JP5017976B2 - Manufacturing method and manufacturing apparatus for fiber reinforced resin member - Google Patents

Manufacturing method and manufacturing apparatus for fiber reinforced resin member Download PDF

Info

Publication number
JP5017976B2
JP5017976B2 JP2006249047A JP2006249047A JP5017976B2 JP 5017976 B2 JP5017976 B2 JP 5017976B2 JP 2006249047 A JP2006249047 A JP 2006249047A JP 2006249047 A JP2006249047 A JP 2006249047A JP 5017976 B2 JP5017976 B2 JP 5017976B2
Authority
JP
Japan
Prior art keywords
resin
mold
fiber
shaping
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006249047A
Other languages
Japanese (ja)
Other versions
JP2007118577A (en
Inventor
真明 山崎
彰彦 北野
一朗 武田
俊英 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006249047A priority Critical patent/JP5017976B2/en
Publication of JP2007118577A publication Critical patent/JP2007118577A/en
Application granted granted Critical
Publication of JP5017976B2 publication Critical patent/JP5017976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、自動車などの輸送機器、スポーツ用具に広く用いられている繊維強化プラスチック部材を再現性良く製造することができる繊維強化樹脂部材の製造方法および製造装置に関する。   The present invention relates to a method and an apparatus for manufacturing a fiber reinforced resin member capable of manufacturing a fiber reinforced plastic member widely used in transportation equipment such as automobiles and sports equipment with good reproducibility.

エポキシ樹脂やポリプロピレン樹脂などの樹脂(プラスチック)を、ガラス繊維や炭素繊維などの強化繊維で強化した、繊維強化プラスチックは、軽量、高強度、高剛性であるため、自動車などの輸送機器の部材、テニスラケットやスキー板などのスポーツ用具に広く用いられている。   Fiber reinforced plastic made by reinforcing resin (plastic) such as epoxy resin and polypropylene resin with reinforcing fibers such as glass fiber and carbon fiber is lightweight, high strength and high rigidity. Widely used in sports equipment such as tennis rackets and skis.

これらの部材や用具の製造方法としては、大別して、オートクレーブ成形法とレジントランスファー成形法がある。   The methods for producing these members and tools are roughly classified into an autoclave molding method and a resin transfer molding method.

オートクレーブ成形法とは、プリプレグと称される強化繊維基材に樹脂を予め含浸させた粘着性のシート状材料を、成形型上で、所定の形状に賦形した後、成形型上に載置したまま、オートクレーブと称される炉中で、加熱、加圧して部材を製造する方法である。   The autoclave molding method is a method in which an adhesive sheet-like material, which is pre-impregnated with a reinforcing fiber substrate called a prepreg, is shaped into a predetermined shape on a mold and then placed on the mold. This is a method for producing a member by heating and pressing in an oven called an autoclave.

本オートクレーブ成形法による製造方法は、成形型上に、粘着性のプリプレグを重ねていくため、プリプレグを所定の形状に賦形した後も、プリプレグが移動しない、形状変化しないというメリットがあるが、賦形や積層作業中も成形型を占有するため、生産性に劣るというデメリットがある。複数の型を準備して大量生産するという対策もあるが、成形型は高価であり、コスト高となる。   The manufacturing method by this autoclave molding method has an advantage that the prepreg does not move or change shape after the prepreg is shaped into a predetermined shape because the adhesive prepreg is stacked on the mold. There is a demerit that it is inferior in productivity because the mold is occupied during shaping and laminating operations. Although there is a measure to prepare a plurality of molds for mass production, the molds are expensive and costly.

一方、樹脂とは別に、強化繊維基材だけを予め所定の形状に賦形し、その後、強化繊維基材に樹脂を含浸させるというレジントランファー成形法(RTM成形法と称される)が、自動車部材やスポーツ用具の低コスト成形法として注目されている。   On the other hand, a resin transfer molding method (referred to as RTM molding method) in which only the reinforcing fiber base is shaped into a predetermined shape in advance, and then the reinforcing fiber base is impregnated with the resin, separately from the resin, It is attracting attention as a low-cost molding method for automobile parts and sports equipment.

本レジントランファー成形法による製造方法は、賦形型と称される、成形型とは別の型上で、樹脂が含浸されていない強化繊維基材(ドライの強化繊維基材と称する)を所定の形状に賦形するため、強化繊維基材が変形しやすく、成形型の占有時間が大幅に短縮でき、大量生産が可能となる。ただし、賦形型上で所定の形状に賦形した強化繊維基材は、樹脂を注入、硬化させる成形型上に、移動して配置(移載)させる必要があり、移載の際に、強化繊維基材の形状が変化して、成形型上で強化繊維基材を再度賦形しなくてはならなくなり、折角の賦形工程が無駄になるというばかりではなく、最終部材の性能が部材毎に異なるという、再現性が確保できないという製品安全上の決定的な問題を孕んでいる。   The manufacturing method by the present resin transfer molding method is called a shaping mold, and a reinforcing fiber base material that is not impregnated with a resin (referred to as a dry reinforcing fiber base material) on a mold different from the molding die. Since it is shaped into a predetermined shape, the reinforcing fiber base is easily deformed, the occupation time of the mold can be greatly shortened, and mass production becomes possible. However, the reinforcing fiber base shaped into a predetermined shape on the shaping mold needs to be moved and arranged (transferred) on the mold for injecting and curing the resin. The shape of the reinforcing fiber base has changed and the reinforcing fiber base has to be shaped again on the mold, which not only wastes the corner shaping process but also the performance of the final member It has a decisive problem in product safety that reproducibility cannot be ensured.

このため、強化繊維基材を賦形した後、固着材とよばれる樹脂や粘着性物質を付与して、強化繊維基材の形状を安定化する技術が提案されている。しかしなから、固着材の種類や量によっては、吸湿や温度により、強化繊維基材の形状が崩れるといった問題や、強化繊維基材に注入する樹脂との相溶性が悪く、樹脂の硬化を阻害したり、樹脂および繊維強化プラスチック部材の機械物性を低下させるという問題が生じる場合がある。特に、強化繊維基材の形状を安定化させるために、固着材を大量に付与すると、強化繊維基材間の隙間が減少し、レジントランスファー成形における樹脂が、強化繊維基材間に入らず(含浸性が低下すると称する)、ボイドなどの欠陥が生じて、部材の機械物性を低下させるという新たな製品安全上の問題も発生する可能性がある。   For this reason, after shaping the reinforcing fiber base, a technique for stabilizing the shape of the reinforcing fiber base by applying a resin or adhesive substance called a fixing material has been proposed. However, depending on the type and amount of the fixing material, there is a problem that the shape of the reinforcing fiber base may be lost due to moisture absorption or temperature, and the compatibility with the resin injected into the reinforcing fiber base is poor, which inhibits the curing of the resin. Or the mechanical properties of the resin and fiber-reinforced plastic member may be reduced. In particular, in order to stabilize the shape of the reinforcing fiber base, when a large amount of fixing material is applied, the gap between the reinforcing fiber bases is reduced, and the resin in the resin transfer molding does not enter between the reinforcing fiber bases ( There is a possibility that a new product safety problem that a defect such as a void or the like deteriorates the mechanical properties of the member is caused.

従来、強化繊維基材の形状を安定化させるために、固着材としてバインダーを用いる方法が提案されている(例えば、特許文献1参照)。しかし、このときバインダーの使用量は使用する強化繊維基材100質量部に対して、40〜70質量部にものぼり、バインダーによる成形品の機械物性への悪影響が懸念される。   Conventionally, in order to stabilize the shape of the reinforcing fiber substrate, a method using a binder as a fixing material has been proposed (see, for example, Patent Document 1). However, at this time, the amount of the binder used is 40 to 70 parts by mass with respect to 100 parts by mass of the reinforcing fiber base to be used, and there is a concern that the binder may adversely affect the mechanical properties of the molded product.

また、薄いトレーを使って搬送するという技術が提案されているが(例えば、特許文献2参照)、この方法ではトレーに直接強化繊維基材を賦形するため、成形品形状が大型化、複雑化してくると、薄いトレーに強化繊維基材を賦形する工程でトレーが変形を起こし、成形型にセットできなくなったり、強引に成形型にセットしても型の間に噛みこんで、型閉じができない事態が生じる。あるいは、形状の崩れを抑制するために固着材を大量に付与しなくてはならず、上記した問題発生の可能性を孕んでいるのが現実である。   In addition, a technique of transporting using a thin tray has been proposed (see, for example, Patent Document 2), but in this method, a reinforcing fiber substrate is directly formed on the tray, so that the shape of the molded product becomes large and complicated. As it turns, the tray deforms in the process of shaping the reinforcing fiber base into a thin tray, making it impossible to set it in the mold, or even if it is forcibly set in the mold, it is bitten between the molds. A situation that cannot be closed occurs. Alternatively, in order to suppress the collapse of the shape, a large amount of fixing material must be applied, and the reality is that there is a possibility of the above-described problems occurring.

このような状況の下、強化繊維基材を所定の形状に賦形するのは勿論のこと、固着材などの第三物質を大量に使うことなく、賦形した強化繊維基材の形状を変化させることなく成形型上に搬送、配置して、最終部材を再現性よく製造可能とする信頼性の高い製造方法が必要とされていた。   Under these circumstances, the shape of the shaped reinforcing fiber substrate can be changed without using a large amount of a third material such as a fixing material as well as shaping the reinforcing fiber substrate into a predetermined shape. There is a need for a highly reliable manufacturing method that enables the final member to be manufactured with good reproducibility by being transported and arranged on a mold without causing the deformation.

さらに、プリプレグ成形と同様、成形型を複数準備し、成形型自体を搬送してプリフォームのズレをなくす方法も提案されているが(例えば、特許文献3参照)、この方法では高重量の成形型を動かすため非常に大きな労力が必要となり、また、広い作業スペースが必要となることから、実用的な解決法とはなっていない。
特開2003−268126号公報 特開平10−15970号公報 特開平10−193388号公報 特開2003−211447号公報
Further, as in the case of prepreg molding, a method has been proposed in which a plurality of molding dies are prepared and the molding dies are conveyed to eliminate the deviation of the preform (see, for example, Patent Document 3). It takes a lot of effort to move the mold and requires a large working space, which is not a practical solution.
JP 2003-268126 A Japanese Patent Laid-Open No. 10-15970 Japanese Patent Laid-Open No. 10-193388 Japanese Patent Laid-Open No. 2003-21447

本発明の課題は、上記した従来技術の問題点に鑑み、強化繊維基材を所定の形状に賦形し、該形状を維持したまま成形型に移載し、成形型上で強化繊維基材の形状を修正することなく、樹脂を強化繊維基材に含浸して、繊維強化樹脂部材を安定的に製造することのできる、信頼性の高い繊維強化樹脂部材の製造方法および製造装置を提供することにある。   In view of the above-described problems of the prior art, an object of the present invention is to shape a reinforcing fiber base into a predetermined shape, transfer it to a mold while maintaining the shape, and reinforce the reinforcing fiber base on the mold A highly reliable fiber-reinforced resin member manufacturing method and apparatus capable of stably manufacturing a fiber-reinforced resin member by impregnating a resin with a reinforcing fiber base without correcting the shape of the fiber There is.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1)製造する最終の繊維強化樹脂部材と実質的に同一の形状からなる賦形面を有する搬送具を具備する賦形型上の該搬送具上で、強化繊維基材を賦形した後、該強化繊維基材を搬送具ごと賦形型から分離して、成形型に移載し、続いて、該成形型内で強化繊維基材に樹脂を注入し、硬化させることを特徴とする繊維強化樹脂部材の製造方法。
The present invention employs the following means in order to solve such problems. That is,
(1) After shaping the reinforcing fiber base material on the conveying tool on the shaping mold comprising the conveying tool having a shaping surface having substantially the same shape as the final fiber-reinforced resin member to be produced The reinforcing fiber base material is separated from the shaping mold together with the conveying tool, transferred to a molding die, and subsequently, a resin is injected into the reinforcing fiber base material in the molding die and cured. A method for producing a fiber-reinforced resin member.

(2)前記搬送具の下面形状と、賦形型の上面の形状が一致していることを特徴とする前記(1)に記載の繊維強化樹脂部材の製造方法。   (2) The method for producing a fiber-reinforced resin member according to (1), wherein the shape of the lower surface of the carrier is the same as the shape of the upper surface of the shaping mold.

)前記搬送具が開口部を有することを特徴とする前記(1)または2)に記載の繊維強化樹脂部材の製造方法。 (3) A method of manufacturing a fiber-reinforced resin member according to (1) or (2) to said conveyance member is characterized and Turkey that having a opening.

)前記搬送具が複数のフィルム状の層から構成され、少なくとも前記成形型内に樹脂を注入する開口部を有するフィルム状のと、下面に樹脂流動通路を有するフィルム状の層とを含むことを特徴とする前記(1)〜()のいずれかに記載の繊維強化樹脂部材
の製造方法。
( 4 ) The transport device is composed of a plurality of film-like layers, and at least a film-like layer having an opening for injecting resin into the mold, and a film-like layer having a resin flow passage on the lower surface. The manufacturing method of the fiber reinforced resin member in any one of said (1)-( 3 ) characterized by including.

)前記搬送具を繊維強化部材の一部を構成する部品とすることを特徴とする前記(1)〜()のいずれかに記載の繊維強化樹脂部材の製造方法。 ( 5 ) The method for producing a fiber-reinforced resin member according to any one of (1) to ( 4 ), wherein the carrier is a part that constitutes a part of the fiber-reinforced member.

)強化繊維基材が、炭素繊維クロスからなることを特徴とする前記(1)〜()のいずれかに記載の繊維強化樹脂部材の製造方法。 ( 6 ) The method for producing a fiber-reinforced resin member according to any one of (1) to ( 5 ), wherein the reinforcing fiber substrate is made of carbon fiber cloth.

)賦形型上に、該賦形型上に装着および取り外し可能に載置される、製造する最終の繊維強化樹脂部材と実質的に同一の形状からなる賦形面を有する搬送具を具備するとともに、該搬送具上に載置された強化繊維基材を賦形する手段を備え、さらに該賦形型から取り外しされた搬送具上に載置された強化繊維基材に樹脂を注入し、硬化させるための成形型を備えることを特徴とする繊維強化樹脂部材の製造装置。

( 7 ) A conveying tool having a shaping surface having substantially the same shape as the final fiber-reinforced resin member to be manufactured, which is mounted on and removable from the shaping mold on the shaping mold. And a means for shaping the reinforcing fiber base placed on the carrier, and injecting resin into the reinforcing fiber base placed on the carrier removed from the shaping mold And a device for producing a fiber reinforced resin member, comprising a mold for curing.

本発明によれば、強化繊維基材を所定の形状を保持したまま成形型に移載させることが可能であるため、強化繊維基材の形状は崩れることなく、形状を修正することも不要であるため、再現性のある、信頼性の高い繊維強化樹脂部材が製造可能となる。加えて、強化繊維基材の形状修正などの作業が不要となるので、生産性が向上し、低コストな実用性の高い製造方法および製造装置が可能となる。   According to the present invention, it is possible to transfer the reinforcing fiber base material to the mold while maintaining a predetermined shape, so that the shape of the reinforcing fiber base material does not collapse and it is not necessary to correct the shape. Therefore, a reproducible and highly reliable fiber reinforced resin member can be manufactured. In addition, since operations such as shape correction of the reinforcing fiber base are not required, productivity is improved, and a low-cost and highly practical manufacturing method and manufacturing apparatus are possible.

以下に本発明を図1に示す一実施態様に基づいて説明する。   In the following, the present invention will be described based on one embodiment shown in FIG.

まず、本発明で用いる賦形型1は、図1(A)に示すように、搬送具2を具備している。賦形型1の上に搬送具2が載せられており、脱着が可能である。賦形型1、搬送具2は、金属、FRP、樹脂、紙、木材などの材料からなり、搬送具2は、賦形面3を有する。賦形面3は、製造する最終の繊維強化プラスチック部材と実質的に同一の形状を有しており、賦形面3上に、後述する強化繊維基材4を配して、該強化繊維基材4を賦形面と同一形状に賦形して製品形状のプリフォーム11とする。強化繊維基材4は、搬送具2より小さく形成されている。   First, the shaping mold 1 used in the present invention includes a transport tool 2 as shown in FIG. A carrier 2 is placed on the shaping mold 1 and can be detached. The shaping mold 1 and the conveying tool 2 are made of materials such as metal, FRP, resin, paper, and wood, and the conveying tool 2 has a shaping surface 3. The shaping surface 3 has substantially the same shape as the final fiber-reinforced plastic member to be manufactured, and a reinforcing fiber substrate 4 described later is disposed on the shaping surface 3 so that the reinforcing fiber base is formed. The material 4 is shaped into the same shape as the shaping surface to obtain a product-shaped preform 11. The reinforcing fiber base 4 is formed smaller than the transport tool 2.

賦形は、後述するように、強化繊維基材4に各種手段により力を作用させるため、賦形面3、および搬送具2にも力が作用するので、搬送具2と賦形型1は賦形に伴う力で分離しないように、嵌合されていたり、ピンなどで固定されていることが好ましい。また、賦形型1より、搬送具2の方が軽い方が両者の位置がずれ難いので、賦形工程で大きな力を作用させることが可能となり好ましい。搬送具2の下面5と賦形型の上面6とは、全面で接触していると、搬送具2を薄くしても搬送具2の形状が変化しにくいので賦形面3の形状が一定に保たれるので最も好ましい。   As will be described later, in order to apply force to the reinforcing fiber base 4 by various means, the force also acts on the shaping surface 3 and the conveying tool 2, so that the conveying tool 2 and the shaping mold 1 are It is preferable that they are fitted or fixed with pins or the like so as not to be separated by the force accompanying shaping. Moreover, since the one where the conveyance tool 2 is lighter than the shaping type | mold 1 is hard to shift | deviate from both, it becomes possible to make a big force act in a shaping process, and it is preferable. If the lower surface 5 of the conveying tool 2 and the upper surface 6 of the shaping mold are in contact with each other, the shape of the shaping surface 3 is constant because the shape of the conveying tool 2 hardly changes even if the conveying tool 2 is thinned. It is most preferable because

次に、本発明の強化繊維基材4は、ガラス繊維、炭素繊維、アラミド繊維、玄武岩繊維などの連続繊維や不連続(短)繊維からなる、織物、不織布、マットなどの布帛形態を有している。布帛形態を有しているので、搬送具2上で、自動車部材やスポーツ用具といった3次元形状への賦形が容易となる。   Next, the reinforcing fiber substrate 4 of the present invention has a fabric form such as a woven fabric, a non-woven fabric, and a mat, which is composed of continuous fibers or discontinuous (short) fibers such as glass fibers, carbon fibers, aramid fibers, and basalt fibers. ing. Since it has a fabric form, it is easy to form a three-dimensional shape such as an automobile member or sports equipment on the transport device 2.

自動車やスポーツ用具としては、軽量性、強度、剛性に優れる連続の炭素繊維からなる織物が最も好ましい。また、耐衝撃性を付与するためにガラス繊維を併用した布帛も好ましい実施態様の一つである。   For automobiles and sports equipment, a woven fabric made of continuous carbon fibers having excellent lightness, strength and rigidity is most preferable. In addition, a fabric using glass fibers in combination for imparting impact resistance is also one preferred embodiment.

連続の炭素繊維からなる平織り織物(クロス)などからなる強化繊維基材4は、図1(B)に示されるように、搬送具2上で、賦形面3の形状に賦形されてプリフォーム11にされる。賦形は、手、ローラーやヘラなどの治具で、織物を賦形面に押しつけて行われるが、特許文献4にあるように、水枕や、振動によっても賦形が可能である。   A reinforcing fiber substrate 4 made of a plain weave fabric (cross) made of continuous carbon fibers is shaped into a shape of a shaping surface 3 on a carrier 2 as shown in FIG. Reform 11 is made. The shaping is performed by pressing the fabric against the shaping surface with a jig such as a hand, a roller, or a spatula. However, as disclosed in Patent Document 4, shaping can also be performed by a water pillow or vibration.

炭素繊維織物は、複数枚重ねて同時に賦形することも、一枚ずつ賦形して重ねていくことも可能である。通常、織物などの強化繊維基材4には、樹脂は付与されていないため、変形が容易で、僅かの力で賦形可能であるが、粘着剤を予め、あるいは、賦形工程中に付与して、織物などの強化繊維基材4同士を粘着させても差し支えない。この場合、粘着剤には、後述する樹脂と同じ成分を有する材料で粘着性を付与することが好ましい。さらに、強化繊維基材中に熱可塑樹脂からなる繊維を付与して、賦形工程で加熱してこの繊維を溶融させ、その後冷却して、賦形形状を安定化させることも好ましい実施態様である。また、賦形工程において、織物が突っ張って賦形できない場合(ブリッジングと称する)は、織物の一部を切断したり、切れ目を入れたりすることが有効である。賦形面の3次元形状データを基に、2次元形状への展開図データを作成し、織物などの強化繊維基材4を添加図の形状に裁断してから搬送具2にセットして、賦形することも有効である。   A plurality of carbon fiber fabrics can be stacked and formed simultaneously, or can be formed and stacked one by one. Usually, since the resin is not applied to the reinforcing fiber base 4 such as a woven fabric, it is easily deformed and can be shaped with a slight force, but an adhesive is applied in advance or during the shaping process. Thus, the reinforcing fiber bases 4 such as woven fabrics may be adhered to each other. In this case, the pressure-sensitive adhesive is preferably imparted with a material having the same components as those described later. Further, in a preferred embodiment, fibers made of a thermoplastic resin are provided in the reinforcing fiber base, heated in the shaping step to melt the fibers, and then cooled to stabilize the shaped shape. is there. In the shaping step, when the fabric is stretched and cannot be shaped (called bridging), it is effective to cut a part of the fabric or make a cut. Based on the three-dimensional shape data of the shaping surface, create development drawing data into a two-dimensional shape, cut the reinforcing fiber base 4 such as a woven fabric into the shape of the additive drawing, and set it on the carrier 2. Forming is also effective.

次に、搬送具の賦形面3上で賦形されたプリフォーム11は、図2(A)〜(C)に示すように、必要に応じて、周囲をトリムして、搬送具2ごと、成形型下型7に移載する。搬送具ごと強化繊維基材(プリフォーム)を移動させるので、搬送の際に繊維の脱落、目ズレ、歪み等が起こらず、再現性のある、信頼性に優れる部材の製造が可能となる。   Next, as shown in FIGS. 2A to 2C, the preform 11 shaped on the shaping surface 3 of the conveying tool is trimmed around as necessary, and the entire conveying tool 2. Then, transfer to the lower mold 7. Since the reinforcing fiber base (preform) is moved together with the conveying tool, the fiber is not dropped, misaligned, distorted or the like during the conveyance, and a reproducible and highly reliable member can be manufactured.

搬送具2は、賦形型1から分離して、成形型7、9に移動させるが、搬送具が数kgと軽量な場合は、手や簡易ロボットで移動が可能である。実際の製造工程においては、賦形された強化繊維基材が載置された搬送具は、重ねて仮置きしておくと生産効率上有利であり、搬送具2には、搬送具同士を積み重ね、あるいは嵌め合わすことができる機能、例えば、搬送具の下面に嵌合溝などを形成しておくことが好ましい。また、移載には、空気吸引や磁力を用いても差し支えない。   The transport tool 2 is separated from the shaping mold 1 and moved to the molding dies 7 and 9. If the transport tool is as light as several kg, it can be moved by hand or a simple robot. In the actual manufacturing process, it is advantageous in terms of production efficiency if the transporting device on which the shaped reinforcing fiber base material is placed is temporarily placed on top of the transporting device. Alternatively, it is preferable to form a fitting groove or the like on the lower surface of the carrier, for example, a function that can be fitted. In addition, air transfer or magnetic force may be used for transfer.

成形型は、いわゆる金型と称され、スチールやアルミニウムなどの金属からなる。図3に示すように、通常、下型7、上型9からなり、上下型の間で形成されるキャビティー中に樹脂10を注入して搬送具2に載置された強化繊維基材(プリフォーム11)に樹脂を含浸させて繊維強化樹脂部材を製造する。   The mold is called a so-called mold and is made of a metal such as steel or aluminum. As shown in FIG. 3, a reinforcing fiber base (typically composed of a lower die 7 and an upper die 9) and injected into a cavity formed between the upper and lower dies and placed on the carrier 2 ( A preform 11) is impregnated with resin to produce a fiber reinforced resin member.

本発明では、下型7と上型9のキャビティー中に、搬送具2と強化繊維基材(プリフォーム11)を移載し、樹脂10を注入、硬化する。通常、注入には、樹脂を加圧し、硬化には、樹脂を加熱する。樹脂が硬化した後は、成形型を開けて、成形部材を取り出す。   In the present invention, the carrier 2 and the reinforcing fiber base (preform 11) are transferred into the cavities of the lower mold 7 and the upper mold 9, and the resin 10 is injected and cured. Usually, the resin is pressurized for injection, and the resin is heated for curing. After the resin is cured, the mold is opened and the molded member is taken out.

樹脂10は、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂等の熱硬化性樹脂が好ましいが、ポリプロピレンやポリエチレン、ポリアミド等の熱可塑性樹脂であっても、さらにはこれら樹脂の混合樹脂であっても差し支えない。炭素繊維を使った自動車部材やスポーツ用具に好ましいのは、接着性に優れるエポキシ樹脂である。   The resin 10 is preferably a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, or an acrylic resin, but it may be a thermoplastic resin such as polypropylene, polyethylene, or polyamide. The mixed resin may be used. An epoxy resin excellent in adhesiveness is preferable for an automobile member or sports equipment using carbon fiber.

なお、搬送具2は、強化繊維基材(プリフォーム11)と共に、成形型7、9中に配置しておくことが好ましいが、この場合、搬送具2の下面5と、該搬送具2の下面5と接触する成形型下型7の上面8の形状は一致していることが好ましい。一致していることで、樹脂を注入した際の圧力による賦形面の変形を抑制できるからである。   In addition, although it is preferable to arrange | position the conveyance tool 2 in the shaping | molding die 7 and 9 with the reinforcing fiber base material (preform 11), in this case, the lower surface 5 of the conveyance tool 2, and this conveyance tool 2 of The shape of the upper surface 8 of the lower mold 7 in contact with the lower surface 5 is preferably the same. This is because, by matching, it is possible to suppress deformation of the shaping surface due to pressure when the resin is injected.

また、搬送具2に、樹脂を注入する機能を付与しておくことも好ましい実施態様である。具体的には、搬送具を数十μm〜数mmのフィルムで形成して、フィルムには円孔などの開口部を形成した、いわゆる穴あきフィルムとしたものを用いることが好ましい。また、金属メッシュやパンチングメタルなどを用いてもよい。こうすることで、搬送具は、軽量となり、人力や、簡易ロボットで移動が可能となると同時に、樹脂を開口部を通じて強化繊維基材に含浸可能となる。そのほか、樹脂流動溝あるいは樹脂流動孔を備えた成形型下型を用い、さらにフィルムの開口部をより多くすることで、樹脂の注入時間が短縮できる。あるいは、樹脂が含浸し難い箇所に開口部を設けることで、不良品の少ない生産が可能となるなどのメリットがある。   It is also a preferred embodiment that the transport tool 2 has a function of injecting resin. Specifically, it is preferable to use a so-called perforated film in which the conveying tool is formed of a film of several tens of μm to several mm, and an opening such as a circular hole is formed in the film. Also, a metal mesh or punching metal may be used. By doing so, the carrier becomes lightweight, and can be moved by human power or a simple robot, and at the same time, the reinforcing fiber base can be impregnated with the resin through the opening. In addition, the resin injection time can be shortened by using the lower mold of the mold provided with resin flow grooves or resin flow holes and further increasing the number of openings in the film. Alternatively, by providing an opening at a location where resin is difficult to impregnate, there is an advantage that production with fewer defective products becomes possible.

なお、搬送具をフィルム状とする場合、材料は、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、ポリエーテルスルホン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール(ノボラック型など)フェノキシ樹脂、フッ素樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、飽和ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。中でも、ポリテトラフルオロエチレンなどのフッ素樹脂やシリコンといった離型性、耐熱性に優れる樹脂を材料とすると、再利用が可能となり、製造工程で発生するゴミの減量や、部材の製造コスト削減上好ましい。   In the case where the transporting device is in the form of a film, the material is, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyester such as liquid crystal polyester, polyethylene (PE), polypropylene ( PP), polyolefins such as polybutylene, styrene resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide ( PPS), polyphenylene ether (PPE), polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone, polyketone (PK), polyether Luketone (PEK), polyetheretherketone (PEEK), polyarylate (PAR), polyethernitrile (PEN), phenol (novolak type, etc.) phenoxy resin, fluorine resin, polystyrene, polyolefin, polyurethane, saturated polyester It may be a thermoplastic elastomer such as a polyamide-based, polyamide-based, polybutadiene-based, polyisoprene-based, or fluorine-based polymer, a copolymer, a modified body thereof, or a resin blended with two or more types. Above all, it is possible to reuse a fluororesin such as polytetrafluoroethylene or a resin excellent in releasability and heat resistance such as silicon, which is preferable for reducing the amount of dust generated in the manufacturing process and reducing the manufacturing cost of components. .

また、搬送具の厚みを数mm〜数十mmの厚みとして、搬送具中に、樹脂流動溝(ランナーとも称する)および/または樹脂流動孔などの樹脂流動通路、および該樹脂流動通路に連通する前記成形型内に樹脂を注入する開口部を形成して、樹脂を短時間で強化繊維基材(プリフォーム)に含浸させることも可能である。   Further, the thickness of the transport tool is set to several mm to several tens of mm, and the transport tool communicates with a resin flow path such as a resin flow groove (also referred to as a runner) and / or a resin flow hole, and the resin flow path. It is also possible to form an opening for injecting resin into the mold and impregnate the reinforcing fiber substrate (preform) with the resin in a short time.

樹脂流動通路は、孔状(樹脂流動孔)および/または溝状(樹脂流動溝)のものを用いることができるが、樹脂流動溝であることが好ましい。この樹脂流動溝および開口部を有する搬送具の一例を図4に示す。   The resin flow passage may be a hole (resin flow hole) and / or a groove (resin flow groove), and is preferably a resin flow groove. An example of the transport tool having the resin flow groove and the opening is shown in FIG.

搬送具2の厚みは1mm〜50mmであることが好ましい。厚みが1mmを下回る場合、搬送具に樹脂流動溝を設けることが困難となる。また、厚みが50mmを越える場合、搬送具の重量が重くなるため搬送に支障をきたす恐れがある。より好ましくは2mm〜20mmである。   The thickness of the transport tool 2 is preferably 1 mm to 50 mm. When the thickness is less than 1 mm, it is difficult to provide a resin flow groove in the transport tool. In addition, when the thickness exceeds 50 mm, the weight of the conveying tool becomes heavy, and there is a risk of hindering conveyance. More preferably, it is 2 mm-20 mm.

開口部12の寸法は、注入した樹脂を効率よく強化繊維基材(プリフォーム)へ含浸させるために、直径0.5mm〜15mmの円形状であることが好ましい。開口部寸法が直径0.5mmを下回る場合、注入した樹脂が開口部を通りにくくなり、強化繊維基材への樹脂含浸が不十分になる恐れがある。一方、開口部寸法が15mmを越える場合、注入した樹脂が硬化した後、硬化した開口部部分の樹脂が搬送具と成形品を強固に結び付けて、搬送具を取り外せなくなる恐れがある。   The size of the opening 12 is preferably a circular shape having a diameter of 0.5 mm to 15 mm in order to efficiently impregnate the injected resin into the reinforcing fiber substrate (preform). When the opening size is less than 0.5 mm in diameter, the injected resin is less likely to pass through the opening, which may result in insufficient resin impregnation into the reinforcing fiber base. On the other hand, when the size of the opening exceeds 15 mm, the injected resin hardens, and then the cured resin in the opening portion firmly binds the transport tool and the molded product, and the transport tool may not be removed.

開口部12の形状は加工性の観点から円形状が好ましいが、三角形状、四角形状など他の形状であっても何ら差し支えない。   The shape of the opening 12 is preferably a circular shape from the viewpoint of workability, but may be any other shape such as a triangular shape or a quadrangular shape.

開口部12の配置位置は、隣り合う開口部との距離が30mm〜500mmとなるように配置することが好ましい。開口部同士の距離が30mmを下回る場合、隣り合う開口部が近すぎるため、各開口部から樹脂を含浸させられる領域が重なってしまい含浸効率が悪くなる。一方、開口部同士の距離が500mmを越える場合、隣り合う開口部の間に未含浸部分を生じる恐れがある。効率よく樹脂を含浸させるためには、隣り合う開口部との距離が50mm〜200mmであることがより好ましい。   The arrangement position of the opening 12 is preferably arranged such that the distance from the adjacent opening is 30 mm to 500 mm. When the distance between the openings is less than 30 mm, the adjacent openings are too close to each other, so that the regions impregnated with the resin overlap from each opening, and the impregnation efficiency is deteriorated. On the other hand, when the distance between the openings exceeds 500 mm, an unimpregnated portion may be generated between the adjacent openings. In order to efficiently impregnate the resin, the distance between adjacent openings is more preferably 50 mm to 200 mm.

樹脂流動溝13は、樹脂注入口14と各開口部12をつなぐように配置される。   The resin flow groove 13 is disposed so as to connect the resin injection port 14 and each opening 12.

樹脂流動溝13の配置は、図4に示すように、樹脂注入口14からのびた樹脂流動溝13が分岐して各開口部12をつなぐような配置にするのが樹脂流動溝長さを短くするためには好ましいが、複数の分岐をもつ配置、あるいは分岐せずに樹脂注入口14と各開口部12を直接つなぐような配置であっても差し支えない。   As shown in FIG. 4, the resin flow groove 13 is arranged such that the resin flow groove 13 extending from the resin inlet 14 branches to connect the openings 12 to shorten the resin flow groove length. For this purpose, an arrangement having a plurality of branches or an arrangement in which the resin injection port 14 and each opening 12 are directly connected without branching may be used.

また、樹脂流動溝13は全ての開口部をつなぐように配置されるのが好ましいが、一部つながっていない開口部が存在しても、全体の半数以上の開口部がつながっていれば差し支えない。   In addition, the resin flow grooves 13 are preferably arranged so as to connect all the openings, but even if there are openings that are not partially connected, there is no problem if more than half of the openings are connected. .

樹脂流動溝13の寸法は注入する樹脂を効率よく流すために、溝幅1〜30mm、溝深さ0.5mm〜15mmであることが好ましい。溝幅が1mmを下回る場合、あるいは溝深さが0.5mmのを下回る場合、樹脂流動溝の断面積が小さくなり、樹脂が流動しにくくなるため、樹脂を一定時間内に強化繊維基材へ含浸させることができなくなる恐れがある。また、溝幅が30mmを越える場合、あるいは溝深さが15mmを越える場合、樹脂注入後に樹脂流動溝内に大量の樹脂が残ることとなり、生産性の観点から好ましくない。より好ましい樹脂流動溝寸法は溝幅2〜20mm、溝深さ1〜10mmである。   The resin flow grooves 13 preferably have a groove width of 1 to 30 mm and a groove depth of 0.5 to 15 mm in order to efficiently flow the injected resin. When the groove width is less than 1 mm, or when the groove depth is less than 0.5 mm, the cross-sectional area of the resin flow groove becomes small and the resin does not flow easily. There is a risk that it cannot be impregnated. Further, when the groove width exceeds 30 mm or the groove depth exceeds 15 mm, a large amount of resin remains in the resin flow groove after resin injection, which is not preferable from the viewpoint of productivity. More preferable resin flow groove dimensions are a groove width of 2 to 20 mm and a groove depth of 1 to 10 mm.

樹脂流動溝の断面形状は半円形状が加工性の観点から好ましいが、U字状、V字状、四角形状など半円形状以外の形状であっても特に差し支えない。   The cross-sectional shape of the resin flow groove is preferably a semicircular shape from the viewpoint of workability, but may be a shape other than the semicircular shape such as a U shape, a V shape, or a square shape.

樹脂流動孔は、樹脂流動溝と同様に、樹脂注入口から注入した樹脂を開口部まで流すために設けられる。樹脂流動孔の寸法は、特に制限されないが、注入した樹脂を効率よく流すために、直径1mm〜30mmの円形状であることが好ましい。また、樹脂流動孔は樹脂流動溝と併せて使用することが多いため、樹脂流動溝幅と等しい寸法であることが好ましいが、異なる寸法であっても差し支えない。   Similarly to the resin flow groove, the resin flow hole is provided to allow the resin injected from the resin injection port to flow to the opening. The dimension of the resin flow hole is not particularly limited, but is preferably a circular shape having a diameter of 1 mm to 30 mm in order to efficiently flow the injected resin. In addition, since the resin flow hole is often used in combination with the resin flow groove, the resin flow hole preferably has the same dimension as the resin flow groove width, but may have a different dimension.

樹脂流動孔の形状は加工性の観点から円形状が好ましいが、三角形状、四角形状など他の形状であっても何ら差し支えない。   The shape of the resin flow hole is preferably a circular shape from the viewpoint of workability, but may be any other shape such as a triangular shape or a rectangular shape.

また、搬送具は複数の層から構成され、樹脂流動溝、樹脂流動孔、開口部の機能を各層が分割して有する形態としても差し支えない。こうすることで搬送具の製作が容易になり、1体の搬送具に複数の機能を付与しやすくなるという利点も得られる。   Moreover, a conveyance tool is comprised from several layers, and it does not interfere even if it has the function of a resin flow groove, a resin flow hole, and an opening part, and each layer has divided | segmented. By doing so, it is easy to manufacture the transport tool, and it is possible to obtain an advantage that a plurality of functions can be easily given to one transport tool.

複数の層から成り立っている搬送具の一例を図5に示す。   FIG. 5 shows an example of a transport tool composed of a plurality of layers.

図5では開口部を有する層15および樹脂流動溝を有する層16の2層を重ねることで、1体の搬送具としている。そのほか、樹脂流動層を2層にする、あるいは搬送具補強層など異なる機能を有する層を重ねるなど、3層以上から構成される搬送具としても差し支えない。   In FIG. 5, the two layers of the layer 15 having an opening and the layer 16 having a resin flow groove are overlapped to form a single conveying tool. In addition, there is no problem even if the transporting device is composed of three or more layers, such as two resin fluidized layers or overlapping layers having different functions such as a transporting device reinforcing layer.

複数の層から構成される搬送具の各層の厚みは0.1mm〜50mmであることが好ましい。層の厚みが0.1mmを下回る場合、十分な耐久性が得られない恐れがある。また、層の厚みが50mmを越える場合、搬送具の重量が重くなるため搬送に支障をきたす恐れがある。   It is preferable that the thickness of each layer of the conveyance tool comprised of a plurality of layers is 0.1 mm to 50 mm. When the thickness of the layer is less than 0.1 mm, sufficient durability may not be obtained. In addition, when the thickness of the layer exceeds 50 mm, the weight of the transport tool becomes heavy, and there is a risk of hindering transport.

なお、搬送具は、繊維強化樹脂部材とともに成形型から取りはずして、繊維強化樹脂部材と分離して再使用するが、搬送具に離型処理せずに、繊維強化樹脂部分と一体化させた部材としても差し支えない。例えば、アウターパネルとインナーパネルの2部品で構成される自動車のトランクリッドの製造において、射出成形やプレス成形で予め成形しておいたインナーパネルを搬送具とし、その上でアウターパネルとなる強化繊維基材を賦形した後、成形型に移載し、成形型キャビティー中に樹脂を注入、硬化させて、インナーパネル(搬送具)と繊維強化樹脂からなるアウターパネルが一体化したトランクリッドが製造できる。搬送具が紙製の場合には、内装材としての役割を持たせることもできる。   The transport tool is removed from the mold together with the fiber reinforced resin member, separated from the fiber reinforced resin member and reused, but the transport tool is a member integrated with the fiber reinforced resin portion without releasing the mold. It does not matter. For example, in the manufacture of an automobile trunk lid composed of two parts, an outer panel and an inner panel, a reinforcing fiber that becomes an outer panel on an inner panel that has been molded in advance by injection molding or press molding is used as a carrier. After shaping the base material, transfer it to the mold, inject and cure the resin into the mold cavity, and the trunk lid that integrates the inner panel (transporter) and the outer panel made of fiber reinforced resin Can be manufactured. When the carrier is made of paper, it can also serve as an interior material.

もちろん、搬送具には、離型処理を施しておいて、樹脂が硬化したあと、繊維強化樹脂部材と分離させても差し支えない。搬送具に開口部がある場合は、縁切りをして搬送具と繊維強化樹脂部材を分離することもできる。   Of course, the transfer tool may be separated from the fiber reinforced resin member after the mold has been released and the resin has hardened. When the transport tool has an opening, the transport tool and the fiber reinforced resin member can be separated by cutting the edge.

なお、以上は、搬送具をプリフォームとともに成形型のキャビティー内に入れたまま樹脂注入して部材を製造したが、樹脂注入前に、搬送具をプリフォームと分離して、キャビティー中から取り除いておくことも可能である。   In the above, the member was manufactured by injecting the resin while the transport tool was put in the mold cavity together with the preform, but before the resin injection, the transport tool was separated from the preform, and from inside the cavity. It is also possible to remove it.

実施例1
図1〜3に示す装置を用いて、寸法約1200mm×700mm×100mmのドアパネルを以下のように成形した結果、安定して再現性の良い繊維強化樹脂部材を得ることができた。
強化繊維基材4として、炭素繊維クロス(東レ(株)製“トレカ(登録商標)織物”CO6343、織り組織:平織り、織物目付:200g/m、強化繊維:T300−3K)8枚を成形品の展開図形状に裁断した。裁断したクロスを搬送具2を取り付けた賦形型1の上にセットし、人の手でクロスを押さえつけて賦形型形状に沿わせることで製品形状のプリフォーム11を作成した。
Example 1
As a result of molding a door panel having dimensions of about 1200 mm × 700 mm × 100 mm using the apparatus shown in FIGS. 1 to 3 as follows, a fiber-reinforced resin member having stable and good reproducibility could be obtained.
8 sheets of carbon fiber cloth ("Torayca (registered trademark) woven fabric" CO6343 manufactured by Toray Industries, Inc., weaving structure: plain weave, fabric basis weight: 200 g / m 2 , reinforcing fiber: T300-3K) are formed as the reinforcing fiber base 4 The product was cut into a developed view. The cut cloth was set on the shaping mold 1 to which the conveying tool 2 was attached, and the product shape preform 11 was created by pressing the cloth with a human hand and making it conform to the shaping mold shape.

搬送具2には図4に示すような、軽量で搬送しやすく、成形後の離型性の良い厚さ5mmのポリエチレン製のものを用いた。本搬送具には直径5mmの円形状の開口部12を200mm間隔で23個設け、搬送具下面には、樹脂注入口から6本に分岐した樹脂流動溝13を、樹脂注入口14と各開口部をつなぐように配置した。樹脂流動溝の断面形状は、幅6mm×深さ3mmの半円形状とした。
搬送具2の下面と賦形型上面6は形状が一致しており、さらに搬送具は中央が大きく突き出す凸形状となっているため、搬送具は賦形型の上に置くだけで十分に固定することができ、問題なくクロスを押さえつけることができた。
クロスを製品形状に固定するために、各クロスの表面には固着材としてスプレーのり(3M(株)製スプレーのり55)を吹きつけた後、クロス同士を密着させることで層間を固着した。
As the transporting tool 2, a lightweight and easy-to-transport polyethylene product having a thickness of 5 mm as shown in FIG. The transport tool is provided with 23 circular openings 12 having a diameter of 5 mm at intervals of 200 mm, and a resin flow groove 13 branched into six from the resin injection port is formed on the lower surface of the transport tool. Arranged to connect the parts. The cross-sectional shape of the resin flow groove was a semicircular shape with a width of 6 mm and a depth of 3 mm.
Since the shape of the lower surface of the carrier 2 and the shaping mold upper surface 6 are the same, and the carrier has a convex shape with a large center protruding, the carrier can be sufficiently fixed simply by placing it on the shaping die. I was able to hold down the cross without any problems.
In order to fix the cloth to the product shape, spray glue (3M Co., Ltd. spray glue 55) was sprayed on the surface of each cloth as a fixing material, and the cloth was brought into close contact with each other to fix the layers.

搬送具2を製品形状に固定したプリフォーム11ごと取り外し、成形型下型7へと搬送した。このとき、強化繊維基材4は搬送具2に支えられたまま移動させることができたので、形状の崩れやクロスの目ズレ等の不具合を起こすことなく成形型内へセットすることができた。   The transport tool 2 was removed together with the preform 11 fixed to the product shape, and transported to the lower mold 7 of the mold. At this time, since the reinforcing fiber base 4 could be moved while being supported by the carrier 2, it could be set in the mold without causing problems such as shape collapse and cross misalignment. .

そして、成形型上型9を閉じて密閉した後、樹脂を成形型内に注入した。樹脂を注入して100℃で40分間加熱し、樹脂を硬化させた後、成形品を脱型した。
樹脂は主剤として“エピコート”828(油化シェルエポキシ社製、エポキシ樹脂)、硬化剤は東レ(株)でブレンドしたTR−C35H(イミダゾール誘導体)を混合して得た液状エポキシ樹脂を使用した。
脱型した成形品から搬送具を取り外すことで、所望の繊維強化樹脂部材を得た。
The mold upper mold 9 was closed and sealed, and then the resin was injected into the mold. After injecting the resin and heating at 100 ° C. for 40 minutes to cure the resin, the molded product was demolded.
The resin used was “Epicoat” 828 (epoxy resin manufactured by Yuka Shell Epoxy Co., Ltd.) as the main agent, and the liquid epoxy resin obtained by mixing TR-C35H (imidazole derivative) blended with Toray Industries, Inc. was used.
A desired fiber-reinforced resin member was obtained by removing the carrier from the removed molded product.

実施例2
搬送具以外は実施例1と同様の手法で繊維強化樹脂部材を成形した。搬送具には図5に示す2枚のフィルムを重ねたものを用いた。
上層15には厚さ0.5mmのポリプロピレン製フィルムを用い、直径5mmの円形状の開口部を200mm間隔で23個設けた。
下層16には厚さ4mmのポリプロピレン製フィルムを用い、下面には、樹脂注入口から6本に分岐した樹脂流動溝が、2層のフィルムを重ねたときに、樹脂注入口と各開口部をつなぐように配置した。樹脂流動溝の断面形状は、幅6mm×深さ3mmの半円形状とした。
本搬送具を用いて実施例1と同様に成形した結果、安定して再現性の良い繊維強化樹脂部材を得ることができた。
Example 2
A fiber reinforced resin member was molded in the same manner as in Example 1 except for the carrier. As the transporting tool, a stack of two films shown in FIG. 5 was used.
The upper layer 15 was made of a polypropylene film having a thickness of 0.5 mm, and 23 circular openings having a diameter of 5 mm were provided at intervals of 200 mm.
A polypropylene film having a thickness of 4 mm is used for the lower layer 16, and a resin flow groove branched into six from the resin injection port is formed on the lower surface when the two layers of the film are overlapped. Arranged to connect. The cross-sectional shape of the resin flow groove was a semicircular shape with a width of 6 mm and a depth of 3 mm.
As a result of molding in the same manner as in Example 1 using this transporter, a fiber-reinforced resin member having stable and good reproducibility could be obtained.

実施例3
搬送具以外は実施例1と同様の手法で繊維強化樹脂部材を成形した。
搬送具には2枚のフィルムを重ねたものを用いた。
上層のフィルムには厚さ1mmのポリエチレン製フィルムを用い、直径5mmの円形状の開口部を200mm間隔で23個設けた。
下層のフィルムには厚さ1mm、メッシュ間隔10mmで樹脂の流動性の良いメッシュ状ポリエチレン製フィルムを用いた。
本搬送具を用いて実施例1と同様に成形した結果、安定して再現性の良い繊維強化樹脂部材を得ることができた。
Example 3
A fiber reinforced resin member was molded in the same manner as in Example 1 except for the carrier.
The transporting tool used was a stack of two films.
A polyethylene film having a thickness of 1 mm was used as the upper film, and 23 circular openings with a diameter of 5 mm were provided at intervals of 200 mm.
For the lower layer film, a mesh-like polyethylene film having a thickness of 1 mm and a mesh interval of 10 mm and good resin fluidity was used.
As a result of molding in the same manner as in Example 1 using this transporter, a fiber-reinforced resin member having stable and good reproducibility could be obtained.

実施例4
搬送具、成形型以外は実施例1と同様の手法で繊維強化樹脂部材を成形した。
搬送具は厚さ1mmのポリエチレン製フィルムを用い、直径5mmの円形状の開口部を200mm間隔で23個設けた。また、成形型下型の搬送具と接する面には、搬送具を成形型下型にセットしたときに樹脂注入口と各開口部をつなぐように樹脂注入口から6本に分岐した樹脂流動溝を配置した。樹脂流動溝の断面形状は、幅6mm×深さ3mmの半円形状とした。
本搬送具、成形型を用いて実施例1と同様に成形した結果、安定して再現性の良い繊維強化樹脂部材を得ることができた。
Example 4
A fiber reinforced resin member was molded in the same manner as in Example 1 except for the carrier and the mold.
The carrier was a polyethylene film having a thickness of 1 mm, and 23 circular openings having a diameter of 5 mm were provided at intervals of 200 mm. In addition, the surface of the mold lower mold in contact with the conveying tool has a resin flow groove branched into six from the resin inlet so as to connect the resin inlet and each opening when the conveying tool is set in the mold lower mold. Arranged. The cross-sectional shape of the resin flow groove was a semicircular shape with a width of 6 mm and a depth of 3 mm.
As a result of molding in the same manner as in Example 1 using this transport tool and mold, a fiber-reinforced resin member having a stable and reproducibility could be obtained.

実施例5
搬送具、成形型以外は実施例1と同様の手法で繊維強化樹脂部材を成形した。
搬送具は開口部を有しない厚さ1mmのポリカーボネート製フィルムを用いた。また、成形型の搬送具と接しない面には樹脂流動溝を100mm間隔で11本を設け、注入した樹脂が搬送具を通らずにクロスに含浸されるようにした。樹脂流動溝の断面形状は幅2mm深さ1mmの半円形状とした。
本搬送具、成形型を用いて実施例1と同様に成形した結果、搬送具が一体となった繊維強化樹脂部材を得ることができた。
Example 5
A fiber reinforced resin member was molded in the same manner as in Example 1 except for the carrier and the mold.
As the carrier, a 1 mm thick polycarbonate film having no opening was used. In addition, eleven resin flow grooves were provided at 100 mm intervals on the surface of the mold not in contact with the conveying tool so that the injected resin was impregnated into the cloth without passing through the conveying tool. The cross-sectional shape of the resin flow groove was a semicircular shape with a width of 2 mm and a depth of 1 mm.
As a result of molding in the same manner as in Example 1 using this transport tool and the mold, a fiber reinforced resin member integrated with the transport tool could be obtained.

比較例1
実施例1と同様の方法で、賦形型上にセットした搬送具上にプリフォームを作成した。搬送具はそのままにして、プリフォームのみを取り外して成形型へと搬送したところ、搬送中にプリフォーム形状が崩れ、クロスの目ずれを起こしたため、そのままでは成形型に収まらなかった。
Comparative Example 1
In the same manner as in Example 1, a preform was created on the carrier set on the shaping mold. When the transport tool was left as it was, only the preform was removed and transported to the mold, and the preform shape collapsed during transport and the cross was misaligned, so it did not fit in the mold.

成形型上でプリフォーム形状の修正をして成形を実施したが、実施例1と比べてより長く作業時間がかかり、出来上がった成形品も繊維乱れが多く場所によってムラのある成形品となった。   Molding was carried out by correcting the preform shape on the mold, but it took a longer time than in Example 1, and the resulting molded product was a molded product with many fiber disturbances and unevenness depending on the location. .

本発明の製造フローの賦形工程の一実施態様を示す図であり、(A)は賦形前、(B)は賦形後の工程図である。It is a figure which shows one embodiment of the shaping process of the manufacturing flow of this invention, (A) is before shaping, (B) is a process drawing after shaping. 本発明の製造フローの移載工程の一実施態様を示す図であり、(A)は賦形型、(B)は賦形型より取り外された搬送具、(C)は成形型をそれぞれ示す工程図である。It is a figure which shows one embodiment of the transfer process of the manufacturing flow of this invention, (A) is a shaping die, (B) is the conveyance tool removed from the shaping die, (C) shows a shaping | molding die, respectively. It is process drawing. 本発明の部材製造の樹脂注入の一実施態様を示す図である。It is a figure which shows one embodiment of resin injection | pouring of member manufacture of this invention. 本発明の搬送具の一実施態様を示す図である。It is a figure which shows one embodiment of the conveying tool of this invention. 本発明の搬送具の他の一実施態様を示す図である。It is a figure which shows other one embodiment of the conveying tool of this invention.

符号の説明Explanation of symbols

1:賦形型
2:搬送具
3:賦形面
4:強化繊維基材
5:搬送具の下面
6:賦形型の上面
7:成形型下型
8:成形型の下型の上面
9:成形型上型
10:樹脂
11:プリフォーム
12:開口部
13:樹脂流動溝
14:樹脂注入口
15:開口部を有する層
16:樹脂流動溝を有する層
1: Molding mold 2: Transport tool 3: Shaping surface 4: Reinforcing fiber substrate 5: Lower surface of transport tool 6: Upper surface of shaping mold 7: Lower mold of molding mold 8: Upper surface of lower mold of molding mold 9: Mold 10 Upper mold 10: Resin 11: Preform 12: Opening 13: Resin flow groove 14: Resin inlet 15: Layer having opening 16: Layer having resin flow groove

Claims (7)

製造する最終の繊維強化樹脂部材と実質的に同一の形状からなる賦形面を有する搬送具を具備する賦形型上の該搬送具上で、強化繊維基材を賦形した後、該強化繊維基材を搬送具ごと賦形型から分離して、成形型に移載し、続いて、該成形型内で強化繊維基材に樹脂を注入し、硬化させることを特徴とする繊維強化樹脂部材の製造方法。 The reinforcing fiber base material is shaped on the conveying tool on the shaping mold including the conveying tool having a shaping surface having substantially the same shape as the final fiber-reinforced resin member to be manufactured , and then the reinforcement A fiber reinforced resin characterized in that the fiber base material is separated from the shaping mold together with the conveying tool, transferred to a mold, and then injected into the reinforced fiber base and cured in the mold. Manufacturing method of member. 前記搬送具の下面形状と、賦形型の上面の形状が一致していることを特徴とする請求項1に記載の繊維強化樹脂部材の製造方法。 The method for producing a fiber-reinforced resin member according to claim 1, wherein the shape of the lower surface of the transport tool and the shape of the upper surface of the shaping mold are the same. 前記搬送具が開口部を有することを特徴とする請求項1または2に記載の繊維強化樹脂部材の製造方法。 Method for producing a fiber-reinforced resin member according to claim 1 or 2, wherein the conveyance member is characterized and Turkey that having a opening. 前記搬送具が複数のフィルム状の層から構成され、少なくとも前記成形型内に樹脂を注入する開口部を有するフィルム状のと、下面に樹脂流動通路を有するフィルム状の層とを含むことを特徴とする請求項1〜のいずれかに記載の繊維強化樹脂部材の製造方法。 The transport device is composed of a plurality of film-like layers, and includes at least a film-like layer having an opening for injecting resin into the mold, and a film-like layer having a resin flow passage on the lower surface. The manufacturing method of the fiber reinforced resin member in any one of Claims 1-3 characterized by the above-mentioned. 前記搬送具を繊維強化部材の一部を構成する部品とすることを特徴とする請求項1〜のいずれかに記載の繊維強化樹脂部材の製造方法。 The method for manufacturing a fiber-reinforced resin member according to any one of claims 1 to 4 , wherein the carrier is a part constituting a part of the fiber-reinforced member. 強化繊維基材が、炭素繊維クロスからなることを特徴とする請求項1〜のいずれかに記載の繊維強化樹脂部材の製造方法。 The method for producing a fiber-reinforced resin member according to any one of claims 1 to 5 , wherein the reinforcing fiber substrate is made of carbon fiber cloth. 賦形型上に、該賦形型上に装着および取り外し可能に載置される、製造する最終の繊維強化樹脂部材と実質的に同一の形状からなる賦形面を有する搬送具を具備するとともに、該搬送具上に載置された強化繊維基材を賦形する手段を備え、さらに該賦形型から取り外しされた搬送具上に載置された強化繊維基材に樹脂を注入し、硬化させるための成形型を備えることを特徴とする繊維強化樹脂部材の製造装置。 On the shaping mold, there is provided a conveying tool having a shaping surface having substantially the same shape as that of the final fiber reinforced resin member to be manufactured, which is detachably mounted on the shaping mold. , Comprising means for shaping the reinforcing fiber base placed on the carrier, and further injecting resin into the reinforcing fiber base placed on the carrier removed from the shaping mold, and curing An apparatus for producing a fiber reinforced resin member, comprising a mold for causing the fiber reinforced resin to form.
JP2006249047A 2005-09-27 2006-09-14 Manufacturing method and manufacturing apparatus for fiber reinforced resin member Expired - Fee Related JP5017976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249047A JP5017976B2 (en) 2005-09-27 2006-09-14 Manufacturing method and manufacturing apparatus for fiber reinforced resin member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005279345 2005-09-27
JP2005279345 2005-09-27
JP2006249047A JP5017976B2 (en) 2005-09-27 2006-09-14 Manufacturing method and manufacturing apparatus for fiber reinforced resin member

Publications (2)

Publication Number Publication Date
JP2007118577A JP2007118577A (en) 2007-05-17
JP5017976B2 true JP5017976B2 (en) 2012-09-05

Family

ID=38142925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249047A Expired - Fee Related JP5017976B2 (en) 2005-09-27 2006-09-14 Manufacturing method and manufacturing apparatus for fiber reinforced resin member

Country Status (1)

Country Link
JP (1) JP5017976B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI520844B (en) * 2012-10-30 2016-02-11 三菱麗陽股份有限公司 Method for fabricating preform and fiber-reinforced resin molded article
WO2015151054A1 (en) * 2014-04-02 2015-10-08 Magna International, Inc. End of arm tooling
WO2015200917A1 (en) * 2014-06-27 2015-12-30 Globe Machine Manufacturing Company Slipper tool, system and method for using the slipper tool for molding
JP6543940B2 (en) * 2015-01-23 2019-07-17 日産自動車株式会社 Method and apparatus for forming composite material
JP2017052197A (en) * 2015-09-10 2017-03-16 トヨタ紡織株式会社 Method for manufacturing molding
KR20200050521A (en) * 2018-11-02 2020-05-12 코오롱데크컴퍼지트 주식회사 Manufacturing method for preform and manufacturing method for composite using preform
JP7443717B2 (en) * 2019-10-11 2024-03-06 日産自動車株式会社 Composite material molding method and composite material molding device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178418A (en) * 1988-01-08 1989-07-14 Sekisui Chem Co Ltd Compression molding
JPH0361515A (en) * 1989-07-24 1991-03-18 Agency Of Ind Science & Technol Molding method for fiber reinforced thermoplastic synthetic resin
JPH08108813A (en) * 1994-10-07 1996-04-30 Nippon Zeon Co Ltd Bumper beam for vehicle and its manufacture
JPH1015970A (en) * 1996-07-03 1998-01-20 Exedy Corp Production of fiber reinforced plastic product
JP2006240046A (en) * 2005-03-03 2006-09-14 Mitsubishi Electric Corp Rtm molding method

Also Published As

Publication number Publication date
JP2007118577A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5017976B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced resin member
AU2020201610B2 (en) Fabrication of composite laminates using temporarily stitched preforms
US5204033A (en) Method of fabricating a preform in a resin transfer molding process
JP5604445B2 (en) Process and apparatus for making composite structures
US9782960B1 (en) Compaction system for composite stringers
US11701797B2 (en) Composite material molding jig and composite material molding method
JP6797601B2 (en) Textured backing plate and usage
US10562243B2 (en) FRP shaping jig and method of shaping FRP structure
CN102834247A (en) Method of producing a composite shell structure
KR20120080175A (en) An improved method of and apparatus for making a composite material
JPH10146898A (en) Molding of fiber reinforced composite material
US8623252B2 (en) Method for manufacturing thermoplastic resin pre-impregnated fiber structure
RU2633094C2 (en) Method for manufacturing plastic parts/constructive parts of vehicle
JP6281865B2 (en) FRP forming jig and FRP structure forming method
JP6040547B2 (en) Manufacturing method of fiber reinforced plastic
JP2005022171A (en) Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method
EP2799215B1 (en) Perforated vacuum membrane for fibre reinforced laminates
JP6570160B1 (en) Pressure pad, pressure pad manufacturing method, and honeycomb core sandwich structure manufacturing method
US20240262053A1 (en) Monolithic molded fan components and method for their manufacture
JP4586500B2 (en) Manufacturing method of fiber reinforced resin molding
US20030051434A1 (en) Composite structure and method for constructing same
JP2010131846A (en) Method of manufacturing fiber-reinforced plastic
EP2666606B1 (en) A method for transporting a product
JP5558323B2 (en) Fiber reinforced plastic and its manufacturing method
JP2003136548A (en) Material for rtm molding and method for rtm molding by using the material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees