JPS6148733A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS6148733A
JPS6148733A JP17182484A JP17182484A JPS6148733A JP S6148733 A JPS6148733 A JP S6148733A JP 17182484 A JP17182484 A JP 17182484A JP 17182484 A JP17182484 A JP 17182484A JP S6148733 A JPS6148733 A JP S6148733A
Authority
JP
Japan
Prior art keywords
light
wavelength
diffracted light
order diffracted
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17182484A
Other languages
Japanese (ja)
Inventor
Kazuaki Okubo
和明 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17182484A priority Critical patent/JPS6148733A/en
Publication of JPS6148733A publication Critical patent/JPS6148733A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To shorten a measurement time by separating high-order diffracted light, such as primary diffracted light, secondary diffracted light, and tertiary diffracted light, which is obtained at the same time from the projection light of a spectroscope using a diffraction grating into light beams of respective degrees, and detecting time individually. CONSTITUTION:For example, when a diffraction grating spectroscope is used and a wavelength dial is set to 1,000nm, light obtained from its projection slit is light of 500nm in wavelength as secondary diffracted light, light of 333.3nm as tertiary diffracted light, etc., in addition to light of 1,000nm as primary diffracted light. The primary diffracted light and its high-order diffracted light obtained from the projection slit 9 are separated through an optical system by degrees and they are detected individually by photodetectors 14 and 15. Consequently, the distance of wavelength scanning is shortened and the measurement time is shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、放射のパワー・スペクトルを計測する分光光
度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a spectrophotometer for measuring the power spectrum of radiation.

従来例の構成とその問題点 従来の分光光度計には、その分光分散素子で2つに分け
られる。1つはプリズムを分光分散素子として使用した
分光光度計であシ、他の1つは回折格子や干渉を分光分
散素子として使用したものである。プリズムを使用した
分光光度計は、波゛長目盛が直線的でなく、大きく波長
に依存する。したがって、短波長側から赤外域まで、広
い範囲の波長域にわたシ分光測光を行う場合、スリット
機械幅の波長補正を個々の波長において行なわなければ
ならず、煩雑である。また、波長が長くなるに従い、分
散が小さくなってゆき、測定波長域が長くなればなる程
、全波長域である程度の測定精度を得ることは難しい。
Conventional Structure and Problems Conventional spectrophotometers can be divided into two types depending on their spectral dispersion elements. One is a spectrophotometer that uses a prism as a spectral dispersion element, and the other one uses a diffraction grating or interference as a spectral dispersion element. Spectrophotometers using prisms have a wavelength scale that is not linear and is highly dependent on wavelength. Therefore, when performing spectrophotometry over a wide wavelength range from the short wavelength side to the infrared region, wavelength correction of the slit mechanical width must be performed for each wavelength, which is complicated. Further, as the wavelength becomes longer, the dispersion becomes smaller, and the longer the measurement wavelength range becomes, the more difficult it is to obtain a certain degree of measurement accuracy over the entire wavelength range.

また、回折格子や干渉素子を使用する分光光度計では、
分散能力が大きく、たとえば回折格子分光器は、サイン
バー送シによって波長目盛を直線化でき、したがって測
定波長に対するスリット幅補正もプリズム分光器よりは
るかに小さい。しかしながら高次回折光の除去が問題と
なる。分光器の波長目盛を11000nに設定した場合
に、波長11000nの放射と同時に出てくる波長60
0nmやその1/3の333 nmの放射などを除去し
なければならず、広い波長範囲の測定では、この作業が
煩雑となシ高次光除去の光学系(光学フィルタなど)の
位置再現なども問題となる。
In addition, in spectrophotometers that use diffraction gratings or interference elements,
Diffraction grating spectrometers, which have a large dispersion ability, can linearize the wavelength scale by sine bar scanning, and therefore the slit width correction for the measurement wavelength is also much smaller than that of prism spectrometers. However, removal of higher-order diffracted light poses a problem. When the wavelength scale of the spectrometer is set to 11000n, the wavelength 60 that comes out simultaneously with the radiation of wavelength 11000n
It is necessary to remove radiation of 0 nm and 333 nm, which is one-third of that, and when measuring a wide wavelength range, this work is complicated, and there are also problems in reproducing the position of the optical system (such as an optical filter) for removing higher-order light. becomes.

また、プリズム分光器を使用する場合も、回折格子を使
用する場合にも、共通することは、測定波長範囲が広い
場合、それだけ測定に時間を要する。したがって受光器
等の測定系はもとより、標準光源や被測定放射源を比較
的長時間安定に保たなければならない。
Furthermore, whether a prism spectrometer or a diffraction grating is used, one thing in common is that the wider the measurement wavelength range, the longer the measurement takes. Therefore, it is necessary to keep the standard light source and the radiation source to be measured, as well as the measurement system such as the photodetector, stable for a relatively long period of time.

発明の目的 本発明は、回折格子や干渉素子を使用した分光器の出射
スリットから同時に得られる一次回折光と、その高次回
折光を光学系で分離し、個々に検出することにより、従
来の測光精度を維持しながら、波長スキャンの距離を短
くし、測定時間の短縮をはかることを目的とする。
Purpose of the Invention The present invention uses an optical system to separate the first-order diffracted light and the higher-order diffracted light obtained simultaneously from the output slit of a spectrometer using a diffraction grating or an interference element, and detect them individually. The aim is to shorten the wavelength scan distance and measurement time while maintaining accuracy.

発明の構成 上記目的を達成するために本発明の分光光度計は回折ま
たは干渉を利用した分光分散光学系と、これによ)同時
に得られる一次回折光およびその高次回折光を、各人の
光ごとに検出する複数の検出器とで構成されている。
Structure of the Invention In order to achieve the above object, the spectrophotometer of the present invention uses a spectral dispersion optical system that utilizes diffraction or interference, and thereby) simultaneously obtains first-order diffracted light and its higher-order diffracted light to It consists of multiple detectors that detect each.

実施例の説明 以下、本発明の一実施例として、回折格子分光器を使用
した実施例を図面に基づいて説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, as an embodiment of the present invention, an embodiment using a diffraction grating spectrometer will be described with reference to the drawings.

第1図に回折格子の分光分散の光学モデルを示す。Figure 1 shows an optical model of spectral dispersion of a diffraction grating.

1は回折格子で、この格子面の法線2に対して入射光3
が入射角αで入射したとする。このとき波長λの回折光
4が法線2に対して回折角βで出射する。法線2に対し
て入射光3と逆側に角度αで0次光6が出る。回折格子
の刻線間隔をd、回折光の次数をmとすれば波長λの光
に対して入射角α、回折角βの間に次の関係が成立する
1 is a diffraction grating, and the incident light 3 is
Suppose that it is incident at an angle of incidence α. At this time, the diffracted light 4 having the wavelength λ is emitted at a diffraction angle β with respect to the normal 2. Zero-order light 6 emerges at an angle α on the opposite side of the incident light 3 with respect to the normal 2. If the interval between the lines of the diffraction grating is d, and the order of the diffracted light is m, then the following relationship holds true between the incident angle α and the diffraction angle β for light of wavelength λ.

mλ= d・(ginα+ sinβ)・・・・・・・
・・(1)m = O、±1.±2・・・・・・・・・
このとき、入射角α1、回折角β1となるように、回折
格子に光を入射させ、その回折光をと9出した場合、m
=1すなわち一次光のとき波長λ1 とすれば、同時に
m = 2である波長λ2の光が、回折角β1の方向に
得られる。このとき・λ1とλ2は。
mλ= d・(ginα+sinβ)・・・・・・・
...(1) m = O, ±1. ±2・・・・・・・・・
At this time, if light is incident on the diffraction grating so that the incident angle is α1 and the diffraction angle is β1, and the diffracted light is outputted as m
= 1, that is, when the wavelength is λ1 for primary light, light of wavelength λ2, where m = 2, is obtained at the same time in the direction of the diffraction angle β1. At this time, λ1 and λ2 are.

λ2−2λ1         ・・・・・・・・・(
功となる。同様にして、一次回折光の場合、回折角β1
の方向に、波長λ工の光が得られ、λ1に対して次式が
成立する。
λ2−2λ1 ・・・・・・・・・(
It becomes a merit. Similarly, in the case of first-order diffracted light, the diffraction angle β1
In the direction of , light of wavelength λ is obtained, and the following equation holds true for λ1.

λm−−λ1          ・・・・・・・・・
(3)すなわち、回折格子分光器の場合、たとえば、波
長ダイアルを1100Qnに合わせた場合、その出射ス
リットから得られる光は、−次回指光の波長11000
nの光の他に、同時に、二次回折光である波長500 
nmの光、三次回折光の波長333.3nm の光など
が得られる。この出射スリットから得られる一次回折光
およびその高次回折光とを、光学系で各次数ごとに分離
し、それぞれ個々に光検出器で検出する。第2図にその
光学系を示す。同図において、5は分光器、6は入射ス
リット7からの光を回折格子1へ導き、入射スリット了
の像を回折格子上に結像するコリメ〜り・ミラー、8は
回折格子1からの回折光を出射スリット9に導き、回折
光でできた入射スリット了の像を出射ス1ノットに結像
するフォーカシングミラーである。前記出射スリット9
より出た出射光10は先に示したとおり回折の一次回折
光12と高次回折光13から成り、これをコールドミラ
ー11の法線に対して46度の角度で入射した場合、波
長700 nm以上の光を透過し、波長700nm以下
の光を46度方向へ反射するコールドミラーを使用すれ
ば、波長700 nm以上の1次回折光12と、波長3
5 Q nmから波長700 nmまでの二次回折光1
3とに光路を分離できる。第3図に、コールドミラー1
1の入射角46°における分光透率の一例を示す。分離
した前記1次回折光12および前記二次回折光13をそ
れぞれ個々に、かつ同時に、1次回折光用光検出器14
および二次回折光月光検出器16で検出する。出射光1
0に含まれる三次回折光およびそれ以上の次数の回折光
はコールドミラー11を、波長233nm以下の光を透
過しないもので作シ、さらにコールドミラー11の表面
で反射した成分に対しても、光検出器14を、波長、2
33nm以下の光に感度のないものを使うことにより除
去する。
λm−−λ1 ・・・・・・・・・
(3) In other words, in the case of a diffraction grating spectrometer, for example, if the wavelength dial is set to 1100Qn, the light obtained from the output slit will be at the -next wavelength of 11000Qn.
In addition to the n light, at the same time, there is a second-order diffracted light with a wavelength of 500
It is possible to obtain light with a wavelength of 333.3 nm and third-order diffracted light with a wavelength of 333.3 nm. The first-order diffracted light and its higher-order diffracted light obtained from this exit slit are separated into each order by an optical system, and each is individually detected by a photodetector. Figure 2 shows the optical system. In the figure, 5 is a spectroscope, 6 is a collimator mirror that guides the light from the entrance slit 7 to the diffraction grating 1, and forms an image at the end of the entrance slit on the diffraction grating, and 8 is a collimator/mirror that guides the light from the entrance slit 7 to the diffraction grating 1. This is a focusing mirror that guides the diffracted light to the exit slit 9 and forms an image formed by the diffracted light at the exit slit onto the exit slit 9. The exit slit 9
As shown above, the emitted light 10 consists of the first-order diffracted light 12 and the higher-order diffracted light 13, and when it is incident at an angle of 46 degrees to the normal to the cold mirror 11, it has a wavelength of 700 nm or more. If you use a cold mirror that transmits light with a wavelength of 700 nm or less and reflects light with a wavelength of 700 nm or less in a 46-degree direction, the first-order diffracted light 12 with a wavelength of 700 nm or more and the wavelength 3
Second-order diffracted light 1 from 5 Q nm to wavelength 700 nm
The optical path can be separated into three. Figure 3 shows cold mirror 1.
1 shows an example of spectral transmittance at an incident angle of 46°. The separated first-order diffracted light 12 and second-order diffracted light 13 are detected individually and simultaneously by a first-order diffracted light photodetector 14.
The second-order diffracted light is detected by the moonlight detector 16. Outgoing light 1
The third-order diffracted light contained in the zero and the diffracted light of higher orders are made using a cold mirror 11 that does not transmit light with a wavelength of 233 nm or less, and the components reflected on the surface of the cold mirror 11 are also The detector 14 has a wavelength of 2
It is removed by using a material that is not sensitive to light of 33 nm or less.

上記の光学系で分光光度計を構成することにより、設定
波長(分光器の波長ダイアルの設定値)の光と、その波
長の半分の波長の光が同時に検出でき、たとえば設定波
長範囲を波長700nmから1400nmとしたとき、
波長350画から1400 nmの分光測光が可能とな
る。
By configuring a spectrophotometer with the above optical system, it is possible to simultaneously detect light at a set wavelength (the set value of the spectrometer's wavelength dial) and light at a wavelength half that wavelength. For example, if the set wavelength range is set to 700 nm, When it is 1400nm from
Spectrophotometry from 350 wavelengths to 1400 nm becomes possible.

なお、上記に示した実施例では、三次以上の回折光を除
去する三波長分光光度計を示したが、同様の原理で、−
次回折光と二次回折光、三次回折光など、高次の回折光
を分離して個々に検出することにより、三波長分光光度
計など、複数の波長を同時に検出する分光光度計の構成
も可能である。
In addition, in the embodiment shown above, a three-wavelength spectrophotometer was shown that removes third-order or higher-order diffracted light, but based on the same principle, -
By separating and individually detecting higher-order diffracted light such as first-order diffracted light, second-order diffracted light, and third-order diffracted light, it is also possible to configure a spectrophotometer that detects multiple wavelengths simultaneously, such as a three-wavelength spectrophotometer. be.

また、各人の回折光の分離の一例として、コールドミラ
ーを使った場合を示したが、この他、ダイクロイックミ
ラーなどでも実現できる。この他、Siホトダイオード
と、PbS光導電セルを同軸に配置した複合受光素子は
、波長1.1Atm以下の光はsiホトダイオードで検
出し、波長1.1μm 以上の光を、Siホトダイオー
ドを通してPbS光導電セルで検出できる。この素子を
使用すれば、−次回折光である波長1.111mから2
.2μmまでの光をPbS光導電セルで検出し、波長5
5onmから1.1μmまでの光をSiホトダイオード
で検出する三波長分光光度計が実現できる。第4図に前
記複合素子の分光感度を示す。
Further, as an example of separating the diffracted light of each person, a case where a cold mirror is used is shown, but it can also be realized by a dichroic mirror or the like. In addition, a composite light-receiving element in which a Si photodiode and a PbS photoconductive cell are arranged coaxially detects light with a wavelength of 1.1 Atm or less with the Si photodiode, and detects light with a wavelength of 1.1 μm or more with a PbS photoconductive cell through the Si photodiode. Can be detected in cells. If this element is used, the -order diffracted light, which has a wavelength of 1.111 m, can be
.. Light up to 2 μm is detected by a PbS photoconductive cell, and wavelength 5
A three-wavelength spectrophotometer that detects light from 5 onm to 1.1 μm using a Si photodiode can be realized. FIG. 4 shows the spectral sensitivity of the composite element.

発明の効果 上記に示したとおシ、本発明は、回折格子を使った分光
器の出射光より同時に得られる一次回折光と、二次回折
光や三次回折光などの高次回折光を、各人の光ごとに分
離し、個々に検出することにより、波長スキャンの距離
を短くし、測定時間の短縮化をはかることができる。た
とえば、−次回折光と二次回折光を同時に検出する場合
、設定波長(分光器の波長設定ダイアルの設定値)で、
了○○nmから1400nmスキャンさせた場合、波長
350 nmから1400nmの分光測光が行なえる。
Effects of the Invention In addition to the above, the present invention allows the first-order diffraction light and the higher-order diffraction light such as the second-order diffraction light and the third-order diffraction light, which are simultaneously obtained from the output light of a spectrometer using a diffraction grating, to be By separating each light and detecting each light individually, it is possible to shorten the wavelength scan distance and shorten the measurement time. For example, when detecting -order diffraction light and second-order diffraction light at the same time, at the set wavelength (the setting value of the wavelength setting dial of the spectrometer),
When scanning from ○○ nm to 1400 nm, spectrophotometry can be performed at wavelengths from 350 nm to 1400 nm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回折格子の分光分散光学系の系統図、第2図は
本発明の一実施例である分光光度計の光学系の系統図、
第3図は実施例で使用したコールドミラーの分光透過率
と波長との関係図、第4図は複合素子の分光感度と波長
との関係図である。 1・・・・・・回折格子、5・・・・・分光器、6・・
・・・・コリメータミラー、7・・・・・・入射スリッ
ト、8・・・・・・フォカシングミラー、9・・・・・
・出射スリット、11・・・・・コールドミラー、14
・・・・・・−次回折光用光検出器、15・・・・・・
二次回折光用光検出器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
Fig. 1 is a system diagram of a spectral dispersion optical system of a diffraction grating, and Fig. 2 is a system diagram of an optical system of a spectrophotometer which is an embodiment of the present invention.
FIG. 3 is a diagram showing the relationship between the spectral transmittance and wavelength of the cold mirror used in the example, and FIG. 4 is a diagram showing the relationship between the spectral sensitivity and wavelength of the composite element. 1... Diffraction grating, 5... Spectrometer, 6...
...Collimator mirror, 7...Incidence slit, 8...Focusing mirror, 9...
・Exit slit, 11...Cold mirror, 14
......-Photodetector for second-order diffracted light, 15...
Photodetector for second-order diffracted light. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 回折格子または干渉素子を使用した分光分散素子と、前
記分散素子より得られる一次分散光およびその高次分散
光を、個々の次数光ごとに分離する光学系と、分離され
た光を個々に検出する検出器とから成り、同時に複数の
波長の光を測定することができる分光光度計。
A spectral dispersion element using a diffraction grating or an interference element, an optical system that separates the primary dispersion light and its higher order dispersion obtained from the dispersion element into individual order lights, and individually detects the separated lights. A spectrophotometer is a spectrophotometer that can simultaneously measure light at multiple wavelengths.
JP17182484A 1984-08-17 1984-08-17 Spectrophotometer Pending JPS6148733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17182484A JPS6148733A (en) 1984-08-17 1984-08-17 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17182484A JPS6148733A (en) 1984-08-17 1984-08-17 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPS6148733A true JPS6148733A (en) 1986-03-10

Family

ID=15930419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17182484A Pending JPS6148733A (en) 1984-08-17 1984-08-17 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS6148733A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382343A2 (en) * 1989-02-10 1990-08-16 Beckman Instruments, Inc. UV-visible monochronometer order subtraction technique
JP2008528953A (en) * 2005-01-21 2008-07-31 カール ツァイス メディテック アクチエンゲゼルシャフト Cross dispersive spectrometer in spectral domain optical coherence tomography system
JP2010054357A (en) * 2008-08-28 2010-03-11 Anritsu Corp Optical spectrum monitor
JP2014016247A (en) * 2012-07-09 2014-01-30 Shimadzu Corp Wavelength variable monochromatic light source
CN104316175A (en) * 2014-11-04 2015-01-28 苏州精创光学仪器有限公司 Spectrophotometer testing device
WO2020026313A1 (en) * 2018-07-30 2020-02-06 株式会社島津製作所 Spectroscopic apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536361B2 (en) * 1971-10-04 1980-09-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536361B2 (en) * 1971-10-04 1980-09-20

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382343A2 (en) * 1989-02-10 1990-08-16 Beckman Instruments, Inc. UV-visible monochronometer order subtraction technique
EP0382343A3 (en) * 1989-02-10 1992-01-15 Beckman Instruments, Inc. Uv-visible monochronometer order subtraction technique
JP2008528953A (en) * 2005-01-21 2008-07-31 カール ツァイス メディテック アクチエンゲゼルシャフト Cross dispersive spectrometer in spectral domain optical coherence tomography system
JP2010054357A (en) * 2008-08-28 2010-03-11 Anritsu Corp Optical spectrum monitor
JP2014016247A (en) * 2012-07-09 2014-01-30 Shimadzu Corp Wavelength variable monochromatic light source
CN104316175A (en) * 2014-11-04 2015-01-28 苏州精创光学仪器有限公司 Spectrophotometer testing device
WO2020026313A1 (en) * 2018-07-30 2020-02-06 株式会社島津製作所 Spectroscopic apparatus

Similar Documents

Publication Publication Date Title
US5497230A (en) Spectroradiometer
JP2005533249A (en) Optical spectrometer
CA2253523A1 (en) High-resolution, compact intracavity laser spectrometer
US5973780A (en) Echelle spectroscope
JPS6148733A (en) Spectrophotometer
JPS6038644B2 (en) spectrophotometer
JPS6228623A (en) Photometer
JPH05157628A (en) Broad-band spectrometric measuring instrument
JPS63250534A (en) Spectrophotometric device
JPH1078353A (en) Spectroscope and manufacture of dichroic mirror array of spectroscope
JPH0323326U (en)
US10386234B2 (en) Wideband spectrograph
JPS6375523A (en) Spectrophotometer
JPS58210527A (en) Monochrometer
JP2576284B2 (en) Polychromator
JPS6341411B2 (en)
JPS631220Y2 (en)
JPS6295429A (en) Optical spectrum analyzer
CN117222875A (en) Device for the spectrally resolved detection of optical radiation
JP2001324384A (en) Spectroscope
JPS63284429A (en) Spectro-photometer
JPH02310434A (en) Spectrophotometer
JPS6319788Y2 (en)
JPS63120230A (en) Spectrophotometer
JPS6148730A (en) Spectrophotometer