JP2001139340A - Method for manufacturing rock wool - Google Patents

Method for manufacturing rock wool

Info

Publication number
JP2001139340A
JP2001139340A JP32198599A JP32198599A JP2001139340A JP 2001139340 A JP2001139340 A JP 2001139340A JP 32198599 A JP32198599 A JP 32198599A JP 32198599 A JP32198599 A JP 32198599A JP 2001139340 A JP2001139340 A JP 2001139340A
Authority
JP
Japan
Prior art keywords
melt
viscosity
rock wool
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32198599A
Other languages
Japanese (ja)
Inventor
克則 ▲高▼橋
Katsunori Takahashi
Masato Kumagai
正人 熊谷
Masaaki Sato
政明 佐藤
Masataka Yamada
政孝 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Rockfiber Corp
Original Assignee
Kawasaki Steel Corp
Kawatetsu Rockfiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, Kawatetsu Rockfiber Co Ltd filed Critical Kawasaki Steel Corp
Priority to JP32198599A priority Critical patent/JP2001139340A/en
Publication of JP2001139340A publication Critical patent/JP2001139340A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • C03B37/05Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor by projecting molten glass on a rotating body having no radial orifices
    • C03B37/055Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor by projecting molten glass on a rotating body having no radial orifices by projecting onto and spinning off the outer surface of the rotating body
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing rock wool capable of simultaneously achieving the reduction in the diameter of fibers and the decrease of unfiberized parts. SOLUTION: In the method for manufacturing the rock wool which allows a melted body formed by using blast furnace slag as a main raw material and subjecting the same to compound regulation to flow down on a rotating body rotating at a high speed and splashes the melted body by utilizing the centrifugal force of the rotating body to fiberize, the melted body regulated in viscosity so as to attain <=14 poises at 1,400 deg.C and 300 poises in a range of 1,200 to 1,250 deg.C is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロックウールの製
造方法に係わり、特に、軽量で高断熱性を有するロック
ウールの製造技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing rock wool, and more particularly to a technique for producing rock wool having light weight and high heat insulation.

【0002】[0002]

【従来の技術】近年、住宅の高断熱化が進んでおり、そ
の熱効率の向上が望まれている。そのため、従来より熱
伝導率が低いと共に、建築時の作業性やコストの観点か
ら、軽量な断熱材が要求されるようになっている。
2. Description of the Related Art In recent years, high insulation of houses has been promoted, and improvement in thermal efficiency has been desired. For this reason, a heat insulating material having a lower thermal conductivity than before and a lightweight heat insulating material is required from the viewpoint of workability and cost during construction.

【0003】代表的な断熱材としては、以前より無機質
繊維の集合体があり、グラスウールやロックウールが市
販されている。このうち、ロックウールは、高炉スラグ
を主原料にして成分調整をした無機質繊維であり、産業
副生物を主原料とする点で昨今の環境問題を配慮した材
料である。加えて、グラスウールに比べて、軟化する温
度が高いため、耐熱性に優れているという特徴がある。
但し、軟化温度が高いため、その製造時には、グラスウ
ールなどに比べて加熱温度が高く、冷却条件も異なって
いる。
As a typical heat insulating material, there has been an aggregate of inorganic fibers, and glass wool and rock wool are commercially available. Among them, rock wool is an inorganic fiber whose component is adjusted using blast furnace slag as a main raw material, and is a material that takes into account recent environmental issues in that it uses industrial by-products as a main raw material. In addition, since it has a higher softening temperature than glass wool, it is characterized by excellent heat resistance.
However, since the softening temperature is high, the heating temperature is higher than that of glass wool and the like, and the cooling conditions are different during the production.

【0004】また、このロックウールは、溶融状態の高
炉スラグ(以下、単にスラグという)を主成分とする融
体を回転するホイール上に注ぎ、回転方向に飛散させる
ことによって線状にされるが、この製造方法のため、飛
散した線状体の先端にショットと呼ばれる未繊維化部分
が残留してしまう。このショットが存在するために、同
等体積の繊維を含む集合体で比較した場合、ショットの
ほとんどないグラスウールに比べて、ロックウールは重
くなる。
The rock wool is made linear by pouring a melt containing blast furnace slag (hereinafter simply referred to as slag) in a molten state as a main component onto a rotating wheel and scattering the melt in the rotating direction. Due to this manufacturing method, an unfibrillated portion called a shot remains at the tip of the scattered linear body. Due to the presence of this shot, rock wool is heavier than glass wool with few shots when compared with aggregates containing fibers of equal volume.

【0005】一般に、無機質繊維の断熱材は、折り重な
った短繊維と空気層とで形成されているが、繊維の占め
る体積比率が10%以下であることがほとんどであり、
重なりあう繊維の間に取り込まれた空気層が、断熱性の
鍵を握っている。このような繊維系断熱材は、見かけ比
重がある範囲にあるうちは、空気層が増えると断熱性が
改善されるが、その範囲以下に軽くなると、空隙が増え
て空気層内で対流が起きたり、空気そのものの出入りが
起こってしまうので、急激に断熱性が悪化する。従っ
て、軽量化と高断熱化を両立することは難かしい問題で
あった。
[0005] In general, the heat insulating material made of inorganic fibers is formed of folded short fibers and an air layer. In most cases, the volume ratio of the fibers is 10% or less.
The layer of air trapped between the overlapping fibers is key to insulation. In such a fiber-based heat insulating material, while the apparent specific gravity is in a certain range, the heat insulating property is improved by increasing the air space, but when the fiber is lighter than that range, the air gap increases and convection occurs in the air space. In addition, since the air itself enters and exits, the heat insulating property rapidly deteriorates. Therefore, it was difficult to achieve both weight reduction and high heat insulation.

【0006】しかし、対策がないわけではなく、繊維の
細径化や未繊維化部分の減少が試みられている。繊維が
細い場合には、同じ重量でも繊維が複雑に絡み合った状
態になるので、空気の対流が抑えられるし、未繊維化部
分を減少させた場合には、繊維構造を変えずに単純に軽
量化できるためである。
[0006] However, this is not the only countermeasure, and attempts have been made to reduce the diameter of fibers and to reduce the non-fibrous portions. When the fibers are thin, the fibers are intricately entangled at the same weight, so that the convection of air is suppressed, and when the non-fibrous portion is reduced, the weight is simply reduced without changing the fiber structure This is because

【0007】ロックウールに対するこれらの改善を実現
するについては、以前から種々の研究が行なわれてお
り、主として、製造条件の改善、及び融体の成分や特性
の最適化の2通りに着眼したものである。
[0007] Various studies have been carried out on the realization of these improvements to rock wool, and the main focus has been on improving the manufacturing conditions and optimizing the components and properties of the melt. It is.

【0008】製造条件の改善としては、回転ホイールの
遠心加速度を増すことが知られている。これは、融体を
飛散させる時の初期条件に影響を与えるものであり、加
速度を増すほど、ホイール上の融体の揺らぎが細かくな
り、これによって細い繊維が形成されるという考え方で
ある。この考え方の基本は、従来から解析されており、
例えば、棚沢らは「回転円盤による液体の繊維化につい
て」という論文を報告している。また、特許出願も見ら
れ、例えば特表平6−504256号は、50km/s
ec2以上の加速度が有効であることを開示している。
しかしながら、この製造方法によれば、確かに繊維の径
は細くなるが、装置の改造や安全対策が必要となる場合
もあり、従来から存在する製造装置の全てに応用できる
わけではなかった。
[0008] As an improvement in manufacturing conditions, it is known to increase the centrifugal acceleration of the rotating wheel. This influences the initial condition when the melt is scattered, and the idea is that as the acceleration is increased, the fluctuation of the melt on the wheel becomes finer, whereby fine fibers are formed. The basics of this idea have been analyzed in the past,
For example, Tanazawa et al. Reported a paper on "fibrosis of liquid by rotating disk". Patent applications have also been seen, for example, Japanese Patent Application Laid-Open No. Hei 6-504256 discloses a 50 km / s
It discloses that an acceleration of ec 2 or more is effective.
However, according to this manufacturing method, although the diameter of the fiber is surely reduced, the device may need to be modified or safety measures may be required, so that it cannot be applied to all the existing manufacturing devices.

【0009】一方、融体の成分や特性の最適化について
は、成分の最適化が本質的に特性の調整にも関連するの
で、一括して特性を考えれば良い。従来より、繊維の径
を細くするには、融体の1400℃〜1600℃におけ
る粘度を下げることが有効であると知られている。これ
も、上記した回転ホイールの加速度を増加する場合と同
様に、回転ホイールから飛散を開始する際の融体の初期
条件を特定するものであり、融体の粘度を下げることに
よって、ホイール上の該融体の採らぎを細かくする方法
である。さらに、これと類似した改善方法として、融体
の温度を上げて細径化を図る手法も知られているが、こ
れは、融体の粘度が温度の上昇につれて下がることに基
づいたものであり、粘度を下げるという意味では、上記
と同じ思想の技術である。
On the other hand, regarding the optimization of the components and characteristics of the melt, the optimization of the components is essentially related to the adjustment of the characteristics. Hitherto, it has been known that decreasing the viscosity of the melt at 1400 ° C. to 1600 ° C. is effective in reducing the fiber diameter. This also specifies the initial condition of the melt at the time of starting scattering from the rotating wheel, as in the case of increasing the acceleration of the rotating wheel described above. This is a method for making the melt finer. Further, as a similar improvement method, a method of increasing the temperature of the melt to reduce the diameter is also known, but this is based on the fact that the viscosity of the melt decreases as the temperature increases. In terms of lowering the viscosity, it is a technology having the same concept as above.

【0010】本出願人は、以上述べた先人の技術を尊重
し、融体の低粘度化を種々試みた。その結果、確かに繊
維径は細くなる傾向が見られ、繊維の特性もある程度改
善されることを確認した。しかしながら、現在要求され
ている断熱材の特性を満足するほどの大幅な改善には至
らなかった。引き続き、その理由についてさらに検討し
たところ、融体を低粘度化しても、未繊維化部(ショッ
ト)に対してはさほど効果がなく、場合によっては、む
しろ悪化することがわかった。つまり、繊維の細径化と
ショットの低減とを同時に達成するには、まだ改善すべ
き余地があった。
The present applicant has respected the above-mentioned prior art and made various attempts to reduce the viscosity of the melt. As a result, it was confirmed that the fiber diameter tended to be small, and that the characteristics of the fiber were also improved to some extent. However, it did not lead to a significant improvement that satisfies the properties of the currently required heat insulating material. Subsequently, the reason was further examined, and it was found that even if the viscosity of the melt was reduced, the effect was not so large on the non-fibrillated portion (shot), and in some cases, it became worse. In other words, there is still room for improvement to simultaneously achieve a reduction in fiber diameter and a reduction in shots.

【0011】[0011]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、繊維の細径化と未繊維化部の低減とを同時に達
成可能なロックウールの製造方法を提供することを目的
としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing rock wool which can simultaneously reduce the fiber diameter and reduce the non-fibrous portion.

【0012】[0012]

【課題を解決するための手段】発明者は、上記目的を達
成するため、融体が繊維化する時の挙動について研究し
た。そして、繊維化には、回転ホイールからの飛散させ
る融体の初期特性だけでなく、固化するまでの冷却途上
での変化も同時に重要であることを知見した。この知見
に基づき、さらに冷却途上での融体の粘性及び温度履歴
について詳細に調査し、その成果を本発明に具現化し
た。
Means for Solving the Problems In order to achieve the above object, the inventor studied the behavior of the melt when it turned into fibers. Then, it has been found that not only the initial properties of the melt scattered from the rotating wheel but also changes during cooling before solidification are important for fiberization at the same time. Based on this finding, the viscosity and temperature history of the melt during the cooling process were investigated in detail, and the results were embodied in the present invention.

【0013】すなわち、本発明は、高炉スラグを主原料
として成分調整した融体を、高速回転する回転体上に流
下し、該回転体の遠心力を利用して飛散させ、繊維化す
るロックウールの製造方法において、前記融体に、粘度
が、1400℃において14poise以下、1200
〜1250℃の範囲で300poiseとなるものを使
用することを特徴とするロックウールの製造方法であ
る。
[0013] That is, the present invention provides a rock wool in which a melt whose component is adjusted using blast furnace slag as a main raw material flows down onto a rotating body that rotates at a high speed, and is scattered using the centrifugal force of the rotating body to produce fibers. Wherein the melt has a viscosity of 14 poise or less at 1400 ° C.
A method for producing rock wool, characterized in that a material having 300 poise in a temperature range of 1250 ° C. is used.

【0014】また、本発明は、前記融体が、下記組成に
調整されたものであることを特徴とするロックウールの
製造方法である。
Further, the present invention is a method for producing rock wool, wherein the melt is adjusted to the following composition.

【0015】SiO2:42〜48wt%、CaO:3
0〜40wt%、MgO:3〜8wt%、Al23:1
0〜20wt%、Na2O+K2O:1Wt%、さらに、
5wt%以下のB23及び/又は6wt%以下のFe2
3を合計で1wt%以下超えで含有する。
SiO 2 : 42 to 48 wt%, CaO: 3
0~40wt%, MgO: 3~8wt%, Al 2 O 3: 1
0~20wt%, Na 2 O + K 2 O: 1Wt%, further,
B 2 O 3 ≦ 5 wt% and / or Fe 2 ≦ 6 wt%
O 3 is contained in total exceeding 1 wt% or less.

【0016】本発明では、原料である融体の粘度を、回
転ホイール上で飛散が開始される際ばかりでなく、飛散
途上あるいはある温度まで冷却されるまで所定範囲に制
限するようにしたので、完全凝固されるまで融体が流動
し、線状になる機会(時間が長くなる)が増える。その
結果、製造された繊維は、従来より細径になり、且つ未
繊維化部分も減少するようになる。
In the present invention, the viscosity of the melt, which is a raw material, is limited to a predetermined range not only when scattering starts on the rotating wheel but also during the scattering or until the melt is cooled to a certain temperature. The melt flows until it is completely solidified, and the chance of becoming linear (longer time) increases. As a result, the manufactured fiber has a smaller diameter than before and the non-fibrillated portion also decreases.

【0017】[0017]

【発明の実施の形態】以下、発明をなすに至った経緯を
交え、本発明の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the circumstances that led to the invention.

【0018】まず、発明者は、製造初期での融体の粘度
が製造される繊維の径に大きな影響を与えると考え、粘
度の最適な領域を調査した。そのため、高炉スラグ(ス
ラグ組成は、表1参照)に種々の添加物を加えて、その
成分を調整した融体を製造し、実験を行なった。
First, the inventor considered that the viscosity of the melt in the early stage of production had a great influence on the diameter of the fiber to be produced, and investigated the optimum range of the viscosity. Therefore, various additives were added to blast furnace slag (for the slag composition, see Table 1) to produce a melt in which the components were adjusted, and an experiment was conducted.

【0019】[0019]

【表1】 [Table 1]

【0020】融体の温度としては、回転ホイール(以
下、単にホイールという)から融体が射出される時の状
況を考えると、1400℃程度であり、また、それ以上
の高温であっても、1400℃の特性で代表できること
がわかったので、1400℃における融体の粘度を指標
値として採用することにした。この調査で得た融体粘度
と繊維径との関係を図1に示す。図1より、1400℃
での融体の粘度が小さいほど製造した繊維の径が細くな
っていることが明らかである。また、この結果は、現在
汎用されているロックウールに対しては、14pois
e以下に、より改善効果を望むには、13poise以
下にする必要があることを示唆している。なお、縦軸の
繊維径は、顕微鏡を用いて100本以上測定した平均値
とし、市販のロックウールの平均値を100として%で
表されている。
The temperature of the melt is about 1400 ° C. in consideration of the situation when the melt is injected from a rotating wheel (hereinafter simply referred to as a wheel). Since it was found that the characteristic can be represented by the characteristic at 1400 ° C., the viscosity of the melt at 1400 ° C. was adopted as the index value. FIG. 1 shows the relationship between the melt viscosity and the fiber diameter obtained in this investigation. From FIG. 1, 1400 ° C.
It is clear that the smaller the viscosity of the melt in the above, the smaller the diameter of the produced fiber. In addition, this result is 14 pois for the currently widely used rock wool.
e and below suggest that it is necessary to be 13 poise or less in order to obtain a further improvement effect. Note that the fiber diameter on the vertical axis is an average value obtained by measuring 100 or more fibers using a microscope, and the average value of commercially available rock wool is expressed as 100%.

【0021】一方、この温度での融体の粘度と製造した
繊維の前記ショット率(未繊維化率)との関係を調べ、
図2の関係を得た。融体の粘度が低い方がショット率が
僅かに上昇する傾向があるが、この粘度依存性よりもバ
ラツキの方がはるかに大きいことを知った。つまり、融
体の粘度が小さいと、未繊維化部分が残り易い傾向があ
るが、明確ではない。従って、高温での融体の粘度だけ
では、本質的な繊維特性の改善には結びつかず、別の手
段が必要であることがわかる。なお、ショット率は、ロ
ックウールを水中で2分間解砕した後、45μm以上の
ショットについて重量を測定し、図2では、市販品のシ
ョット率を100として示してある。
On the other hand, the relationship between the viscosity of the melt at this temperature and the shot rate (unfibrillation rate) of the produced fiber was examined.
The relationship of FIG. 2 was obtained. The shot rate tends to increase slightly when the viscosity of the melt is low, but it has been found that the variation is much larger than the viscosity dependency. In other words, if the viscosity of the melt is low, the unfibrillated portion tends to remain, but it is not clear. Therefore, it is understood that the viscosity of the melt at a high temperature alone does not lead to an essential improvement in fiber properties, and that another means is required. The shot ratio was measured by crushing rock wool in water for 2 minutes, and then measuring the weight of shots of 45 μm or more. In FIG. 2, the shot ratio of a commercially available product is shown as 100.

【0022】そこで、発明者は、ショット率を下げるの
に有効な手段について、さらに研究を行なった。
Therefore, the inventor further studied effective means for lowering the shot rate.

【0023】無機質繊維は、ホイール上に乗った融体が
揺らぎによって繊維の核を形成し、その核が遠心力で飛
ばされる際に尾を引くことによって形成される。ショッ
トは、繊維の形成機構から判断すると、この最初の液相
状態にある核の内部がそのまま繊維化せずに残って固ま
ったものであり、飛散開始時の融体の特性だけでは、完
全になくしきれないと考えられる。反面、このことは、
固まった状態になるまでの飛散している間に、ショット
をなくす手段を見出せば、繊維を細くするのと両立させ
て、繊維特性を大幅に改善できる可能性があることを示
唆している。
The inorganic fiber is formed by a melt formed on a wheel forming a fiber nucleus due to fluctuations and trailing when the nucleus is blown off by centrifugal force. Judging from the fiber formation mechanism, the shot is a solid that remains inside the nucleus in the first liquid phase state without fibrillation as it is, and it is completely determined only by the properties of the melt at the start of scattering. It is thought that it cannot be lost. On the other hand,
Finding a way to eliminate shots while flying to a solid state, suggests that fiber properties may be significantly improved, compatible with thinning the fibers.

【0024】そこで、発明者は、その手段の発見に鋭意
努力し、低温まで融体の流動性(つまり粘性を小さく)
を保持させることを見出したのである。図3に、一例と
して、スラグを主原料とする融体粘度の温度変化を示
す。高温状態にある融体が飛散中に冷却されて、流動性
がなくなった時点で繊維となるが、スラグを主原料とす
る融体の場合には、ある温度まで下がると急激に粘度が
高くなることがわかる。しかも、その粘度が急に上昇を
開始する温度は、融体によって50℃も異なる場合があ
り、この温度差が繊維化に大きく影響を与えると推定し
た。そこで、この融体の粘度が急に大きくなる温度と製
造した繊維のショット率との関係を調べた。その結果を
図4に示すが、粘度が急に大きくなる温度を下げ、つま
りより低温まで融体にある程度の流動性を保持させる
と、製造される繊維のショット率が低減することがわか
った。
Therefore, the inventor worked diligently to find the means, and made the fluidity (that is, the viscosity low) of the melt up to a low temperature.
Was found to be held. FIG. 3 shows, as an example, the temperature change of the melt viscosity using slag as a main raw material. The melt in the high temperature state is cooled during scattering and becomes a fiber when the fluidity is lost, but in the case of the melt using slag as the main raw material, the viscosity rapidly increases when it drops to a certain temperature You can see that. In addition, the temperature at which the viscosity suddenly starts to increase may vary by as much as 50 ° C. depending on the melt, and it is estimated that this temperature difference greatly affects fiberization. Therefore, the relationship between the temperature at which the viscosity of the melt suddenly increases and the shot ratio of the produced fiber was examined. The results are shown in FIG. 4, and it was found that when the temperature at which the viscosity suddenly increases was lowered, that is, when the melt maintained a certain degree of fluidity at a lower temperature, the shot rate of the produced fiber was reduced.

【0025】一方、低温まである程度の流動性を保持す
ることは、ショット率の低減には有利であるが、どこま
でも流動性を保持させると、一旦生成した繊維同士が飛
散中あるいは冷却時に接触して融着・合体し、繊維径が
太くなってしまうという別の問題が生じた。そこで、こ
の繊維の融着・合体が生じ難い条件を調査したところ、
1200〜1250℃で融体の粘度が300poise
以上となるようにすれば、融着・合体が生じないことが
判明した。
On the other hand, maintaining a certain degree of fluidity up to a low temperature is advantageous for reducing the shot rate, but if the fluidity is maintained forever, the fibers once formed may come into contact with each other during scattering or cooling. Another problem arises in that the fibers are fused and coalesced and the fiber diameter becomes large. Therefore, when investigating the conditions under which the fusion and coalescence of the fibers are unlikely to occur,
The melt has a viscosity of 300 poise at 1200 to 1250 ° C.
It has been found that the above arrangement does not cause fusion and coalescence.

【0026】そこで、発明者は、これらの知見から、繊
維を製造する融体として、粘度が1200〜1250℃
で300poiseとなるものが必要と考え、本発明に
係る要件に取り入れた。なお、粘度が300poise
となる温度を1200℃以上とすると、得られる無機質
繊維の耐火性が高まるという副次効果もあった。
From these findings, the inventor of the present invention has found that as a melt for producing fibers, the viscosity is 1200 to 1250 ° C.
Was considered to be necessary, and was incorporated into the requirements of the present invention. In addition, the viscosity is 300 poise
When the temperature is set to 1200 ° C. or higher, there is also a secondary effect that the fire resistance of the obtained inorganic fiber is increased.

【0027】ところで、融体の粘度を具体的に上記した
値にするには、融体の組成を調整することが必要であ
る。そのため、発明者が、その調整を種々試行したとこ
ろ、高炉スラグを主原料とし、溶融状態の該スラグに適
当な原料を単に添加して、以下の組成にすれば良いこと
を見出した。
Incidentally, in order to set the viscosity of the melt to the above-described specific value, it is necessary to adjust the composition of the melt. Therefore, the inventor has made various trials of the adjustment, and found that blast furnace slag was used as a main raw material, and a suitable raw material was simply added to the molten slag to obtain the following composition.

【0028】SiO2:42〜48wt%、CaO:3
0〜40wt%、MgO:3〜8wt%、Al23:1
0〜20wt%、Na2O+K2O:1Wt%、さらに、
5wt%以下のB23及び/又は6wt%以下のFe2
3を合計で1wt%以下超えで含有する。
SiO 2 : 42 to 48 wt%, CaO: 3
0~40wt%, MgO: 3~8wt%, Al 2 O 3: 1
0~20wt%, Na 2 O + K 2 O: 1Wt%, further,
B 2 O 3 ≦ 5 wt% and / or Fe 2 ≦ 6 wt%
O 3 is contained in total exceeding 1 wt% or less.

【0029】調整に際しては、上記のように直接行なっ
ても良いが、ホイールで飛散させる直前に、電気炉やキ
ュポラ等の溶解炉で再加熱しながら、成分調整用の原料
を添加するのが好ましい。その方が、確実に成分調整が
できるからである。
The adjustment may be carried out directly as described above, but it is preferable to add the ingredients for component adjustment while reheating in a melting furnace such as an electric furnace or a cupola immediately before scattering with a wheel. . This is because component adjustment can be performed more reliably.

【0030】なお、各成分を上記のように限定した理由
は、下記の通りである。
The reasons for limiting each component as described above are as follows.

【0031】SiO2:高炉スラグや転炉スラグを主原
料とすると、素材としてのCaOが高くなる。この場
合、溶融状態にある素材は、低温でガラス状態を保持し
難くなるので、これを補うため、溶融状態にある素材の
SiO2濃度を42wt%以上にする必要がある。42
wt%未満では、回転体から飛散させて製造した繊維体
に、未繊維化部分(前記ショット)が急増してしまうか
らである。逆に、SiO2濃度が高くなり過ぎると、素
材の粘度が高くなり、流動性が悪化して製造効率が下が
ったり、繊維が太くなってしまうといった問題があるの
で、上限を48wt%とする。
SiO 2 : When blast furnace slag or converter slag is used as a main raw material, CaO as a raw material increases. In this case, it is difficult for the material in the molten state to maintain the glass state at a low temperature, and to compensate for this, it is necessary to make the SiO 2 concentration of the material in the molten state 42% by weight or more. 42
If the amount is less than wt%, the non-fibrillated portion (the shot) increases rapidly in the fibrous body produced by scattering from the rotating body. Conversely, if the SiO 2 concentration is too high, the viscosity of the material becomes high, the fluidity deteriorates, the production efficiency decreases, and the fibers become thick. Therefore, the upper limit is set to 48 wt%.

【0032】Na2O及びK2O:一般に、組成物の粘度
上昇を抑える方法として、Na2OやK2Oといったソー
ダ分を多量に添加する方法がある。この方法は、粘度を
抑えるには有効であるが、ロックウールの場合、その耐
熱性や耐水性を劣化する傾向があり、該ロックウールの
長所を減ずる。そこで、本発明では、素材のSiO2
度で粘度を調整すると同時に、上記ソーダ分を極力減じ
て耐熱性や耐水性も維持できるようにした。つまり、N
2OとK2Oの含有量の合計は1wt%未満に制限する
ことにしたのである。
Na 2 O and K 2 O: In general, as a method for suppressing an increase in the viscosity of the composition, there is a method of adding a large amount of soda such as Na 2 O or K 2 O. Although this method is effective in suppressing the viscosity, in the case of rock wool, the heat resistance and water resistance tend to deteriorate, and the advantage of the rock wool is reduced. Therefore, in the present invention, the viscosity is adjusted by the SiO 2 concentration of the material, and at the same time, the soda content is reduced as much as possible so that heat resistance and water resistance can be maintained. That is, N
the total content of a 2 O and K 2 O is decided to be limited to less than 1 wt%.

【0033】CaO:高炉スラグや転炉スラグに多量に
含まれるCaOも、溶融状態の組成物を低粘性にする効
果のあることは、良く知られている。その効果について
検討した結果、30wt%以上含有していれば、高温で
の素材の低粘度を維持できることがわかったので、本発
明では、CaOの下限を30wt%とした。しかし、C
aOが余りに多くなると、素材がガラス状態を保てなく
なるので、上限を40wt%とする。
CaO: It is well known that CaO contained in a large amount in blast furnace slag and converter slag also has the effect of lowering the viscosity of a molten composition. As a result of examining the effect, it was found that if the content was 30 wt% or more, the low viscosity of the material at a high temperature could be maintained. Therefore, in the present invention, the lower limit of CaO was set to 30 wt%. But C
If aO becomes too large, the material cannot maintain a glassy state, so the upper limit is set to 40 wt%.

【0034】MgO:一般に、組成物中のMgOは、ガ
ラスの失透の低減、耐熱性維持の効果があるので、ロッ
クウールには、3wt%以上含まれていることが望まし
い。一方、CaOと同様なアルカリ土類系であるため、
本発明のような高CaO系の組成物においては、MgO
含有量を高くし過ぎると、繊維化が難しくなる(アルカ
リ土類が繊維化を難しくする理由は、まだ述べていない
ので、どうするか)。従って、この上限としては、Si
2、CaOが上記した範囲の場合、8wt%以下が好
ましい。
MgO: In general, MgO in the composition has an effect of reducing the devitrification of the glass and maintaining the heat resistance. Therefore, it is desirable that rock wool contains 3 wt% or more. On the other hand, because it is an alkaline earth system similar to CaO,
In the high CaO-based composition as in the present invention, MgO
If the content is too high, fibrillation becomes difficult (the reason why alkaline earth makes fibrillation difficult has not been described yet, so what to do). Therefore, the upper limit is Si
When O 2 and CaO are in the above ranges, the content is preferably 8 wt% or less.

【0035】Al23:Al23も、MgOと同様に、
ガラス化と高耐熱性に効果があり、10wt%以上の含
有率が望ましい。しかし、含有量が高くなると、粘度が
急増することが知られており、本発明に係るSiO2
CaOの組成レベルであれば、20wt%以下であるこ
とが望ましい。
Al 2 O 3 : Al 2 O 3 is also similar to MgO,
It is effective for vitrification and high heat resistance, and a content of 10 wt% or more is desirable. However, it is known that the viscosity increases sharply when the content increases, and the SiO 2 ,
If the composition level is CaO, it is desirably 20 wt% or less.

【0036】本発明では、上記したように、素材の基本
組成を最適化した上で、B23、Fe23を添加して、
さらにロックウールの細径化、低ショット化を図ったの
である。
In the present invention, as described above, after optimizing the basic composition of the material, B 2 O 3 and Fe 2 O 3 are added,
Furthermore, the diameter of rock wool was reduced and shots were reduced.

【0037】B23:B23は、SiO2と同様に、ガ
ラス化傾向が強い元素であり、その添加によって高温粘
度を下げると同時に、ガラス化領域を低温まで広げてシ
ョット率を下げられる。図1に、基本成分系(SiO2
−CaO−MgO−Al23)にB23を添加した場合
の粘度変化を示す。B23の添加量を増やすと上記の効
果が出現することが明らかである。添加量が増加する
程、低温まで低粘度領域が広がり、ガラス化に有効であ
ることがわかる。ただし、5wt%を超えて添加した場
合は、ロックウールの耐熱性低下が起るため、5wt%
を上限値とすることが望ましい。
B 2 O 3 : Like SiO 2 , B 2 O 3 is an element having a strong tendency to vitrify. The addition of B 2 O 3 lowers the high-temperature viscosity, and at the same time, widens the vitrification region to a lower temperature to increase the shot ratio. Can be lowered. FIG. 1 shows the basic component system (SiO 2
The -CaO-MgO-Al 2 O 3 ) shows the change in viscosity when the addition of B 2 O 3. It is clear that the above effect appears when the amount of B 2 O 3 added is increased. It can be seen that as the amount of addition increases, the low-viscosity region extends up to low temperatures, and is effective for vitrification. However, if added in excess of 5 wt%, the heat resistance of rock wool will decrease, so that 5 wt%
Is desirably set to the upper limit.

【0038】Fe23:Fe23は、B23に比べて効
果が小さいものの、同様に細径化が期待できる。従来か
らの知見で鉄酸化物を添加した場合には、高温での繊維
強度が強くなることが知られており、これも有効に働く
と考えられる。ただし、酸化鉄成分が多すぎる場合に
は、ガラスを着色してしまうこと、また還元して鉄とし
て内部に蓄積される等の操業上の問題が生じることか
ら、Fe23としては、6wt%を上限とすることが望
ましい。なお、これらB23及びFe23の含有量は、
いずれかが、あるいは合計で1wt%超えると、始めて
効果が得られることも確認された。
The Fe 2 O 3: Fe 2 O 3 , although effective in comparison with the B 2 O 3 is small, can be expected similarly reduced diameter. It has been known from the conventional knowledge that when iron oxide is added, the fiber strength at high temperatures is increased, which is also considered to work effectively. However, when the iron oxide component is too high, it results in coloring the glass, and from the operational problems such as accumulated therein reduced to the iron occurs as Fe 2 O 3 is 6 wt % Is desirably the upper limit. The contents of B 2 O 3 and Fe 2 O 3 are as follows:
It was also confirmed that the effect was obtained for the first time when any one of them or the total exceeded 1 wt%.

【0039】この他、融体の飛散中に、繊維を囲む雰囲
気を調整することも、繊維の特性変更に有効であった。
さらに、融体の物性を改善しても、繊維に含まれる欠陥
(例えば、空隙、気孔等)の影響が残る場合には、その
効果が損なわれてしまう。従って、より望ましくは、飛
散前に電気炉で溶融して、融体中に含まれる気泡をでき
るだけ除去するのが良い。
In addition, adjusting the atmosphere surrounding the fibers during the scattering of the melt was also effective in changing the characteristics of the fibers.
Furthermore, even if the physical properties of the melt are improved, if the effects of defects (for example, voids and pores) contained in the fibers remain, the effects are impaired. Therefore, it is more desirable to melt in an electric furnace before scattering to remove bubbles contained in the melt as much as possible.

【0040】[0040]

【実施例】次に、本発明を具体的に説明するが、本発明
は、これら実施例に限定されるものではない。
EXAMPLES Next, the present invention will be described specifically, but the present invention is not limited to these examples.

【0041】表1に示した高炉スラグに、2段式電気炉
で溶融し、珪石、生石灰、鉄鉱石、ガラスアレート等を
添加して、種々の化学組成に調整し、表2に示す組成の
融体(実施例及び比較例で7種類)を製造した。これら
融体を、同じ電気炉でカ−ボン電極を用いて加熱溶融
し、高速回転している内部冷却型のホイールの表面上に
流し当てることで飛散させた。ホイールの表面上では、
それら融体の温度は1400℃〜1460℃になるよう
に制御され、ホイールから綿(繊維状物)を離脱させる
ため、ホイールの融体が乗る位置の背後から綿(繊維)
の飛散方向へ圧縮空気(約100m/s)を吹いて集綿
した。なお、集綿は、集綿機で行なわれ、そこで常温ま
で空冷される。また、1チャージが35トンの融体を飛
散開始してから、冷却を完了するまでの所要時間は、1
0時間であった。
The blast furnace slag shown in Table 1 was melted in a two-stage electric furnace and mixed with silica, quicklime, iron ore, glass alate, etc., and adjusted to various chemical compositions. (7 types in Examples and Comparative Examples) were produced. These melts were heated and melted using a carbon electrode in the same electric furnace, and were scattered by being poured onto the surface of a high-speed rotating internal cooling type wheel. On the wheel surface,
The temperature of these melts is controlled to be 1400 ° C. to 1460 ° C., and the cotton (fibrous material) is separated from the wheel.
The cotton was collected by blowing compressed air (about 100 m / s) in the direction of the scattering. The cotton collection is performed by a cotton collection machine, where the cotton is air-cooled to room temperature. In addition, the time required from the start of scattering of a melt of 35 tons for one charge to the completion of cooling is 1 hour.
It was 0 hours.

【0042】また、同じ条件で、飛散時にホイールの周
囲より水溶性フェノール樹脂バインダを綿に吹きつけな
がら集綿し、その集綿体を予備圧縮して板状に成形し、
熱硬化炉で該バインダを硬化させ、かさ密度が約30k
g/m3、厚み100mmの非晶質ボードも製造した。
Further, under the same conditions, the cotton wool is collected while spraying a water-soluble phenol resin binder from around the wheel at the time of scattering, and the collected wool is pre-compressed to form a plate.
The binder is cured in a thermosetting oven, and the bulk density is about 30k
An amorphous board of g / m 3 and 100 mm thickness was also manufactured.

【0043】これらの実施成績は、前記表2に、140
0℃での融体の粘度、粘度が300poise以上にな
る温度、製造した繊維の径、ショット率、ボードの断熱
性(熱伝導率)として一括して示してある。
The performance results are shown in Table 2 above.
The viscosity of the melt at 0 ° C., the temperature at which the viscosity becomes 300 poise or more, the diameter of the manufactured fiber, the shot rate, and the heat insulation (thermal conductivity) of the board are collectively shown.

【0044】[0044]

【表2】 [Table 2]

【0045】本発明に係る製造方法で得た低密度の繊維
体は非晶質であり、表2によれば、それを形成する各繊
維が細く、且つショット率が下がっていることが明らか
である。また、熱伝導率が低く、高い断熱性を保持して
いることもわかる。つまり、軽量で、断熱性に優れた建
材が開発できた。
The low-density fibrous body obtained by the production method according to the present invention is amorphous, and according to Table 2, it is clear that each fiber forming the fiber is thin and the shot ratio is low. is there. In addition, it can be seen that the thermal conductivity is low and high heat insulation is maintained. In other words, a building material that is lightweight and has excellent heat insulation properties can be developed.

【0046】[0046]

【発明の効果】以上述べたように、本発明により、低密
度で、且つ高断熱性のロックウールが安定して製造でき
るようになった。また、原料に高炉スラグを利用するの
で、住宅用等として、従来より優れた品質の断熱材が安
価に提供できる。
As described above, according to the present invention, rock wool having low density and high heat insulation can be stably manufactured. In addition, since blast furnace slag is used as a raw material, a high-quality heat insulating material can be provided at a lower cost for houses and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】調査に用いた融体の粘度と製造された繊維の径
との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the viscosity of a melt used in a study and the diameter of a manufactured fiber.

【図2】調査に用いた融体の粘度と製造された繊維のシ
ョット率との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the viscosity of a melt used in the investigation and the shot rate of manufactured fibers.

【図3】温度による融体の粘度変化を示す図である。FIG. 3 is a diagram showing a change in viscosity of a melt with temperature.

【図4】融体の粘度が急激に上昇開始する温度と製造し
た繊維のショット率との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the temperature at which the viscosity of a melt starts to rise sharply and the shot rate of manufactured fibers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊谷 正人 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 佐藤 政明 岡山県倉敷市水島川崎通1丁目(番地な し) 川鉄ロックファイバー株式会社内 (72)発明者 山田 政孝 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4G062 AA05 BB01 CC01 CC04 DA05 DB04 DC01 DC02 DC03 DD01 DE01 DF01 EA01 EB01 EB02 EB03 EC01 EC02 EC03 ED03 EE05 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH00 HH03 HH05 HH07 HH09 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM01 NN29  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masato Kumagai 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute, Kawasaki Steel Corp. (72) Inventor Masaaki Sato 1-chome Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture None) Kawatetsu Rock Fiber Co., Ltd. (72) Inventor Masataka Yamada 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. DC02 DC03 DD01 DE01 DF01 EA01 EB01 EB02 EB03 EC01 EC02 EC03 ED03 EE05 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH00 HHH HH HH HH HH HH HH HH KK01 KK03 KK05 KK07 KK10 MM01 NN29

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉スラグを主原料として成分調整した
融体を、高速回転する回転体上に流下し、該回転体の遠
心力を利用して飛散させ、繊維化するロックウールの製
造方法において、 前記融体に、粘度が、1400℃において14pois
e以下、1200〜1250℃の範囲で300pois
eとなるものを使用することを特徴とするロックウール
の製造方法。
1. A method for producing rock wool, in which a melt whose component has been adjusted using blast furnace slag as a main raw material flows down onto a rotating body that rotates at a high speed, and is scattered using the centrifugal force of the rotating body to produce fibers. The melt has a viscosity of 14 poise at 1400 ° C.
e, 300 pois in the range of 1200 to 1250 ° C
e. A method for producing rock wool, characterized by using:
【請求項2】 前記融体が、下記組成に調整されたもの
であることを特徴とする請求項1記載のロックウールの
製造方法。 SiO2:42〜48wt% CaO:30〜40wt% MgO:3〜8wt% Al23:10〜20wt% Na2O+K2O:1Wt% さらに、5wt%以下のB23及び/又は6wt%以下
のFe23を合計で1wt%以下超えで含有する
2. The method for producing rock wool according to claim 1, wherein the melt is adjusted to have the following composition. SiO 2: 42~48wt% CaO: 30~40wt % MgO: 3~8wt% Al 2 O 3: 10~20wt% Na 2 O + K 2 O: 1Wt% addition, 5 wt% or less of B 2 O 3 and / or 6wt % Of Fe 2 O 3 or less in total exceeding 1 wt% or less
JP32198599A 1999-11-12 1999-11-12 Method for manufacturing rock wool Pending JP2001139340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32198599A JP2001139340A (en) 1999-11-12 1999-11-12 Method for manufacturing rock wool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32198599A JP2001139340A (en) 1999-11-12 1999-11-12 Method for manufacturing rock wool

Publications (1)

Publication Number Publication Date
JP2001139340A true JP2001139340A (en) 2001-05-22

Family

ID=18138643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32198599A Pending JP2001139340A (en) 1999-11-12 1999-11-12 Method for manufacturing rock wool

Country Status (1)

Country Link
JP (1) JP2001139340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088015A (en) * 2006-10-02 2008-04-17 Jfe Steel Kk Rock wool
CN106316118A (en) * 2016-08-17 2017-01-11 武汉理工大学 Brown decorative glass made mainly from liquid blast furnace slag and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088015A (en) * 2006-10-02 2008-04-17 Jfe Steel Kk Rock wool
CN106316118A (en) * 2016-08-17 2017-01-11 武汉理工大学 Brown decorative glass made mainly from liquid blast furnace slag and production method thereof

Similar Documents

Publication Publication Date Title
EP0036275B1 (en) Alkali- and heat-resistant inorganic fiber
JP3909862B2 (en) Glass fiber without boron
JP5295775B2 (en) Glass composition
CA2272001C (en) Glass fibres for reinforcing organic and/or inorganic materials
US4764487A (en) High iron glass composition
US4461840A (en) Heat resistant glass fiber composition
US9012342B2 (en) Melt composition for the production of man-made vitreous fibres
EP2697178B1 (en) Processes for forming man made vitreous fibres
AU2007296024B2 (en) Compositions for mineral wools
US4818289A (en) Method for utilizing slag from metal production
US20120214660A1 (en) Glass fiber for high temperature insulation
DE69111567T2 (en) Method and device for the production of glass fibers by centrifugation and the use of certain glass for fiberizing.
US3484259A (en) High strength-high modulus glass fibers
Yue et al. Stone and glass wool
JP5019157B2 (en) Rock wool
JP2001139340A (en) Method for manufacturing rock wool
JP2005170716A (en) Manufacturing method of rock wool
JP2001139347A (en) Rock wool and rock wool board
JPS5849501B2 (en) Glass composition for glass fiber
JPH0524871B2 (en)
WO1996028395A1 (en) Method of making mineral fibres
CA2276729A1 (en) Fiberized mineral wool and method for making same
WANG CANMET
JPH11170013A (en) Heat insulating sheet for tundish nozzle in continuous casting machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814