JP2576284B2 - Polychromator - Google Patents

Polychromator

Info

Publication number
JP2576284B2
JP2576284B2 JP2319711A JP31971190A JP2576284B2 JP 2576284 B2 JP2576284 B2 JP 2576284B2 JP 2319711 A JP2319711 A JP 2319711A JP 31971190 A JP31971190 A JP 31971190A JP 2576284 B2 JP2576284 B2 JP 2576284B2
Authority
JP
Japan
Prior art keywords
diffraction grating
spectrometer
wavelength
polychromator
entrance slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2319711A
Other languages
Japanese (ja)
Other versions
JPH04190123A (en
Inventor
知史 入口
信之 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2319711A priority Critical patent/JP2576284B2/en
Publication of JPH04190123A publication Critical patent/JPH04190123A/en
Application granted granted Critical
Publication of JP2576284B2 publication Critical patent/JP2576284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回折格子を用いた測定波長領域の広狭可変な
ポリクロメータに関する。
Description: TECHNICAL FIELD The present invention relates to a polychromator that uses a diffraction grating and is capable of changing a measurement wavelength range in a wide and narrow range.

(従来の技術) 回折格子を用いたポリクロメータの従来例の基本的な
構成を第3図に示す。この図で1は入射スリット、2は
平面鏡で入射スリット1から入射した光を回折格子3に
向けて反射させる。回折格子3は凹面回折格子で、それ
によって形成されるスペクトル像面に沿って光検出器4
が配置される。光検出器4は通常多数の受光素子をアレ
ー状に並べたものが用いられる。図に示された光線のう
ち中心光線が入射角αで回折格子3に入射すると回折光
の波長λは回折角をx、格子溝の本数をN、回折次数を
mとして、 sin α+sin x=Nmλ で表される。装置構成で決まる測定可能な最長波長λl
の光はx=βの方向に結像し、最短波長λsの光はx=
γの方向に結像する。光検出器4が固定されている場
合、β,γも固定値であるから、測定波長領域を拡げた
り、逆に狭くして波長分解能を向上させたいと云うよう
な場合は回折格子を溝本数の違ったものと交換するか、
焦点距離の異なる回折格子に交換すると共に光検出器を
近づけ或は遠ざける等の操作が必要であった。しかしこ
のように、ポリクロメータの構成要素の位置を変えたり
変換したりすることは単に操作が面倒なだけでなく、ポ
リクロメータ構成要素の位置の再現性を充分良好にして
おく必要があり、さもないと、測定精度,測定の再現性
が不充分なものとなる。
(Prior Art) FIG. 3 shows a basic configuration of a conventional polychromator using a diffraction grating. In this figure, 1 is an entrance slit, and 2 is a plane mirror which reflects light incident from the entrance slit 1 toward the diffraction grating 3. The diffraction grating 3 is a concave diffraction grating, and a photodetector 4 is arranged along a spectral image plane formed by the diffraction grating.
Is arranged. As the photodetector 4, one in which a large number of light receiving elements are arranged in an array is used. When the central ray of the rays shown in the figure enters the diffraction grating 3 at an incident angle α, the wavelength λ of the diffracted light is sin α + sin x = Nmλ where x is the diffraction angle, N is the number of grating grooves, and m is the diffraction order. It is represented by Maximum measurable wavelength λl determined by device configuration
Light forms an image in the direction of x = β, and light of the shortest wavelength λs
An image is formed in the direction of γ. When the photodetector 4 is fixed, β and γ are also fixed values. Therefore, when it is desired to widen the measurement wavelength range or conversely improve the wavelength resolution by improving the wavelength resolution, the number of grooves in the diffraction grating is increased. Replace it with a different one,
It was necessary to replace the diffraction gratings with different focal lengths and to move the photodetector closer or farther. However, changing or converting the positions of the components of the polychromator in this way is not only a cumbersome operation but also requires that the reproducibility of the positions of the components of the polychromator be sufficiently good. Otherwise, measurement accuracy and measurement reproducibility will be insufficient.

(発明が解決しようとする課題) 本発明はポリクロメータの構成要素を動かしたり、変
換することなしに測定波長領域の広さを切り換えうるも
のにしようとするものである。
(Problems to be Solved by the Invention) The present invention aims to make it possible to switch the width of the measurement wavelength range without moving or converting the components of the polychromator.

(課題を解決するための手段) ポリクロメータの光入射側にせまい入射スリットを有
する回折格子を用いた前置分光器を配置して、そのスペ
クトル像が上記ポリクロメータの入射スリットの面上に
形成されるようにすると共に、ポリクロメータの入射ス
リットの幅を広くし、前置分光器の回折格子の向きを変
えて、同入射スリット上のスペクトル像の回折次数を正
負切り換えるようにした。
(Means for Solving the Problems) A pre-spectrometer using a diffraction grating having a narrow entrance slit is arranged on the light entrance side of the polychromator, and its spectral image is formed on the plane of the entrance slit of the polychromator. At the same time, the width of the entrance slit of the polychromator was widened, and the direction of the diffraction grating of the pre-spectrometer was changed, so that the order of diffraction of the spectrum image on the entrance slit was switched between positive and negative.

(作用) 上述した構成によると、ポリクロメータの入射スリッ
ト上に前置分光器の回折格子によるスペクトル像が形成
され、個々の波長の光のポリクロメータへの入射点が入
射スリット面上で異ったものとなり、ポリクロメータの
回折格子への入射角が波長によって異ったものとなる。
そこで、第3図の符号をそのまゝ使ってポリクロメータ
の入射スリット面上で、前置分光器の+1次のスペクト
ル像が形成されていてポリクロメータの回折格子への入
射角αが増大する方向に波長が短くなるようにスペクト
ル像が形成されている場合、ポリクロメータの回折格子
への入射角の最大値をα1,最小値をα2とすると、α2
<α<α1で測定範囲内の最長波長λl′は sin α2+sin β=Nmλl′<Nmλl ……(1) 最短波長λs′は sin α1+sin γ=Nmλs′>Nmλs ……(2) となって、主分光器単一の場合よりも測定波長領域がせ
まくなり、波長分解能が向上する。また前置分光器の回
折格子を回して、ポリクロメータの入射スリット面上で
のスペクトル像の回折次数を−1次とすると、同スリッ
ト上の波長配列が上と逆になり、測定波長領域が拡大さ
れる。
(Operation) According to the above-described configuration, a spectral image is formed on the entrance slit of the polychromator by the diffraction grating of the pre-spectrometer, and the incident points of the light of each wavelength to the polychromator are different on the entrance slit surface. Thus, the angle of incidence on the diffraction grating of the polychromator differs depending on the wavelength.
Therefore, the + 1st order spectral image of the pre-spectrometer is formed on the entrance slit surface of the polychromator using the code of FIG. 3 as it is, and the incident angle α to the diffraction grating of the polychromator increases. If the spectral image is formed such that the wavelength becomes shorter in the direction, the maximum value of the incident angle to the diffraction grating of the polychromator is α1, and the minimum value is α2.
<Α <α1, and the longest wavelength λl ′ within the measurement range is sin α2 + sin β = Nmλl ′ <Nmλl (1) The shortest wavelength λs ′ is sin α1 + sin γ = Nmλs ′> Nmλs (2) The measurement wavelength region becomes narrower than in the case of a single spectroscope, and the wavelength resolution is improved. When the diffraction grating of the pre-spectrometer is turned and the diffraction order of the spectrum image on the entrance slit surface of the polychromator is set to −1, the wavelength arrangement on the slit is opposite to the above, and the measurement wavelength region is It is enlarged.

(実施例) 第1図、第2図に本発明の一実施例を示す。第1図は
波長分解能を上げた状態を示し、第2図は測定波長領域
を拡大した状態を示す。これらの図で1は中間スリット
で主分光器の入射スリットとなっており、これより図で
右側が主分光器になつている。主分光器は第3図に示し
た従来のポリクロメータと同じ構成で、2は平面鏡、3
は回折格子で、4が光検出器であり、アレイ型の素子が
用いられている。中間スリット1より図で左側が前置分
光器になつており、中間スリット1はこの前置分光器の
出射スリットにもなっている。主分光器の入射スリット
1はスリット幅が広くしてあり、かつ幅が可変である。
前置分光器において、5はその入射スリットで、これは
通常の分光器と同じく幅のせまいものである。6は平面
鏡、7は前置分光器の分光素子である凹面回折格子で格
子面中心を通り、図の紙面に垂直な軸によって回転可能
であり、二つの方向を取り得るようになっている。8は
平面鏡で回折格子7で回折された光を中間スリット1の
方向に反射する。この構成で、前置分光器のスペクトル
像が主分光器の中間スリット1の開口上に形成される。
図では3つの波長の光の光束の中心線のみが示してあ
る。第1図の場合、前置分光器で回折格子7の−1次回
折光のスペクトルが中間スリット1上に形成され、中間
スリット1の図で上縁側が長波長,下縁側が短波長にな
っており、従って主分光器の回折格子3への入射角は長
波長側が大きく、短波長側が小さい。それ故作用の項で
説明した所によってこの場合光検出器4の全幅内に展開
されるスペクトル幅の波長範囲は従来の型に比し広くな
る。第2図の状態は前置分光器の回折格子7の向きを変
えてプラス1次の回折スペクトル像が中間スリット1上
に形成されるようにしたもので、この場合は中間スリッ
ト1の上縁側が短波長,下縁側が長波長となり、主分光
器の回折格子3への入射角は短波長側が大,長波長側が
小となって、作用の項で述べたように光検出器4の全幅
内のスペクトルの波長範囲は従来のものよりせまくな
り、波長分解能が向上する。
(Embodiment) FIGS. 1 and 2 show an embodiment of the present invention. FIG. 1 shows a state in which the wavelength resolution is increased, and FIG. 2 shows a state in which the measurement wavelength region is enlarged. In these figures, reference numeral 1 denotes an intermediate slit, which is the entrance slit of the main spectroscope, and the right side in the figures is the main spectroscope. The main spectrometer has the same configuration as the conventional polychromator shown in FIG.
Denotes a diffraction grating, 4 denotes a photodetector, and an array-type element is used. The left side of the intermediate slit 1 in the figure is connected to a pre-spectroscope, and the intermediate slit 1 is also an exit slit of the pre-spectroscope. The entrance slit 1 of the main spectroscope has a wide slit width and a variable width.
In the pre-spectrometer, 5 is its entrance slit, which is as narrow as a normal spectrometer. Reference numeral 6 denotes a plane mirror, and reference numeral 7 denotes a concave diffraction grating which is a spectroscopic element of a pre-spectrometer, which can rotate in an axis passing through the center of the grating plane and perpendicular to the plane of the drawing, and can take two directions. A plane mirror 8 reflects the light diffracted by the diffraction grating 7 in the direction of the intermediate slit 1. With this configuration, a spectral image of the pre-spectroscope is formed on the opening of the intermediate slit 1 of the main spectroscope.
In the figure, only the center lines of the light beams of the three wavelengths are shown. In the case of FIG. 1, the spectrum of the -1st-order diffracted light of the diffraction grating 7 is formed on the intermediate slit 1 by the pre-spectrometer, and the upper edge side has a long wavelength and the lower edge side has a short wavelength in the diagram of the intermediate slit 1. Therefore, the angle of incidence on the diffraction grating 3 of the main spectroscope is large on the long wavelength side and small on the short wavelength side. Therefore, the wavelength range of the spectral width developed within the entire width of the photodetector 4 is wider than that of the conventional type in this case, as described in the operation section. In the state shown in FIG. 2, the direction of the diffraction grating 7 of the pre-spectrometer is changed so that a plus first-order diffraction spectrum image is formed on the intermediate slit 1. In this case, the upper edge side of the intermediate slit 1 is used. Is a short wavelength, the lower edge is a long wavelength, and the incident angle to the diffraction grating 3 of the main spectrometer is large on the short wavelength side and small on the long wavelength side, and as described in the operation section, the full width of the photodetector 4 The wavelength range of the spectrum inside is narrower than the conventional one, and the wavelength resolution is improved.

上述実施例で、主分光器の入射スリット1の幅は10mm
と5.6mmの2種類が切り換え可能である。前置分光器で
は回折格子焦点距離110mm、溝本数150本/mmである。主
分光器の回折格子3は溝本数600本/mm、入射スリット1
の中心を通る光線に対して、回折格子3への入射角α=
25.0゜β,γがそれぞれβ=3.3゜,γ=11.2゜、回折
格子3の中心から入射スリット1の中心までの光路長9
6.3mmで、従来型のポリクロメータでは光検出器4上の
最短波長は約380nm、最長波長は約800nmである。
In the above embodiment, the width of the entrance slit 1 of the main spectroscope is 10 mm.
And 5.6mm can be switched. In the pre-spectrometer, the focal length of the diffraction grating is 110 mm and the number of grooves is 150 lines / mm. The diffraction grating 3 of the main spectrometer has 600 grooves / mm and an entrance slit 1
Angle of incidence α on the diffraction grating 3 for a ray passing through the center of
25.0 {β and γ are β = 3.3 ° and γ = 11.2 °, respectively, and the optical path length from the center of the diffraction grating 3 to the center of the entrance slit 1 is 9
With a conventional polychromator, the shortest wavelength on the photodetector 4 is about 380 nm and the longest wavelength is about 800 nm.

第1図は上述したように前置分光器で−1次の回折ス
ペクトルを主分光器の入射スリット1上に形成させる場
合で、入射スリット1は幅10mmが選択される。前置分光
器で回折格子への入射角δは12.574゜,回折光の中心光
線の出射角εは17.845゜で、光検出器4上の最短波長は
301,370nm、最長波長は877.678nmで測定波長範囲は約57
6nmとなる。
FIG. 1 shows a case where the pre-spectrometer forms a -1st-order diffraction spectrum on the entrance slit 1 of the main spectroscope as described above. The entrance slit 1 is selected to have a width of 10 mm. In the pre-spectrometer, the incident angle δ to the diffraction grating is 12.574 °, the exit angle ε of the central ray of the diffracted light is 17.845 °, and the shortest wavelength on the photodetector 4 is
301,370nm, the longest wavelength is 877.678nm and the measurement wavelength range is about 57
6 nm.

第2図は前置分光器の回折格子7の向きを変えて+1
次の回折スペクトル光が主分光器に入射するようにした
場合で、回折格子7を回動させるのと連動させて入射ス
リット1を幅5.6mmのものに切り換える。入射スリット
を幅のせまいものに切り換えるのは幅10mmのまゝである
と、入射スリット1の開口の縁の近くに来る波長の光は
主分光器で光検出器4の外に来て、測定されず、単に主
分光器の迷光レベルを高めるだけなので、そのような波
長の光が主分光器に入射しないようにするためであり、
入射スリット1の幅5.6mmの範囲に形成される前置分光
器の+1次の回折スペクトルの波長範囲が光検出器4上
に展開されるのである。第2図の場合、前置分光器の回
折格子7への入射角δと出射角εは第1図の場合と入れ
替わって、入射角δ=17.845゜、出射角ε=12.574゜と
なり、光検出器上の最短波長は424.73nm、最長波長は75
6.21nmとなり測定波長範囲は331.48nmとなる。
FIG. 2 shows that the direction of the diffraction grating 7 of the pre-spectrometer was changed to +1.
When the next diffraction spectrum light is incident on the main spectroscope, the entrance slit 1 is switched to one having a width of 5.6 mm in conjunction with the rotation of the diffraction grating 7. If the width of the entrance slit is switched to the narrow one at a width of 10 mm, light having a wavelength near the edge of the opening of the entrance slit 1 comes out of the photodetector 4 by the main spectroscope and is measured. It is simply to increase the stray light level of the main spectrometer, so that light of such wavelengths does not enter the main spectrometer,
The wavelength range of the + 1st-order diffraction spectrum of the pre-spectrometer formed in the width of 5.6 mm of the entrance slit 1 is developed on the photodetector 4. In the case of FIG. 2, the incident angle δ and the outgoing angle ε to the diffraction grating 7 of the pre-spectrometer are replaced with those in FIG. 1, and the incident angle δ is 17.845 ° and the outgoing angle ε is 12.574 °. The shortest wavelength on the vessel is 424.73 nm, the longest wavelength is 75
It becomes 6.21 nm, and the measurement wavelength range becomes 331.48 nm.

以上によって前置分光器を外した場合(入射スリット
1は通常のせまいものとする)380nmから800nmまで約42
0nmの範囲、前置分光器を取り付けて−1次光を入射さ
せることにより、約300nmから880nmまで580nmの範囲、
また+1次光を入射させるようにして424nmから756nmま
で330nmの範囲と測定波長範囲を3段に切り換えること
ができる。
When the pre-spectrometer is removed as described above (the entrance slit 1 is assumed to be a normal narrow one), it is approximately 42 from 380 nm to 800 nm.
By attaching a pre-spectrometer and making the primary light incident, a range of about 580 nm from about 300 nm to 880 nm,
Also, the range of 330 nm from 424 nm to 756 nm and the measurement wavelength range can be switched in three steps so that the +1 order light is incident.

(発明の効果) 本発明によれば主分光器の光学素子とかその位置等全
く変えることなく、一台の前置分光器を取り付けること
により、ポリクロメータとしての測定波長領域を主分光
器単独の場合より、広い場合とせまい場合を前置分光器
の回折格子を回すだけで変えることができ、主分光器は
完全に固定されているので、従来のポリクロメータにア
ダプタとして付属させることにより、広波長領域の測
定、波長分解能を高めた測定の両方を行うことが可能と
なる。
(Effects of the Invention) According to the present invention, by attaching one prespectrometer without changing the optical element of the main spectroscope or its position at all, the measurement wavelength region as a polychromator can be changed by the main spectroscope alone. By turning the diffraction grating of the pre-spectrometer, the main spectrometer is completely fixed, and the wide or narrow case can be changed by attaching an adapter to a conventional polychromator as an adapter. It is possible to perform both measurement in the wavelength region and measurement with increased wavelength resolution.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例ポリクロメータの平面図、第
2図は他の実施例の平面図、第3図は従来のポリクロメ
ータの平面図である。 1……中間スリット、2……平面鏡、3……主分光器の
回折格子、4……光検出器、5……前置分光器の入射ス
リット、7……前置き分光器の回折格子、8……平面
鏡。
FIG. 1 is a plan view of a polychromator according to one embodiment of the present invention, FIG. 2 is a plan view of another embodiment, and FIG. 3 is a plan view of a conventional polychromator. DESCRIPTION OF SYMBOLS 1 ... Intermediate slit, 2 ... Plane mirror, 3 ... Diffraction grating of main spectroscope, 4 ... Photodetector, 5 ... Entrance slit of pre-spectroscope, 7 ... Diffraction grating of pre-spectroscope, 8 …… a plane mirror.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリクロメータを構成する主分光器の入射
スリットの前に、狭い入射スリットを有し回折格子が回
転可能である前置分光器を配置してそのスペクトル像が
上記主分光器の入射スリット面上に形成されるようにす
ると共に、上記主分光器の入射スリットの幅を広くし、
同入射スリット上に形成される上記前置分光器のスペク
トル像の回折次数をこの前置分光器の回折格子の回転に
よって正負切換えうるようにしたことを特徴とするポリ
クロメータ。
1. A pre-spectroscope having a narrow entrance slit and a rotatable diffraction grating is arranged in front of an entrance slit of a main spectroscope constituting a polychromator, and a spectrum image of the pre-spectroscope is obtained by using the main spectroscope. Along with being formed on the entrance slit surface, the width of the entrance slit of the main spectrometer is increased,
A polychromator characterized in that the order of diffraction of the spectrum image of the pre-spectrometer formed on the entrance slit can be switched between positive and negative by rotation of the diffraction grating of the pre-spectrometer.
JP2319711A 1990-11-22 1990-11-22 Polychromator Expired - Lifetime JP2576284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2319711A JP2576284B2 (en) 1990-11-22 1990-11-22 Polychromator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319711A JP2576284B2 (en) 1990-11-22 1990-11-22 Polychromator

Publications (2)

Publication Number Publication Date
JPH04190123A JPH04190123A (en) 1992-07-08
JP2576284B2 true JP2576284B2 (en) 1997-01-29

Family

ID=18113326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319711A Expired - Lifetime JP2576284B2 (en) 1990-11-22 1990-11-22 Polychromator

Country Status (1)

Country Link
JP (1) JP2576284B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137020B2 (en) * 1997-02-14 2001-02-19 日本電気株式会社 Spectrometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243823A (en) * 1987-03-31 1988-10-11 Shimadzu Corp Spectrophotometer

Also Published As

Publication number Publication date
JPH04190123A (en) 1992-07-08

Similar Documents

Publication Publication Date Title
US4697924A (en) Monochromator
US5497230A (en) Spectroradiometer
US5973780A (en) Echelle spectroscope
US3306158A (en) Grating spectroscopes
US6646739B2 (en) Four-stage type monochromator
US5448351A (en) Echelle polychromator
JP2576284B2 (en) Polychromator
JPH044537B2 (en)
US5495331A (en) Dual-beam polychromator
JPH08145795A (en) Double/single color meter
GB1595528A (en) Reduction of astigmatism and coma in a spectrograph
JPH01126519A (en) High speed scanning spectroscope
US5442440A (en) Spectroscope
JP3141106B2 (en) Convergent light incidence type spectrometer using spherical diffraction grating
GB2278434A (en) Broadband radiometer
US3472596A (en) Double monochromator
US3687554A (en) Spectroscopic measurement system using rotating patterned grill members
JPS63250534A (en) Spectrophotometric device
JPH04110735A (en) Polychrometer
JP3278257B2 (en) Dual monochromator
JP7449903B2 (en) First optical system, spectrometer, and optical device
JPS58727A (en) Fourier transform spectrum device
JPS631220Y2 (en)
JPH0399238A (en) High resolution spectroscope
JPH05149787A (en) Spectroscope