JP3104492B2 - Power harmonic / reactive power compensator - Google Patents

Power harmonic / reactive power compensator

Info

Publication number
JP3104492B2
JP3104492B2 JP05263492A JP26349293A JP3104492B2 JP 3104492 B2 JP3104492 B2 JP 3104492B2 JP 05263492 A JP05263492 A JP 05263492A JP 26349293 A JP26349293 A JP 26349293A JP 3104492 B2 JP3104492 B2 JP 3104492B2
Authority
JP
Japan
Prior art keywords
phase
power
circuit
instantaneous
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05263492A
Other languages
Japanese (ja)
Other versions
JPH07121254A (en
Inventor
康廣 小松
隆夫 川畑
秀志 西田
正俊 竹田
知宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP05263492A priority Critical patent/JP3104492B2/en
Publication of JPH07121254A publication Critical patent/JPH07121254A/en
Application granted granted Critical
Publication of JP3104492B2 publication Critical patent/JP3104492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、インバータを主構成
要素とする電力用アクティブフィルタや電力用無効電力
補償装置(SVGともいう)などの電力用高調波及び無
効電力の補償装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power harmonic and reactive power compensating device such as an active power filter or a reactive power compensating device (also referred to as SVG) having an inverter as a main component. .

【0002】[0002]

【従来の技術】瞬時電力・瞬時無効電力理論を用いた従
来の無効電力補償装置の補償電流導出法を文献、赤木、
金澤、藤田、難波江:「瞬時無効電力の一般化理論とそ
の応用」電気学会論文誌B、103巻、7号、pp48
3−490、昭和58年7月を基に説明する。瞬時電力
p・瞬時無効電力qはα電圧e α 、β電圧e β 、α電流
α 、β電流i β を用いて次式のように表される。
2. Description of the Related Art A method for deriving a compensation current of a conventional reactive power compensator using instantaneous power / instantaneous reactive power theory is disclosed in
Kanazawa, Fujita, Nambae: "Generalized Theory of Instantaneous Reactive Power and Its Application" IEEJ Transactions on Electronics, B, 103, 7, pp48
The explanation is based on 3-490, July 1983. Instantaneous power p and instantaneous reactive power q are α voltage e α , β voltage e β , α current
It is represented by the following equation using i α and β current i β .

【0003】[0003]

【数1】 (Equation 1)

【0004】図7は3相3線式電力系統に設けられた従
来の無効電力補償装置の構成を示した図である。瞬時電
力p、瞬時無効電力qを図7の系統の各部分において求
めることができる。また、瞬時電力p、瞬時無効電力q
が求められれば次式からその部分を流れる電流を求める
ことができる。
FIG . 7 is a diagram showing a configuration of a conventional reactive power compensator provided in a three-phase three-wire power system. Instantaneous power p, the instantaneous reactive power q can be determined in each part of the system of FIG. Also, the instantaneous power p and the instantaneous reactive power q
Is obtained, the current flowing through that portion can be obtained from the following equation.

【0005】[0005]

【数2】 (Equation 2)

【0006】系統の電源側を添字S、負荷側を添字L、
無効電力補償装置側を添字Cで表して、(4)式から次
式を得る。
[0006] The suffix S indicates the power supply side of the system, and the suffix L indicates the load side.
The reactive power compensator is represented by a subscript C, and the following equation is obtained from the equation (4).

【0007】[0007]

【数3】 (Equation 3)

【0008】無効電力補償装置が負荷電流の高調波成分
を供給する場合には、無効電力補償装置が供給する瞬時
電力pC 、瞬時無効電力qC を、次式のように表す。な
お、添字ACは交流成分、添字DCは直流成分を表すも
のとする。 pC =pLAC (8−1) qC =qLAC (8−2) なお、(8−1)および(8−1)式(以下、両式を単
に(8)式という)は負荷電流の無効電流分などを無効
電力補償装置から供給することを示している。
When the reactive power compensator supplies the harmonic component of the load current, the instantaneous power p C and the instantaneous reactive power q C supplied by the reactive power compensator are expressed by the following equations. The subscript AC represents an AC component, and the subscript DC represents a DC component. p C = p LAC (8-1) q C = q LAC (8-2) Note that the equations (8-1) and (8-1) (hereinafter, both equations are simply referred to as equation (8)) are load currents. Is supplied from the reactive power compensator.

【0009】(6)式からわかるように、負荷瞬時電力
L は、電圧e α 、e β 負荷電流i 、i の測
定値を用いて導出できる。pLAC はその交流成分であ
り、適当な回路によって負荷瞬時電力pL から抽出する
ことができる。(6)式からわかるように負荷瞬時無効
電力qL電圧e α 、e β 負荷電流i 、i
測定値を用いて導出できる。したがって、(8)式から
瞬時電力pC 、瞬時無効電力qC を導出できる。ゆえ
に、(7)式からわかるように補償電流i 、i
はこれら瞬時電力pC 、瞬時無効電力qC電圧e α
β の測定値を用いて導出することができる。さらに、
(3)式を用いて電流i 、i から各相瞬時補償
電流指令iCa、iCb、iCcを導出できる。
As can be seen from the equation (6), the instantaneous load power p L can be derived from the measured values of the voltages e α and e β and the load currents i and i . p LAC is the AC component and can be extracted from the instantaneous load power p L by an appropriate circuit. As can be seen from equation (6), the instantaneous load reactive power q L can also be derived using the measured values of the voltages e α and e β and the load currents i and i . Therefore, the instantaneous power p C and the instantaneous reactive power q C can be derived from the equation (8). Therefore, as can be seen from equation (7), the compensation currents i and i
Are these instantaneous power p C , instantaneous reactive power q C and voltage e α ,
It can be derived by using the measured value of e β. further,
The instantaneous compensation current commands i Ca , i Cb , i Cc for each phase can be derived from the currents i , i using the equation (3).

【0010】図7において、1は3相3線式電力系統の
電源、2は負荷、3は無効電力補償装置の構成要素であ
る3相3線式インバータ、41は系統の相電圧を検出す
る系統電圧検出器、22は系統の相電流を検出する負荷
電流検出器、5は検出器41の各相電圧からα電圧
α 、β電圧e β を導出する第1のαβ変換回路、6は
負荷電流検出器22の各相負電流からα電流i 、β
電流i を導出する第2のαβ変換回路、7は第1お
よび第2のαβ変換回路5、6の出力から負荷瞬時電力
L を導出する負荷瞬時電力導出回路、8は第1および
第2のαβ変換回路5、6の出力から負荷瞬時無効電力
L を導出する負荷瞬時無効電力導出回路、9は第1の
αβ変換回路5の出力から上記Δを導出するΔ導出回
路、26は負荷瞬時電力導出回路7の出力から交流成分
LAC を抽出する第1の交流成分抽出回路、27は負荷
瞬時無効電力導出8の出力から交流成分qLAC を抽出す
る第2の交流成分抽出回路、10は第1のαβ変換回路
5、Δ導出回路9、交流成分抽出回路26、交流成分抽
出回路27の出力からα、β補償電流i 、i
導出する回路、11は10の出力からα、β補償電流i
、i を導出する ・i 導出回路、11
・i 導出回路10の出力から各相補償電流
指令値iCa、iCb、iCcを導出する各相成分変換回路で
ある。
In FIG. 7, reference numeral 1 denotes a power source of a three-phase three-wire power system, 2 denotes a load, 3 denotes a three-phase three-wire inverter which is a component of the reactive power compensator, and 41 detects a phase voltage of the system. A system voltage detector, 22 is a load current detector for detecting a system phase current, and 5 is an α voltage from each phase voltage of the detector 41.
The first αβ conversion circuit 6 for deriving e α and β voltage e β is configured to calculate α currents i and β from the negative current of each phase of the load current detector 22.
A second αβ conversion circuit 7 for deriving the current i , 7 is a load instantaneous power derivation circuit for deriving an instantaneous load power p L from the outputs of the first and second αβ conversion circuits 5 and 6, and 8 is a first and a second 2 is a load instantaneous reactive power deriving circuit that derives instantaneous load reactive power q L from the outputs of the αβ conversion circuits 5 and 6; 9 is a Δ derivation circuit that derives Δ from the output of the first αβ conversion circuit 5; A first AC component extraction circuit for extracting an AC component p LAC from the output of the instantaneous load power derivation circuit 7; a second AC component extraction circuit 27 for extracting an AC component q LAC from the output of the instantaneous load reactive power derivation 8; 10 is a circuit that derives α, β compensation currents i and i from the outputs of the first αβ conversion circuit 5, the Δ derivation circuit 9, the AC component extraction circuit 26, and the AC component extraction circuit 27. α, β compensation current i
Cα, i to derive the i Cβ Cα · i Cβ derivation circuit, 11
Is a phase component conversion circuit for deriving each phase compensation current command value i Ca , i Cb , i Cc from the output of the i · i derivation circuit 10.

【0011】[0011]

【発明が解決しようとする課題】無効電力補償装置にお
いて、従来の瞬時電力・瞬時無効電力理論を用いた補償
電流導出回路を採用した場合、キルヒホッフの第一法則
と(5)、(6)、(7)式および(8)式から、系統
の電源側から流れ込む電流、すなわち系統電流i
は次式となる。
When a compensation current deriving circuit using a conventional instantaneous power / instantaneous reactive power theory is adopted in a reactive power compensator, Kirchhoff's first law and (5), (6), From equations (7) and (8), the current flowing from the power supply side of the system , that is, the system current isa ,
i becomes the following equation.

【0012】[0012]

【数4】 (Equation 4)

【0013】系統電圧が正弦波の場合(基本波成分だけ
が存在する場合)、電圧e α 、e β は正弦波の交流とな
る。また、定常状態において、負荷側の瞬時電力の直流
分pLDC は一定値である。したがって、上記Δが直流成
分だけなら、1/Δが直流となり、 、i は正
弦波となる。当然、系統各相電流isa、isb、iscも正
弦波になる。しかし、Δに交流成分が含まれるならば、
1/Δにも交流成分が含まれることになり、 、i
に高調波成分が含まれることになる。この高調波成
分は誘導障害などをもたらすため好ましくない。Δに交
流成分が含まれる場合というのは、つぎのケースであ
る。 (1)系統電圧に高調波成分が含まれる。 (2)系統電圧が正弦波であっても非対称である。すな
わち、正相成分以外に逆相、零相成分が含まれる。 後者のケースはよくみられる。従来の方式が望ましい結
果をもたらすのは結局、正弦波対称3相電圧の場合に限
られる。さらに、(1)、(2)、(3)式から瞬時無
効電力qは
When the system voltage is a sine wave (when only the fundamental wave component exists), the voltages e α and e β are sine wave alternating currents. In the steady state, the DC component p LDC of the instantaneous power on the load side is a constant value. Therefore, if the delta is only the DC component, 1 / delta becomes DC, i sa, i S [beta is a sine wave. Naturally, the system phase currents isa , isb , and isc also have a sine wave. However, if Δ contains an AC component,
The AC component is also included in 1 / Δ, i , i
The harmonic component is included in . This harmonic component is not preferable because it causes an induction failure. The case where the AC component is included in Δ is the following case. (1) Harmonic components are included in the system voltage. (2) Even if the system voltage is a sine wave, it is asymmetric. That is, a negative-phase component and a zero-phase component are included in addition to the positive-phase component. The latter case is common. The conventional scheme eventually gives the desired result only in the case of sinusoidally symmetric three-phase voltages. Furthermore, from the equations (1), (2) and (3), the instantaneous reactive power q is

【0014】[0014]

【数5】 (Equation 5)

【0015】となり、系統が対称3相電圧の場合、(e
c −eb )/√3はea を90°進ませた電圧、(ea
−ec )/√3はeb を90°進ませた電圧、(eb
a)/√3はec を90°進ませた電圧となり、瞬時
無効電力qの平均値は無効電力となる(ただし、進み電
流による無効電力を正としている)。しかし、非対称3
相電圧の場合、瞬時無効電力qの平均値は無効電力を表
さない。以上が従来の瞬時電力・瞬時無効電力を用いた
電力用無効電力補償装置の問題点である。
When the system has a symmetric three-phase voltage, (e)
c− e b ) / √3 is a voltage obtained by advancing e a by 90 °, (e a
-E c) / √3 the voltage is advanced 90 ° with e b, (e b -
e a) / √3 becomes a voltage which is advanced 90 ° to e c, the mean value of the instantaneous reactive power q is the reactive power (however, have a reactive power by leading current to positive). But asymmetric 3
In the case of the phase voltage, the average value of the instantaneous reactive power q does not represent the reactive power. The above is the problem of the conventional reactive power compensating device for power using instantaneous power and instantaneous reactive power.

【0016】この発明は、上記のような課題を解決する
ためになされたものであり、系統電圧が正弦波であるな
らば、対称3相電圧の場合はもちろん、非対称3相電圧
の場合に対しても負荷に流れる高調波電流、また必要な
らば無効電流、逆相電流を供給し、しかも系統電流に高
調波成分を生じさせない無効電力補償装置を得ることを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem. If the system voltage is a sine wave, it is possible to use not only a symmetric three-phase voltage but also an asymmetric three-phase voltage. It is another object of the present invention to provide a reactive power compensator that supplies a harmonic current flowing to a load, a reactive current and a negative-phase current if necessary, and that does not generate a harmonic component in a system current.

【0017】[0017]

【課題を解決するための手段】この発明の請求項1に係
電力用高調波・無効電力補償装置は、従来の方式で
いる瞬時無効電力の定義とは異なる定義の瞬時無効電力
を用い、この新たな定義に基づく瞬時無効電力を導出す
るために各相瞬時電圧を90°遅らせる移相手段この
移相手段の出力と各相電流とから3相一括の瞬時無効電
力を導出する瞬時無効電力演算回路この瞬時無効電力
演算回路の出力から交流成分を抽出し、交流成分に移相
回路の出力を乗じ補償電流指令値を導出する補償電流指
令値演算回路を備えたものである。
A power harmonic / reactive power compensator according to claim 1 of the present invention uses a conventional method .
Instantaneous reactive power defined differently from the definition of instantaneous reactive power
To derive the instantaneous reactive power based on this new definition
Phase shifting means for delaying 90 ° each phase instantaneous voltage in order, the
Instantaneous reactive power calculation circuit, the instantaneous reactive power to derive the instantaneous reactive power of phase segregated from the output and the phase current of the phase shifting means
Extracts the AC component from the output of the arithmetic circuit and shifts the phase to the AC component
Compensation current finger that derives the compensation current command value by multiplying the output of the circuit
It is provided with a price calculation circuit .

【0018】請求項2、3に係るものは、移相手段とし
、位相遅れ回路またはメモリを用いるものである。
According to the second and third aspects , the phase shift means is provided.
In this case , a phase delay circuit or a memory is used.

【0019】(削除) (Delete)

【0020】請求項4に係るものは、3相3線式電力系
統において、この3相3線式電力系統の2相の電流信号
を用い瞬時無効電力演算回路を構成したものである。
According to a fourth aspect of the present invention, in a three-phase three-wire power system, an instantaneous reactive power calculation circuit is configured using two-phase current signals of the three-phase three-wire power system .

【0021】請求項5、6、7、8項に係るものは、
償電流指令値の導出において、各相電圧を90°以外の
任意の角度θだけ遅らせた電圧を用いるものである。
[0021] pertaining to claim 5, 6, 7, 8 term, complement
In deriving the compensation current command value , a voltage obtained by delaying each phase voltage by an arbitrary angle θ other than 90 ° is used.

【0022】[0022]

【作用】この発明の請求項1に係る電力用高調波・無効
電力補償装置は系統電圧に高調波成分が含まれていない
限り、系統電圧が対称の場合はもちろん、非対称の場合
に対しても、その平均値が真の無効電力を表す新しい定
義に基づく瞬時無効電力を用いている。すなわち、本発
明では瞬時無効電力qを、相電流瞬時値と相電圧を90
°遅らせた電圧瞬時値との積の3相分の和と定義する。
なお90°進ませた相電圧ではなく、90°遅らせた相
電圧を用いているのは、遅れ電流による無効電力を正と
するためである。瞬時無効電力qを式で表せば次のよう
になる。 q=ea'ia +eb'ib +ec'ic (10) ただし、ea':ea を90°遅らせた電圧 eb':eb を90°遅らせた電圧 ec':ec を90°遅らせた電圧 一方、瞬時電力pは従来と同様に次式で表される。 p=eaa +ebb +ecc (11) 3相4線式の電力系統を考えることにする。中性線電流
0 は次式で与えられる。 i0 =ia +ib +ic (12) (10)、(11)、(12)式から次式を得る。
According to the present invention, there is provided a power harmonic according to claim 1 of the present invention.
As long as the system voltage does not contain harmonic components, the power compensator has a new constant whose true value represents the true reactive power not only when the system voltage is symmetric but also when it is asymmetric.
The instantaneous reactive power based on the right is used. That is, in the present invention, the instantaneous reactive power q is set to 90
° Defined as the sum of three phases of the product of the delayed voltage instantaneous value.
The reason for using the phase voltage delayed by 90 ° instead of the phase voltage advanced by 90 ° is to make the reactive power due to the delayed current positive. When the instantaneous reactive power q is expressed by an equation, it is as follows. q = e a 'i a + e b' i b + e c 'i c (10) However, e a': e a a 90 ° delayed voltage e b ': voltage of e b delayed 90 ° e c': Voltage at which e c is delayed by 90 ° On the other hand, instantaneous power p is expressed by the following equation as in the conventional case. p = e a i a + e b i b + e c i c (11) to be considered a three-phase four-wire power system. Neutral current i 0 is given by the following equation. i 0 = i a + i b + i c (12) (10), (11), the following equation is obtained from equation (12).

【0023】[0023]

【数6】 (Equation 6)

【0024】(13)式から次式を得る。The following equation is obtained from the equation (13).

【0025】[0025]

【数7】 (Equation 7)

【0026】(13)、(14)式は系統の各部分で成
立する。無効電力補償装置が供給する瞬時電力pC 、瞬
時無効電力qC を(8)式のように定め、中性線電流i
C0をiL0とおけば、(14)式から補償電流指令iCa
Cb、iCcは次式で表される。
Equations (13) and (14) hold for each part of the system. The instantaneous power p C and the instantaneous reactive power q C supplied by the reactive power compensator are determined as shown in Expression (8), and the neutral current i
If C0 is set to i L0 , the compensation current command i Ca ,
i Cb and i Cc are represented by the following equations.

【0027】[0027]

【数8】 (Equation 8)

【0028】同様にして(14)式から系統電流isa
sb、iscは次式で表される。
Similarly, from the equation (14), the system current isa ,
isb and isc are represented by the following equations.

【0029】[0029]

【数9】 (Equation 9)

【0030】この発明の方式における(13)、(1
4)、(15)、(16)式がそれぞれ、従来方式にお
ける(1)、(4)、(7)、(9)式に対応する。系
統電圧が非対称の場合、従来の方式における(9)式の
Δには直流成分に加えて交流成分が生じたが、対応する
本発明における(16)式のΔ4'は直流成分だけであ
る。したがって、(16)式からわかるように本発明に
よれば系統各相電流isa、isb、iscに高調波成分が含
まれず、良好な動作を行うことになる。
In the method of the present invention, (13) and (1)
Equations 4), (15), and (16) correspond to equations (1), (4), (7), and (9) in the conventional method, respectively. When the system voltage is asymmetric, an AC component occurs in addition to the DC component in Δ in equation (9) in the conventional method.
Δ 4 ′ in equation (16) in the present invention is only a DC component. Therefore, as can be seen from equation (16), the present invention
According to this, each of the system phase currents isa , isb , and isc does not include a harmonic component, and a good operation is performed.

【0031】請求項2に記載した位相遅れ回路を用いる
方法、あるいは請求項3に記載したメモリを用いる方法
は、従来方式で用いられていたαβ変換を用いず、各相
量を直接取り扱うので回路が簡単となる。また、回路が
簡単になるので、精度の高い出力電流指令値が得られる
ことになる。
The method using the phase delay circuit according to the second aspect or the method using the memory according to the third aspect uses the phase amounts directly without using the αβ conversion used in the conventional method. Becomes easier. Further, since the circuit is simplified, a highly accurate output current command value can be obtained.

【0032】(削除) (Delete)

【0033】請求項4に記載した3相3線式の回路では
次式が成立する。 ic =−(ia +ib ) (17) (17)式を(10)、(11)式に代入し、次式を得
る。
In the three-phase three-wire circuit according to the fourth aspect , the following equation is satisfied. i c = - (i a + i b) (17) (17) Equation (10) are substituted into Equation (11), the following equation is obtained.

【0034】[0034]

【数10】 (Equation 10)

【0035】(18)式から次式を得る。The following equation is obtained from the equation (18).

【0036】[0036]

【数11】 [Equation 11]

【0037】(18)、(19)式は系統の各部分で成
立する。瞬時電力pC 、瞬時無効電力qC を(8)式の
ように定めると、(8)、(19)式から補償電流指令
Ca、iCbは次式で表される。
Equations (18) and (19) hold for each part of the system. When the instantaneous power p C and the instantaneous reactive power q C are determined as shown in Expression (8), the compensation current commands i Ca and i Cb are expressed by the following expressions from Expressions (8) and (19).

【0038】[0038]

【数12】 (Equation 12)

【0039】同様にして、(8)、(19)式から系統
電流isa、isbは次式で表される。
Similarly, from equations (8) and (19), system currents isa and isb are expressed by the following equations.

【0040】[0040]

【数13】 (Equation 13)

【0041】この発明における(18)、(19)、
(20)、(21)式がそれぞれ、従来の(1)、
(4)、(7)、(9)式に対応する。系統電圧が非対
称の場合、従来の(9)式のΔには直流成分に加えて交
流成分が生じたが、対応するこの発明における(21)
式のΔ3'は直流成分だけである。したがって、(21)
式からわかるように、この発明によれば系統各相電流i
sa、isbに高調波成分が含まれない。そのため、電流i
scにも高調波成分が含まれない。以上のことからこの
明によればより良好な動作が可能になる。
The definitive to the present invention (18), (19),
Equations (20) and (21) are conventional equations (1),
This corresponds to equations (4), (7) and (9). If the system voltage is asymmetrical, the Δ conventional (9) is an AC component in addition to the DC component is generated, corresponding in the present invention (21)
Δ 3 ′ in the equation is only a DC component. Therefore, (21)
As can be seen from the equation , according to the present invention, each system phase current i
sa and isb do not include harmonic components. Therefore, the current i
The sc contains no harmonic components. This departure from the above
According to the description, better operation is possible.

【0042】請求項5に記載した、90°の代わりにθ
だけ遅れた相電圧を導出する回路は、θを90°未満に
すれば、90°だけ遅れた相電圧を導出する回路より
も、過渡応答特性がよくなり、さらに負荷に応じてθを
適当に選ぶことによって式(22)で定義されるfの交
流成分が小さくなり、上記fからfの交流成分を分離、
抽出する回路の過渡応答特性を向上できる。 f=ea"ia +eb"ib +ec"ic (22) ただし、ea"、eb"、ec":それぞれea 、eb 、ec
を位相角θ遅らせた電圧(11)、(12)、(22)
式から次式を得る。
According to claim 5, θ is used instead of 90 °.
A circuit that derives a phase voltage delayed only by 90 degrees has better transient response characteristics than a circuit that derives a phase voltage delayed by 90 degrees if θ is set to less than 90 °. By selection, the AC component of f defined by the equation (22) is reduced, and the AC component of f is separated from the above f.
The transient response characteristics of the extracted circuit can be improved. f = e a "i a + e b" i b + e c "i c (22) However, e a", e b " , e c": Each e a, e b, e c
(11), (12), (22) obtained by delaying the phase angle θ by
The following equation is obtained from the equation.

【0043】[0043]

【数14】 [Equation 14]

【0044】(23)式から次式を得る。The following equation is obtained from the equation (23).

【0045】[0045]

【数15】 (Equation 15)

【0046】Δ4"には直流成分だけが存在する。例えば
a"はea'、ea を用いて次式のように表される。 ea"=ea'sinθ+ea cosθ したがって、上記fは瞬時電力p、瞬時無効電力qを用
いて次式のように表される。 f=pcosθ+qsinθ (25) (23)、(24)、(25)式は系統の各部分で成立
する。無効電力補償装置が供給する瞬時電力pC 、瞬時
無効電力qC を(8)式のように定め、電流iC0が電流
L0と等しいとおけば、(8)、(24)、(25)式
から次式を得る。
Δ 4 "has only a DC component. For example, e a " is expressed by the following equation using e a 'and e a . e a "= e a 'sin θ + e a cos θ Therefore, the above f is expressed as follows using the instantaneous power p and the instantaneous reactive power q: f = pcos θ + q sin θ (25) (23), (24), ( Equation (25) is established in each part of the system: the instantaneous power p C and the instantaneous reactive power q C supplied by the reactive power compensator are determined as in Equation (8), and the current i C0 is equal to the current i L0. For example, the following equation is obtained from the equations (8), (24), and (25).

【0047】[0047]

【数16】 (Equation 16)

【0048】同様にして、(8)、(24)、(25)
式から系統電流isa、isb、iscは次式で表される。
Similarly, (8), (24), (25)
From the equations, the system currents isa , isb , and isc are expressed by the following equations.

【0049】[0049]

【数17】 [Equation 17]

【0050】系統電圧が非対称の場合、従来の(9)式
におけるΔには直流成分に加えて交流成分が生じるが
対応するこの発明における(27)式のΔ4"は直流成分
だけである。したがって、(27)式からわかるように
この発明によれば系統各相電流isa、isb、iscに高調
波成分が含まれず、より良好な動作が可能になる。
When the system voltage is asymmetric, the conventional equation (9)
In Δ at , an AC component occurs in addition to the DC component,
Delta 4 "of the corresponding (27) in the present invention is only the DC component. Accordingly, harmonic strain phase currents i sa, i sb, i sc according to the invention, as seen from (27) No components are included and better operation is possible.

【0051】請求項5に記載した位相遅れ回路を用いる
方法、あるいは請求項6に記載したメモリを用いる方法
は、αβ変換を用いていないので回路が簡単となる。ま
た、回路が簡単になるので、精度の高い出力電流指令値
が得られることになる。
The method using the phase delay circuit described in claim 5 or the method using the memory described in claim 6 simplifies the circuit because αβ conversion is not used. Further, since the circuit is simplified, a highly accurate output current command value can be obtained.

【0052】(削除) (Delete)

【0053】請求項8に記載した3相3線式の回路では
(17)式が成立する。(17)式を(11)、(2
2)式に代入し、次式を得る。
In the three-phase three-wire circuit according to the eighth aspect, equation (17) holds. Equation (17) is replaced by (11), (2)
2) Substituting into the equation, the following equation is obtained.

【0054】[0054]

【数18】 (Equation 18)

【0055】(28)式から次式を得る。The following equation is obtained from the equation (28).

【0056】[0056]

【数19】 [Equation 19]

【0057】Δ3"には直流成分だけが存在する。(2
8)、(29)式は系統の各部分で成立する。瞬時電力
C 、瞬時無効電力qC を(8)式のように定めると、
(8)、(25)、(29)式から補償電流指令iCa
Cbは次式で表される。
Δ 3 "has only a DC component (2).
Equations (8) and (29) hold for each part of the system. When the instantaneous power p C and the instantaneous reactive power q C are determined as in equation (8),
From equations (8), (25) and (29), the compensation current command i Ca ,
i Cb is represented by the following equation.

【0058】[0058]

【数20】 (Equation 20)

【0059】(30)式からわかるようにpLAC 、f
LAC を用いて無効電力補償装置の出力電流を導出でき
る。同様にして(8)、(25)、(29)式から系統
電流isa、isbは次式で表される。
As can be seen from equation (30), p LAC , f
The output current of the reactive power compensator can be derived using the LAC . Similarly, from equations (8), (25) and (29), the system currents isa and isb are expressed by the following equations.

【0060】[0060]

【数21】 (Equation 21)

【0061】(31)式のΔ3"は直流成分だけである。
したがって、(31)式からわかるように系統各相電流
sa、isbに高調波成分が含まれず、より良好な動作が
可能になる
Δ 3 "in equation (31) is only a DC component.
Therefore, as can be seen from equation (31), the system phase currents isa and isb do not include harmonic components, and a better operation is achieved.
Will be possible .

【0062】[0062]

【実施例】実施例1. 以下、この発明の実施例1を図に基づいて説明する。図
1の3相3線式系統において、1は電源、2は負荷、3
は3相3線式インバータ、21は系統電圧検出器、22
は負荷電流検出器、23は系統電圧検出器21と負荷電
流検出器22の検出結果から負荷瞬時電力pL を導出す
る負荷瞬時電力導出回路、24は系統電圧検出器21の
検出瞬時電圧の位相を90°遅らせる90゜遅延回路、
25は負荷電流検出器22と90゜遅延回路24の出力
から負荷瞬時無効電力qL を導出する負荷瞬時無効電力
導出回路、26は負荷瞬時電力導出回路23から交流成
分pLAC を抽出する第1の交流成分抽出回路、27は負
荷瞬時無効電力導出回路25から交流成分qLAC を抽出
する第2の交流成分抽出回路、28は系統電圧検出器2
1と90゜遅延回路24の出力からΔ3'を出力するΔ3'
導出回路、29は系統電圧検出器21、90゜遅延回路
24、第1の交流成分抽出回路26、第2の交流成分抽
出回路27、Δ3'導出回路28の出力から補償電流指令
CaとiCbを出力するiCa・iCb導出回路、30はiCa
・iCb導出回路29の出力から補償電流指令iCcを出力
するiCc導出回路である。補償電流指令iCa、iCbおよ
びiCcによって3相3線式インバータ3の出力電流を追
従させる。
[Embodiment 1] Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In the three-phase three-wire system of FIG. 1, 1 is a power supply, 2 is a load,
Is a three-phase three-wire inverter, 21 is a system voltage detector, 22
Is a load current detector, 23 is a load instantaneous power deriving circuit that derives load instantaneous power p L from detection results of the system voltage detector 21 and the load current detector 22, and 24 is a phase of the detected instantaneous voltage of the system voltage detector 21. 90 ° delay circuit for delaying 90 °
25 load instantaneous reactive power deriving circuit for deriving the load instantaneous reactive power q L from the output of the load current detector 22 and 90 ° delay circuit 24, the first 26 for extracting an AC component p LAC from the load instantaneous power deriving circuit 23 Is an AC component extraction circuit for extracting an AC component q LAC from the instantaneous load reactive power deriving circuit 25, and 28 is a system voltage detector 2
1 and delta 3 from the output of the 90 ° delay circuit 24 'outputs the delta 3'
The deriving circuit 29 is provided with a compensation current command i Ca based on the output of the system voltage detector 21, the 90 ° delay circuit 24, the first AC component extracting circuit 26, the second AC component extracting circuit 27, and the Δ 3 ′ deriving circuit 28. i Ca · i Cb derivation circuit for outputting a i Cb, 30 is i Ca
An i Cc deriving circuit that outputs a compensation current command i Cc from the output of the i Cb deriving circuit 29; The output current of the three-phase three-wire inverter 3 is made to follow the compensation current commands i Ca , i Cb and i Cc .

【0063】次に動作について説明する。系統電圧検出
器21では線間瞬時電圧(ea −ec )、(eb −e
c )を検出する。負荷電流検出器22では負荷のa、b
相瞬時電流iLa、iLbを検出する。負荷瞬時電力導出回
路23では(18)式から得られる次式を用いて負荷瞬
時電力pL を計算する。 pL =(ea −ec )iLa+(eb −ec )iLb (32) 90゜遅延回路24では(ea −ec )、(eb −e
c )の位相を90°遅らせた(ea −ec )' 、(eb
−ec)' を出力するが、これらはそれぞれ(ea'−
c')、(eb'−ec')に等しい。負荷瞬時無効電力導
出回路25では、(18)式から得られる次式に従って
負荷瞬時無効電力qL を導出する。 qL =(ea'−ec')iLa+(eb'−ec')iLb (33) 第1の交流成分抽出回路26では負荷瞬時電力pL から
交流成分pLAC を抽出し、第2の交流成分抽出回路27
では負荷瞬時無効電力qL から交流成分qLACを抽出す
る。Δ3'導出回路28では系統電圧検出器21の検出電
圧と90゜遅延回路24の位相を90°遅らせた電圧か
ら(19)式に従って△3'を導出する。iCa・iCb導出
回路29では、(20)式の演算を行う。すなわち、系
統電圧検出器21の検出電圧と90゜遅延回路24の位
相を90°遅らせた電圧からなる関数を第2の交流成分
抽出回路27の出力であるqLAC や第1の交流成分抽出
回路26の出力であるpLAC と乗じて、さらに両者を加
えることによって補償電流指令iCa、iCbを導出する。
Cc導出回路30では、次式に従ってiCcを導出する。 iCc=−(iCa+iCb) (34) iCa・iCb導出回路29、iCc導出回路30の出力が補
償電流指令であり、3相3線式インバータ3の出力電流
を追従させる。
Next, the operation will be described. In the system voltage detector 21 between lines instantaneous voltage (e a -e c), ( e b -e
c ) Detect. In the load current detector 22, the load a, b
The phase instantaneous currents i La and i Lb are detected. The instantaneous load power deriving circuit 23 calculates the instantaneous load power p L using the following equation obtained from the equation (18). p L = (e a -e c ) i La + (e b -e c) the i Lb (32) 90 ° delay circuit 24 (e a -e c), (e b -e
the phase of c) delayed 90 ° (e a -e c) ', (e b
−e c ) ′, which are respectively (e a ′ −
e c ′), (e b ′ −e c ′). The instantaneous load reactive power deriving circuit 25 derives the instantaneous load reactive power q L according to the following equation obtained from equation (18). extracts q L = (e a '-e c') i La + (e b '-e c') i Lb (33) AC component p LAC from the first AC component extracting circuit 26 in the load instantaneous power p L And a second AC component extraction circuit 27
Then, an AC component q LAC is extracted from the instantaneous load reactive power q L. Delta 3 derived 'from the detected voltage and the 90 degree phase voltage which is delayed 90 ° in the delay circuit 24 of the derivation circuit 28 in system voltage detector 21 (19) △ 3 according expression' a. The i Ca · i Cb derivation circuit 29 performs the operation of the equation (20). That is, a function consisting of the detection voltage of the system voltage detector 21 and a voltage obtained by delaying the phase of the 90 ° delay circuit 24 by 90 ° is represented by q LAC output from the second AC component extraction circuit 27 or the first AC component extraction circuit. The compensation current commands i Ca and i Cb are derived by multiplying by p LAC which is the output of 26 and adding both of them.
In i Cc derivation circuit 30 derives the i Cc according to the following formula. i Cc = − (i Ca + i Cb ) (34) The outputs of the i Ca · i Cb derivation circuit 29 and the i Cc derivation circuit 30 are compensation current commands, and follow the output current of the three-phase three-wire inverter 3.

【0064】実施例2. なお、上記実施例1では90゜遅延回路24により90
°遅れた線間電圧瞬時値を線間電圧瞬時値の位相遅れ回
路通過値から求める場合について述べたが、図2に示す
ように、90゜遅延回路24のかわりにAD変換器6
0、メモリ61とDA変換器62を設け、90°に相当
する時間だけ過去に記憶させた線間電圧瞬時値を出力す
るようにしている。このようにすれば実施例1に比べて
温度変化に起因する誤差が減少する。
Embodiment 2 FIG. In the first embodiment, the 90 ° delay circuit 24
Although the description has been given of the case where the delayed line voltage instantaneous value is obtained from the line voltage instantaneous value passed through the phase delay circuit, the AD converter 6 is used instead of the 90 ° delay circuit 24 as shown in FIG.
0, a memory 61 and a DA converter 62 are provided to output the instantaneous line voltage value stored in the past for a time corresponding to 90 °. In this way, errors caused by temperature changes are reduced as compared with the first embodiment.

【0065】実施例3. なお、上記実施例1、実施例2では第2の交流成分抽出
回路27により負荷瞬時無効電力導出回路25の出力で
ある負荷瞬時無効電力qL から交流成分qLACを抽出す
る場合を述べたが、図3に示すように、交流成分抽出回
路27を取り除き、25の出力qL を直接29に入力し
て、補償電流指令iCa、iCbを導出するようにした。す
なわち、(20)式においてqLAC のかわりに負荷瞬時
無効電力qL を用いて補償電流指令iCa、iCbを導出す
ることになる。この場合、無効電力補償装置は高調波電
流と無効電流を供給することになる。
Embodiment 3 FIG. In the first and second embodiments, the case where the second AC component extraction circuit 27 extracts the AC component q LAC from the instantaneous load reactive power q L output from the instantaneous load reactive power derivation circuit 25 has been described. As shown in FIG. 3, the AC component extraction circuit 27 is removed, and the output q L of 25 is directly input to 29 to derive the compensation current commands i Ca and i Cb . That is, in equation (20), the compensation current commands i Ca and i Cb are derived using the instantaneous load reactive power q L instead of q LAC . In this case, the reactive power compensator supplies a harmonic current and a reactive current.

【0066】実施例4. なお、上記実施例1、実施例2、実施例3では3相3線
式系統の場合を取り扱っているが、図4に示すように3
相4線式系統では図1の3と異なり3相4線式インバー
タ4を用い、また図1の系統電圧検出器21と異なり、
系統電圧検出器41では中性線から測った各相の瞬時電
圧ea 、eb 、ec を検出する。さらに、図1の負荷電
流検出器22と異なり、負荷電流検出器42では3相の
負荷電流iLa、iLb、iLcを検出している。90°遅れ
回路34では系統電圧検出器41の出力から位相を90
°遅らせたea'、eb'、ec'を導出する。負荷瞬時電力
導出回路43では(11)式から得られる次式に従って
系統電圧検出器41、負荷電流検出器42の出力から負
荷瞬時電力pL を導出する。 pL =eaLa+ebLb+ecLc (35) 負荷瞬時無効電力導出回路45では(10)式から得ら
れる次式に従って90°遅れ回路34、負荷電流検出器
42の出力から負荷瞬時無効電力qL を導出する。 qL =ea'iLa+eb'iLb+ec'iLc (36) Δ4'導出回路48では(14)式に従って90°遅れ回
路34、系統電圧検出器41の出力からΔ4'を導出す
る。加算回路46では負荷電流検出器42の出力から
(12)式にしたがって負荷中性線電流iL0を導出す
る。補償電流導出回路49では(15)式に基づき補償
電流指令iCa、iCb、iCcを第1の交流成分抽出回路2
6、第2の交流成分抽出回路27、90°遅れ回路3
4、系統電圧検出器41、加算回路46、Δ4'導出回路
48の出力から導出する。これら補償電流指令に3相4
線式インバータ4の出力電流を追従させる。
Embodiment 4 FIG. Although the first, second, and third embodiments deal with the case of a three-phase three-wire system, as shown in FIG.
The three-phase four-wire system uses a three-phase four-wire inverter 4 unlike 3 in FIG. 1, and differs from the system voltage detector 21 in FIG.
Instantaneous voltage of each phase was measured from the neutral line in the system voltage detector 41 e a, e b, detects a e c. Further, unlike the load current detector 22 of FIG. 1, the load current detector 42 detects three-phase load currents i La , i Lb , and i Lc . In the 90 ° delay circuit 34, the phase is output from the output of the system voltage detector 41 by 90 °.
° derive e a ′, e b ′, and e c ′. The load instantaneous power deriving circuit 43 derives the load instantaneous power p L from the outputs of the system voltage detector 41 and the load current detector 42 according to the following expression obtained from Expression (11). p L = e a i La + e b i Lb + e c i Lc (35) 90 ° in accordance with the following formula obtained from the load in the instantaneous reactive power derivation circuit 45 (10) delay circuit 34, the output of the load current detector 42 The instantaneous load reactive power q L is derived. q L = e a 'i La + e b ' i Lb + e c 'i Lc (36) Δ 4 ' In the derivation circuit 48, the 90 ° delay circuit 34 and the output of the system voltage detector 41 are Δ 4 'in accordance with the equation (14). Is derived. The adder circuit 46 derives a load neutral line current i L0 from the output of the load current detector 42 according to equation (12). The compensating current deriving circuit 49 converts the compensating current commands i Ca , i Cb , i Cc into the first AC component extracting circuit 2 based on equation (15).
6. Second AC component extraction circuit 27, 90 ° delay circuit 3
4. Derived from the outputs of the system voltage detector 41, the adding circuit 46, and the Δ 4 'deriving circuit 48. These compensation current commands have three phases and four
The output current of the linear inverter 4 is made to follow.

【0067】実施例5. なお、上記実施例1では90°遅れ回路24において系
統線間電圧を90°遅らせた電圧を導出し、負荷瞬時無
効電力導出回路25において90°遅れ回路24の出力
と負荷電流とから負荷瞬時無効電力qL を導出する場合
を述べたが、図5に示すように、90°遅れ回路24の
代わりに任意の角度θだけ遅れた線間電圧瞬時値ea"−
c"、eb"−ec"を導出するθ遅れ回路54を設ける。
(28)式から得られる次式に従ってθ遅れ回路54の
出力と負荷電流検出器22の出力iLa、iLbから下記f
L を出力する回路は、図1における負荷瞬時無効電力導
出回路25と同一となる。 fL =(ea"−ec")iLa+(eb"−ec")iLb (37) したがって、θ遅れ回路54、負荷電流検出器22の出
力から(28)式に基づき負荷瞬時無効電力導出回路2
5において上記fL を導出する。なお、(29)式に従
ってea −ec 、eb −ec 、ea"−ec"、eb"−ec"
からΔ3"を導出する、図1におけるΔ3'導出回路28と
同一のものである。したがって、系統電圧検出器21、
θ遅れ回路54の出力から(29)式に従ってΔ3'導出
回路28においてΔ3"を導出する。補償電流指令iCa
Cbは、系統電圧検出回路21、第1の交流成分抽出回
路26、第2の交流成分抽出回路27、Δ3'導出回路2
8、θ遅れ回路54の出力から(30)式に従って、i
Ca・iCb導出回路29において導出される。iCc導出回
路30においてiCa・iCb導出回路29の出力から補償
電流指令iCcを導出する。これら補償電流指令に3相3
線式インバータ3の出力電流を追従させる。θだけ遅れ
た線間電圧を導出する回路は、θを90°未満にすれ
ば、90°だけ遅れた線間電圧を導出する回路よりも、
過渡応答特性がよくなり、さらに負荷に応じてθを適当
に選ぶことによって上記fL の交流成分fLAC が小さく
なり、fL からfLAC を抽出する回路の過渡応答特性を
向上させることができる。
Embodiment 5 FIG. In the first embodiment, the 90 ° delay circuit 24 derives a voltage obtained by delaying the system line voltage by 90 °, and the load instantaneous reactive power deriving circuit 25 determines the load instantaneous reactive power from the output of the 90 ° delay circuit 24 and the load current. Although the case of deriving the power q L has been described, as shown in FIG. 5, the line voltage instantaneous value e a "− delayed by an arbitrary angle θ instead of the 90 ° delay circuit 24 is used.
e c ", e b" provided θ delay circuit 54 for deriving a -e c ".
The following f is obtained from the output of the θ delay circuit 54 and the outputs i La and i Lb of the load current detector 22 according to the following equation obtained from the equation (28).
The circuit that outputs L is the same as the instantaneous load reactive power deriving circuit 25 in FIG. f L = (e a "-e c") i La + (e b "-e c") i Lb (37) Therefore, theta delay circuit 54 based on the output from (28) of the load current detector 22 Load instantaneous reactive power derivation circuit 2
At 5, the above f L is derived. Incidentally, (29) e a -e c according equation, e b -e c, e a "-e c", e b "-e c"
Deriving a delta 3 "from is the same as the delta 3 'deriving circuit 28 in FIG. 1. Accordingly, the system voltage detector 21,
deriving a delta 3 "in delta 3 'deriving circuit 28 according to the output (29) of θ delay circuit 54. compensation current command i Ca,
i Cb is a system voltage detection circuit 21, a first AC component extraction circuit 26, a second AC component extraction circuit 27, a Δ 3 ′ derivation circuit 2
8. From the output of the θ delay circuit 54, i
It is derived in the Ca · i Cb derivation circuit 29. The i Cc deriving circuit 30 derives a compensation current command i Cc from the output of the i Ca · i Cb deriving circuit 29. These compensation current commands have three phases and three
The output current of the linear inverter 3 is made to follow. A circuit that derives a line voltage delayed by θ is less than a circuit that derives a line voltage delayed by 90 ° if θ is less than 90 °.
Transient response is improved, it is possible to further AC component f LAC of the f L is reduced by appropriately choosing θ according to the load, to improve the transient response characteristics of the circuit for extracting the f LAC from f L .

【0068】実施例6. なお、上記実施例4では34において系統線間電圧の9
0°遅れた電圧を導出し、負荷瞬時無効電力導出回路4
5において90°遅れ回路34の出力と負荷電流検出器
42の出力である負荷電流とから負荷瞬時無効電力qL
を導出する場合を述べたが、図6に示すように、90°
遅れ回路34の代わりに、各相電圧から任意の角度θだ
け遅れた電圧の瞬時値ea"、eb"、ec"を出力するθ遅
れ回路64を設ける。(22)式から得られる次式に従
ってθ遅れ回路64の出力と負荷電流検出器42の出力
La、iLb、iLcから下記fL を導出する回路は、図4
における負荷瞬時無効電力導出回路45と同一となる。 fL =ea"iLa+eb"iLb+ec"iLc (37) したがって、負荷瞬時無効電力導出回路45において負
荷電流検出器42、θ遅れ回路64の出力から(22)
式に基づき上記fL を導出する。なお、(24)式に従
ってea 、eb 、ec およびea"、eb"、ec"からΔ4"
を導出するΔ4"導出回路は、図4におけるΔ4'導出回路
48と同一である。したがって、系統電圧検出器41、
θ遅れ回路64の出力から(24)式に従ってΔ4'導出
回路48においてΔ4"を導出する。補償電流指令iCa
Cb、iCcは、第1の交流成分抽出回路26、第2の交
流成分抽出回路27、系統電圧検出器41、加算回路4
6、θ遅れ回路64の出力から(26)式に従って、補
償電流導出回路49において導出される。これら補償電
流指令に3相4線式インバータ4の出力電流を追従させ
る。θだけ遅れた相電圧を導出する回路は、θを90°
未満にすれば、90°だけ遅れた相電圧を導出する回路
よりも、過渡応答特性がよくなり、さらに負荷に応じて
θを適当に選ぶことによってfL の交流成分fLAC が小
さくなり、fL からfLAC を抽出する回路の過渡応答特
性を向上させることができる。また、上記実施例ではイ
ンバータの直流側にはコンデンサやリアクトルが存在す
る場合を考えているが、蓄電池や超電導エネルギー貯蔵
装置が存在する場合であってもよく、上記実施例と同様
の効果を奏する。
Embodiment 6 FIG. In the fourth embodiment, at 34, the system line voltage 9
Deriving the voltage delayed by 0 °, the load instantaneous reactive power deriving circuit 4
5, the instantaneous reactive power q L based on the output of the 90 ° delay circuit 34 and the load current output from the load current detector 42.
Has been described, but as shown in FIG.
Instead of the delay circuit 34, there is provided a θ delay circuit 64 that outputs instantaneous values e a , e b , and e c of voltages delayed by an arbitrary angle θ from each phase voltage, which is obtained from Expression (22). A circuit that derives the following f L from the output of the θ delay circuit 64 and the outputs i La , i Lb , and i Lc of the load current detector 42 according to the following equation is shown in FIG.
, The same as the instantaneous load reactive power deriving circuit 45. f L = e a "i La + e b " i Lb + e c "i Lc (37) Therefore, in the instantaneous reactive power deriving circuit 45, the output of the load current detector 42 and the output of the θ delay circuit 64 are (22)
The above f L is derived based on the equation. It should be noted that e a , e b , e c and e a ", e b ", e c "to Δ 4 "
Delta 4 "derivation circuit for deriving a is the same as the delta 4 'deriving circuit 48 in FIG. 4. Thus, the system voltage detector 41,
deriving a delta 4 "in delta 4 'deriving circuit 48 in accordance with the output from (24) of θ delay circuit 64. compensation current command i Ca,
i Cb and i Cc are a first AC component extraction circuit 26, a second AC component extraction circuit 27, a system voltage detector 41, and an addition circuit 4.
6, derived from the output of the θ delay circuit 64 in the compensation current deriving circuit 49 according to the equation (26). The output current of the three-phase four-wire inverter 4 is made to follow these compensation current commands. The circuit that derives the phase voltage delayed by θ is 90 °
If it is less than 90%, the transient response characteristic is better than that of a circuit that derives a phase voltage delayed by 90 °, and the AC component f LAC of f L is reduced by appropriately selecting θ according to the load, and f Transient response characteristics of a circuit that extracts f LAC from L can be improved. Further, in the above embodiment, a case is considered in which a capacitor or a reactor is present on the DC side of the inverter. However, a case where a storage battery or a superconducting energy storage device is present may be provided, and the same effects as those in the above embodiment can be obtained. .

【0069】[0069]

【発明の効果】以上のように、この発明によれば、系統
電圧に逆相分、零相分が存在する場合でも、その平均値
が正しい無効電力となるような従来の定義と異なる新し
い瞬時無効電力の定義を採用し、この量を用いる補償電
流導出回路を構成したので、系統電圧に逆相分、零相分
が存在する場合でも系統電流が正弦波となるような特性
の良好な電力用高調波・無効電力補償装置を得られる。
また、従来用いられていたαβ変換を用いていないので
出力電流導出回路が簡単になり、その結果精度の高い出
力電流指令値が得られることになる。
As described above, according to the present invention, even when a negative phase component and a negative phase component exist in the system voltage, a new instantaneous value different from the conventional definition is obtained in which the average value is correct reactive power. Since the compensation current derivation circuit using this amount is adopted by adopting the definition of reactive power, good power with good characteristics such that the system current becomes a sine wave even when there is a negative phase component or a zero phase component in the system voltage Harmonic / reactive power compensator can be obtained.
Further, since the αβ conversion conventionally used is not used, the output current deriving circuit is simplified, and as a result, an output current command value with high accuracy can be obtained.

【0070】出力電流指令値を導出するために必要な、
3相電源の各相電圧を90゜遅らせた瞬時電圧を位相遅
れ回路を用いて求める方式は、位相遅れ回路がオペアン
プとコンデンサと抵抗だけから作成できるので、装置が
安価にできる。
The output current command value required to derive the
In the method of obtaining an instantaneous voltage obtained by delaying each phase voltage of the three-phase power supply by 90 ° using a phase delay circuit, the apparatus can be inexpensive because the phase delay circuit can be formed only from an operational amplifier, a capacitor, and a resistor.

【0071】出力電流指令値を導出するために必要な、
3相電源の各相電圧を90゜遅らせた瞬時電圧をメモリ
を用いて求める方式では温度変化に起因する誤差が減少
する。
The output current command value required to derive the
In a method of using a memory to obtain an instantaneous voltage obtained by delaying each phase voltage of the three-phase power supply by 90 °, an error due to a temperature change is reduced.

【0072】90°未満のθだけ遅れた電圧を導出する
回路は、90°遅れた電圧を導出する回路よりも過渡応
答特性がよくなり、さらに負荷に応じてθを適当に選ぶ
ことによってfL の交流成分fLAC が小さくなりfL
らfLAC を抽出する回路の過渡応答特性を向上させるこ
とができるので、電圧を任意の角度θだけ遅らせた瞬時
電圧を基にして出力電流指令値を導出する回路を備えた
装置は過渡応答特性がよくなる。
A circuit that derives a voltage delayed by θ less than 90 ° has a better transient response characteristic than a circuit that derives a voltage delayed by 90 °, and furthermore, by appropriately selecting θ according to the load, f L Since the AC component f LAC becomes smaller and the transient response characteristic of the circuit that extracts f LAC from f L can be improved, the output current command value is derived based on the instantaneous voltage obtained by delaying the voltage by an arbitrary angle θ. A device provided with such a circuit has improved transient response characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施例1を示すブロック図であ
る。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】 この発明の実施例2を示すブロック図であ
る。
FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】 この発明の実施例3を示すブロック図であ
る。
FIG. 3 is a block diagram showing a third embodiment of the present invention.

【図4】 この発明の実施例4を示すブロック図であ
る。
FIG. 4 is a block diagram showing a fourth embodiment of the present invention.

【図5】 この発明の実施例5を示すブロック図であ
る。
FIG. 5 is a block diagram showing Embodiment 5 of the present invention.

【図6】 この発明の実施例6を示すブロック図であ
る。
FIG. 6 is a block diagram showing Embodiment 6 of the present invention.

【図7】 従来の瞬時電力・無効電力理論に基づく無効
電力補償装置のブロック図である。
FIG. 7 is a block diagram of a conventional reactive power compensator based on the instantaneous power / reactive power theory.

【符号の説明】[Explanation of symbols]

1 電源 2 負荷 3 3相3線式インバータ 4 3相4線式インバータ 5 αβ成分変換回路 6 αβ成分変換回路 7 負荷瞬時電力導出回路 8 負荷瞬時無効電力導出回路 9 Δ導出回路 10 、i 導出回路 11 各相成分変換回路 21 系統電圧検出器 22 負荷電流検出器 23 負荷瞬時電力導出回路 24 90°遅れ回路 25 負荷瞬時無効電力導出回路 26 交流成分抽出回路 27 交流成分抽出回路 28 Δ'導出回路 29 iCa、iCb導出回路 30 iCc導出回路 34 90°遅れ回路 41 系統電圧検出器 42 負荷電流検出器 43 負荷瞬時電力導出回路 44 位相角θ遅れ回路 45 負荷瞬時無効電力導出回路 46 加算回路 48 Δ4'導出回路 49 補償電流導出回路 54 θ遅れ回路 60 AD変換器 61 メモリ 62 DA変換器 64 θ遅れ回路Reference Signs List 1 power supply 2 load 3 three-phase three-wire inverter 4 three-phase four-wire inverter 5 αβ component conversion circuit 6 αβ component conversion circuit 7 load instantaneous power derivation circuit 8 load instantaneous reactive power derivation circuit 9 Δ derivation circuit 10 i , i derivation circuit 11 Each phase component conversion circuit 21 System voltage detector 22 Load current detector 23 Load instantaneous power derivation circuit 24 90 ° delay circuit 25 Load instantaneous reactive power derivation circuit 26 AC component extraction circuit 27 AC component extraction circuit 28 Δ ' Derivation circuit 29 i Ca , i Cb derivation circuit 30 i Cc derivation circuit 34 90 ° delay circuit 41 System voltage detector 42 Load current detector 43 Load instantaneous power derivation circuit 44 Phase angle θ delay circuit 45 Load instantaneous reactive power derivation circuit 46 summing circuit 48 delta 4 'deriving circuit 49 compensation current derived circuit 54 theta delay circuit 60 AD converter 61 memory 62 DA converter 64 theta Re circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 知宏 神戸市兵庫区和田崎町1丁目1番2号 三菱電機株式会社 神戸製作所内 (56)参考文献 特開 昭55−125035(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/18 G05F 1/70 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tomohiro Kobayashi 1-2-1, Wadazakicho, Hyogo-ku, Kobe-shi, Mitsubishi Electric Corporation Kobe Works (56) References JP-A-55-125035 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H02J 3/18 G05F 1/70

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 3相電力系統における負荷電流の高調波
電流または無効電流または逆相電流を供給する電力用高
調波・無効電力補償装置において、 上記3相電力系統の各相瞬時電圧の位相を90°遅らせ
た電圧を導出する移相手段該移相手段の出力と上記3
相電力系統の各相瞬時電流との積から3相一括の瞬時無
効電力を導出する瞬時無効電力演算回路該瞬時無効電
力演算回路の出力から交流成分を抽出し、該交流成分と
上記移相回路の出力を乗じ補償電流指令値を導出する補
償電流指令値演算回路を備えたことを特徴とする電力用
高調波・無効電力補償装置。
1. A harmonic of a load current in a three-phase power system.
High for power to supply current or reactive current or negative phase current
In harmonic and reactive power compensator, phase shifting means, the output of該移phase means and said 3 to derive a voltage phase and the delayed 90 ° in phase instantaneous voltage of the three-phase power system
Instantaneous reactive power calculating circuit for deriving the instantaneous reactive power of phase segregated from the product of the phase instantaneous current phase power system, disable conductive when instantaneous
An AC component is extracted from the output of the force calculation circuit, and the AC component is
Compensation for deriving a compensation current command value by multiplying the output of the phase shift circuit
A harmonic / reactive power compensating device for electric power, comprising a compensation current command value calculating circuit .
【請求項2】 上記移相手段として位相遅れ回路を用い
ことを特徴とする請求項1記載の電力用高調波・無効
電力補償装置。
2. A phase delay circuit is used as said phase shift means.
2. The power harmonic / reactive power compensator according to claim 1, wherein:
【請求項3】 上記移相手段として、各相瞬時電圧の値
をメモリに書き込み、それを定められた時間の後に読み
出して求めるように構成したことを特徴とする請求項1
記載の電力用高調波・無効電力補償装置。
As claimed in claim 3 wherein said phase shifting means, writing a value of each phase instantaneous voltage in the memory, claim 1, characterized by being configured to determine by reading after a time determined it
The harmonic / reactive power compensator for power described.
【請求項4】 3相3線式電力系統において、該3相3
線式電力系統の2相の電流信号を用い上記瞬時無効電力
演算回路を構成したことを特徴とする請求項1から3の
いずれかに記載の電力用高調波・無効電力補償装置。
4. A three-phase three-wire electric power system, the 3-phase 3
The instantaneous reactive power using the two-phase current signal of the wire power system
4. An arithmetic circuit according to claim 1, wherein:
The power harmonic / reactive power compensator according to any one of the above.
【請求項5】 3相電力系統の負荷電流の高調波電流
たは無効電流または逆相電流を供給する電力用高周波・
無効電力補償装置において、 上記3相電力系統の各相瞬時電圧の位相を任意の角度θ
遅らせた電圧を導出する移相手段該移相手段の出力
上記3相電力系統の各相瞬時電流の積から3相一括の瞬
時無効電力qと瞬時電力pについての関数pcosθ+
qsinθの値を導出する関数演算回路該関数演算回
路の出力から交流成分を抽出し、その交流成分と上記移
相手段の出力を乗じ補償電流指令値を導出する補償電流
指令値演算回路を備えたことを特徴とする電力用高調波
・無効電力補償装置。
5. A high-frequency power supply for supplying a harmonic current or a reactive current or a negative-phase current of a load current of a three-phase power system.
In the reactive power compensator , the phase of the instantaneous voltage of each phase of the three-phase power system is set to an arbitrary angle θ
Phase shift means for deriving a delayed voltage, an output of the phase shift means ,
From the product of the instantaneous current of each phase of the three-phase power system, a function pcos θ +
function arithmetic circuit for deriving a value of qsinθ, the function number of operation times
Extract the AC component from the output of the road, and
Compensation current to derive compensation current command value by multiplying output of phase means
A power harmonic / reactive power compensator comprising a command value calculation circuit .
【請求項6】 上記移相手段として位相遅れ回路を用い
ことを特徴とする請求項5記載の電力用高調波・無効
電力補償装置。
6. A phase delay circuit is used as said phase shift means.
Power harmonics and reactive power compensation device according to claim 5, characterized in that the.
【請求項7】 上記移相手段として、各相瞬時電圧の値
をメモリに書き込み、それを定められた時間の後に読み
出して求めるように構成したことを特徴とする請求項5
記載の電力用高調波・無効電力補償装置。
7. The phase shifting means according to claim 5, wherein a value of the instantaneous voltage of each phase is written in a memory and read out after a predetermined time to obtain the value.
The harmonic / reactive power compensator for power described.
【請求項8】 3相3線式電力系統において、該3相3
線式電力系統の2相の電流信号を用い上記関数演算回路
を構成したことを特徴とする請求項5から7のいずれか
に記載の電力用高調波・無効電力補償装置。
8. The three-phase three-wire electric power system, the 3-phase 3
Function calculation circuit using two-phase current signals of a wire power system
Power harmonics and reactive power compensator according to <br/> any one of claim 5, wherein 7 that constitute the.
JP05263492A 1993-10-21 1993-10-21 Power harmonic / reactive power compensator Expired - Lifetime JP3104492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05263492A JP3104492B2 (en) 1993-10-21 1993-10-21 Power harmonic / reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05263492A JP3104492B2 (en) 1993-10-21 1993-10-21 Power harmonic / reactive power compensator

Publications (2)

Publication Number Publication Date
JPH07121254A JPH07121254A (en) 1995-05-12
JP3104492B2 true JP3104492B2 (en) 2000-10-30

Family

ID=17390277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05263492A Expired - Lifetime JP3104492B2 (en) 1993-10-21 1993-10-21 Power harmonic / reactive power compensator

Country Status (1)

Country Link
JP (1) JP3104492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086460B1 (en) * 2016-08-21 2017-03-01 次郎 蔭山 Short nail file

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673174B2 (en) * 2005-09-22 2011-04-20 東芝三菱電機産業システム株式会社 Semiconductor switch control device
JP5018205B2 (en) * 2007-04-23 2012-09-05 富士電機株式会社 Calculation method in reactive power compensator
JP2010041843A (en) * 2008-08-06 2010-02-18 Fuji Electric Systems Co Ltd Operation system in reactive power compensator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086460B1 (en) * 2016-08-21 2017-03-01 次郎 蔭山 Short nail file

Also Published As

Publication number Publication date
JPH07121254A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
EP0119583B1 (en) Ac current control system
KR101212830B1 (en) Unbalanced voltage compensation method, unbalanced voltage compensator, three-phase converter control method, and controller of three-phase converter
US4755738A (en) Reactive power compensation apparatus
JP4673174B2 (en) Semiconductor switch control device
JP5560730B2 (en) Power converter control method, uninterruptible power supply, parallel sag compensator
JP3104492B2 (en) Power harmonic / reactive power compensator
JP2933640B2 (en) AC power converter controller
Ko et al. A new PLL system using full order observer and PLL system modeling in a single phase grid-connected inverter
Ukil et al. Power systems frequency estimation using amplitude tracking square wave for low-end protective relays
JP2003032895A (en) Method of measuring loss in tidal current controller, and its use
Mendalek et al. A non-linear optimal predictive control of a shunt active power filter
JP2000059995A (en) Compensating apparatus of higher-harmonic reactive power for power system
Sivakumar et al. Modeling, analysis and control of bidirectional power flow in grid connected inverter systems
JP2674402B2 (en) Parallel operation control device for AC output converter
JP3611235B2 (en) Active filter control method
Arya et al. Enhancement of power quality in wind based distributed generation system using adaptive vectorial filter
Pathak et al. Implementation of MVF-based control technique for 3-Φ distribution static compensator
JPH05297030A (en) Detection method of voltage drop
JP4107570B2 (en) Control method of self-excited converter
Lee et al. AC voltage and current sensorless control of three-phase PWM rectifiers
JP6134558B2 (en) Isolated operation detection circuit, isolated operation detection method, and grid-connected inverter device provided with isolated operation detection circuit
KR100635717B1 (en) Phase Locked Loop
He et al. Robust Predictive Rotor Current Control of DFIGs Based on an Adaptive Ultra-local Model
JP2017005859A (en) Isolated operation detection device for distributed power source
Xu et al. A Novel Negative Sequence Current Control System for Electrified Railway

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term