JPS63284429A - Spectro-photometer - Google Patents

Spectro-photometer

Info

Publication number
JPS63284429A
JPS63284429A JP11835187A JP11835187A JPS63284429A JP S63284429 A JPS63284429 A JP S63284429A JP 11835187 A JP11835187 A JP 11835187A JP 11835187 A JP11835187 A JP 11835187A JP S63284429 A JPS63284429 A JP S63284429A
Authority
JP
Japan
Prior art keywords
light
wavelength
calibration
measured
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11835187A
Other languages
Japanese (ja)
Inventor
Tetsuya Shimazaki
島崎 哲哉
Hiroshi Kamata
洋 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Original Assignee
Iwatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd filed Critical Iwatsu Electric Co Ltd
Priority to JP11835187A priority Critical patent/JPS63284429A/en
Publication of JPS63284429A publication Critical patent/JPS63284429A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure absolute wavelength by diffracting light for calibration and light to be measured spectrally by the same spectroscope and photodetecting them by respective photodetecting means respectively. CONSTITUTION:The light to be measured and the light from a light source 10 for calibration are incident on the spectroscope (Czerny-Turner diffraction spectroscope) through upper and lower fibers 4 and 6 and reflected by a collimator mirror 2 to become parallel light beams, which are incident on a diffraction grating 1. The diffracted light beams are reflected by a camera mirror 3, converged on a projection slit 8, and incident on photodetecting elements 5 and 7 respectively. Their spectra are compared with each other to perform high- accuracy calibration which is not affected by the play, etc., of a driving system. Further, when a spectrum measurement is taken, the spectrum of the light to be measured and the high-order spectrum are cut off by a degree cut filter and the high-order spectrum of the calibration light can be utilized for wavelength calibration.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は波長較正機能を有する分光測光装置に関するも
のである。ざらに具体的には、絶対波長の測定を極めて
精度よく行うことのできる新規な分光測光装置を提供せ
んとするものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spectrophotometer having a wavelength calibration function. More specifically, the objective is to provide a novel spectrophotometric device that can measure absolute wavelengths with extremely high accuracy.

[従来の技術] 光スペクトルアナライザ等の光波長測定器において、そ
の分光部に回折格子等の分散素子を用いる。その様子を
第5図を用いて説明する。回折格子1は、その入射角α
、回折角βの間にd (sin α+sinβ)=mλ
      (1)の関係がある。ここでdは回折格子
の溝本数、λは回折格子への入射した光の波長、mは回
折次数で任意の整数である。
[Prior Art] In an optical wavelength measuring instrument such as an optical spectrum analyzer, a dispersive element such as a diffraction grating is used in the spectroscopic section. The situation will be explained using FIG. 5. The diffraction grating 1 has an angle of incidence α
, between the diffraction angle β (sin α+sin β)=mλ
There is the relationship (1). Here, d is the number of grooves in the diffraction grating, λ is the wavelength of the light incident on the diffraction grating, and m is the order of diffraction and is an arbitrary integer.

このような回折格子1を用いた分光光学系を、第6図に
示す。スリット16から入射された波長λ1.λ2の被
測定光は、コリメータ鏡2で平行光になり回折格子1に
入射する。回折格子1からの回折角β(第5図参照)は
、(1)式に従うので、波長λ1 、λ2の光に対する
それぞれの回折角βはそれぞれ異なったものとなる。回
折格子1を点G。を中心に回転させ、カメラ鏡3で集光
してスリット8の後に配置したフtト・ダイオード等の
受光素子5で検出すると、この回転角と検出された光強
度の関係より、被測定光の波長成分が測定でき測光が可
能となる。
A spectroscopic optical system using such a diffraction grating 1 is shown in FIG. The wavelength λ1 incident from the slit 16. The measured light of λ2 becomes parallel light by the collimator mirror 2 and enters the diffraction grating 1. Since the diffraction angle β (see FIG. 5) from the diffraction grating 1 follows equation (1), the diffraction angles β for the lights of wavelengths λ1 and λ2 are different from each other. Diffraction grating 1 is point G. When the light is focused by the camera mirror 3 and detected by the light receiving element 5 such as a foot diode placed after the slit 8, the light to be measured is determined from the relationship between this rotation angle and the detected light intensity. wavelength components can be measured, making photometry possible.

このような分散素子でおる回折格子1を回転させる分光
光学系において、絶対波長を決定する場合には、測光の
前に予め波長成分のわかっている光源、たとえば、第8
図にスペクトル分布を示した水銀灯の光を、スリット1
6より入射し、その光が検出されるときの回転角を記憶
し、それより回転角と波長の関係を求めて波長較正を行
い、つぎに被測定光をスリット16より入射し、波長較
正によって求めた回転角と波長の関係から被測定光の・
絶対波長を決定するための測光を行っていた。
In a spectroscopic optical system that rotates the diffraction grating 1 made of such a dispersive element, when determining the absolute wavelength, a light source whose wavelength components are known in advance, such as the 8th light source, is used before photometry.
The light from the mercury lamp whose spectral distribution is shown in the figure is slit 1.
6, the rotation angle at which the light is detected is memorized, and wavelength calibration is performed by determining the relationship between the rotation angle and the wavelength.Next, the light to be measured is input through the slit 16, and the wavelength calibration is performed. From the relationship between the rotation angle and wavelength obtained, the
Photometry was carried out to determine the absolute wavelength.

第7図に示す構成は、入力スリット16とコリメータ鏡
2との間に、可動ミラー18を挿入することによって、
たとえば水銀灯である較正用光源10からの光を入力ス
リット17から入力して波長較正を行い、つぎに可動ミ
ラー18を扱去することによって、入力スリット16か
らの被測定光を測光するようにしていた。
The configuration shown in FIG. 7 has a movable mirror 18 inserted between the input slit 16 and the collimator mirror 2.
For example, wavelength calibration is performed by inputting light from a calibration light source 10, which is a mercury lamp, through the input slit 17, and then by removing the movable mirror 18, the light to be measured from the input slit 16 is photometered. Ta.

[発明が解決しようとする問題点] たとえば水銀灯による波長較正を行い、つぎに測光して
いたために、波長較正と測光を同時に行うことができず
、回折格子を回転させる駆動部のガタ等により、波長較
正時と測光時における回転角度に誤差が生じ、これが絶
対波長の測光における誤差になるという問題点があった
[Problems to be solved by the invention] For example, because wavelength calibration is performed using a mercury lamp and then photometry is performed, wavelength calibration and photometry cannot be performed at the same time, and due to play in the drive unit that rotates the diffraction grating, etc. There is a problem in that an error occurs in the rotation angle during wavelength calibration and photometry, and this results in an error in photometry of the absolute wavelength.

また、波長較正時と測光時に大きな時間差がある場合に
は、回転駆動部の部品の劣化により回転角度に誤差を生
じ、絶対波長の測光における誤差になるという問題点が
あった。
Furthermore, if there is a large time difference between wavelength calibration and photometry, there is a problem in that an error occurs in the rotation angle due to deterioration of the parts of the rotation drive unit, resulting in an error in photometry of the absolute wavelength.

ざらに第7図の場合のように、較正用光源10を内蔵し
、測光と波長較正を可動ミラー18を用いて自動で切り
換える機構をもつ分光装置においても、回折格子の駆動
部のガタなどにより生ずる前記の問題点は解決されず、
また可動ミラー18の精度、較正用光源10.スリット
17の調整誤差が絶対波長の測光における誤差になると
いう問題点があった。
Roughly speaking, as shown in Fig. 7, even in a spectrometer that has a built-in calibration light source 10 and a mechanism for automatically switching between photometry and wavelength calibration using a movable mirror 18, there may be problems due to play in the drive section of the diffraction grating. The above-mentioned problems that arise are not resolved,
Also, the accuracy of the movable mirror 18, the calibration light source 10. There is a problem in that the adjustment error of the slit 17 results in an error in photometry of the absolute wavelength.

[問題点を解決するための手段] 本発明は、このような欠点を解決するために測光用と波
長較正の2つの光学系を同一の分散素子を用いて実現し
被測定光と較正用の光を同時に測定することによって、
絶対波長の測定を精度よく行うものである。
[Means for Solving the Problems] In order to solve these drawbacks, the present invention realizes two optical systems for photometry and wavelength calibration using the same dispersion element, and uses the same dispersion element to separate the light to be measured and the light for calibration. By measuring light simultaneously,
It measures absolute wavelength with high precision.

そのために、被測定光と較正用の光を分光器に並行して
入力する光学手段と、分光器からの被測定光にもとづく
出力光と較正用の光にもとづく出力光とを、それぞれ受
光する受光手段とを設けた。
For this purpose, an optical means is provided that inputs the light to be measured and the light for calibration into the spectrometer in parallel, and receives the output light based on the light to be measured and the output light based on the calibration light from the spectrometer, respectively. A light receiving means was provided.

[作用] このような構成にしたから、較正用の光と被測定光とが
、同一の分光器で同時に分光され、それぞれの受光手段
で同時に受光されることになった。
[Operation] With this configuration, the calibration light and the measurement light are simultaneously separated by the same spectrometer and received by the respective light receiving means simultaneously.

そのために、1回の回折格子の回転駆動で較正用の光と
被測定光を同時に測定でき、ここで得られたスペクトル
・データには、従来装置の有するような駆動系のガタな
どによる誤差は発生せず絶対−波長を極めて高い精度で
決定することができるようになった。また、波長較正用
の光を用いて波長較正のみを行うことも可能であり、従
来の波長較正用光源内蔵型の分光光学系としても使用で
きる。
Therefore, the calibration light and the measurement light can be measured simultaneously by rotating the diffraction grating once, and the spectrum data obtained here does not have errors caused by play in the drive system, etc., as in conventional devices. It has now become possible to determine the absolute wavelength with extremely high accuracy without the occurrence of any abnormality. It is also possible to perform only wavelength calibration using light for wavelength calibration, and it can also be used as a conventional spectroscopic optical system with a built-in light source for wavelength calibration.

[実施例] 以下、本発明の一実施例の構成を第1図に示し説明する
[Embodiment] The configuration of an embodiment of the present invention is shown in FIG. 1 and will be described below.

第1図はツエルニ・ターナ型分光光学系に本発明を適用
したもので、回折格子1は、Z”軸方向に溝をもってい
る。4は被測定光を入射させるためのファイバ、6は波
長較正用の光を、たとえば水銀灯10から導くファイバ
で、光はある拡がりをもって分光系に入射されて、線3
1〜34で示すようにコリメータ鏡21回折格子1を通
り、カメラ鏡3でスリット8上に集光され、受光素子5
に入射する。これらの各線31〜34は、コリメータ鏡
21回折格子1.カメラ鏡3の光軸を通っている。被測
定光と波長校正用の光は、入射点がZ軸方向にのみにず
れているので、スリット8の上では、波長走査方向(Y
’軸方向)にはずれず、Z′軸方向に離れた点で集光す
る。このため被測定光は受光素子5で、較正用の光は受
光素子7で、それぞれ別個に、しかも同時に測定するこ
とが可能となる。この場合、測光用光学系と波長較正用
光学系においては、光の波長と回折格子1の回転角の関
係が両者において共通であるために、高精度で絶対波長
の測定をすることができる。
Figure 1 shows the present invention applied to a Czerny-Turner type spectroscopic optical system, in which a diffraction grating 1 has grooves in the Z'' axis direction. 4 is a fiber for inputting the light to be measured, and 6 is a wavelength calibration A fiber guides light for use from, for example, a mercury lamp 10, and the light enters the spectroscopic system with a certain spread, forming a line 3.
As shown by 1 to 34, the light passes through the collimator mirror 21 and the diffraction grating 1, is focused on the slit 8 by the camera mirror 3, and is transmitted to the light receiving element 5.
incident on . Each of these lines 31-34 corresponds to the collimator mirror 21 diffraction grating 1. It passes through the optical axis of camera mirror 3. The incident points of the light to be measured and the light for wavelength calibration are shifted only in the Z-axis direction, so above the slit 8, the incident points are shifted in the wavelength scanning direction (Y
The light does not deviate in the Z'-axis direction, but is focused at a point distant in the Z'-axis direction. Therefore, the light to be measured can be measured by the light receiving element 5, and the light for calibration can be measured by the light receiving element 7, separately and simultaneously. In this case, since the relationship between the wavelength of light and the rotation angle of the diffraction grating 1 is common to both the photometric optical system and the wavelength calibration optical system, it is possible to measure the absolute wavelength with high precision.

第1図に示したものにおいては、測光用光学系を光軸に
一致させたが、較正用光学系を光軸に一致させ、測光用
光学系をZ軸方向にずらしてもよく、また、両光学系を
光軸かられずかにずらしても、同様にして、絶対波長を
高精度に測定することができる。
In the example shown in FIG. 1, the photometric optical system is aligned with the optical axis, but the calibration optical system may be aligned with the optical axis and the photometric optical system is shifted in the Z-axis direction. Even if both optical systems are slightly shifted from the optical axis, the absolute wavelength can be measured with high precision in the same way.

第1図に示したものでは、絶対波長の決定を、回折格子
1の回転角と波長の関係より行ったが、回折格子1の回
転角を移動距離に変換し、この移動距離と波長の線形関
係より絶対波長を決定する方式、(サインバ一方式)の
場合にも同様に適用できる。
In the system shown in Figure 1, the absolute wavelength was determined from the relationship between the rotation angle of the diffraction grating 1 and the wavelength. It can be similarly applied to a method of determining the absolute wavelength from a relationship (sine bar one method).

第1図において、受光部分がスリットと受光素子の簡単
な構成になっているが、レンズ等を装着して集光効率を
高めてもよい。
In FIG. 1, the light-receiving portion has a simple structure of a slit and a light-receiving element, but a lens or the like may be attached to increase the light collection efficiency.

本発明は、リトロ−型分光光学系で構成しても、またモ
ンク・ギルソン型、エバート型、セヤ・ナミオカ型の分
光光学系を用いても同様の原理により絶対波長を高精度
に決定できる。
The present invention can determine the absolute wavelength with high precision based on the same principle even if it is configured with a Littrow type spectroscopic optical system, or by using a Monk-Gilson type, Ebert type, or Saya-Namioka type spectroscopic optical system.

第2図は、ツエルニ・ターナ型分光光学系に、波長安定
度のよい気体レーザ12を組み込み、実線で示した被測
定光35と、一点鎖線で示した波長較正用の光36の回
折格子1への入射角を変え、Z軸方向のみにずらした光
学系で、それぞれの光を検出する分光器を示している。
In Figure 2, a gas laser 12 with good wavelength stability is incorporated into a Czerny-Turner type spectroscopic optical system, and a diffraction grating 1 for measuring light 35 shown by a solid line and wavelength calibration light 36 shown by a dashed line. This shows a spectrometer that detects each type of light using an optical system that changes the angle of incidence on the light and shifts it only in the Z-axis direction.

被測定光35は、ファイバ4より入射され受光素子5に
入射する。
The light to be measured 35 enters through the fiber 4 and enters the light receiving element 5 .

一方、較正用の気体レーザ12の光36は、レンズ13
.14で平行光になり、回折格子1で回折された後、ミ
ラー3でスリット8上に集光され、受光素子7に到着す
る。このとき、較正用入射光学系15から出射した平行
光は、光軸からZ軸方向に微小角度ずらす必要があり、
この角度を調整することにより出力スリット8上の集光
点のZ軸座標上の位置が任意に決定される。第2図の場
合は、第1図に示したものと異なり、測光用光学系と波
長較正用光学系における波長と回折格子1の回転角の関
係が同じではなく、両光学系の間に補正を必要とする。
On the other hand, the light 36 of the gas laser 12 for calibration is transmitted through the lens 13.
.. The light becomes parallel light at 14, is diffracted at the diffraction grating 1, is focused onto the slit 8 by the mirror 3, and reaches the light receiving element 7. At this time, the parallel light emitted from the calibration input optical system 15 needs to be shifted by a small angle from the optical axis in the Z-axis direction.
By adjusting this angle, the position of the focal point on the output slit 8 on the Z-axis coordinate can be arbitrarily determined. In the case of Figure 2, unlike the one shown in Figure 1, the relationship between the wavelength and the rotation angle of the diffraction grating 1 in the photometric optical system and the wavelength calibration optical system is not the same, and correction is made between the two optical systems. Requires.

補正はつぎのようにして行う。Correction is performed as follows.

・2つの光学系における入射角α、α′と回折角β、β
′の関係は、第3図に示すようになり、d (sin 
α+sinβ)=mλ     (2)d (sin 
a’ +sinβ’)=m’ λ  (3)β−α=2
K             (4)β′−α’ =2
1           (5)α+θ=β′    
         (6)という関係式が成り立つ。こ
こでdは回折格子の溝本数、m、m’は回折次数、λは
被測定光の波長成分の1つ、λ0は較正用光源の波長成
分であり、2K、2Lは、それぞれの光学系において回
折格子1への入射光と回折光のはさむ角で定数である。
・Incidence angles α, α′ and diffraction angles β, β in the two optical systems
The relationship between d (sin
α+sinβ)=mλ (2)d(sin
a' + sin β') = m' λ (3) β - α = 2
K (4) β'-α' = 2
1 (5) α+θ=β'
The relational expression (6) holds true. Here, d is the number of grooves in the diffraction grating, m and m' are the diffraction orders, λ is one of the wavelength components of the measured light, λ0 is the wavelength component of the calibration light source, and 2K and 2L are the respective optical systems. The angle between the incident light on the diffraction grating 1 and the diffracted light is a constant.

またθは両光学系でλ、λ。が検出されたときの回転角
の差でおる。(4)、(5)式を(2>、(3)式に代
入すると、 λ−2dsin  (β−K ) cos K/m(ア
) λo=2dsin(β’ −L)CO3l−/m’とな
る。つぎに(4)、(6)式より、β′−β=θ−2K
        (9)を得る。ここで(8)式よりβ
′を求め(9)式に代入してβを得て、そのβを(7)
式に代入すると、被測定光の波長成分λが求められる。
Also, θ is λ and λ for both optical systems. This is due to the difference in rotation angle when detected. Substituting equations (4) and (5) into equations (2> and (3)), λ-2dsin (β-K) cos K/m(a) λo=2dsin(β'-L)CO3l-/m' Next, from equations (4) and (6), β'-β=θ-2K
We obtain (9). Here, from equation (8), β
′ and substitute it into equation (9) to obtain β, and then convert that β into (7)
By substituting into the equation, the wavelength component λ of the light to be measured can be obtained.

また(3)式(おいて任意の次数m′の時に、θ=0と
なるように角度2K、2Lを選べば、補正計算は簡略化
される。第2図に示した構成例においても、2つの光学
系が1つの回折格子1を用いるように構成されており、
絶対波長の決定を従来に比べると高精度で行うことがで
きる。
In addition, if the angles 2K and 2L are selected so that θ=0 at an arbitrary order m' in equation (3), the correction calculation can be simplified. Also in the configuration example shown in FIG. Two optical systems are configured to use one diffraction grating 1,
The absolute wavelength can be determined with higher precision than in the past.

第2図に示す構成において、気体レーザ12を他の安定
化された光源にかえても同様の効果を得ることができる
In the configuration shown in FIG. 2, the same effect can be obtained by replacing the gas laser 12 with another stabilized light source.

本発明のざらに他の1つの実施例として、比較的スペク
トル線の多い水銀灯と、その高次回折光まで含めた多く
の点を波長較正用光学系で測定して、絶対波長を決定す
る分光測光器を説明する。
As another embodiment of the present invention, spectrophotometry determines the absolute wavelength by measuring a mercury lamp with a relatively large number of spectral lines and many points including its high-order diffracted light using a wavelength calibration optical system. Explain the equipment.

第8図に示すようなスペクトルを有する水銀灯は、約3
00〜2000(nm>  (3000〜20000オ
ングストローム)の広い範囲でスペクトル線をもつが、
1ooooオングストロ一ム以上では、スペクトル線の
強度が弱くなり、また10000オンゲストO−ムの両
側の比較的長い領域で高感度な受光素子がないために正
確に絶対波長を測定することが難しくなる。そこで、波
長較正用光学系で第8図の5790.65オングストロ
ーム以下のスペクトル線の1次回折光、2次回折光(第
8図の<2)>、3次回折光〈第8図の(3))を測定
して、絶対波長を決定する場合を説明する。一般に測定
するスペクトル線の波長λのm次回折光は、λ/、=m
λを満足する波長λ′と同じ回折格子1の角度で回折さ
れる。したがって、たとえば5790.65オングスト
ロームの2次回折光、3次回折光は、それぞれ1158
1.30オングストロームと17371.95オングス
トロームの1次回折光が存在するのと等価である。
A mercury lamp with a spectrum as shown in Figure 8 has a spectrum of about 3
It has spectral lines in a wide range from 00 to 2000 (nm> (3000 to 20000 angstroms),
At 10,000 angstroms or more, the intensity of the spectral lines becomes weaker, and it becomes difficult to accurately measure the absolute wavelength because there is no highly sensitive light-receiving element in relatively long regions on both sides of the 10,000 angstroms. . Therefore, the wavelength calibration optical system is used to calculate the first-order diffracted light, second-order diffracted light (<2) in Fig. 8>, and third-order diffracted light ((3) in Fig. 8) of the spectral line of 5790.65 angstroms or less in Fig. 8. A case will be explained in which the absolute wavelength is determined by measuring. Generally, the m-th order diffracted light of the wavelength λ of the spectral line to be measured is λ/, = m
It is diffracted at the same angle of the diffraction grating 1 as the wavelength λ' that satisfies λ. Therefore, for example, the second-order diffracted light and the third-order diffracted light of 5790.65 angstroms are each 1158 angstroms.
This is equivalent to the existence of first-order diffracted lights of 1.30 angstroms and 17371.95 angstroms.

このように波長較正用光学系で較正用水銀スペクトル線
の高次回折光を用いると、水銀スペクトル線強度の比較
的弱い10000オングストローム以上の波長領域にお
いても、100()Oオングストローム以下で高感度な
受光素子のみを用いて正確に絶対波長の測定をすること
が可能である。
In this way, when the high-order diffraction light of the calibration mercury spectral line is used in the wavelength calibration optical system, even in the wavelength region of 10,000 angstroms or more, where the mercury spectral line intensity is relatively weak, it is possible to receive light with high sensitivity at 100()O angstroms or less. It is possible to accurately measure absolute wavelength using only the element.

一方、被測定光を扱う測光用光学系においては、被測定
光においても発生する高次の回折光はノイズとなるので
、第4図に示すように受光素子5の前に高次回折光をカ
ットするフィルタ11をスリット8の後ろに挿入したも
のを、第1図に示した較正に使用しなければならない。
On the other hand, in a photometric optical system that handles the light to be measured, the higher-order diffracted light generated in the light to be measured becomes noise, so the higher-order diffracted light is cut off before the photodetector 5 as shown in Figure 4. A filter 11 inserted behind the slit 8 must be used for the calibration shown in FIG.

このため波長較正用受光素子と測光用の受光素子が独立
でない第6図や第7図の場合には、本実施例の実現は難
しい。
Therefore, in the case of FIG. 6 or FIG. 7, where the wavelength calibration light receiving element and the photometry light receiving element are not independent, it is difficult to realize this embodiment.

第8図の水銀スペクトルを基準光源とし、測定波長領域
3500〜17500オングストロームの場合に、第1
図の構成において、第4図の受光系を適用した場合を説
明する。
Using the mercury spectrum in Figure 8 as a reference light source, in the measurement wavelength range of 3,500 to 17,500 angstroms
A case will be described in which the light receiving system shown in FIG. 4 is applied to the configuration shown in the figure.

較正用光学系には、主な基準スペクトルとその2次回折
光および3次回折光が印加され、その全てが基準波長と
して適用できる。測光用光学系には被測定光の測定領域
とく点線)、それに対応して被測定光の高次光をフィル
タによりカットすることが必要な領域(実線)を示す。
The main reference spectrum and its second-order and third-order diffracted lights are applied to the calibration optical system, and all of them can be applied as reference wavelengths. In the photometric optical system, a measurement area of the light to be measured (dotted line) is shown, and a corresponding area (solid line) in which higher-order light of the light to be measured needs to be cut by a filter is shown.

第8図には、3つの測定領域に対する、それぞれのカッ
ト領域(実線)が示されている。
FIG. 8 shows the respective cut areas (solid lines) for the three measurement areas.

第1図に第4図を適用した実施例では、被測定光を波長
較正用の光とは別のフィルタ付の受光系で測定するため
、このように高次回折光まで含めた多くのスペクトル線
を用いた波長較正の場合に特に有効である。また、これ
らのスペクトル線を被測定光と同時に測定することによ
り、高精度な絶対波長の決定を行うことができる。第1
図および第1図と第4図の組合わせた構成例では較正用
の光源として水銀灯を用いたが、他の光源でも同様に使
うことができる。
In the example in which FIG. 4 is applied to FIG. 1, the light to be measured is measured using a light receiving system with a filter separate from the light for wavelength calibration, so many spectral lines including even higher-order diffracted light are detected. This is particularly effective for wavelength calibration using Furthermore, by measuring these spectral lines simultaneously with the light to be measured, the absolute wavelength can be determined with high precision. 1st
Although a mercury lamp is used as a light source for calibration in the configuration example shown in the figure and the combination of FIGS. 1 and 4, other light sources can be used in the same manner.

[発明の効果] 以上説明したように本発明によれば、全く同時に波長較
正用の光と被測定光を測定できるので、従来の絶対波長
決定の時に問題となった駆動系の回転誤差や較正時と測
定時の温度差等による誤差等が完全に除去され、絶対波
長決定を従来より高精度で行うことが可能である。した
がって本発明の効果は極めて大きい。
[Effects of the Invention] As explained above, according to the present invention, the light for wavelength calibration and the light to be measured can be measured at the same time, which eliminates rotational errors and calibration errors in the drive system, which were problems in conventional absolute wavelength determination. Errors caused by temperature differences between measurements are completely eliminated, making it possible to determine absolute wavelengths with higher precision than before. Therefore, the effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の他の実施例を示す構成図、第3図は2つの光学系の
入射角と回折角の関係を示す図、 第4図は、本発明のざらに他の実施例のための受光素子
の前に波長選択フィルタを入れた受光系の構成図、 第5図は従来の回折格子の原理を説明するための図、 第6図および第7図は従来の絶対波長の決定を説明する
ための構成図、 第8図は従来の水銀灯のスペクトル線の一例と、第4図
に示したフィルタ特性の選択との関係を示すスペクトル
図である。 1・・・回折格子     2・・・コリメータ鏡3・
・・カメラ鏡     4・・・ファイバ5・・・受光
素子     6・・・ファイバ7・・・受光素子  
   8・・・出力スリット9・・・遮光板     
 10・・・較正用光源11・・・波長選択フィルタ 12・・・気体レーザー  13.14・・・レンズ1
5・・・較正用入射光学系 16.17・・・入力スリット 18・・・可動ミラー   31〜34・・・線35・
・・被測定光    36・・・波長較正用の光。
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a block diagram showing another embodiment of the present invention, and Fig. 3 is a diagram showing the relationship between the incident angle and the diffraction angle of the two optical systems. , Fig. 4 is a block diagram of a light receiving system in which a wavelength selection filter is inserted in front of a light receiving element for another embodiment of the present invention, and Fig. 5 is a diagram for explaining the principle of a conventional diffraction grating. Figures 6 and 7 are block diagrams for explaining the conventional determination of absolute wavelength, and Figure 8 shows an example of the spectrum line of a conventional mercury lamp and the selection of filter characteristics shown in Figure 4. FIG. 3 is a spectrum diagram showing the relationship. 1... Diffraction grating 2... Collimator mirror 3.
...Camera mirror 4...Fiber 5...Light receiving element 6...Fiber 7...Light receiving element
8... Output slit 9... Light shielding plate
10... Calibration light source 11... Wavelength selection filter 12... Gas laser 13.14... Lens 1
5... Calibration input optical system 16.17... Input slit 18... Movable mirror 31-34... Line 35.
...Measurement light 36...Light for wavelength calibration.

Claims (4)

【特許請求の範囲】[Claims] (1)被測定光を入射させるための第1の入射光学手段
と、 前記第1の入射光学手段からの被測定光をその波長成分
に分光する分光手段と、 前記分光手段によって分光された前記被測定光の各波長
成分を受けて電気信号に変換するための第1の受光手段
と、 絶対波長決定のために波長の明らかな較正用光源を前記
分光手段へ入射させるための第2の入射光学手段と、 前記分光手段によって分光された前記較正用光源からの
光の各波長成分を電気信号に変換するための第2の受光
手段と を含むことを特徴とした分光測光装置。
(1) a first incident optical means for making the light to be measured enter; a spectroscopic means for separating the light to be measured from the first incident optical means into its wavelength components; a first light receiving means for receiving each wavelength component of the light to be measured and converting it into an electrical signal; and a second light receiving means for causing a calibration light source with a known wavelength to enter the spectroscopic means for determining the absolute wavelength. A spectrophotometer comprising: an optical means; and a second light-receiving means for converting each wavelength component of light from the calibration light source separated by the spectroscopic means into an electrical signal.
(2)前記第1の受光手段が、 波長λの被測定光を分光して測定する時には、整数mな
る回折次数において、λ′=λ/mなるλ′を除去する
ための次数カット・フィルタを含むものである特許請求
の範囲第1項記載の分光測光装置。
(2) When the first light receiving means spectrally spectrally measures the light to be measured having a wavelength λ, an order cut filter is used to remove λ' where λ' = λ/m in the diffraction order where the integer m is the diffraction order. A spectrophotometric device according to claim 1, which comprises:
(3)前記分光手段が、 光を波長成分に分光するための回転可能な分光素子を具
備し、前記分光素子の任意の回転角に対する前記被測定
光および前記較正用光源の光の分光波長の対応関係が等
しいものである特許請求の範囲第1項記載の分光測光装
置。
(3) The spectroscopic means includes a rotatable spectroscopic element for separating light into wavelength components, and the spectral wavelength of the light to be measured and the light from the calibration light source is determined by a rotation angle of the spectroscopic element. The spectrophotometric device according to claim 1, wherein the correspondence relationship is equal.
(4)前記分光手段が、 光を波長成分に分光するための回転可能な分光素子を具
備し、前記分光素子の任意の回転角に対する前記被測定
光および前記較正用光源の光の分光波長の対応関係が異
なった所定の関係を有するものである特許請求の範囲第
1項記載の分光測光装置。
(4) The spectroscopic means includes a rotatable spectroscopic element for separating light into wavelength components, and the spectral wavelength of the light to be measured and the light from the calibration light source is determined for any rotation angle of the spectroscopic element. The spectrophotometric device according to claim 1, wherein the spectrophotometric device has different predetermined correspondence relationships.
JP11835187A 1987-05-15 1987-05-15 Spectro-photometer Pending JPS63284429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11835187A JPS63284429A (en) 1987-05-15 1987-05-15 Spectro-photometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11835187A JPS63284429A (en) 1987-05-15 1987-05-15 Spectro-photometer

Publications (1)

Publication Number Publication Date
JPS63284429A true JPS63284429A (en) 1988-11-21

Family

ID=14734547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11835187A Pending JPS63284429A (en) 1987-05-15 1987-05-15 Spectro-photometer

Country Status (1)

Country Link
JP (1) JPS63284429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232827A (en) * 1990-07-12 1992-08-21 Applied Materials Inc Optical testing apparatus
KR100803237B1 (en) * 2000-02-21 2008-02-14 텍트로닉스 인코포레이티드 An optical system, an optical spectrum analyzer, and its method for providing concurrent detection of a calibration signal and a test signal in an optical spectrum analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232827A (en) * 1990-07-12 1992-08-21 Applied Materials Inc Optical testing apparatus
JP2559541B2 (en) * 1990-07-12 1996-12-04 アプライド マテリアルズ インコーポレイテッド Optical test equipment
KR100803237B1 (en) * 2000-02-21 2008-02-14 텍트로닉스 인코포레이티드 An optical system, an optical spectrum analyzer, and its method for providing concurrent detection of a calibration signal and a test signal in an optical spectrum analyzer

Similar Documents

Publication Publication Date Title
US7898656B2 (en) Apparatus and method for cross axis parallel spectroscopy
US6738140B2 (en) Wavelength detector and method of detecting wavelength of an optical signal
JP2001349781A (en) Double pass double etalon spectrometer
WO1990012294A1 (en) Spatial heterodyne spectrometer and method
US10732040B2 (en) Monolithically configured spectroscopic instrument
US5497230A (en) Spectroradiometer
US20060027737A1 (en) Array and method for monitoring the performance of DWDM multiwavelength systems
US7193707B2 (en) Small sized wide wave-range spectroscope
US5305077A (en) High-resolution spectroscopy system
US5973780A (en) Echelle spectroscope
JPS634650B2 (en)
US6646739B2 (en) Four-stage type monochromator
JPS63284429A (en) Spectro-photometer
JPS59164924A (en) Automatic correction system of calibrated wavelength
Stark et al. NIR instrumentation technology
JP2001091357A (en) Simultaneous analysis method of multiple optical spectrum
KR101054017B1 (en) Calibration method of the spectrometer
JPH03120428A (en) Spectrophotometer
JP7472637B2 (en) Spectrometer
US20180321136A1 (en) Determining Polarization Rotation Characteristics of a Sample Taking Into Consideration a Transmission Dispersion
JPH01126519A (en) High speed scanning spectroscope
JPS62289737A (en) Spectroscope
JP2576284B2 (en) Polychromator
CN116593002A (en) Automatic focusing spectrometer
JP2000337961A (en) Double monochromator and spectrophotometer using it