JP5018205B2 - Calculation method in reactive power compensator - Google Patents

Calculation method in reactive power compensator Download PDF

Info

Publication number
JP5018205B2
JP5018205B2 JP2007112460A JP2007112460A JP5018205B2 JP 5018205 B2 JP5018205 B2 JP 5018205B2 JP 2007112460 A JP2007112460 A JP 2007112460A JP 2007112460 A JP2007112460 A JP 2007112460A JP 5018205 B2 JP5018205 B2 JP 5018205B2
Authority
JP
Japan
Prior art keywords
reactive power
instantaneous value
voltage
memory
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007112460A
Other languages
Japanese (ja)
Other versions
JP2008269369A (en
Inventor
博 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007112460A priority Critical patent/JP5018205B2/en
Publication of JP2008269369A publication Critical patent/JP2008269369A/en
Application granted granted Critical
Publication of JP5018205B2 publication Critical patent/JP5018205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電力系統に連系し電力系統の電圧変動を抑制する無効電力補償装置、特に無効電力量の演算方式の改良に関する。   The present invention relates to a reactive power compensator that is linked to a power system and suppresses voltage fluctuations of the power system, and more particularly to an improvement in a reactive power calculation method.

図3に無効電力補償装置の一般的な例を示す。
無効電力補償装置1は、電力系統2から系統インピーダンス3を介して負荷4が接続された電力系統の、系統インピーダンス3と負荷4との間に接続され、負荷4から発生する無効電力を補償する。この無効電力補償装置1は、サイリスタ5、リアクトル6およびコンデンサ7などから構成される。13は、無効電力補償装置1の制御装置を示す。
FIG. 3 shows a general example of the reactive power compensator.
The reactive power compensator 1 is connected between the system impedance 3 and the load 4 of the power system to which the load 4 is connected from the power system 2 through the system impedance 3 and compensates for the reactive power generated from the load 4. . The reactive power compensator 1 includes a thyristor 5, a reactor 6, a capacitor 7, and the like. Reference numeral 13 denotes a control device of the reactive power compensator 1.

無効電力補償装置1の動作としては、負荷4が発生する無効電力を補償する。ここで、負荷4が発生する無効電力をQf、無効電力補償装置1の無効電力をQt、系統の無効電力をQsとすると、Qt=Qfとなるように無効電力補償装置1を制御することで、系統の無効電力はQs=0となり、系統電圧の電圧変動を抑制することができる。
無効電力補償装置の制御装置の例を図4に示す。
As an operation of the reactive power compensator 1, the reactive power generated by the load 4 is compensated. Here, when the reactive power generated by the load 4 is Qf, the reactive power of the reactive power compensator 1 is Qt, and the reactive power of the system is Qs, the reactive power compensator 1 is controlled so that Qt = Qf. The reactive power of the system is Qs = 0, and the voltage fluctuation of the system voltage can be suppressed.
An example of a control device for the reactive power compensator is shown in FIG.

これは、検出された系統電圧Vsと負荷電流Ifとから、無効電力検出器10において無効電力Qを検出し、この無効電力Qに係数器または乗算器11でゲインを乗じた結果を点弧角調節器12に入力し、ここでサイリスタを点弧するための点弧角指令αを演算するものである。
無効電力検出器10として、例えば特許文献1に開示されている例を図5に示す。
This is because the reactive power detector 10 detects the reactive power Q from the detected system voltage Vs and the load current If, and the result obtained by multiplying the reactive power Q by the gain by the coefficient unit or the multiplier 11 is the firing angle. This is input to the adjuster 12, where a firing angle command α for firing the thyristor is calculated.
As the reactive power detector 10, for example, an example disclosed in Patent Document 1 is shown in FIG.

これは、乗算器15,16、加算器17、ゲイン要素18およびオールパスフィルタ21などから構成され、検出された系統電圧V1と、これに対し90°遅れの電圧V2および負荷電流ifなどから、最終的には無効電力Qを演算するものである。なお、オールパスフィルタは図6のように、主としてオペアンプOpから構成されるが、これは一般的に周波数−振幅特性には変化が無く、周波数−位相特性だけ変化するフィルタとして定義されている。   This is composed of multipliers 15 and 16, adder 17, gain element 18, all-pass filter 21, and the like. From the detected system voltage V 1, a voltage V 2 delayed by 90 ° with respect to this, the load current if, etc., the final Specifically, the reactive power Q is calculated. As shown in FIG. 6, the all-pass filter is mainly composed of an operational amplifier Op, which is generally defined as a filter that has no change in frequency-amplitude characteristics and changes only in frequency-phase characteristics.

まず、オールパスフィルタ21は負荷電流ifを90°進めた電流を演算するが、if,V1およびV2は次式のように定義される。
V1=√2Ecosθ…(1)
V2=√2Esinθ…(2)
if=√2Icos(θ−φ)…(3)
V2とifを乗算することで、無効電力瞬時値qが演算される。
First, the all-pass filter 21 calculates a current obtained by advancing the load current if by 90 °, and if, V1, and V2 are defined as follows.
V1 = √2E cos θ (1)
V2 = √2Esin θ (2)
if = √2I cos (θ−φ) (3)
The reactive power instantaneous value q is calculated by multiplying V2 and if.

q=V2×if=E・I{sinφ+sin(2θ−φ)}…(4)
V1とifを90°進めた電流if’とを乗算することで、仮想無効電力瞬時値q’が演算される。
q’=V1×if’=E・I{sinφ−sin(2θ−φ)}…(5)
無効電力瞬時値qと仮想無効電力瞬時値q’とを加算すると、
q+q’=2E・Isinφ…(6)
となり、(6)式にゲイン1/2を乗算することで、無効電力Qが演算される。
q = V2 × if = E · I {sinφ + sin (2θ−φ)} (4)
The virtual reactive power instantaneous value q ′ is calculated by multiplying V1 and the current if ′ obtained by advancing if by 90 °.
q ′ = V1 × if ′ = E · I {sinφ−sin (2θ−φ)} (5)
When the reactive power instantaneous value q and the virtual reactive power instantaneous value q ′ are added,
q + q ′ = 2E · Isinφ (6)
Thus, the reactive power Q is calculated by multiplying the equation (6) by a gain of 1/2.

Q=(q+q’)/2…(7)
特開平8−140246号公報
Q = (q + q ′) / 2 (7)
JP-A-8-140246

以上のように、無効電力Qを演算するために、系統電圧に対して90°遅れの電圧を検出するPT(変圧器:図4の8,14)やオールパスフィルタ(図5の21)が必要になると言う問題がある。また、オールパスフィルタはオペアンプ(Op)等を用いて作るので、90°位相を進めるための調整が必要となり、その結果回路が複雑で規模が大きくなる上にフィルタの調整に時間が掛かり、コストアップすることになる。   As described above, in order to calculate the reactive power Q, a PT (transformer: 8, 14 in FIG. 4) and an all-pass filter (21 in FIG. 5) that detect a voltage delayed by 90 ° with respect to the system voltage are necessary. There is a problem to say. In addition, since the all-pass filter is made using an operational amplifier (Op), etc., adjustment to advance the phase by 90 ° is required. As a result, the circuit is complicated and the scale is increased, and it takes time to adjust the filter, resulting in an increase in cost. Will do.

したがって、この発明の課題は、オールパスフィルタを不要として回路の簡単化,低コスト化を図ることにある。   Accordingly, an object of the present invention is to simplify the circuit and reduce the cost by eliminating the need for an all-pass filter.

このような課題を解決するため、請求項1の発明では、電力系統に連系し電力系統の電圧変動を抑制する無効電力補償装置において、
系統電圧と負荷電流との積によって演算される無効電力瞬時値に、
のこの無効電力瞬時値の60°前の値、及び30°前の値の反転値とを加算することにより、無効電力量を演算する。
In order to solve such a problem, in the invention of claim 1, in the reactive power compensator connected to the power system and suppressing the voltage fluctuation of the power system,
Reactive power instantaneous value calculated by product of system voltage and load current
The reactive power amount is calculated by adding the value of 60 ° before the reactive power instantaneous value and the inverted value of the value 30 ° before.

この発明によれば、メモリを設けるかまたは既存のメモリを利用するだけで、無効電力を求めることができるので、従来のような系統電圧に対し90°位相遅れの電圧を検出するPTやオールパスフィルタが不要となり、その結果、回路の簡素化による小型化,低コスト化を実現することができる。   According to the present invention, the reactive power can be obtained simply by providing a memory or using an existing memory. Therefore, a PT or an all-pass filter that detects a voltage 90 ° behind the system voltage as in the prior art. As a result, it is possible to reduce the size and cost by simplifying the circuit.

図1はこの発明の実施の形態を示すブロック構成図である。
図示のように、無効電力検出器10に無効電力瞬時値qを格納するメモリ20、22を追加した点が特徴である。その演算は、次のように行なわれる。
まず、移相器19により、検出された系統電圧V1からこれに対し90°遅れの電圧V2を得る。なお、系統電圧V1は上記(1)式と同じく、
V1=√2Ecosθ…(8)
であり、従って、電圧V2は
V2=√2Esinθ…(9)
である。また、負荷電流ifは上記(3)式と同じく、
if=√2Icos(θ−φ)…(10)
となる。
FIG. 1 is a block diagram showing an embodiment of the present invention.
As illustrated, the reactive power detector 10 is characterized by the addition of memories 20 and 22 for storing the reactive power instantaneous value q. The calculation is performed as follows.
First, the phase shifter 19 obtains a voltage V2 delayed by 90 ° from the detected system voltage V1. The system voltage V1 is the same as the above equation (1).
V1 = √2E cos θ (8)
Therefore, the voltage V2 is V2 = √2Esin θ (9)
It is. Further, the load current if is the same as the above equation (3),
if = √2I cos (θ−φ) (10)
It becomes.

乗算器15では、V2とifを乗算することで、無効電力瞬時値qが演算される。
q=V2×if=E・I{sinφ+sin(2θ−φ)}…(11)
演算される無効電力瞬時値qは、ここではメモリ20、22に逐次格納される。このメモリ20は、60°前までの無効電力瞬時値qを格納できればよい。いま、無効電力瞬時値データを1°刻みでメモリ20に格納するものとすると、60°前までのデータを格納できれば良いので、60ワードの容量で十分と言える。そして、この程度の容量のメモリは、計算機の内部メモリを利用できるので、新たにメモリを追加することによるコストアップはないことになる。
The multiplier 15 calculates the reactive power instantaneous value q by multiplying V2 and if.
q = V2 × if = E · I {sinφ + sin (2θ−φ)} (11)
The calculated reactive power instantaneous value q is sequentially stored in the memories 20 and 22 here. The memory 20 only needs to store the reactive power instantaneous value q up to 60 ° before. Assuming that the reactive power instantaneous value data is stored in the memory 20 in increments of 1 °, it is sufficient that data up to 60 ° before can be stored, so it can be said that a capacity of 60 words is sufficient. Since the memory having this capacity can use the internal memory of the computer, there is no cost increase due to the addition of a new memory.

また、メモリ22は30°前までの無効電力瞬時値qを格納できれば良いので、例えば無効電力瞬時値データを1°刻みでメモリに格納するものとすると、30ワードの容量で十分と言える。この程度の容量のメモリは、計算機の内部メモリを利用できるので、新たにメモリを追加することによるコストアップはないことになる。
次に、メモリ20に格納された60°前の無効電力瞬時値q’とメモリ22に格納された30°前の無効電力瞬時値の反転値q’’を読出し、このq’とq’’とを加算する。
The memory 22 only needs to be able to store the reactive power instantaneous value q up to 30 ° before. For example, if the reactive power instantaneous value data is stored in the memory in increments of 1 °, it can be said that a capacity of 30 words is sufficient. Since the memory having this capacity can use the internal memory of the computer, there is no increase in cost due to the addition of a new memory.
Next, the reactive power instantaneous value q ′ 60 ° before stored in the memory 20 and the inverted value q ″ of the reactive power instantaneous value 30 ° before stored in the memory 22 are read, and q ′ and q ″. And add.

q’=V1×if’=E・I{sinφ+sin(2(θ−φ’−60))}
=E・I{sinφ+sin(2θ−φ’−120)}…(12)
q’’=−V1×if’=−E・I{sinφ+sin(2(θ−φ’−30))}
=−E・I{sinφ+sin(2θ−φ−60)}…(13)
Q=q+q’+q’’=E・Isinφ…(14)
図2に図1の各部波形を示す。
q ′ = V1 × if ′ = E · I {sinφ + sin (2 (θ−φ′−60))}
= E · I {sinφ + sin (2θ−φ′−120)} (12)
q ″ = − V1 × if ′ = − E · I {sinφ + sin (2 (θ−φ′−30))}
= −E · I {sin φ + sin (2θ−φ−60)} (13)
Q = q + q ′ + q ″ = E · Isinφ (14)
FIG. 2 shows the waveform of each part of FIG.

すなわち、図2(a)には検出電圧V1,検出電流Ifの他に、検出電圧V1に対して90度遅れとなる、位相器19の出力V2が示され、また、図2(b)には乗算器15の出力qとメモリ20の出力q’、そしてメモリ22の出力q’’が、さらに、図2(c)には無効電力Qなどがそれぞれ示されている。
なお、同出願人は、特願2006−13453号において、90°前の無効電力瞬時値を利用して無効電力を演算する発明を出願しているが、本発明では60°前の無効電力瞬時値を使用しているので、その30°の位相分だけ誤差が小さくなる。
That is, FIG. 2A shows the output V2 of the phase shifter 19 that is delayed by 90 degrees with respect to the detection voltage V1, in addition to the detection voltage V1 and the detection current If, and FIG. The output q of the multiplier 15, the output q ′ of the memory 20, the output q ″ of the memory 22, and the reactive power Q and the like are shown in FIG.
In addition, in the Japanese Patent Application No. 2006-13453, the applicant has applied for an invention for calculating reactive power using a reactive power instantaneous value 90 degrees before, but in the present invention, a reactive power instantaneous 60 degrees before Since the value is used, the error is reduced by the phase of 30 °.

以上のように、メモリを設けるかまたは既存のメモリを利用するだけで、無効電力を求めることができるので、従来のような系統電圧に対し90°位相遅れの電圧を検出するPTやオールパスフィルタが不要となり、その結果、回路の簡素化による小型化,低コスト化を実現することができる。   As described above, reactive power can be obtained simply by providing a memory or using an existing memory. Therefore, a PT or an all-pass filter that detects a voltage that is 90 ° behind the system voltage as in the prior art is used. As a result, miniaturization and cost reduction can be realized by simplifying the circuit.

この発明の実施の形態を示すブロック図Block diagram showing an embodiment of the present invention 図1の各部波形を示す波形図Waveform diagram showing the waveform of each part in FIG. 一般的な電力系統を示す構成図Configuration diagram showing a typical power system 図3の制御装置の具体例を示すブロック図The block diagram which shows the specific example of the control apparatus of FIG. 図4の制御装置に設けられる無効電力検出器の具体例を示すブロック図The block diagram which shows the specific example of the reactive power detector provided in the control apparatus of FIG. 図5で用いられるオールパスフィルタの具体例を示す回路図Circuit diagram showing a specific example of the all-pass filter used in FIG.

符号の説明Explanation of symbols

1…無効電力補償装置、2…電力系統、3…インダクタンス、4…負荷、5…サイリスタ、6…リアクトル、7…コンデンサ、8,14…PT(変圧器)、9…CT(8変流器)、10…無効電力検出器、11,18…ゲイン要素、12…点弧角制御回路、13…制御装置、15,16…乗算器、17…加算器、19…移相器、20,22…メモリ、21…オールパスフィルタ。   DESCRIPTION OF SYMBOLS 1 ... Reactive power compensator, 2 ... Power system, 3 ... Inductance, 4 ... Load, 5 ... Thyristor, 6 ... Reactor, 7 ... Capacitor, 8, 14 ... PT (transformer), 9 ... CT (8 current transformer) ) 10... Reactive power detector, 11 and 18... Gain element, 12... Firing angle control circuit, 13... Control device, 15 and 16. ... memory, 21 ... all-pass filter.

Claims (1)

電力系統に連系し電力系統の電圧変動を抑制する無効電力補償装置において、
系統電圧と負荷電流との積によって演算される無効電力瞬時値と、
この無効電力瞬時値の60°前の値と、
この無効電力瞬時値の30°前の値の反転値と、
を加算することにより、無効電力量を演算することを特徴とする無効電力演算方法。
In the reactive power compensator connected to the power system and suppressing the voltage fluctuation of the power system,
Reactive power instantaneous value calculated by product of system voltage and load current,
A value 60 degrees before the reactive power instantaneous value,
An inverted value of the value 30 ° before the reactive power instantaneous value,
A reactive power calculation method characterized by calculating a reactive power amount by adding.
JP2007112460A 2007-04-23 2007-04-23 Calculation method in reactive power compensator Active JP5018205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112460A JP5018205B2 (en) 2007-04-23 2007-04-23 Calculation method in reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112460A JP5018205B2 (en) 2007-04-23 2007-04-23 Calculation method in reactive power compensator

Publications (2)

Publication Number Publication Date
JP2008269369A JP2008269369A (en) 2008-11-06
JP5018205B2 true JP5018205B2 (en) 2012-09-05

Family

ID=40048764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112460A Active JP5018205B2 (en) 2007-04-23 2007-04-23 Calculation method in reactive power compensator

Country Status (1)

Country Link
JP (1) JP5018205B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853364B2 (en) * 1977-05-30 1983-11-29 三菱電機株式会社 Control method of reactive power compensator
JPS59146321A (en) * 1983-02-10 1984-08-22 Nissin Electric Co Ltd Reactive power compensating device
JP3104492B2 (en) * 1993-10-21 2000-10-30 三菱電機株式会社 Power harmonic / reactive power compensator
JPH08140268A (en) * 1994-11-07 1996-05-31 Nissin Electric Co Ltd Controller of reactive power compensator
JP2007195380A (en) * 2006-01-23 2007-08-02 Fuji Electric Systems Co Ltd Operation system in reactive power compensator

Also Published As

Publication number Publication date
JP2008269369A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
US9531272B2 (en) Two-phase interleaved converter and method of controlling the same
CN109219922B (en) Speed estimation device for AC motor, driving device for AC motor, refrigerant compressor, and refrigeration cycle device
CN105940597B (en) The control method of power-converting device
KR102049682B1 (en) Control device of plant
WO2016170822A1 (en) Control device for power converter
US11049536B2 (en) Memory device having hardware regulation training
WO2016163343A1 (en) Motor control device and electric power steering device equipped with same
JP5018205B2 (en) Calculation method in reactive power compensator
CN107342711A (en) Control device
JP2007195380A (en) Operation system in reactive power compensator
JP6901911B2 (en) Control device for static power compensator
CN109596937B (en) Controllable voltage source grounding current compensation method and device
JP4788656B2 (en) Power test system
JP4840291B2 (en) Control method for reactive power compensator
JP2009025068A (en) Resolver/digital conversion method, and resolver/digital conversion circuit
JP4840290B2 (en) Control method for reactive power compensator
JP2005080368A (en) Control circuit of reactive power compensator
CN109596938B (en) Controllable voltage source grounding current tracking compensation method and device
JP4341625B2 (en) Calculation method in reactive power compensator
JP2010041843A (en) Operation system in reactive power compensator
JP4470804B2 (en) Resolver / digital conversion circuit
JP6953640B2 (en) Power converter control device and feedback control device
JP3738019B2 (en) Switching power supply controller and switching power supply
JP4962766B2 (en) AC / AC direct converter controller
Zhifeng et al. Design of the multi‐objective constrained nonlinear robust excitation controller with extended Kalman filter estimates of all state variables

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250