known that it is effective to lower the viscosity of the melt at 1400 to 1600 ° C. during the production of rock wool. This is to specify the initial condition of the melt when scattering from the rotating wheel. By lowering the viscosity of the melt, the melt vibrates finely on the wheel, thereby forming fine fibers. This is the method.
例えば、そのままではロックウールの素材としてSiO2が不足する溶融状態の高炉スラグに、シラス単味あるいはシラス及び珪石を配合し、全体でSiO2:38〜48mass%、Al2O3:10〜16mass%、CaO:30〜40mass%、MgO:3〜8mass%、FeO:2mass%以下の組成物とするロックウールの製造方法が知られている(例えば、特許文献1参照。)。 For example, shirasu or shirasu and silica are blended into a molten blast furnace slag that lacks SiO 2 as a raw material for rock wool as it is, and SiO 2 : 38 to 48 mass%, Al 2 O 3 : 10 to 16 mass as a whole. %, CaO: 30 to 40 mass%, MgO: 3 to 8 mass%, FeO: 2 mass% or less of a composition for producing rock wool is known (for example, see Patent Document 1).
また、SiO2、CaO、MgO、Al2O3、Na2O、K2Oの濃度を調整するとともに、Ba2O3を添加するロックウールが知られている(例えば、特許文献2参照。)。 In addition, a rock wool is known in which the concentration of SiO 2 , CaO, MgO, Al 2 O 3 , Na 2 O, and K 2 O is adjusted and Ba 2 O 3 is added (see, for example, Patent Document 2). ).
また、CaO、SiO2、MgOの濃度を調整するとともに、CaF2を添加するロックウールが知られている(例えば、特許文献3参照。)。
しかしながら、特許文献1に記載の組成物の素材を用いても、製造されたロックウールの平均繊維径は太く、最小でも7.8μmであり、断熱性は向上しても、十分な軽量化が達成されていないのが現状である。 However, even if the raw material of the composition described in Patent Document 1 is used, the average fiber diameter of the manufactured rock wool is thick, at least 7.8 μm, and even though the heat insulation is improved, a sufficient weight reduction is achieved. The current situation has not been achieved.
また、特許文献2に記載のロックウールでは、繊維径、ショットともに改善されるが、主原料の高炉スラグが産業副生物であるに比べて、B2O3はかなり高価であり、数%の添加でも原料費が数倍になるため効果に見合わず、コスト高である。 The rock wool described in Patent Document 2 improves both the fiber diameter and shot, but B2O3 is considerably more expensive than the main raw material blast furnace slag, which is an industrial byproduct. Since the cost is several times higher, it is not worth the effect and the cost is high.
また、特許文献3に記載のロックウールでは、繊維径、ショットともに改善され、CaF2も比較的安価であるが、CaF2添加により、電気炉、電気炉とホイール間の流路など、融体と接触する部分の耐火物の溶損が大きくなり、操業に支障をきたす場合があるという問題がある。 In addition, in the rock wool described in Patent Document 3, both the fiber diameter and the shot are improved, and CaF 2 is also relatively inexpensive. However, by adding CaF 2 , the melted material such as the electric furnace, the flow path between the electric furnace and the wheel, etc. There is a problem in that the refractory in the portion that comes into contact with the refractory is melted and the operation may be hindered.
本発明は、かかる事情に鑑み、従来よりも熱伝導率が低く、且つ低密度のロックウールを、安価に提供することを目的としている。 In view of such circumstances, an object of the present invention is to provide a low-density rock wool having a lower thermal conductivity than that of the conventional one at a low cost.
本発明者らは、上記目的を達成するため、ロックウール素材への微量成分の添加に着眼し、鋭意研究を行なった。その際、ロックウールの繊維を細く、ショットを減らすには、添加する微量成分だけでなく、主成分も含めた最適範囲を指向する必要があると考えた。そして、高炉スラグの基本組成であるSiO2、CaO、MgO、Al2O3及びその他の添加成分の量について研究を重ね、最適な基本配合と添加成分を見出し、その成果を本発明に具現化した。 In order to achieve the above-mentioned object, the present inventors focused on the addition of a trace amount component to a rock wool material and conducted earnest research. At that time, in order to reduce the rock wool fibers and reduce shots, we thought that it was necessary to aim at the optimum range including not only the minor components to be added but also the main components. Then, SiO 2, CaO is a basic composition of blast furnace slag, MgO, for the amount of Al 2 O 3 and other additive components research overlapped, found additive components optimum basic formulation, embodied in the present invention the results did.
すなわち、本発明は、酸化物の融体からなる原料を、高速回転する回転体上に流下し、該回転体の遠心力により飛散させ、繊維化して製造するロックウールであって、原料の組成がCaO/SiO2:0.85〜1.00、SiO2:39mass%以上、MgO:3〜8mass%、Al2O3:15〜18mass%、その他不可避成分:3mass%以下であることを特徴とするロックウールである。原料の一部として、高炉スラグを用いることが好ましい。 That is, the present invention is a rock wool manufactured by flowing a raw material composed of an oxide melt onto a rotating body that rotates at high speed, scattering the fiber by the centrifugal force of the rotating body, and making it into fiber. Is CaO / SiO 2 : 0.85 to 1.00, SiO 2 : 39 mass% or more, MgO: 3 to 8 mass%, Al 2 O 3 : 15 to 18 mass%, and other inevitable components: 3 mass% or less Rock wool. Blast furnace slag is preferably used as part of the raw material.
本発明によれば、高断熱性かつ軽量のロックウールが安定して製造でき、これにより、熱伝導率が低く、低密度のロックウールが提供できる。また、原料に高炉スラグを用いることができるので、住宅用等として、従来よりも優れた品質の断熱材が安価に提供できる。 ADVANTAGE OF THE INVENTION According to this invention, highly heat insulating and lightweight rock wool can be manufactured stably, and this can provide rock wool with low thermal conductivity and low density. In addition, since blast furnace slag can be used as a raw material, it is possible to provide a heat insulating material having a quality superior to that of a conventional one at a low cost for residential use.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
本発明に係るロックウールは、産業副生物である安価な高炉スラグを主原料とすることが好ましいが、素材を特に限定するものではない。つまり、天然の岩石、高炉スラグ、転炉スラグは言うに及ばず、鉄鋼以外の製錬スラグ等を出発原料としても良い。 The rock wool according to the present invention is preferably made of inexpensive blast furnace slag, which is an industrial byproduct, as a main raw material, but the raw material is not particularly limited. That is, it goes without saying that natural rocks, blast furnace slag, converter slag, and smelting slag other than steel may be used as a starting material.
本発明者らはロックウール細繊維化のために種々の調査を行ったところ、原料融体の1400〜1600℃での粘度を下げるとともに、原料の融点を下げる、原料融体の表面張力を低減することが細繊維化あるいはショット低減に有効であることを見出した。原料の融点は回転ホイールから飛散を開始した後の融体の挙動を特定するものであり、低融点の融体であれば、ホイールから飛散後の繊維化の時間が長くなることにより、未繊維化部分が少なくなる、即ちショットの大きさが小さくなる。表面張力はホイールと融体の濡れ性を特定するものであり、ホイールと融体との濡れ性が悪ければ、ホイール上から飛散する際の融体の体積が大きくなり、繊維は細くなり難く、ショットも大きくなるため、表面張力を低くすることが有効である。 As a result of various investigations to make Rockwool fine fibers, the present inventors lowered the viscosity of the raw material melt at 1400 to 1600 ° C., lowered the melting point of the raw material, and reduced the surface tension of the raw material melt. It was found that this is effective for making fine fibers or reducing shots. The melting point of the raw material specifies the behavior of the melt after starting scattering from the rotating wheel. If the melt has a low melting point, the fiberization time after scattering from the wheel becomes longer, and the unfibered The reduced portion is reduced, that is, the shot size is reduced. The surface tension specifies the wettability between the wheel and the melt. If the wettability between the wheel and the melt is poor, the volume of the melt when scattered from the wheel increases, and the fibers are less likely to become thin. Since the shot also increases, it is effective to reduce the surface tension.
上記知見から、本発明者等は細繊維化、ショット低減のために最適な原料融体の組成はCaO/SiO2:0.85〜1.00、SiO2:39mass%以上、MgO:3〜8mass%、Al2O3:15〜18mass%、その他不可避成分:3mass%以下であることを見出した。原料組成の限定理由について以下に述べる。 From the above findings, the present inventors have found that the optimal composition of the raw material melt for reducing fiber and reducing shots is CaO / SiO 2 : 0.85 to 1.00, SiO 2 : 39 mass% or more, MgO: 3 8mass%, Al 2 O 3: 15~18mass%, other unavoidable components: was found to be less 3 mass%. The reasons for limiting the raw material composition will be described below.
CaO/SiO2:0.85〜1.00とする。
CaOは、溶融状態の組成物を低粘性にし、SiO2は高粘性にする効果がある。しかし、表面張力は、CaO増加により高くなり、SiO2により低くなる。このようにCaOとSiO2は効果が相反するため、最適な組合せを得るべくCaOとSiO2の比を変化させたところ、CaO/SiO2を0.85〜1.00の範囲とすることで、繊維径、ショット率のどちらも極小化はできなかったが、熱伝導率を極小化できた。しかし、SiO2含有量を低くし過ぎると、アルカリ土類系のSiO2を主体とするガラスのネットワーク構造を維持できなくなるため、素材がガラス状態を保てなくなり繊維化が難しくなる。そのため、SiO2含有量は39mass%以上あることが望ましい。
CaO / SiO 2: and 0.85 to 1.00.
CaO has the effect of making the composition in a molten state have a low viscosity, and SiO 2 has a high viscosity. However, the surface tension increases with increasing CaO and decreases with SiO 2 . Thus, since CaO and SiO 2 have conflicting effects, when the ratio of CaO and SiO 2 is changed to obtain an optimal combination, CaO / SiO 2 is set within the range of 0.85 to 1.00. Although both the fiber diameter and the shot rate could not be minimized, the thermal conductivity could be minimized. However, if the SiO 2 content is too low, the glass network structure mainly composed of alkaline earth SiO 2 cannot be maintained, so that the material cannot maintain the glass state and fiberization becomes difficult. Therefore, the SiO 2 content is desirably 39 mass% or more.
MgO:3〜8mass%とする。
組成物中のMgOは、ガラスの失透の低減、耐熱性維持の効果があり、3mass%以上含まれている必要がある。さらに、粘度を下げる効果からも、4mass%以上含まれていることが望ましい。一方、MgO含有量を高くし過ぎると、表面張力が高くなり、繊維化が難しくなる。SiO2、CaOが上記範囲の場合、MgOは8mass%以下とする。
MgO: 3 to 8 mass%.
MgO in the composition has an effect of reducing devitrification of glass and maintaining heat resistance, and needs to be contained in an amount of 3 mass% or more. Furthermore, it is desirable that 4 mass% or more is contained also from the effect of lowering the viscosity. On the other hand, if the MgO content is too high, the surface tension increases and fiberization becomes difficult. When SiO 2 and CaO are in the above ranges, MgO is 8 mass% or less.
Al2O3:15〜18mass%とする。
Al2O3は、ガラス化と高耐熱性に効果があり、8mass%以上含まれている必要がある。しかし、含有量が高くなると、粘度が急増することが知られており、本発明に係るSiO2、CaOの組成レベルであれば、20mass%以下である必要がある。さらに、この8〜20mass%の範囲で融点が最も低くなるのは15〜18mass%の範囲であったので、Al2O3含有量は15〜18mass%が最適である。
Al 2 O 3: a 15~18mass%.
Al 2 O 3 is effective for vitrification and high heat resistance, and needs to be contained in an amount of 8 mass% or more. However, it is known that as the content increases, the viscosity rapidly increases. If the composition level is SiO 2 or CaO according to the present invention, it is necessary to be 20 mass% or less. Furthermore, since the melting point in the range of this 8~20Mass% ranged from 15~18Mass% is become lowest, Al 2 O 3 content is optimally 15~18mass%.
その他不可避成分:3mass%以下とする。
不可避不純物等の、上記以外の成分が3mass%を超えると、本発明の効果が発揮されない場合があり、不可避成分は3mass%以下とする。
Other inevitable components: 3 mass% or less.
When components other than the above, such as unavoidable impurities, exceed 3 mass%, the effects of the present invention may not be exhibited, and the unavoidable components are 3 mass% or less.
上記の成分を含有する原料を、溶解して融体として、高速回転する回転体上に流下し、回転体の遠心力により飛散させ、繊維化してロックウールを製造する。 The raw material containing the above components is melted to flow as a melt onto a rotating body that rotates at high speed, scattered by the centrifugal force of the rotating body, and fiberized to produce rock wool.
このような成分系の原料を溶解する炉は、如何なる炉であっても良い。また、複数の炉で溶融した原料を出湯後、繊維化工程までに混合して使用しても構わない。あるいは、一部の組成分の原料を炉で溶融したスラグの出湯流に、残りの組成分の原料を連続的に添加する方法でもよい。即ち、繊維化工程までに、原料融体の組成が本発明の範囲になっていれば、融体溶製の方法は問わない。 Any furnace may be used as the furnace for melting such component materials. Moreover, you may mix and use the raw material fuse | melted with the several furnace by the fiberization process after tapping. Alternatively, a method may be used in which raw materials for the remaining components are continuously added to the slag tapping stream obtained by melting some raw materials for the components in a furnace. That is, as long as the composition of the raw material melt is within the scope of the present invention before the fiberizing step, the melt melting method is not limited.
次に、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Next, the present invention will be specifically described, but the present invention is not limited to these examples.
公知のカーボン電極を備えた2段式電気炉を用いて素材を加熱溶融し、高速回転している内部冷却型のホイールに流し当てて繊維化し、冷却してロックウールとした。素材は、主原料を高炉スラグとし、それに種々の原料を加えて組成を変化させて、表1に示すNo.1〜8のロックウールを製造した。No.1〜4は本発明の組成範囲であり、例えば、No.1では高炉スラグ(SiO2=34.8mass%、CaO=45.3mass%、Al2O3=13.2mass%、MgO=5.5mass%)1t(トン)当たり、珪砂(SiO2=98.9mass%)170kg、高純度Al2O3(Al2O3=99mass%)90kgを添加し、また、No.3では、高炉スラグ(SiO2=35.7mass%、CaO=44.5mass%、Al2O3=12.8mass%、MgO=5.3mass%)1t当たり、珪砂(SiO2=98.9mass%)130kg、高純度Al2O3(Al2O3=99mass%)64kg、MgOクリンカー(MgO=99mass%)30kgを添加した。なお、効果を比較するため、本発明の組成範囲にない素材も準備し、同様にロックウールを製造した(No.5〜8)。ホイールは周速度が約14m/sとなるように回転させ、ホイール面上の素材温度は、いずれの場合も1400〜1450℃になるように調整し、ホイールから繊維状物を離脱させるために、ホイールの背面から圧縮空気を約100m/sの流量で流して集綿した。なお、集綿は、集綿機で行なわれ、そこで常温まで空冷される。また、1チャージが35tの融体を飛散開始してから、冷却を完了するまでの所要時間は、8時間であった。 The raw material was heated and melted using a two-stage electric furnace equipped with a known carbon electrode, poured into an internal cooling type wheel rotating at high speed, turned into fibers, and cooled to obtain rock wool. The raw materials were blast furnace slag as the main raw material, and various raw materials were added thereto to change the composition. 1 to 8 rock wools were produced. No. 1-4 is a composition range of the present invention. 1 is blast furnace slag (SiO 2 = 34.8 mass%, CaO = 45.3 mass%, Al 2 O 3 = 13.2 mass%, MgO = 5.5 mass%) per 1 t (ton) of silica sand (SiO 2 = 98. 9 mass%) 170 kg, high-purity Al 2 O 3 (Al 2 O 3 = 99 mass%) 90 kg was added. 3, silica sand (SiO 2 = 98.9 mass%) per ton of blast furnace slag (SiO 2 = 35.7 mass%, CaO = 44.5 mass%, Al 2 O 3 = 12.8 mass%, MgO = 5.3 mass%). ) 130 kg, high-purity Al 2 O 3 (Al 2 O 3 = 99 mass%) 64 kg, and MgO clinker (MgO = 99 mass%) 30 kg were added. In addition, in order to compare an effect, the raw material which is not in the composition range of this invention was also prepared, and rock wool was manufactured similarly (No. 5-8). The wheel is rotated so that the circumferential speed is about 14 m / s, and the material temperature on the wheel surface is adjusted to 1400 to 1450 ° C. in any case, and the fibrous material is detached from the wheel. Cotton was collected by flowing compressed air from the back of the wheel at a flow rate of about 100 m / s. In addition, cotton collection is performed with a cotton collection machine, and is air-cooled to normal temperature there. In addition, the time required from the start of scattering of the melt with one charge of 35 t to the completion of cooling was 8 hours.
また、同じ条件で、飛散時にホイールの周囲より水溶性フェノール樹脂バインダを綿に吹きつけながら集綿し、その集綿体を予備圧縮して板状に成形し、熱硬化炉で該バインダを硬化させ、かさ密度が約30kg/m3、厚み100mmの非晶質ボードも製造した。 Also, under the same conditions, when splashing, collect water while blowing a water-soluble phenol resin binder from the periphery of the wheel to the cotton, pre-compress the cotton collection and form it into a plate, and cure the binder in a thermosetting furnace An amorphous board having a bulk density of about 30 kg / m 3 and a thickness of 100 mm was also produced.
以上のようにして製造したロックウールと非晶質ボードについて、製造した繊維の径、ショット率、25℃におけるボードの断熱性(熱伝導率)を測定した。これらの結果を表1に併せて示す。 About the rock wool and amorphous board manufactured as mentioned above, the diameter of the manufactured fiber, the shot rate, and the heat insulation (thermal conductivity) of the board at 25 ° C. were measured. These results are also shown in Table 1.
本発明例であるNo.1〜4の低密度の繊維体は非晶質であり、表1によれば、No.5〜8に比較して、形成する各繊維が細く、且つショット率も低いことが明らかである。また、熱伝導率が低く、高い断熱性を保持していることもわかる。 No. which is an example of the present invention. The low-density fiber bodies 1 to 4 are amorphous. It is clear that each fiber to be formed is thinner and has a lower shot rate than 5-8. It can also be seen that the thermal conductivity is low and high heat insulation is maintained.
以上のように、本発明のロックウールは、軽量で、断熱性に優れた建材として使用できることが分かった。 As mentioned above, it turned out that the rock wool of this invention can be used as a building material which is lightweight and excellent in heat insulation.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006270506A JP5019157B2 (en) | 2006-10-02 | 2006-10-02 | Rock wool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006270506A JP5019157B2 (en) | 2006-10-02 | 2006-10-02 | Rock wool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008088015A JP2008088015A (en) | 2008-04-17 |
JP5019157B2 true JP5019157B2 (en) | 2012-09-05 |
Family
ID=39372540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006270506A Active JP5019157B2 (en) | 2006-10-02 | 2006-10-02 | Rock wool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5019157B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5006979B1 (en) * | 2011-03-31 | 2012-08-22 | ニチアス株式会社 | Method for producing biosoluble inorganic fiber |
JP2012214956A (en) * | 2012-03-06 | 2012-11-08 | Nichias Corp | Method for producing bio-dissolvable inorganic fiber |
JP2013067940A (en) * | 2012-12-11 | 2013-04-18 | Nichias Corp | Method for producing biosoluble inorganic fiber |
CN108264224A (en) * | 2017-12-30 | 2018-07-10 | 王虎 | A kind of smelting process that slag is smelted into mineral wool material in convertor steelmaking process |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0251443A (en) * | 1988-08-12 | 1990-02-21 | Nitto Boseki Co Ltd | Rock wool |
JP3173336B2 (en) * | 1995-07-12 | 2001-06-04 | 日東紡績株式会社 | High strength rock wool and method for producing the same |
JPH09202645A (en) * | 1996-01-22 | 1997-08-05 | Nichias Corp | Rock wool |
JP2001139347A (en) * | 1999-11-12 | 2001-05-22 | Kawasaki Steel Corp | Rock wool and rock wool board |
JP2001139340A (en) * | 1999-11-12 | 2001-05-22 | Kawasaki Steel Corp | Method for manufacturing rock wool |
JP2005170716A (en) * | 2003-12-09 | 2005-06-30 | Jfe Steel Kk | Manufacturing method of rock wool |
-
2006
- 2006-10-02 JP JP2006270506A patent/JP5019157B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008088015A (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101299769B1 (en) | Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby | |
CN102329080B (en) | Production method for basalt fiber materials | |
JP5384346B2 (en) | Composition for mineral wool | |
EP2462069B1 (en) | Improved modulus, lithium free glass | |
US9012342B2 (en) | Melt composition for the production of man-made vitreous fibres | |
JP5158916B2 (en) | Rock wool, manufacturing method thereof, and inorganic fiber felt | |
WO2012132287A1 (en) | Method for manufacturing bio-soluble inorganic fiber | |
CN106637663B (en) | Using solid waste as rock wool of raw material and its preparation method and application | |
FI60546C (en) | ELDFAST FIBER PROCESSING FOR DIFFERENT PICTURES | |
JP2012513362A (en) | High performance glass fiber composition and fiber molded with the same | |
JP5019157B2 (en) | Rock wool | |
JP2015193522A (en) | Kaolin raw material for glass manufacture and manufacturing method of glass fiber | |
CN109252249B (en) | Amorphous igneous rock fiber and preparation method thereof | |
KR20100084917A (en) | Method for manufacturing of fly ash filament fiber using refused glass | |
FI79086B (en) | FOERFARANDE FOER UTNYTTJANDE AV SLAGG MED HOEG JAERNOXIDHALT FRAON METALLFRAMSTAELLNING. | |
JP2005170716A (en) | Manufacturing method of rock wool | |
CN115536281A (en) | Preparation method of glass liquid for glass wool production | |
US20230061070A1 (en) | Method for making man-made vitreous fibres | |
JP4090495B1 (en) | Short glass fibers and structures | |
CN114426395A (en) | Process method for producing mineral wool by using blast furnace slag | |
JP2001139340A (en) | Method for manufacturing rock wool | |
JP2001139347A (en) | Rock wool and rock wool board | |
EP1241395A3 (en) | Method of manufacturing insulating material based on mineral fibers | |
WO2021132120A1 (en) | Inorganic fibers, inorganic fiber product, method for manufacturing inorganic fiber product, composition for manufacturing inorganic fibers, method for manufacturing inorganic fibers | |
JPH049740B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111201 |
|
TRDD | Decision of grant or rejection written | ||
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120521 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120524 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120531 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5019157 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |