JP5016571B2 - Optical spectrum monitor - Google Patents

Optical spectrum monitor Download PDF

Info

Publication number
JP5016571B2
JP5016571B2 JP2008219979A JP2008219979A JP5016571B2 JP 5016571 B2 JP5016571 B2 JP 5016571B2 JP 2008219979 A JP2008219979 A JP 2008219979A JP 2008219979 A JP2008219979 A JP 2008219979A JP 5016571 B2 JP5016571 B2 JP 5016571B2
Authority
JP
Japan
Prior art keywords
light
wavelength
monitor
optical spectrum
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008219979A
Other languages
Japanese (ja)
Other versions
JP2010054357A (en
Inventor
隆生 谷本
崇記 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2008219979A priority Critical patent/JP5016571B2/en
Publication of JP2010054357A publication Critical patent/JP2010054357A/en
Application granted granted Critical
Publication of JP5016571B2 publication Critical patent/JP5016571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光を分光する分光器とその分光器を用いて被測定光の波長やパワーを測定するために用いられる光スペクトルモニタに関する。   The present invention relates to a spectroscope that splits light and an optical spectrum monitor that is used to measure the wavelength and power of light to be measured using the spectroscope.

図8はリットマン型の分光器を用いた光スペクトルモニタの概略構成を示す図である。図8に示す光スペクトルモニタ101は、入射手段102、回折手段103、回折光受光手段104を備えている。入射手段102は、被測定光が入射される光入力ポート102aと、光入力ポート102aから入射された光をコリメータ光に変換するコリメータ102bとから構成される。また、回折手段103は、コリメータ光を回折する回折格子103aと、回折格子103aによって回折された回折光を再度回折格子に入射させるための反射鏡103bとから構成される。さらに、回折光受光手段104は、回折格子103aからの回折光を集光する集光器104aと、集光器104aによって集光された光を受光し、この受光した光信号を電気信号に変換して出力する受光器104bとから構成される。   FIG. 8 is a diagram showing a schematic configuration of an optical spectrum monitor using a Littman type spectroscope. The optical spectrum monitor 101 shown in FIG. 8 includes an incident means 102, a diffracting means 103, and a diffracted light receiving means 104. The incident means 102 includes a light input port 102a through which light to be measured is incident and a collimator 102b that converts light incident from the light input port 102a into collimator light. The diffracting means 103 includes a diffraction grating 103a that diffracts the collimator light, and a reflecting mirror 103b that causes the diffracted light diffracted by the diffraction grating 103a to enter the diffraction grating again. Further, the diffracted light receiving means 104 receives the light collected by the light collector 104a and the light collected by the light collector 104a, and converts the received light signal into an electrical signal. And the photoreceiver 104b for outputting.

なお、図8の光スペクトルモニタ101を用いた光スペクトルアナライザとしては、例えば下記特許文献1の図3に開示されるものが知られており、分光器から出力した電気信号を使用して被測定光の波長やパワー等を測定している。
特開2003−114149号公報
As an optical spectrum analyzer using the optical spectrum monitor 101 of FIG. 8, for example, the one disclosed in FIG. 3 of the following Patent Document 1 is known, and an object to be measured is measured using an electrical signal output from a spectrometer. It measures the wavelength and power of light.
JP 2003-114149 A

ところで、昨今、光通信の大容量化に伴いWDM(Wavelength Division Multiplexing:波長分割多重方式)通信の高密度化が進み、狭い波長間隔でWDMを行うDWDM(Dense Wavelength Division Multiplexing:高密度波長分割多重方式)が行われるようになっており、高波長精度に対する要求が強くなってきた。   By the way, with the recent increase in capacity of optical communication, the density of WDM (Wavelength Division Multiplexing) communication has increased, and DWDM (Dense Wavelength Division Multiplexing: high density wavelength division multiplexing) that performs WDM at narrow wavelength intervals. System), and there is an increasing demand for high wavelength accuracy.

しかしながら、従来より知られている光スペクトルモニタでは、十分な波長精度を得ることができていなかった。   However, a conventionally known optical spectrum monitor has not been able to obtain sufficient wavelength accuracy.

そこで、本発明は上記問題点に鑑みてなされたものであって、DWDM伝送などの光スペクトラムを高波長精度にて測定することができる光スペクトルモニタを提供することを目的としている。   Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide an optical spectrum monitor capable of measuring an optical spectrum such as DWDM transmission with high wavelength accuracy.

上記目的を達成するため、本発明の請求項1に記載された光スペクトルモニタは、光スペクトルの掃引に応じた回折角で被測定光を回折する回折手段3を有し、該回折手段による1次回折光を受光し、受光量に応じた電気信号に変換出力する光スペクトルモニタにおいて、
前記被測定光の波長の1/2波長付近で発光する波長モニタ用光源22と、前記被測定光と前記波長モニタ用光源からの光とを合成する合波器23とを含む入射手段2と、
前記被測定光の1次回折光と前記波長モニタ用光源の2次回折光とを分波する分波部61を有し、該分波部で分波した前記波長モニタ用光源の2次回折光を入力して波長をモニタする波長モニタ手段6とを備えたことを特徴とする。
In order to achieve the above object, an optical spectrum monitor according to claim 1 of the present invention has diffractive means 3 for diffracting measured light at a diffraction angle corresponding to the sweep of the optical spectrum. In the optical spectrum monitor that receives the next diffracted light and converts it into an electrical signal corresponding to the amount of light received
An incident means 2 including a wavelength monitor light source 22 that emits light in the vicinity of a half wavelength of the wavelength of the light to be measured; and a multiplexer 23 that combines the light to be measured and the light from the wavelength monitor light source; ,
A demultiplexing unit 61 for demultiplexing the first-order diffracted light of the light to be measured and the second-order diffracted light of the light source for wavelength monitoring, and inputs the second-order diffracted light of the light source for wavelength monitoring demultiplexed by the demultiplexing unit And wavelength monitoring means 6 for monitoring the wavelength.

請求項2に記載された光スペクトルモニタは、請求項1の光スペクトルモニタにおいて、
前記波長モニタ用光源22は、前記被測定光の波長の1/2波長を含む広帯域の光を発光することを特徴とする。
The optical spectrum monitor according to claim 2 is the optical spectrum monitor according to claim 1,
The wavelength monitoring light source 22 emits a broadband light including a half wavelength of the wavelength of the light to be measured.

請求項3に記載された光スペクトルモニタは、請求項2の光スペクトルモニタにおいて、
前記波長モニタ手段6は、前記分波部61で分波した前記波長モニタ用光源の2次回折光を透過し、その透過光が波長に対する光強度変化を生じる透過素子64aと、該透過素子の透過光を受光して前記光強度変化を波長に対する電気信号に変換する受光器64cとを備えたことを特徴とする。
The optical spectrum monitor according to claim 3 is the optical spectrum monitor according to claim 2,
The wavelength monitoring unit 6 transmits the second-order diffracted light of the wavelength monitoring light source demultiplexed by the demultiplexing unit 61, and the transmitted light causes a light intensity change with respect to the wavelength, and the transmission of the transmission element. And a light receiver 64c that receives the light and converts the light intensity change into an electrical signal with respect to the wavelength.

請求項4に記載された光スペクトルモニタは、請求項3の光スペクトルモニタにおいて、
前記波長モニタ手段6は、前記分波部61と前記透過素子64aとの間の光路に配置され、前記透過素子に向かう光と該透過素子に向かわない光とに分光する分光部62と、該分光部で分光された前記透過素子に向かわない光を受光する受光器63bとをさらに備えたことを特徴とする。
The optical spectrum monitor according to claim 4 is the optical spectrum monitor according to claim 3,
The wavelength monitoring means 6 is disposed in an optical path between the demultiplexing unit 61 and the transmission element 64a, and a spectral unit 62 that splits light directed toward the transmission element and light not directed toward the transmission element, It further includes a light receiver 63b that receives the light not directed to the transmissive element dispersed by the spectroscopic unit.

請求項5に記載された光スペクトルモニタは、請求項1の光スペクトルモニタにおいて、
前記波長モニタ用光源22は、少なくとも1つの既知の波長の光を含むことを特徴とする。
The optical spectrum monitor according to claim 5 is the optical spectrum monitor according to claim 1,
The wavelength monitoring light source 22 includes at least one light having a known wavelength.

請求項6に記載された光スペクトルモニタは、請求項1の光スペクトルモニタにおいて、
前記波長モニタ用光源22は、既知波長の狭帯域の光を発光することを特徴とする。
The optical spectrum monitor according to claim 6 is the optical spectrum monitor according to claim 1,
The wavelength monitoring light source 22 emits light of a narrow band having a known wavelength.

本発明によれば、高波長精度による光スペクトラムの測定が可能な光スペクトルモニタを提供することができる。また、波長モニタ用光源の光強度が波長に対して一定でなくても、同様に高波長精度による測定が可能な光スペクトルモニタを提供することができる。   According to the present invention, an optical spectrum monitor capable of measuring an optical spectrum with high wavelength accuracy can be provided. Moreover, even if the light intensity of the light source for wavelength monitoring is not constant with respect to the wavelength, it is possible to provide an optical spectrum monitor that can be similarly measured with high wavelength accuracy.

以下、本発明の実施の形態を図面を参照しながら具体的に説明する。図1は本発明に係る光スペクトルモニタの第1実施形態を示す図、図2(a)〜(c)は分波部の各構成例を示す概略図、図3は回折格子における入射角と回折光の回折角の関係を示す図、図4は本発明に係る光スペクトルモニタの第2実施形態を示す図、図5は本発明に係る光スペクトルモニタの第3実施形態を示す図、図6は本発明に係る光スペクトルモニタの第4実施形態を示す図、図7は本発明に係る光スペクトルモニタの第5実施形態を示す図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a diagram illustrating a first embodiment of an optical spectrum monitor according to the present invention, FIGS. 2A to 2C are schematic diagrams illustrating configuration examples of a demultiplexing unit, and FIG. FIG. 4 is a diagram showing a relationship between diffraction angles of diffracted light, FIG. 4 is a diagram showing a second embodiment of an optical spectrum monitor according to the present invention, and FIG. 5 is a diagram showing a third embodiment of the optical spectrum monitor according to the present invention. 6 is a diagram showing a fourth embodiment of the optical spectrum monitor according to the present invention, and FIG. 7 is a diagram showing a fifth embodiment of the optical spectrum monitor according to the present invention.

まず、本発明に係る光スペクトルモニタの第1実施形態の構成について図1を参照しながら説明する。   First, the configuration of the first embodiment of the optical spectrum monitor according to the present invention will be described with reference to FIG.

第1実施形態の光スペクトルモニタ1(1A)は、図1に示すように、入射手段2、回折手段3、回折制御手段4、測定用受光手段5、波長モニタ手段6を備えて概略構成される。   As shown in FIG. 1, the optical spectrum monitor 1 (1A) of the first embodiment is roughly configured to include an incident means 2, a diffraction means 3, a diffraction control means 4, a measurement light receiving means 5, and a wavelength monitor means 6. The

入射手段2は、光入力ポート21、波長モニタ用光源22、合波器23、コリメータ24を備えている。   The incident means 2 includes an optical input port 21, a wavelength monitor light source 22, a multiplexer 23, and a collimator 24.

光入力ポート21には、測定対象となる被測定光(例えば1.5μm帯)が入力している。この光入力ポート21に入力した被測定光は、光ファイバ21aを介して合波器23の一方の入力ポートに入力される。   The light input port 21 receives light under measurement (for example, a 1.5 μm band) to be measured. The light to be measured input to the optical input port 21 is input to one input port of the multiplexer 23 via the optical fiber 21a.

波長モニタ用光源22は、被測定光の波長の1/2波長付近でブロードな光(白色光)を発光する広帯域光源(LED)からなる。例えば、被測定光が1.4μmから1.6μmの場合には、0.7μmから0.8μmの波長成分を持つ広帯域光源によって波長モニタ用光源22が構成される。この波長モニタ用光源22が発光するモニタ光は、光ファイバ22aを介して合波器23の他方の入力ポートに入力される。   The wavelength monitoring light source 22 includes a broadband light source (LED) that emits broad light (white light) in the vicinity of half the wavelength of the light to be measured. For example, when the light to be measured is 1.4 μm to 1.6 μm, the wavelength monitoring light source 22 is configured by a broadband light source having a wavelength component of 0.7 μm to 0.8 μm. The monitor light emitted from the wavelength monitoring light source 22 is input to the other input port of the multiplexer 23 via the optical fiber 22a.

合波器23は、2つの入力ポートと1つの出力ポートを備えた光カプラで構成され、光入力ポート21から光ファイバ21aを介して一方の入力ポートに入力される被測定光と、波長モニタ用光源22から光ファイバ22aを介して他方の入力ポートに入力されるモニタ光とを合波し、この合波された光をコリメータ24に入射している。   The multiplexer 23 is composed of an optical coupler having two input ports and one output port. The light to be measured input from the optical input port 21 to one input port via the optical fiber 21a, and the wavelength monitor The monitor light input from the light source 22 to the other input port via the optical fiber 22 a is combined, and the combined light is incident on the collimator 24.

コリメータ24は、入射光を平行光に変換するコリメートレンズで構成され、合波器23からの光(被測定光とモニタ光との合波光)を平行光に変換して回折手段3に入射している。   The collimator 24 includes a collimator lens that converts incident light into parallel light. The light from the multiplexer 23 (combined light of the light to be measured and the monitor light) is converted into parallel light and incident on the diffraction unit 3. ing.

回折手段3は、回折格子31と反射体32からなる。回折格子31は、所定間隔で平行に刻線(溝間隔d)が形成された回折面31aをコリメータ24側に向けてコリメータ24の出射光路上の後方に固定配置される。この回折格子3は、コリメータ24から入射される光を回折し、この回折した光を反射体32に出力している。   The diffractive means 3 includes a diffraction grating 31 and a reflector 32. The diffraction grating 31 is fixedly arranged behind the collimator 24 on the outgoing light path with the diffraction surface 31a formed with parallel engraving lines (groove spacing d) at predetermined intervals facing the collimator 24 side. The diffraction grating 3 diffracts the light incident from the collimator 24 and outputs the diffracted light to the reflector 32.

反射体32は、反射面32aが回折格子31の回折面31aと対向して配置され、回折格子31の刻線方向に平行な軸周りに光スペクトルの掃引に応じて回動可能なミラーで構成される。この反射体32は、回折格子31からの回折光を再度回折格子31に反射させている。   The reflector 32 is configured by a mirror in which the reflecting surface 32a is disposed so as to face the diffraction surface 31a of the diffraction grating 31 and can be rotated around an axis parallel to the engraving direction of the diffraction grating 31 according to the sweep of the optical spectrum. Is done. The reflector 32 reflects the diffracted light from the diffraction grating 31 to the diffraction grating 31 again.

回折制御手段4は、制御部41と駆動部42とからなる。制御部41は、回折手段3の回折角を制御するべく、反射体32の回転角θλの情報を駆動部42に出力している。また、回折制御手段4は、波長校正を行うための指定波長λの情報を後述する波長校正部67に出力している。   The diffraction control unit 4 includes a control unit 41 and a drive unit 42. The control unit 41 outputs information on the rotation angle θλ of the reflector 32 to the drive unit 42 in order to control the diffraction angle of the diffracting means 3. Further, the diffraction control means 4 outputs information on the designated wavelength λ for performing wavelength calibration to the wavelength calibration unit 67 described later.

駆動部42は、予め決められた初期位置を回転角θλ=0°として、回折制御手段4から入力される回転角θλとなるように回折手段3の反射体32を回転駆動している。   The drive unit 42 rotates the reflector 32 of the diffractive unit 3 so that the rotation angle θλ = 0 ° is set to a predetermined initial position so that the rotation angle θλ is input from the diffraction control unit 4.

測定用受光手段5は、測定用集光器51と測定用受光器52とからなる。測定用集光器51は、回折格子31から後述する分波部(ハイパスフィルタ)61を通過した被測定光の1次回折光を測定用受光器52に集光している。   The light receiving means for measurement 5 includes a light collector for measurement 51 and a light receiver for measurement 52. The measurement condenser 51 condenses the first-order diffracted light of the light to be measured, which has passed through a demultiplexing unit (high-pass filter) 61 described later from the diffraction grating 31, on the measurement light receiver 52.

測定用受光器52は、測定用集光器51によって集光される被測定光の1次回折光を受光し、この受光した被測定光の1次回折光の光強度に応じた電気信号(光強度に比例した電圧信号)を後述するスペクトラム表示部68に出力している。   The light receiver for measurement 52 receives the first-order diffracted light of the light to be measured collected by the light collector for measurement 51, and an electrical signal (light intensity) corresponding to the light intensity of the first-order diffracted light of the received light to be measured. Is output to a spectrum display unit 68 which will be described later.

波長モニタ手段6は、分波部61、分光部62、モニタ光第1受光部63、モニタ光第2受光部64、透過率算出部65、記憶部66、波長校正部67、スペクトラム表示部68を備えている。   The wavelength monitoring means 6 includes a demultiplexing unit 61, a spectroscopic unit 62, a monitor light first light receiving unit 63, a monitor light second light receiving unit 64, a transmittance calculating unit 65, a storage unit 66, a wavelength calibration unit 67, and a spectrum display unit 68. It has.

分波部61は、回折手段3から入射される回折光を、被測定光の1次回折光と波長モニタ用光源22の2次回折光とに分波するもので、例えばハイパスフィルタで構成される。この分波部61をなすハイパスフィルタでは、回折手段3からの回折光が入射されると、被測定光の1次回折光を測定用受光手段5に透過し、波長モニタ用光源22の2次回折光を第2分岐部62に反射している。   The demultiplexing unit 61 demultiplexes the diffracted light incident from the diffracting means 3 into the first-order diffracted light of the light to be measured and the second-order diffracted light of the wavelength monitor light source 22, and is constituted by a high-pass filter, for example. When the diffracted light from the diffracting means 3 is incident on the high-pass filter constituting the demultiplexing unit 61, the first-order diffracted light of the light to be measured is transmitted to the measuring light-receiving means 5, and the second-order diffracted light from the wavelength monitor light source 22. Is reflected by the second branch part 62.

なお、分波部61としては、例えば図2(a)〜(c)に示す構成を採用することができる。図2(a)の例では、回折手段3からの回折光を長波と短波とに分波するビームスプリッタで分波部61を構成している。この構成では、回折手段3からの回折光のうち、長波である被測定光の1次回折光を測定用受光手段5側に透過させ、短波である波長モニタ用光源22の2次回折光を分光部62側に反射させている。   In addition, as the branching part 61, the structure shown to Fig.2 (a)-(c) is employable, for example. In the example of FIG. 2A, the demultiplexing unit 61 is configured by a beam splitter that demultiplexes the diffracted light from the diffracting means 3 into a long wave and a short wave. In this configuration, of the diffracted light from the diffracting means 3, the first-order diffracted light of the light to be measured that is a long wave is transmitted to the measurement light-receiving means 5 side, and the second-order diffracted light of the wavelength monitor light source 22 that is a short wave is transmitted to the spectroscopic unit. Reflected toward the 62 side.

図2(b)の例では、ハーフミラーと、ハーフミラーの後段にそれぞれ設けられるフィルタで分波部61を構成している。この構成では、回折手段3からの回折光をハーフミラーによって2分し、その後段のフィルタによって回折手段3からの回折光を、被測定光の1次回折光と波長モニタ用光源22の2次回折光とに分離している。   In the example of FIG. 2B, the demultiplexing unit 61 is configured by a half mirror and a filter provided in the subsequent stage of the half mirror. In this configuration, the diffracted light from the diffracting means 3 is divided into two by a half mirror, and the diffracted light from the diffracting means 3 is converted into the second-order diffracted light of the measured light and the wavelength monitoring light source 22 by the subsequent filter. And are separated.

図2(c)の例では、後述する受光器(測定用受光器51、モニタ光第1受光器63b、モニタ光第2受光器64c)で分波部61を構成している。この構成では、受光器の受光感度特性によって回折手段3からの回折光を、被測定光の1次回折光と波長モニタ用光源22の2次回折光とに分離している。   In the example of FIG. 2C, a light splitting unit 61 is configured by a light receiver (measurement light receiver 51, monitor light first light receiver 63b, monitor light second light receiver 64c) described later. In this configuration, the diffracted light from the diffracting means 3 is separated into the first-order diffracted light of the light to be measured and the second-order diffracted light of the wavelength monitor light source 22 by the light receiving sensitivity characteristic of the light receiver.

分光部62は、例えばビームスプリッタで構成され、分波部61で分波された波長モニタ用光源22の2次回折光を所定の割合(例えば50%:50%の割合)で分光し、一方をモニタ光第1受光部63に反射させ、他方をモニタ光第2受光部64に透過させている。   The spectroscopic unit 62 is composed of, for example, a beam splitter, and splits the second-order diffracted light of the wavelength monitoring light source 22 demultiplexed by the demultiplexing unit 61 at a predetermined ratio (for example, a ratio of 50%: 50%), The light is reflected by the monitor light first light receiving unit 63 and the other is transmitted by the monitor light second light receiving unit 64.

モニタ光第1受光部63は、モニタ光第1集光器63aとモニタ光第1受光器63bからなる。モニタ光第1集光器63aは、分光部62により分光されて反射された波長モニタ用光源22の2次回折光をモニタ光第1受光器63bに集光している。   The monitor light first light receiving unit 63 includes a monitor light first light collector 63a and a monitor light first light receiver 63b. The monitor light first condenser 63a condenses the second-order diffracted light of the wavelength monitoring light source 22 that has been split and reflected by the spectroscopic unit 62 onto the monitor light first light receiver 63b.

モニタ光第1受光器63bは、例えばSi−PDで構成され、モニタ光第1集光器63aで集光される波長モニタ用光源22の2次回折光を受光し、この受光した波長モニタ用光源22の2次回折光の光強度に応じた電気信号(受光した光に含まれる各波長毎の強度のデータ列で表されるスペクトラムデータ)を出力している。   The monitor light first light receiver 63b is made of, for example, Si-PD, receives the second-order diffracted light of the wavelength monitor light source 22 collected by the monitor light first light collector 63a, and receives the received wavelength monitor light source. An electrical signal corresponding to the light intensity of the 22nd-order diffracted light (spectrum data represented by an intensity data string for each wavelength included in the received light) is output.

モニタ光第2受光部64は、透過素子64a、モニタ光第2集光器64b、モニタ光第2受光器64cからなる。透過素子64aは、光に対する透過率が波長によって変化する透過特性を有する素子であり、例えば透過特性が安定した光学櫛形フィルタのエタロンで構成される。エタロン64aは、波長の単調変化に対して透過率がほぼ一定波長間隔で周期的に増減変化する透過特性を有しており、分光部62で分光された波長モニタ用光源22の2次回折光を受けて等間隔に配列された複数の既知波長の光を透過し、透過光が波長に対する光強度変化を生じるものである。   The monitor light second light receiving unit 64 includes a transmission element 64a, a monitor light second light collector 64b, and a monitor light second light receiver 64c. The transmissive element 64a is an element having a transmission characteristic in which the transmittance with respect to light varies depending on the wavelength. The etalon 64a has a transmission characteristic in which the transmittance periodically increases and decreases at a constant wavelength interval with respect to a monotonous change in wavelength, and the second-order diffracted light of the wavelength monitor light source 22 spectrally separated by the spectroscopic unit 62 is obtained. In response to this, light of a plurality of known wavelengths arranged at equal intervals is transmitted, and the transmitted light causes a change in light intensity with respect to the wavelength.

モニタ光第2集光器64bは、透過素子(エタロン)64aからの透過光をモニタ光第2受光器64cに集光している。   The monitor light second light collector 64b condenses the transmitted light from the transmission element (etalon) 64a on the monitor light second light receiver 64c.

モニタ光第2受光器64cは、モニタ光第2集光器64bで集光される透過素子64aからの透過光を受光し、この受光した透過光の光強度に応じた電気信号(透過素子64aの透過特性の影響を受けた光に含まれる各波長毎の強度のデータ列で表されるスペクトラムデータ)を出力している。   The monitor light second light receiver 64c receives the transmitted light from the transmission element 64a collected by the monitor light second light collector 64b, and an electrical signal (transmission element 64a) corresponding to the light intensity of the received transmitted light. (Spectrum data represented by a data string of intensities for each wavelength included in the light affected by the transmission characteristics).

透過率算出部65は、モニタ光第1受光部63及びモニタ光第2受光部64によって受光検出された光の強度に応じた電気信号(スペクトラムデータ)とそれに対応付けされた波長情報とに基づいて、モニタ光の透過素子(エタロン)64bに対する光の透過率を算出している。   The transmittance calculating unit 65 is based on an electrical signal (spectrum data) corresponding to the intensity of light received and detected by the monitor light first light receiving unit 63 and the monitor light second light receiving unit 64 and wavelength information associated therewith. Thus, the light transmittance of the monitor light transmission element (etalon) 64b is calculated.

記憶部66には、透過素子(エタロン)64aの透過特性(透過プロファイル)が予め記憶されている。エタロン64aの透過プロファイルは、フリースペクトルレンジ(FSR)毎にローレンシャン形のピークが波長軸上に等間隔に並んだ形状をしている。そして、それぞれのピーク波長は、予め測定された既知波長(例えば・・・1535nm、1540nm、1545nm・・・のように5nm間隔の既知波長)の透過特性として記憶部67に記憶されている。   The storage unit 66 stores in advance transmission characteristics (transmission profile) of the transmission element (etalon) 64a. The transmission profile of the etalon 64a has a shape in which Laurentian peaks are arranged at equal intervals on the wavelength axis for each free spectral range (FSR). And each peak wavelength is memorize | stored in the memory | storage part 67 as a transmission characteristic of the known wavelength (For example, ... 1535nm, 1540nm, 1545nm ... and the like).

波長校正部67は、透過率算出部65によって算出された透過率と、予め記憶部66に記憶されている透過素子(エタロン)64aの透過特性と、制御部41からの指定波長λとに基づいて、モニタ光第1受光部63の各サンプル値の波長を求め、この求めた各波長に基づいてモニタ光第1受光部64の各サンプル値の波長を校正している。   The wavelength calibration unit 67 is based on the transmittance calculated by the transmittance calculation unit 65, the transmission characteristics of the transmission element (etalon) 64 a stored in advance in the storage unit 66, and the designated wavelength λ from the control unit 41. Thus, the wavelength of each sample value of the monitor light first light receiving unit 63 is obtained, and the wavelength of each sample value of the monitor light first light receiving unit 64 is calibrated based on the obtained wavelength.

さらに説明すると、各波長検出対象値毎に検出された各波長と各波長検出対象値に対応付けされて記憶された波長情報との誤差をそれぞれ求め、制御部41からの指定波長λに対する誤差の変化特性を求め、この変化特性に基づいて、モニタ光第1受光部63のスペクトラムデータの各波長情報を減算補正する。   More specifically, an error between each wavelength detected for each wavelength detection target value and the wavelength information stored in association with each wavelength detection target value is obtained, and the error of the specified wavelength λ from the control unit 41 is calculated. A change characteristic is obtained, and each wavelength information of the spectrum data of the monitor light first light receiving unit 63 is subtracted and corrected based on the change characteristic.

なお、エタロンを透過素子64aとして用いた場合、算出された透過率から波長を一義的に求めることができないので、その算出された一つの透過率に対して透過特性から得られる複数の波長のうち、指定波長λに対応付けされて記憶部66に記憶されている波長に最も近い波長をその波長検出対象値に対応した正確な波長として選択している。   When an etalon is used as the transmissive element 64a, the wavelength cannot be uniquely determined from the calculated transmittance. Therefore, among the plurality of wavelengths obtained from the transmission characteristics for the calculated one transmittance, The wavelength closest to the wavelength associated with the designated wavelength λ and stored in the storage unit 66 is selected as an accurate wavelength corresponding to the wavelength detection target value.

スペクトラム表示部68は、液晶表示器などの表示装置で構成され、波長校正部66によって校正された波長情報に基づくスペクトラムデータを読み出し、横軸を波長軸、縦軸をパワー軸の直交座標を表示器の画面上に表示し、読み出したスペクトラムデータの波形を直交座標上に表示している。このスペクトラム波形の波長軸は波長校正部66によって校正されているので、各スペクトラムの波長と強度を正確に把握することができる。   The spectrum display unit 68 is composed of a display device such as a liquid crystal display, reads spectrum data based on the wavelength information calibrated by the wavelength calibration unit 66, and displays the horizontal axis as the wavelength axis and the vertical axis as the orthogonal coordinate of the power axis. The waveform of the read spectrum data is displayed on the Cartesian coordinates. Since the wavelength axis of this spectrum waveform is calibrated by the wavelength calibration unit 66, the wavelength and intensity of each spectrum can be accurately grasped.

以上のように構成される第1実施形態の光スペクトルモニタ1Aでは、光入力ポート21から入力した光(被測定光)が、コリメータ24でコリメート光に変換され、回折格子31に入射される。回折格子31に入射された光は、回折面で回折され、この回折による1次回折光が反射体32に出力される。反射体32は、回折格子31の刻線方向に平行な軸で光スペクトルの掃引に応じて回動可能であり、反射体32で反射された光は再度回折格子31で回折され、この回折による1次回折光は測定用集光器51で集光され、測定用受光器52に受光される。そして、制御部41の制御により指定波長λに応じて反射体32を回転させ、測定用受光器52で光−電気変換された強度信号を観測することにより、スペクトラムを測定することができる。   In the optical spectrum monitor 1 </ b> A according to the first embodiment configured as described above, light (measured light) input from the optical input port 21 is converted into collimated light by the collimator 24 and is incident on the diffraction grating 31. The light incident on the diffraction grating 31 is diffracted by the diffraction surface, and the first-order diffracted light resulting from this diffraction is output to the reflector 32. The reflector 32 can be rotated according to the sweep of the optical spectrum on an axis parallel to the direction of the engraving line of the diffraction grating 31, and the light reflected by the reflector 32 is diffracted by the diffraction grating 31 again. The first-order diffracted light is condensed by the measurement condenser 51 and received by the measurement light receiver 52. The spectrum can be measured by rotating the reflector 32 according to the designated wavelength λ under the control of the control unit 41 and observing the intensity signal that has been photoelectrically converted by the measurement light receiver 52.

そして、波長校正を行う場合には、被測定光の波長の1/2波長付近で発光する波長モニタ用光源22から被測定光の波長の1/2波長付近で発光するモニタ光を合波器23に入力する。例えば被測定光が1.4μmから1.6μmの場合には、0.7μmから0.8μmの波長成分を持つ波長モニタ用光源22からのモニタ光と、被測定光とを合波器23に入力する。   When wavelength calibration is performed, the monitor light emitted near the half wavelength of the wavelength of the measured light from the wavelength monitor light source 22 that emits near the wavelength of the measured light is multiplexed. 23. For example, when the light to be measured is 1.4 μm to 1.6 μm, the monitor light from the wavelength monitor light source 22 having a wavelength component of 0.7 μm to 0.8 μm and the light to be measured to the multiplexer 23. input.

そして、回折格子31と測定用集光器51との間の光路に被測定光の1次回折光と波長モニタ用光源22の2次回折光とを分波する分波部61を配置し、分波した波長モニタ用光源22の2次回折光を波長モニタ手段6に入力して波長をモニタしている。   A demultiplexing unit 61 that demultiplexes the first-order diffracted light of the light to be measured and the second-order diffracted light of the wavelength monitor light source 22 is disposed in the optical path between the diffraction grating 31 and the measurement condenser 51. The second-order diffracted light from the wavelength monitor light source 22 is input to the wavelength monitor means 6 to monitor the wavelength.

すなわち、第1実施形態では、被測定光の波長の1/2波長付近で発光する波長モニタ用光源22からのモニタ光と、被測定光とを合波器23で合成して回折手段3に入力し、回折手段3からの回折光を分波部61で被測定光の1次回折光と波長モニタ用光源22の2次回折光とに分波し、分波した2次回折光を透過素子64aとしてのエタロンを透過させ、この透過した光の透過率を算出し、算出した透過率、指定波長λ、記憶部66のエタロン透過率フロファイルに基づいて波長校正を行っている。   That is, in the first embodiment, the monitor light from the wavelength monitor light source 22 that emits light in the vicinity of half the wavelength of the light to be measured and the light to be measured are combined by the multiplexer 23 to the diffraction unit 3. The diffracted light from the diffracting means 3 is demultiplexed into the first-order diffracted light of the light to be measured and the second-order diffracted light of the wavelength monitor light source 22 by the demultiplexing unit 61, and the demultiplexed second-order diffracted light is used as the transmission element 64a. The transmittance of the transmitted light is calculated, and wavelength calibration is performed based on the calculated transmittance, the specified wavelength λ, and the etalon transmittance profile of the storage unit 66.

ここで、図3に示すように、波長λの光が溝間隔dの回折格子31に入射角αで入射した場合、その回折光の回折角βは、Nλ=d(sinα+sinβ)の式で表すことができる。但し、N=0,±1,±2,・・・である。   Here, as shown in FIG. 3, when light having a wavelength λ is incident on the diffraction grating 31 having the groove interval d at an incident angle α, the diffraction angle β of the diffracted light is expressed by the equation Nλ = d (sin α + sin β). be able to. However, N = 0, ± 1, ± 2,...

例えば、λ=1550nmの光を入射角85°で溝間隔1/1100mmの回折格子31に入射する場合、βは44.6°となる(N=1)。また、波長775nmの光を入射する場合、N=2の光はやはり44.6°の方向に回折される。   For example, when light of λ = 1550 nm is incident on the diffraction grating 31 having an incident angle of 85 ° and a groove interval of 1/1100 mm, β is 44.6 ° (N = 1). When light having a wavelength of 775 nm is incident, the light with N = 2 is also diffracted in the direction of 44.6 °.

このように、任意の被測定光波長の回折格子31の1次回折光の回折角は、波長モニタ用光源22の回折格子31の2次回折光の回折角に一致するため、任意の波長の被測定光が測定用受光手段5に向かう光路と、被測定光の1/2波長の波長モニタ用光源22の光とは同一光路となる。   As described above, the diffraction angle of the first-order diffracted light of the diffraction grating 31 having an arbitrary wavelength of the light to be measured matches the diffraction angle of the second-order diffracted light of the diffraction grating 31 of the wavelength monitor light source 22, so The light path toward the light receiving means 5 for measurement and the light of the wavelength monitoring light source 22 having a half wavelength of the light to be measured have the same light path.

従って、被測定波長と波長モニタ用光源22の光、すなわち被測定光波長の1/2波長の波長モニタ用光源22の光には相関が得られ、波長モニタ用光源22の光波長をモニタすることにより、被測定光の波長を特定することができる。   Accordingly, a correlation is obtained between the wavelength to be measured and the light from the wavelength monitoring light source 22, that is, the light from the wavelength monitoring light source 22 having a half wavelength of the measured light wavelength, and the light wavelength of the wavelength monitoring light source 22 is monitored. Thus, the wavelength of the light to be measured can be specified.

なお、被測定光と波長モニタ用光源22の光とは、波長が異なるため、分波部61により容易に分波することが可能である。   Since the light to be measured and the light from the wavelength monitoring light source 22 have different wavelengths, they can be easily demultiplexed by the demultiplexing unit 61.

また、第1実施形態では、モニタ光第2受光部64として、分波部61で分波した波長モニタ用光源22の2次回折光を透過し、その透過光が波長に対する光強度変化を生じる透過素子(エタロン)64aと、透過素子64aの透過光を集光するモニタ光第2集光器64bと、集光された透過光を受光して光強度変化を波長に対する電気信号に変換するモニタ光第2受光器64cで構成している。そして、モニタ光第2受光器64cの出力信号、すなわち波長モニタ用光源22の光の透過素子64a透過後の光強度変化信号から、波長モニタ用光源22の波長を求めることにより、その波長の2倍の波長である被測定波長を特定することができる。   In the first embodiment, the second-order diffracted light of the wavelength monitor light source 22 demultiplexed by the demultiplexing unit 61 is transmitted as the monitor light second light receiving unit 64, and the transmitted light causes a change in light intensity with respect to the wavelength. An element (etalon) 64a, a monitor light second condenser 64b that condenses the transmitted light of the transmission element 64a, and a monitor light that receives the collected transmitted light and converts a change in light intensity into an electrical signal with respect to the wavelength. The second light receiver 64c is used. Then, by obtaining the wavelength of the wavelength monitor light source 22 from the output signal of the monitor light second light receiver 64c, that is, the light intensity change signal of the light of the wavelength monitor light source 22 after passing through the transmission element 64a, the wavelength of 2 is obtained. A wavelength to be measured that is a double wavelength can be specified.

さらに、第1実施形態では、上記構成の波長モニタ用光源22の2次回折光を分波する分波部61と透過素子64aの間の光路に分光部62をなすハーフミラーを配置し、透過素子64aに向かう光と透過素子64aに向かわない光とに分光して透過素子64aに向かう光の一部を取り出し、モニタ光第1受光部63として、ハーフミラーの光(透過素子64aに向かわない光)を集光するモニタ光第1集光器63aと、集光された光を受光するモニタ光第1受光器63bとからなるモニタ光第1受光部63とを備えた構成としている。   Further, in the first embodiment, a half mirror that forms the spectroscopic unit 62 is disposed in the optical path between the demultiplexing unit 61 that demultiplexes the second-order diffracted light of the wavelength monitoring light source 22 having the above configuration and the transmission element 64a, and the transmission element A part of the light directed to the transmissive element 64a is extracted by splitting the light toward the light 64a and the light not directed to the transmissive element 64a, and the half-mirror light (light not directed to the transmissive element 64a) is used as the monitor light first light receiving unit 63. ) And a monitor light first light receiving unit 63 including a monitor light first light receiver 63b that receives the collected light.

この構成では、モニタ光第2受光器64cには透過素子64a透過後の信号が、またモニタ光第1受光器63bには透過素子64a透過前の信号が検出されるので、モニタ光第2受光器64cの光−電気変換信号強度と、モニタ光第1受光器63bの光−電気変換信号強度の比を求めることにより、波長モニタ用光源22の光の波長−光パワーの変化に依存しない光スペクトルモニタの波長目盛りとなる信号を得ることができる。   In this configuration, the monitor light second light receiver 64c detects the signal after transmission through the transmission element 64a, and the monitor light first light receiver 63b detects the signal before transmission through the transmission element 64a. Light that does not depend on the change of the wavelength-light power of the light of the wavelength monitor light source 22 by determining the ratio of the light-electric conversion signal intensity of the light detector 64c and the light-electric conversion signal intensity of the monitor light first light receiver 63b A signal serving as a wavelength scale of the spectrum monitor can be obtained.

そして、上述した透過素子(エタロン)64aの透過光強度から得られる波長目盛りとなる信号を基にサンプリングトリガを発生させることにより、高速で、しかも波長高精度の測定も可能になる。   Then, by generating a sampling trigger based on a signal having a wavelength scale obtained from the transmitted light intensity of the transmission element (etalon) 64a described above, high-speed and high-accuracy measurement can be performed.

さらに、精度を上げるために、この波長目盛りとなる信号を位相分割して、細かい波長ステップでの位置信号を発生させることも可能である。   Furthermore, in order to increase the accuracy, it is possible to phase-divide the signal that becomes the wavelength scale to generate a position signal at fine wavelength steps.

次に、本発明に係る光スペクトルモニタの第2実施形態の構成について図4を参照しながら説明する。   Next, the configuration of the second embodiment of the optical spectrum monitor according to the present invention will be described with reference to FIG.

なお、図4の第2実施形態の光スペクトルモニタ1(1B)において、第1実施形態の光スペクトルモニタ1Aと略同一の構成要素には同一符号を付し、第1実施形態との構成上の差異についてのみ説明する。   In addition, in the optical spectrum monitor 1 (1B) of the second embodiment shown in FIG. 4, the same reference numerals are given to substantially the same components as those of the optical spectrum monitor 1A of the first embodiment, and the configuration with the first embodiment. Only the differences will be described.

第2実施形態の光スペクトルモニタ1Bでは、第1実施形態の波長モニタ手段6のモニタ光第1受光部63および透過率算出部65が削除され、モニタ光第2受光部64の透過素子64aが入射手段2内に設けられた構成である。すなわち、入射手段2の波長モニタ用光源22と合波器23との間に既知波長透過部25が設けられた構成である。   In the optical spectrum monitor 1B of the second embodiment, the monitor light first light receiving unit 63 and the transmittance calculating unit 65 of the wavelength monitoring unit 6 of the first embodiment are deleted, and the transmission element 64a of the monitor light second light receiving unit 64 is replaced. This is a configuration provided in the incident means 2. That is, the known wavelength transmitting portion 25 is provided between the wavelength monitoring light source 22 of the incident means 2 and the multiplexer 23.

既知波長透過部25は、集光レンズ25a、透過素子(エタロン)25b、集光レンズ25cの順に波長モニタ用光源22側から配置された構成からなる。この既知波長透過部25では、波長モニタ用光源22からのモニタ光を、集光レンズ25aにより透過素子25bに集光している。そして、透過素子25bは、集光レンズ25aによって集光される光を受けて等間隔に配列された複数の既知波長の光を透過し、集光レンズ25cにより合波器23の他方の入力ポートに集光して入力している。なお、透過素子25bは、前述したモニタ光第2受光部64の透過素子64aと同様に、例えば透過特性が安定した光学櫛形フィルタのエタロンが用いられる。   The known wavelength transmission unit 25 has a configuration in which a condenser lens 25a, a transmission element (etalon) 25b, and a condenser lens 25c are arranged in this order from the wavelength monitor light source 22 side. In the known wavelength transmission unit 25, the monitor light from the wavelength monitoring light source 22 is condensed on the transmission element 25b by the condenser lens 25a. The transmissive element 25b receives the light collected by the condenser lens 25a and transmits light of a plurality of known wavelengths arranged at equal intervals, and the other input port of the multiplexer 23 by the condenser lens 25c. The light is condensed and input. As the transmission element 25b, for example, an etalon of an optical comb filter having a stable transmission characteristic is used, similarly to the transmission element 64a of the monitor light second light receiving unit 64 described above.

また、第2実施形態の光スペクトルモニタ1Bでは、波長モニタ手段6が第1実施形態よりも簡略された構成であって、分波部61、モニタ光第2受光部64、記憶部66、波長校正部67、スペクトラム表示部68を備えて構成される。   Further, in the optical spectrum monitor 1B of the second embodiment, the wavelength monitoring means 6 has a simpler configuration than that of the first embodiment, and includes a demultiplexing unit 61, a monitor light second light receiving unit 64, a storage unit 66, and a wavelength. A calibration unit 67 and a spectrum display unit 68 are provided.

この第2実施形態の光スペクトルモニタ1Bでは、回折手段3からの回折光が、分波部61によって、被測定光の1次回折光と波長モニタ用光源22の2次回折光とに分波される。そして、被測定光の1次回折光が測定用受光手段5によって受光検出され、この受光検出の結果に基づくスペクトラム波形がスペクトラム表示部68に表示される。また、波長モニタ用光源22の2次回折光がモニタ光第2受光部64に受光検出され、この受光検出された光強度に応じた電気信号(透過素子25bの透過特性の影響を受けた光に含まれる各波長毎の強度のデータ列で表されるスペクトラムデータ)が波長校正部67に入力される。そして、波長校正部67は、制御部41からの指定波長λ、予め記憶部66に記憶された波長−レベル情報に基づいて、モニタ光第2受光部64から入力される電気信号に対して波長校正し、この波長校正されたスペクトラム波形をスペクトラム表示部68に表示している。   In the optical spectrum monitor 1B of the second embodiment, the diffracted light from the diffracting means 3 is demultiplexed by the demultiplexing unit 61 into the first-order diffracted light of the measured light and the second-order diffracted light of the wavelength monitor light source 22. . Then, the first-order diffracted light of the light under measurement is received and detected by the measurement light receiving means 5, and a spectrum waveform based on the result of this light reception detection is displayed on the spectrum display unit 68. Further, the second-order diffracted light of the wavelength monitor light source 22 is received and detected by the monitor light second light receiving unit 64, and an electrical signal corresponding to the light intensity detected and detected (the light affected by the transmission characteristics of the transmission element 25b). (Spectrum data represented by an intensity data string for each wavelength included) is input to the wavelength calibration unit 67. Then, the wavelength calibration unit 67 determines the wavelength of the electrical signal input from the monitor light second light receiving unit 64 based on the designated wavelength λ from the control unit 41 and the wavelength-level information stored in the storage unit 66 in advance. The spectrum waveform that has been calibrated and wavelength-calibrated is displayed on the spectrum display unit 68.

次に、本発明に係る光スペクトルモニタの第3実施形態の構成について図5を参照しながら説明する。   Next, the configuration of the third embodiment of the optical spectrum monitor according to the present invention will be described with reference to FIG.

なお、図5の第3実施形態の光スペクトルモニタ1(1C)において、前述した第1,第2実施形態の光スペクトルモニタ1A,1Bと略同一の構成要素には同一符号を付し、前述した実施形態の構成要素と同一の構成要素についての説明を省略する。   In the optical spectrum monitor 1 (1C) of the third embodiment shown in FIG. 5, the same reference numerals are given to substantially the same components as those of the optical spectrum monitors 1A and 1B of the first and second embodiments described above. A description of the same components as those of the embodiment described above will be omitted.

第3実施形態の光スペクトルモニタ1Cでは、第1実施形態の波長モニタ手段6のモニタ光第1受光部63、モニタ光第2受光部64の透過素子64a、および透過率算出部65が削除された構成であり、入射手段2の波長モニタ用光源22が、被測定光の波長の1/2波長である既知波長(例えば0.7μm帯)のモニタ光を発光する狭帯域光源で構成される。   In the optical spectrum monitor 1C of the third embodiment, the monitor light first light receiving unit 63 of the wavelength monitor unit 6 of the first embodiment, the transmission element 64a of the monitor light second light receiving unit 64, and the transmittance calculation unit 65 are deleted. The wavelength monitoring light source 22 of the incident means 2 is composed of a narrow band light source that emits monitor light having a known wavelength (for example, 0.7 μm band) that is ½ of the wavelength of the light to be measured. .

また、第3実施形態の光スペクトルモニタ1Cでは、波長モニタ手段6が第1実施形態よりも簡略された構成であって、第2実施形態と同一構成、すなわち分波部61、モニタ光第2受光部64、記憶部66、波長校正部67、スペクトラム表示部68を備えて構成される。なお、回折手段3からの回折光を、被測定光の1次回折光と波長モニタ用光源22の2次回折光とに分波した以降の動作については、第2実施形態と同様なので、ここでの説明は省略する。   Further, in the optical spectrum monitor 1C of the third embodiment, the wavelength monitoring means 6 has a simplified configuration compared to the first embodiment, and has the same configuration as that of the second embodiment, that is, the demultiplexing unit 61 and the second monitor light. A light receiving unit 64, a storage unit 66, a wavelength calibration unit 67, and a spectrum display unit 68 are provided. The operation after the diffracted light from the diffracting means 3 is demultiplexed into the first-order diffracted light of the light to be measured and the second-order diffracted light of the wavelength monitor light source 22 is the same as in the second embodiment. Description is omitted.

次に、本発明に係る光スペクトルモニタの第4実施形態の構成について図6を参照しながら説明する。   Next, the configuration of the fourth embodiment of the optical spectrum monitor according to the present invention will be described with reference to FIG.

なお、図6の第4実施形態の光スペクトルモニタ1(1D)において、前述した第1〜第3実施形態の光スペクトルモニタ1A〜1Cと略同一の構成要素には同一符号を付し、前述した構成要素と同一の構成要素についての説明を省略する。   In addition, in the optical spectrum monitor 1 (1D) of the fourth embodiment in FIG. 6, the same reference numerals are given to substantially the same components as the optical spectrum monitors 1A to 1C of the first to third embodiments described above. A description of the same components as those described above will be omitted.

第4実施形態の光スペクトルモニタ1Dでは、回折手段3の反射体(ミラー)32を固定として回折格子31が制御部41の制御に基づく駆動部42の駆動により回転可能なダブルパスによるリトロー分光器の構成を採用している。なお、他の構成及び各構成の動作については第1実施形態と同一である。   In the optical spectrum monitor 1 </ b> D of the fourth embodiment, the reflector (mirror) 32 of the diffractive means 3 is fixed, and the diffraction grating 31 can be rotated by driving the drive unit 42 based on the control of the control unit 41. The configuration is adopted. In addition, about another structure and operation | movement of each structure, it is the same as 1st Embodiment.

次に、本発明に係る光スペクトルモニタの第5実施形態の構成について図7を参照しながら説明する。   Next, the configuration of the fifth embodiment of the optical spectrum monitor according to the present invention will be described with reference to FIG.

なお、図7の第5実施形態の光スペクトルモニタ1Eにおいて、前述した第1〜第4実施形態の光スペクトルモニタ1A〜1Dと略同一の構成要素には同一符号を付し、前述した構成要素と同一の構成要素についての説明を省略する。   In addition, in the optical spectrum monitor 1E of the fifth embodiment shown in FIG. 7, the same reference numerals are given to substantially the same components as those of the optical spectrum monitors 1A to 1D of the first to fourth embodiments described above, and the components described above. Description of the same components as those in FIG.

第5実施形態の光スペクトルモニタ1Eでは、回折手段3を構成する回折格子31と反射体(ミラー)32の位置関係が第1実施形態とは逆になっており、シングルパスによるリトマン分光器の構成を採用している。なお、他の構成及び各構成の動作については第1実施形態と同一である。   In the optical spectrum monitor 1E of the fifth embodiment, the positional relationship between the diffraction grating 31 and the reflector (mirror) 32 constituting the diffractive means 3 is opposite to that of the first embodiment. The configuration is adopted. In addition, about another structure and operation | movement of each structure, it is the same as 1st Embodiment.

このように、本発明に係る光スペクトルモニタによれば、光スペクトラムを高波長精度にて測定するスペクトルモニタを提供することができる。また、波長モニタ用の光強度が波長に対して一定でなくても、同様に高波長精度でのスペクトルモニタを提供することができる。   Thus, according to the optical spectrum monitor of the present invention, it is possible to provide a spectrum monitor that measures the optical spectrum with high wavelength accuracy. Further, even if the light intensity for wavelength monitoring is not constant with respect to the wavelength, a spectrum monitor with high wavelength accuracy can be provided similarly.

ところで、上述した実施形態の回折手段3としては、回折格子と反射体とを組み合わせ、一方を固定とし、他方が刻線と平行な軸周りに回転する構成を例にとって説明したが、反射体を省き、刻線と平行な軸周りに回転可能な凹面型の回折格子のみで回折手段3を構成し、シングルパスによる分光器を構成してもよい。   By the way, as the diffraction means 3 of the above-described embodiment, the diffraction grating and the reflector are combined, one is fixed, and the other rotates around an axis parallel to the score line. Omitting, the diffraction means 3 may be composed of only a concave diffraction grating that can rotate around an axis parallel to the score line, and a single-pass spectroscope may be configured.

また、上述した実施形態では、コリメータ24が入射手段2に含まれる構成として説明したが、このコリメータ24を省いた構成としてもよい。また、波長モニタ用光源22としては、発光波長が被測定光の1/2波長に限定されるものではなく、例えば被測定光の1/3波長付近で発光する広帯域光源で波長モニタ用光源22を構成することもできる。その場合、回折手段3における被測定光の回折効率と波長モニタ用光源22からのモニタ光の回折効率がほぼ同等であることが望まれる。   In the above-described embodiment, the collimator 24 is described as being included in the incident means 2, but the collimator 24 may be omitted. The wavelength monitoring light source 22 is not limited to the emission wavelength of ½ wavelength of the light to be measured. For example, the wavelength monitoring light source 22 is a broadband light source that emits light in the vicinity of 3 wavelength of the light to be measured. Can also be configured. In that case, it is desirable that the diffraction efficiency of the light to be measured in the diffractive means 3 and the diffraction efficiency of the monitor light from the wavelength monitoring light source 22 are substantially equal.

さらに、第1、第4、第5実施形態(図1、図6、図7)において、分光部62、モニタ光第1受光部63および透過率算出部65の構成を省くこともできる。この場合、記憶部66には予め波長−レベルの関係を示す情報が記憶される。そして、波長校正部67は、第2および第3実施形態と同様に、制御部41からの指定波長λ、記憶部66の波長−レベル情報に基づき、モニタ光第2受光部64からの電気信号に対して波長校正を行うことになる。   Furthermore, in the first, fourth, and fifth embodiments (FIGS. 1, 6, and 7), the configurations of the spectroscopic unit 62, the monitor light first light receiving unit 63, and the transmittance calculating unit 65 may be omitted. In this case, the storage unit 66 stores information indicating a wavelength-level relationship in advance. Then, similarly to the second and third embodiments, the wavelength calibration unit 67 is based on the designated wavelength λ from the control unit 41 and the wavelength-level information in the storage unit 66, and the electrical signal from the monitor light second light receiving unit 64. Wavelength calibration will be performed for.

本発明に係る光スペクトルモニタの第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the optical spectrum monitor which concerns on this invention. (a)〜(c) 分波部の各構成例を示す概略図である。(A)-(c) It is the schematic which shows each structural example of a demultiplexing part. 回折格子における入射角と回折光の回折角の関係を示す図である。It is a figure which shows the relationship between the incident angle in a diffraction grating, and the diffraction angle of diffracted light. 本発明に係る光スペクトルモニタの第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the optical spectrum monitor which concerns on this invention. 本発明に係る光スペクトルモニタの第3実施形態を示す図である。It is a figure which shows 3rd Embodiment of the optical spectrum monitor which concerns on this invention. 本発明に係る光スペクトルモニタの第4実施形態を示す図である。It is a figure which shows 4th Embodiment of the optical spectrum monitor which concerns on this invention. 本発明に係る光スペクトルモニタの第5実施形態を示す図である。It is a figure which shows 5th Embodiment of the optical spectrum monitor which concerns on this invention. 従来の光スペクトルモニタの概略構成図である。It is a schematic block diagram of the conventional optical spectrum monitor.

符号の説明Explanation of symbols

1(1A〜1E) 光スペクトルモニタ
2 入射手段
3 回折手段
4 回折制御手段
5 測定用受光手段
6 波長モニタ手段
21 光入力ポート
22 波長モニタ用光源
23 合波器
24 コリメータ
25 既知波長透過部
31 回折格子
32 反射体
41 制御部
42 駆動部
51 測定用集光器
52 測定用受光器
61 分波部
62 分光部
63 モニタ光第1受光部
63a モニタ光第1集光器
63b モニタ光第1受光器
64 モニタ光第2受光部
64a エタロン(透過素子)
64b モニタ光第2集光器
64c モニタ光第2受光器
65 透過率算出部
66 記憶部
67 波長校正部
68 スペクトラム表示部
1 (1A to 1E) Optical spectrum monitor 2 Incident means 3 Diffraction means 4 Diffraction control means 5 Measurement light receiving means 6 Wavelength monitoring means 21 Optical input port 22 Wavelength monitoring light source 23 Multiplexer 24 Collimator 25 Known wavelength transmission part 31 Diffraction Lattice 32 Reflector 41 Control unit 42 Drive unit 51 Measuring concentrator 52 Measuring light receiver 61 Demultiplexing unit 62 Spectroscopic unit 63 Monitor light first light receiving unit 63a Monitor light first light collector 63b Monitor light first light receiver 64 Monitor light second light receiving part 64a Etalon (transmission element)
64b Monitor light second light collector 64c Monitor light second light receiver 65 Transmittance calculation unit 66 Storage unit 67 Wavelength calibration unit 68 Spectrum display unit

Claims (6)

光スペクトルの掃引に応じた回折角で被測定光を回折する回折手段(3)を有し、該回折手段による1次回折光を受光し、受光量に応じた電気信号に変換出力する光スペクトルモニタにおいて、
前記被測定光の波長の1/2波長付近で発光する波長モニタ用光源(22)と、前記被測定光と前記波長モニタ用光源からの光とを合成する合波器(23)とを含む入射手段(2)と、
前記被測定光の1次回折光と前記波長モニタ用光源の2次回折光とを分波する分波部(61)を有し、該分波部で分波した前記波長モニタ用光源の2次回折光を入力して波長をモニタする波長モニタ手段(6)とを備えたことを特徴とする光スペクトルモニタ。
An optical spectrum monitor having a diffracting means (3) for diffracting the light to be measured at a diffraction angle corresponding to the sweep of the optical spectrum, receiving the first-order diffracted light by the diffracting means, and converting it into an electrical signal corresponding to the amount of received light In
A wavelength monitor light source (22) that emits light in the vicinity of a half wavelength of the wavelength of the light to be measured; and a multiplexer (23) that combines the light to be measured and the light from the wavelength monitor light source. Incident means (2);
A demultiplexing unit (61) for demultiplexing the first-order diffracted light of the light to be measured and the second-order diffracted light of the wavelength monitoring light source; and the second-order diffracted light of the wavelength monitoring light source demultiplexed by the demultiplexing unit An optical spectrum monitor comprising wavelength monitor means (6) for monitoring the wavelength by inputting.
前記波長モニタ用光源(22)は、前記被測定光の波長の1/2波長を含む広帯域の光を発光することを特徴とする請求項1記載の光スペクトルモニタ。 The optical spectrum monitor according to claim 1, wherein the wavelength monitor light source (22) emits broadband light including a half wavelength of the wavelength of the light to be measured. 請求項2記載の光スペクトルモニタにおいて、
前記波長モニタ手段(6)は、前記分波部(61)で分波した前記波長モニタ用光源の2次回折光を透過し、その透過光が波長に対する光強度変化を生じる透過素子(64a)と、該透過素子の透過光を受光して前記光強度変化を波長に対する電気信号に変換する受光器(64c)とを備えたことを特徴とする光スペクトルモニタ。
The optical spectrum monitor according to claim 2,
The wavelength monitoring means (6) transmits the second-order diffracted light of the wavelength monitoring light source demultiplexed by the demultiplexing unit (61), and the transmitted light (64a) generates a change in light intensity with respect to the wavelength. An optical spectrum monitor comprising: a light receiver (64c) that receives light transmitted through the transmissive element and converts the light intensity change into an electrical signal with respect to wavelength.
請求項3記載の光スペクトルモニタにおいて、
前記波長モニタ手段(6)は、前記分波部(61)と前記透過素子(64a)との間の光路に配置され、前記透過素子に向かう光と該透過素子に向かわない光とに分光する分光部(62)と、該分光部で分光された前記透過素子に向かわない光を受光する受光器(63b)とをさらに備えたことを特徴とする光スペクトルモニタ。
The optical spectrum monitor according to claim 3.
The wavelength monitoring means (6) is disposed in an optical path between the demultiplexing unit (61) and the transmissive element (64a), and splits the light toward the transmissive element and the light not directed to the transmissive element. An optical spectrum monitor, further comprising: a spectroscopic unit (62); and a light receiver (63b) that receives light that is split by the spectroscopic unit and does not travel toward the transmission element.
前記波長モニタ用光源(22)は、少なくとも1つの既知の波長の光を含むことを特徴とする請求項1記載の光スペクトルモニタ。 The optical spectrum monitor according to claim 1, characterized in that the wavelength monitoring light source (22) contains light of at least one known wavelength. 前記波長モニタ用光源(22)は、既知波長の狭帯域の光を発光することを特徴とする請求項1記載の光スペクトルモニタ。 The optical spectrum monitor according to claim 1, wherein the wavelength monitor light source (22) emits light of a narrow band having a known wavelength.
JP2008219979A 2008-08-28 2008-08-28 Optical spectrum monitor Expired - Fee Related JP5016571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219979A JP5016571B2 (en) 2008-08-28 2008-08-28 Optical spectrum monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219979A JP5016571B2 (en) 2008-08-28 2008-08-28 Optical spectrum monitor

Publications (2)

Publication Number Publication Date
JP2010054357A JP2010054357A (en) 2010-03-11
JP5016571B2 true JP5016571B2 (en) 2012-09-05

Family

ID=42070447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219979A Expired - Fee Related JP5016571B2 (en) 2008-08-28 2008-08-28 Optical spectrum monitor

Country Status (1)

Country Link
JP (1) JP5016571B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211310A (en) * 2013-04-17 2014-11-13 独立行政法人産業技術総合研究所 Raman scattering spectrophotometer achieving simultaneous measurement of stokes peak and anti-stokes peak by construction of two-optical path
WO2015188256A1 (en) * 2014-06-11 2015-12-17 L&R Medical Inc. Diffraction grating for wavelength selection in line-scan slo
JP7136959B1 (en) 2021-03-26 2022-09-13 アンリツ株式会社 OPTICAL SPECTRUM ANALYZER AND WAVELENGTH CALIBRATION CONTROL METHOD
JP7164654B2 (en) * 2021-03-29 2022-11-01 アンリツ株式会社 Littmann-type spectrometer and folding mirror

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210527A (en) * 1982-06-01 1983-12-07 Seiko Instr & Electronics Ltd Monochrometer
JPS6148733A (en) * 1984-08-17 1986-03-10 Matsushita Electric Ind Co Ltd Spectrophotometer
JP2837868B2 (en) * 1988-05-24 1998-12-16 アンリツ株式会社 Spectrometer
JP2001208607A (en) * 2000-01-26 2001-08-03 Ando Electric Co Ltd Wavelength calibrating method and wavelength measuring method for spectroscope in wavelength measuring instrument, and device therefor
US6573990B1 (en) * 2000-02-21 2003-06-03 Tektronix, Inc. Optical system providing concurrent detection of a calibration signal and a test signal in an optical spectrum analyzer
JP2004354209A (en) * 2003-05-29 2004-12-16 Anritsu Corp Optical wavelength measuring method, optical wavelength measuring device, and optical spectrum analysis device
JP2006145270A (en) * 2004-11-17 2006-06-08 Anritsu Corp Mems optical spectrum analyzer and its wavelength calibration method

Also Published As

Publication number Publication date
JP2010054357A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
KR100803237B1 (en) An optical system, an optical spectrum analyzer, and its method for providing concurrent detection of a calibration signal and a test signal in an optical spectrum analyzer
CA2272033A1 (en) Arrangement for determining the temperature and strain of an optical fiber
US9442014B2 (en) Fourier transform spectrometer and fourier transform spectroscopic method
JP5016571B2 (en) Optical spectrum monitor
JP6622733B2 (en) Ellipsometer and optical spectrum analyzer
US9025156B2 (en) Interferometer and fourier spectrometer using same
EP1120637A2 (en) Method and means for calibrating a grating monochromator
US5933235A (en) Optical spectrum analyzer and spectrometer
JPH11211571A (en) Wavelength measuring apparatus
JPH0478129B2 (en)
US20070002429A1 (en) Optical channel monitor
WO2022191201A1 (en) Physical quantity measurement device
US20220049989A1 (en) Optical measurements with dynamic range and high speed
TWI240794B (en) Wavelength meter
JP2009025220A (en) Optical spectrum analyzer and peak detection technique of optical spectrum analyzer
US10267709B2 (en) Optical sensor interrogation system a method of manufacturing the optical sensor interrogation system
KR100292809B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of wavelength division multiplexed optical signal
JP4143513B2 (en) Spectrophotometer and spectroscopic analysis method
JP4320718B2 (en) WDM signal monitor
JP2003204302A (en) Wdm signal monitor
JP2003232682A (en) Optical frequency meter
US20240035887A1 (en) Diffraction grating monochromator
KR100317140B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio in wavelength division multiplexing optical telecommunications
JP2000283845A (en) Wavelength measuring instrument
WO2020213466A1 (en) Physical quantity measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees