JP5015318B2 - Gdf−15及びナトリウム利尿ペプチドを用いた、心房細動を有する患者の心不全を評価するための手段及び方法 - Google Patents

Gdf−15及びナトリウム利尿ペプチドを用いた、心房細動を有する患者の心不全を評価するための手段及び方法 Download PDF

Info

Publication number
JP5015318B2
JP5015318B2 JP2010508842A JP2010508842A JP5015318B2 JP 5015318 B2 JP5015318 B2 JP 5015318B2 JP 2010508842 A JP2010508842 A JP 2010508842A JP 2010508842 A JP2010508842 A JP 2010508842A JP 5015318 B2 JP5015318 B2 JP 5015318B2
Authority
JP
Japan
Prior art keywords
amount
gdf
heart failure
peptide
atrial fibrillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010508842A
Other languages
English (en)
Other versions
JP2010528275A (ja
Inventor
ヘス,ゲオルグ
ホルシュ,アンドレア
ヒュディグ,ヘンドリック
ズドゥネック,ディートマー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2010528275A publication Critical patent/JP2010528275A/ja
Application granted granted Critical
Publication of JP5015318B2 publication Critical patent/JP5015318B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/495Transforming growth factor [TGF]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Brain natriuretic peptide [BNP, proBNP]; Cardionatrin; Cardiodilatin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/324Coronary artery diseases, e.g. angina pectoris, myocardial infarction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/325Heart failure or cardiac arrest, e.g. cardiomyopathy, congestive heart failure

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、医療診断のための方法及びデバイスに関する。具体的には、本発明は、心房細動を示す被験体のサンプル中のGDF-15の量を測定するステップ、及び該GDF-15の量を適切な参照量と比較して、心不全を診断するステップを含む、心房細動を示す被験体において心不全を診断する方法に関する。さらに本発明は、上述の方法を行うための診断用デバイス及びキットに関する。
近代医学の目的の1つは、特定の個人向けの又は個人に合わせた治療レジメンを提供することである。それらは、ある患者個人のニーズ又はリスクを勘案して行われる治療レジメンである。特定の個人向けの又は個人に合わせた治療レジメンは、短時間のうちに可能性のある治療レジメンを決定する必要のある応急処置についても考慮する必要がある。心臓疾患は西半球においては死亡率と罹患率の主因である。この疾患は、長期にわたって無症候のままであることがある。しかし、急性の心臓血管事象、例えば心筋梗塞などが心臓血管系合併症の結果として生ずると、重篤な結果となる可能性がある。
心不全は、体全体に十分な量の血液を満たす又は排出する心臓の能力を損なう構造的又は機能的心疾患のいずれかに起因する一症状である。最良の治療をもってしても、心不全は年間約10%の死亡率と関係している。
心不全は、特にその症状が「軽度」とみなされる場合には、診断されないことが多い。心不全の慣用的な診断法は、周知の血管容量ストレスマーカーであるNT-proBNPに基づくものである。しかしながら、心房細動を含むいくつかの医療状況下におけるNT-proBNPに基づく心不全の診断は、全てではないがかなりの人数の患者では不正確であるようである(例えば、Beck 2004, Canadian Journal of Cardiology 20: 1245-1248; Tsuchida 2004, Journal of Cardiology, 44:1-11)。ところが、特に心不全に罹患し、かつ心房細動を示す患者には、心房細動の医学的介入のほかに、心不全の支持療法が緊急に必要と考えられる。一方、心不全の不正確な診断の結果、多くの患者が不十分な又は有害な副作用さえ有することのある治療レジメンを受けることになる。
従って、有効な医療処置レジメンを行うために、心房細動を示す患者において信頼性がありかつ迅速に心不全の診断を行うことができる診断方法が必要とされている。
本発明の基礎となっている技術的課題は、上述のニーズに応じるための手段や方法の提供として理解することができる。技術的課題は特許請求の範囲及び本明細書下記で特徴付けられる実施形態によって解決される。
従って、本発明は、心房細動を示す被験体において心不全を診断する方法であって、
(a)該被験体のサンプル中のGDF-15の量を測定するステップ、及び
(b)ステップ(a)で測定したGDF-15の量を適切な参照量と比較し、それによって心不全を診断するステップ
を含む方法に関する。
本発明の方法は、好ましくはin vitroの方法である。さらに、前記方法は上記で明確に述べたものに加えて他のステップを含んでもよい。例えば、別のステップは、サンプルの前処理、又は前記方法で得られる結果の評価に関連ものである。本発明の方法はまた、被験体のモニタリング、確認、及び細分類に用いることもできる。この方法は、手動で行うか、又は自動化により支援することができる。好ましくは、ステップ(a)及び/又は(b)は、その全体又は一部を自動化によって、例えば、ステップ(a)での測定のための適切なロボット及びセンサー装置、又はステップ(b)でのコンピューターで行う比較によって、支援することができる。
本明細書で用いる「診断する」という用語は、ある心房細動を示す被験体が心不全を患うか否かを評価することを意味する。当業者ならば理解しうるとおり、そのような評価は通常は同定しようとする被験体の全て(すなわち100%)について正しいことを意図したものではない。しかし、この用語は被験体の統計学的に有意な一部(例えば、コホート研究における1コホート)を同定できることを要求する。一部が統計的に有意かどうかは、当業者に別の手間を要することなく、様々な周知の統計評価ツール、例えば信頼区間の決定、p値の決定、スチューデントのt検定、マン・ホイットニー検定等を用いて決定することができる。詳細については、Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York 1983中に見られる。好ましい信頼区間は、少なくとも90%、少なくとも95%、少なくとも97%、少なくとも98%又は少なくとも99%である。p値は、好ましくは、0.1、0.05、0.01、0.005、又は0.0001である。より好ましくは、集団のうち少なくとも60%、少なくとも70%、少なくとも80%又は少なくとも90%の被験体を、本発明の方法により適切に同定することができる。
本発明の診断は、モニタリング、確認、細分類、及び関連する疾患、症候又はそのリスクの予測を含む。モニタリングは、先に診断された疾患の追跡に関する。確認は、他の指標又はマーカーを用いることによって行われる、先の診断を強化又は実証することに関する。細分類は、診断された疾患の様々なサブクラスに従って診断をさらに特定すること、例えば疾患の軽度及び重篤形態に従って特定することに関する。
本明細書で用いる「被験体」という用語は、動物、好ましくは哺乳動物、より好ましくはヒトに関する。上記方法により言及される被験体は、心不全に罹患しているか、又はそれに伴う症候若しくは臨床パラメータ(例えばNT-proBNPレベルの上昇)を示し、即ち少なくとも心不全に罹患している疑いがある。さらに、本発明により言及される被験体はまた心房細動を示すものとする。
本明細書で用いる「心房細動」は、心臓の上部の2つの部屋に関係する異常な心拍リズムを指す。正常な心拍リズムでは、洞房結節によって生起されるインパルスが心臓全体に広がり、心筋の収縮と血液の排出を引き起こす。心房細動(AF)においては、洞房結節の規則的な電気インパルスが、無秩序な速い電気インパルスに置き換わり、これが不規則な心拍動を生じる。心房細動は、好ましくは心電図により診断される。特徴的な知見は、好ましくは、P波の不在、その場所における無秩序な電気活動、及び心室へのインパルスの不規則な伝導によるR-R間隔の不規則性である。心不全に関係なく、心房細動を示す被験体は、心不全の最適な基準である血中バイオマーカーNT-proBNPの量が高い。従って、この被験体はNT-proBNPのみに基づいて心不全について信頼性をもって診断することができない。
しかしながら、本発明の方法の好ましい実施形態においては、本方法はさらに(すなわちGDF-15の測定に加えて)、前記被験体のサンプル中のナトリウム利尿ペプチドの量を測定するステップ、及びそのナトリウム利尿ペプチドの量を参照と比較するステップを含む。このさらなるステップは、本発明の方法に従ってGDF-15を測定するのと同時に、又はその前後に行うことができる。より好ましくは、ナトリウム利尿ペプチドを最初に測定し、続いてGDF-15の測定を行うことによって本明細書で上述したように心不全を確認しうる。
「ナトリウム利尿ペプチド」という用語は、心房性ナトリウム利尿ペプチド(Atrial Natriuretic Peptide:ANP)型及び脳性ナトリウム利尿ペプチド(Brain Natriuretic Peptide:BNP)型のペプチド、並びに同一の予測潜在性を有するそれらの変異体を含む。本発明のナトリウム利尿ペプチドはANP型及びBNP型のペプチドとそれらの変異体を含む(例えば、Bonow, Circulation 1996 93: 1946-1950を参照)。ANP型ペプチドはpre-proANP、proANP、NT-proANP、及びANPを含んでいる。BNP型ペプチドはpre-proBNP、proBNP、NT-proBNP、及びBNPを含んでいる。このプレプロペプチド(pre-proBNPの場合には134個のアミノ酸)は、短いシグナルペプチドを含んでおり、これは酵素的に切断されてプロペプチドを放出する(proBNPの場合は108個のアミノ酸)。このプロペプチドはN末端プロペプチド(NT-プロペプチド、NT-proBNPの場合には76個のアミノ酸)及び活性ホルモン(BNPの場合には32個のアミノ酸、ANPでは28個のアミノ酸)にさらに切断される。本発明において好ましいナトリウム利尿ペプチドはNT-proANP、ANP、NT-proBNP、BNP、及びそれらの変異体である。ANP及びBNPは活性ホルモンで、それらの各不活性型であるNT-proANP及びNT-proBNPよりも半減期が短い。BNPは血中で代謝されるのに対してNT-proBNPは無傷の分子として血中を循環しそのまま腎臓から排出される。NT-proBNPのin vivoでの半減期はBNPの半減期(20分)よりも長い120分である(Smith 2000, J. Endocrinol. 167: 239-46)。分析前の状態(preanalytics)はNT-proBNPの方がより強固であり、そのためサンプルの中央検査所までの輸送が容易である(Mueller 2004, Clin. Chem. Lab. Med. 42: 942-4)。血液サンプルは室温で数日間保管することができ、あるいは回収のロスなく郵送若しくは輸送することができる。これに対して、BNPを室温で又は4℃で48時間保管すると濃度は少なくとも20%失われる(Mueller, 上掲;Wu 2004, Clin. Chem.50: 867-73)。従って、目的の時間経過又は性質に依存して、ナトリウム利尿ペプチドの活性型又は不活性型のいずれかの測定が有利でありうる。本発明において最も好ましいナトリウム利尿ペプチドはNT-proBNP又はその変異体である。上記で簡潔に論じたとおり、本発明で言及しているヒトNT-proBNPは、好ましくはヒトNT-proBNP分子のN末端部分に対応する76アミノ酸長を含むポリペプチドである。ヒトBNP及びNT-proBNPの構造は既に詳細に先行技術、例えばWO 02/089657号、WO 02/083913号、又はBonow, 上掲に記載されている。好ましくは、本明細書で用いているヒトNT-proBNPはEP 0 648 228 B1で開示されているヒトNT-proBNPである。それらの先行技術文献は、これらの文献に開示されるNT-proBNP及びその変異体の具体的な配列に関して、参照により本明細書に組み入れる。本発明で言及しているNT-proBNPはさらに、上述のヒトNT-proBNPの前記具体的配列のアレル変異体及びその他の変異体を包含する。具体的には、ヒトNT-proBNPに対してアミノ酸レベルで少なくとも60%同一の、より好ましくは少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、又は少なくとも99%同一の変異体ポリペプチドが意図される。実質的に類似しかつ意図されている変異体は、各全長ペプチドに対する診断手段又はリガンドによって依然として認識されるタンパク質分解産物である。また、ヒトNT-proBNPのアミノ酸配列と比較してアミノ酸の欠失、置換、及び/又は付加を有する変異体ポリペプチドも、そのポリペプチドがNT-proBNPの性質を有しているものである限りは、包含される。本明細書ではNT-proBNPの性質は免疫学的及び/又は生物学的性質である。好ましくは、NT-proBNP変異体はNT-proBNPの性質と同等の免疫学的性質(すなわち、エピトープ組成)を有している。従って、これらの変異体は、ナトリウム利尿ペプチドの量の測定に用いる上述の手段又はリガンドによって認識可能であるものとする。NT-proBNPの生物学的及び/又は免疫学的性質はKarlら(Karl 1999, Scand. J. Clin. Invest 230:177-181)、Yeoら(Yeo 2003, Clinica Chimica Acta 338:107-115)に記載されているアッセイで検出することができる。また、変異体には、翻訳後修飾されたペプチド、例えばグリコシル化ペプチドが含まれる。さらに、本発明の変異体には、サンプル採取後に、例えばペプチドへの標識(特に放射性又は蛍光標識)の共有結合又は非共有結合によって修飾されているペプチド又はポリペプチドが含まれる。既に上記で論じたとおり、閾値として用いる好ましい参照量はULNから誘導することができる。所与の被験体集団についてのULNは本明細書の他の箇所で説明したように求めることができる。ナトリウム利尿ペプチド、特にNT-proBNPについての好ましい閾値(すなわち参照量)は、ULNの少なくとも1倍、好ましくは2〜4倍である。好ましくは、この関連でNT-proBNPについてのULNは125 pg/mlである。その他のナトリウム利尿ペプチドのULNは当技術分野では既知であり、好ましくはANPでは40 pg/mL、BNPでは100 pg/mL、NT-proANPでは500 pmol/Lである。より好ましくは、参照量よりも多いナトリウム利尿ペプチド量は、被験体が心不全に罹患していることのさらなる指標となる。
本明細書で用いる「心不全」という用語は、心臓の収縮及び/又は拡張機能が損われていることを意味する。好ましくは、本発明でいう心不全はさらに慢性の心不全である。心不全はNew York Heart Association(NYHA)に従って機能分類系に分類することができる。NYHAクラスIの患者は心臓血管系疾患の明確な症状はないが、既に機能障害の客観的証拠がある。身体活動に制限はなく、通常の身体活動を行っても過度の疲労、動悸、又は呼吸困難(息切れ)を引き起こさない。NYHAクラスIIの患者は身体活動にわずかに制限がある。これらの患者は安静時は快適であるが、通常の身体活動で疲労、動悸、又は呼吸困難を生じる。NYHAクラスIIIの患者は身体動作に著しい制限が認められる。これらの患者は安静時は快適であるが、通常以下の身体活動で疲労、動悸、又は呼吸困難が生ずる。NYHAクラスIVの患者は不快感なしにいずれの身体活動も行うことができない。これらの患者は安静時でも心臓の機能不全の症状を示す。心不全、すなわち心臓の収縮及び/又は拡張機能の障害は、例えば心エコー検査、血管造影、シンチグラフィー、又は磁気共鳴映像法により決定することも可能である。この機能障害は、上述したように心不全の症候を伴うものである(NYHAクラスII〜IV)が、一部の患者は有意な症候がないことがある(NYHA I)。さらに、心不全は左心室駆出分画率(LVEF)の低減によっても明らかである。より好ましくは、本明細書で用いる心不全は、60%未満、40%〜60%、又は40%未満の左心室駆出分画率(LVEF)を伴う。
「増殖分化因子-15」又は「GDF-15」という用語は、トランスフォーミング増殖因子(TGF)-βサイトカインスーパーファミリーのメンバーであるポリペプチドに関する。ポリペプチド、ペプチド、及びタンパク質という用語は本明細書全体にわたって相互に交換可能に用いられている。GDF-15はもともとはマクロファージ阻害性サイトカイン-1としてクローニングされ、後に胎盤性トランスフォーミング増殖因子-β、胎盤性骨形成タンパク質、非ステロイド系抗炎症剤活性化遺伝子-1、及び前立腺由来因子としても同定されている(Bootcov, 上掲;Hromas, 1977 Biochim. Biophys. Acta 1354:40-44;Lawton 1997, Gene 203:17-26;Yokoyama-Kobayashi 1997, J. Biochem(Tokyo), 122:622-626;Paralkar 1998, J. Biol. Chem. 273: 13760-13767)。他のTGF-β関連サイトカインと同様に、GDF-15は不活性の前駆体タンパク質として合成され、これはジスルフィド結合でホモ二量体となる。N末端プロペプチドがタンパク質分解切断されると、GDF-15は約28 kDaの二量体タンパク質として分泌される(Bauskin 2000, Embo J. 19:2212-2220)。GDF-15のアミノ酸配列はWO99/06445号、WO00/70051号、WO2005/113585号、Bottner 1999, Gene 237:105-111、Bootcov, 上掲、Tan, 上掲、Baek 2001, Mol. Pharmacol. 59:901-908、Hromas, 上掲、Paralkar, 上掲、Morrish 1996, Placenta 17:431-441、又はYokoyama-Kobayashi, 上掲中に開示されている。本発明で使用するGDF-15は上述の特定のGDF-15ポリペプチドの変異体をも包含している。そのような変異体は、少なくとも、特定のGDF-15ポリペプチドと同様の本質的な生物学的及び免疫学的性質を有している。特に、それらの変異体は、本明細書で言及している同一の特定のアッセイ、例えば該GDF-15ポリペプチドを特異的に認識するポリクローナル抗体又はモノクローナル抗体を用いたELISAアッセイで検出可能な場合には、同一の本質的な生物学的及び免疫学的性質を有する。好ましいアッセイについては添付の実施例中に記載されている。さらに、本発明で言及されている変異体は、少なくとも1つのアミノ酸の置換、欠失、及び/若しくは付加によって異なるアミノ酸配列を有しており、その際、該変異体のアミノ酸配列は、好ましくは、特定のGDF-15ポリペプチドのアミノ酸配列と少なくとも50%、60%、70%、80%、85%、90%、92%、95%、97%、98%、又は99%同一である。2つのアミノ酸配列間の同一性の程度は当技術分野でよく知られたアルゴリズムによって決定することができる。好ましくは、同一性の程度は2つの最適に整列させた配列を比較ウインドウにわたって比較することによって決定され、その際、比較ウインドウ中のアミノ酸配列の断片は最適なアライメント用の参照配列(付加若しくは欠失を含んでいない)と比較して、付加若しくは欠失(例えば、ギャップやオーバーハング)を含んでいてもよい。パーセンテージは2つの配列の双方で同一のアミノ酸残基となっている位置の数から一致している位置の数を求め、一致している位置の数を比較ウインドウ中の位置の総数で割り、その結果に100を掛けて、配列同一性のパーセンテージを得ることによって算出される。比較のための配列の最適なアライメントは、Smith及びWatermannのローカルホモロジーアルゴリズム(Add. APL. Math. 2:482(1981))によって、Needleman及びWunschのホモロジーアライメントアルゴリズム(J. Mol. Biol. 48:443(1970))によって、Pearson及びLipmanの類似性探索法(Proc. Natl. Acad. Sci. (USA) 85:2444(1988))によって、これらのアルゴリズムのコンピューターによる実施(Wisconsin Genetics Software Package, Genetics Computer Group(GCG), 575 Science Dr., Madison, WI中のGAP、BESTFIT、BLAST、PASTA、及びTFASTA)によって、又は目視による検討によって行うことができる。比較のために2つの配列が同定されている場合は、GAP及びBESTFITを用いてそれらの最適なアライメントを決定することによって、同一性の程度を求めることが好ましい。好ましくは、ギャップウエイトについてのデフォルト値が5.00であり、ギャップウエイトレングスについてのデフォルト値が0.30である。上記変異体は、アレル変異体、又は他の任意の種の特定のホモログ、パラログ若しくはオーソログであってもよい。さらに、本発明でいう変異体は、特定のGDF-15ポリペプチド又は上述のタイプの変異体の断片を、それらの断片が上述の本質的な免疫学的及び生物学的性質を有するものである限りは、含んでいる。そのような断片は、例えばGDF-15ポリペプチドの分解産物であることができる。翻訳後の修飾、例えばリン酸化又はミリスチル化などにより異なる変異体がさらに含まれる。
用語「サンプル」は、体液サンプル、分離細胞サンプル又は組織若しくは臓器由来のサンプルを表す。体液サンプルは、周知の技術によって得ることができ、好ましくは血液、血漿、血清又は尿のサンプル、より好ましくは血液、血漿又は血清のサンプルを含む。組織又は臓器のサンプルは、任意の組織又は臓器から、例えば生検によって得ることができる。分離細胞は体液又は組織若しくは臓器から、遠心分離又はセルソーティング等の分離技術によって得ることができる。好ましくは、細胞、組織又は臓器のサンプルは、本明細書に記載のペプチドを発現又は生成する細胞、組織又は臓器から得られる。
本明細書に記載のペプチド又はポリペプチドの量の測定は、その量又は濃度を、好ましくは半定量的又は定量的に測定することに関する。測定は、直接的又は間接的に行うことができる。直接的な測定は、ペプチド又はポリペプチド自体から得られ、その強度がサンプル中に存在するペプチド分子数と直接相関するシグナルに基づいて、ペプチド又はポリペプチドの量又は濃度を測定することに関する。(強度シグナルとして本明細書に記載されることもある)そのようなシグナルは、例えばペプチド又はポリペプチドの特定の物理的又は化学的な特性についての強度値を測定することによって得ることができる。間接的な測定は、二次成分(即ちペプチド若しくはポリペプチドそれ自体ではない成分)又は生物学的な読み取り系、例えば測定可能な細胞応答、リガンド、標識又は酵素反応生成物から得られるシグナルの測定を含む。
本発明によると、ペプチド又はポリペプチドの量の測定は、サンプル中のペプチドの量を測定するための周知の方法によって行うことができる。該手段は、サンドイッチ、競合その他様々なアッセイのフォーマットにおいて標識した分子を利用することができる免疫アッセイのデバイス及び方法を含む。該アッセイは、ペプチド又はポリペプチドの存在又は非存在を示すシグナルを生成する。さらにシグナル強度は、好ましくは、サンプル中に存在するポリペプチドの量と直接的に又は間接的に(例えば反比例で)相関するものである。別の好適な方法は、正確な分子量又はNMRスペクトル等のペプチド又はポリペプチドに特有な物理的又は化学的な特性を測定することを含む。該方法は、好ましくは、バイオセンサー、免疫アッセイと連結した光学装置、バイオチップ、質量分析計、NMR分析器又はクロマトグラフィー装置等の分析装置を含む。さらに方法は、マイクロプレートELISAベース法、完全に自動化又はロボット化した免疫アッセイ(例えばElecsysTM分析器を利用できる)、CBA(酵素的コバルト結合アッセイ法(enzymatic Cobalt Binding Assay)、例えばRoche-HitachiTM分析器を利用できる)、及びラテックス凝集アッセイ(例えばRoche-HitachiTM分析器を利用できる)を含む。
好ましくは、ペプチド又はポリペプチドの量の測定は、(a)細胞応答の強度がペプチド又はポリペプチドの量を示す細胞応答を誘導することができる細胞に、該ペプチド又はポリペプチドを適切な時間接触させ、(b)その細胞応答を測定する工程を含む。細胞応答を測定するためには、好ましくは、サンプル又は処理したサンプルを、培養細胞に加え、内部又は外部の細胞応答を測定する。その細胞応答は、測定可能なレポーター遺伝子の発現、又はペプチド、ポリペプチド若しくは小分子等の物質の分泌を含んでもよい。その発現又は物質は、ペプチド又はポリペプチドの量と相関する強度シグナルを生じる。
また好ましくは、ペプチド又はポリペプチドの量の測定は、サンプル中のペプチド又はポリペプチドから得られる特有な強度シグナルを測定する工程を含む。上記のように、このようなシグナルは、質量スペクトルで観察されるペプチド若しくはポリペプチドに特有な変化量m/z又はペプチド若しくはポリペプチドに特有なNMRスペクトルで観察されるシグナル強度であってもよい。
ペプチド又はポリペプチドの量の測定は、好ましくは、(a)該ペプチドを特定のリガンドに接触させ、(b)(任意に)非結合リガンドを除去し、(c)結合リガンドの量を測定することを含んでもよい。その結合リガンドは、強度シグナルを生じる。本発明において、結合は、共有結合及び非共有結合を含む。本発明において、リガンドは、任意の化合物、例えば本明細書におけるペプチド又はポリペプチドに結合する、ペプチド、ポリペプチド、核酸又は小分子でありうる。好ましいリガンドは、抗体、核酸、ペプチド又はポリペプチド、例えば、該ペプチド又はポリペプチド及び該ペプチドの結合ドメインを含むそのフラグメントのための受容体又は結合パートナー、並びに核酸又はペプチドアプタマー等のアプタマーを含む。このようなリガンドを調製するための方法は、当技術分野で周知である。例えば、好適な抗体又はアプタマーの同定及び生産は、市販の業者からも提供される。当業者は、より高い親和性又は特異性をもつ前記リガンドの誘導体を開発する方法に精通している。例えば、ランダム変異を核酸、ペプチド又はポリペプチドに導入することができる。これらの誘導体は、例えばファージディスプレイ法等の当技術分野で知られるスクリーニング法により、結合について試験することができる。本明細書において、抗体は、ポリクローナル抗体及びモノクローナル抗体だけでなく、抗原又はハプテンに結合することができるFv、Fab及びF(ab)2フラグメント等のそのフラグメントも含む。本発明はまた、所望の抗原特異性を示す非ヒトドナー抗体のアミノ酸配列をヒトアクセプター抗体の配列と組み合わせた1本鎖抗体及びヒト化ハイブリッド抗体も含む。ドナー配列は通常、少なくとも抗体に結合するドナーのアミノ酸残基を含むが、他の構造的及び/又は機能的に関連性のあるドナー抗体のアミノ酸残基も含んでもよい。このようなハイブリッドは、当技術分野で周知の種々の方法により調製することができる。好ましくは、リガンド又は薬剤がペプチド又はポリペプチドに特異的に結合する。本発明において、特異的な結合は、そのリガンド又は薬剤が、分析するサンプル中に存在する他のペプチド、ポリペプチド又は物質に、実質的に結合する(「交差反応する」)べきではないことを意味する。好ましくは、特異的に結合するペプチド又はポリペプチドは、関連のある他のどのペプチド又はポリペプチドよりも、少なくとも3倍、より好ましくは少なくとも10倍、さらに好ましくは少なくとも50倍高い親和性で結合するべきである。非特異的な結合も、例えばウェスタンブロットにおけるそのサイズに従って、又はサンプル中に相対的により多量に存在することによって、明確に区別及び測定できる場合は、許容できる場合がある。リガンドの結合は、当技術分野で知られるあらゆる方法によって測定することができる。好ましくは、該方法は、半定量的又は定量的である。好適な方法は、次に記載される。
初めに、リガンドの結合は、例えばNMR又は表面プラズモン共鳴によって、直接測定することができる。
第二に、リガンドが、対象とするペプチド又はポリペプチドの酵素活性の基質としても働く場合は、酵素反応生成物を測定することができる(例えばプロテアーゼの量は、例えばウェスタンブロットで、切断された基質の量を測定することによって測定することができる)。あるいは、リガンドが酵素特性自体を示す場合があり、「リガンド/ペプチド若しくはポリペプチド」複合体又はペプチド若しくはポリペプチドそれぞれによって結合するリガンドを、強度シグナルの発生によって検出可能となる好適な基質と接触させることができる。酵素反応生成物の測定のために、好ましくは基質の量は飽和している。基質は、反応前に検出可能な標識で標識化してもよい。好ましくは、サンプルを適切な時間、基質と接触させる。適切な時間は、生成する生成物の量が検出可能に、好ましくは測定可能になるために必要な時間を表す。生成物の量を測定する代わりに、特定の(例えば検出可能な)量の生成物が現れるために必要な時間を測定することができる。
第三に、リガンドの検出及び測定を可能とする標識に、リガンドを共有結合的又は非共有結合的に結合させることができる。標識は、直接的又は間接的な方法により行うことができる。直接的な標識は、リガンドに標識を直接(共有結合的又は非共有結合的に)結合させることを含む。間接的な標識は、第一リガンドに第二リガンドが(共有結合的又は非共有結合的に)結合することを含む。第二リガンドは、第一リガンドに特異的に結合するべきである。第二リガンドは、好適な標識と結合する及び/又はその第二リガンドに結合する第三リガンドの標的(受容体)となることができる。第二、第三又はより高次のリガンドの使用は、シグナルを増強するために用いられる場合が多い。好適な第二及び高次のリガンドは、抗体、二次抗体、及び周知のストレプトアビジン-ビオチン系(Vector Laboratories, Inc.)を含み得る。リガンド又は基質は、当技術分野で知られる一種以上のタグで「タグ付加」してもよい。このようなタグは、より高次のリガンドの標的となってもよい。好適なタグは、ビオチン、ジゴキシゲニン、His-Tag、グルタチオン-S-転移酵素、FLAG、GFP、myc-tag、A型インフルエンザウイルスヘマグルチニン(HA)、マルトース結合タンパク質等を含む。ペプチド又はポリペプチドの場合は、タグは、好ましくはN末端及び/又はC末端にある。好適な標識は、適切な検出法によって検出可能な全ての標識である。典型的な標識は、金粒子、ラテックスビーズ、アクリダンエステル、ルミノール、ルテニウム、酵素活性標識、放射性標識、磁性標識(例えば、常磁性及び超常磁性標識等の「磁性ビーズ」)、及び蛍光標識を含む。酵素活性標識は、例えば、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ、ベータガラクトシダーゼ、ルシフェラーゼ及びその誘導体を含む。検出のための好適な基質は、ジアミノベンジジン(DAB)、3,3'-5,5'-テトラメチルベンジジン、NBT-BCIP(Roche Diagnosticsの既製のストック溶液として利用できる、4-ニトロブルーテトラゾリウムクロライド及び5-ブロモ-4-クロロ-3-インドリル-ホスフェート)、CDP-StarTM(Amersham Biosciences)、ECFTM(Amersham Biosciences)を含む。好適な酵素と基質の組み合わせによって、当技術分野で知られる方法により(例えば、感光膜又は好適なカメラシステムを用いて)測定可能な着色した反応生成物、蛍光又は化学発光が生じることになる。酵素反応の測定に関しては、上記で規定した基準を同様に適用する。典型的な蛍光標識は、蛍光タンパク質(例えばGFP及びその誘導体)、Cy3、Cy5、テキサスレッド、フルオレセイン及びAlexa色素(例えばAlexa 568)を含む。別の蛍光標識は、例えばMolecular Probes(Oregon)から入手できる。蛍光標識として量子ドットも補完的に用いられる。典型的な放射性標識は、35S、125I、32P、33P等を含む。放射性標識は、感光膜又はホスファーイメージャー(phosphor imager)等の適切な周知のどのような方法によっても検出することができる。本発明において好適な測定法には、沈降(特に免疫沈降)、電気化学発光(電気的に生成された化学発光)、RIA(放射免疫アッセイ)、ELISA(酵素結合免疫吸着アッセイ)、サンドイッチ酵素免疫法、電気化学発光サンドイッチ免疫アッセイ(ECLIA)、解離増感ランタニド蛍光イムノアッセイ(dissociation-enhanced lanthanide fluoro immuno assay (DELFIA))、シンチレーション近接アッセイ(SPA)、比濁法(turbidimetry)、比ろう法(nephelometry)、ラテックスにより増感される比濁法若しくは比ろう法、又は固相免疫法も含まれる。当技術分野で知られる別の方法(例えばゲル電気泳動、二次元ゲル電気泳動、SDSポリアクリルアミドゲル電気泳動(SDS-PAGE))、ウェスタンブロッティング及びマススペクトロメトリー)は、単独で、又は上記の標識化若しくは他の検出法と組み合わせて用いることができる。
ペプチド又はポリペプチドの量は、好ましくは、次の通り測定してもよい:(a)上記で特定したペプチド又はポリペプチドのためのリガンドを含む固体担体を、ペプチド又はポリペプチドを含むサンプルに接触させ、(b)担体に結合するペプチド又はポリペプチドの量を測定する。好ましくは、核酸、ペプチド、ポリペプチド、抗体及びアプタマーからなる群より選択されるリガンドは、好ましくは固定化形態で固体担体上に存在する。固体担体を製造するための材料は、当技術分野で周知であり、特に、市販のカラム材料、ポリスチレンビーズ、ラテックスビーズ、磁性ビーズ、コロイド金属粒子、ガラス並びに/又はシリコンのチップ及び表面、ニトロセルロース片、膜、シート、デュラサイト(duracyte)、反応トレイのウェル及び壁、プラスチックチューブ等が含まれる。リガンド又は薬剤は、多くの様々な担体と結合することができる。周知の担体の例には、ガラス、ポリスチレン、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、ポリカーボネート、デキストラン、ナイロン、アミロース、天然の及び修飾されたセルロース、ポリアクリルアミド、アガロース、及びマグネタイトが含まれる。担体の性質は、本発明の目的に応じて、可溶性又は不溶性のいずれかでありうる。前記リガンドを定着/固定化するための好適な方法は周知であり、これに限定されないが、イオン性、疎水性、共有結合性の相互作用等が含まれる。本発明のアレイとして、「懸濁アレイ」を使用することも検討される(Nolan 2002, Trends Biotechnol. 20(1):9-12)。そのような懸濁アレイでは、担体、例えばマイクロビーズ又はマイクロスフェアが懸濁液中に存在する。そのアレイは、おそらく標識され、様々なリガンドを担持する異なるマイクロビーズ又はマイクロスフェアから構成される。そのようなアレイの製造方法は、例えば固相化学及び光解離性保護基に基づくものが、一般的に知られている(米国特許第5,744,305号明細書)。
本明細書で用いられる用語「量」には、ポリペプチド又はペプチドの絶対量、該ポリペプチド又はペプチドの相対量若しくは濃度だけでなく、これに関連する又は由来するあらゆる値又はパラメータが含まれる。そのような値又はパラメータには、直接的な測定によって前記ペプチドから得られる全ての特有の物理的又は化学的な特性に由来する強度シグナル値、例えば、質量スペクトル又はNMRスペクトルにおける強度値が含まれる。さらに、本明細書の各所で特定される間接的な測定により得られる全ての値又はパラメータ、例えば、ペプチドに対する応答として生物学的読み取り系で測定される応答レベル又は特異的に結合したリガンドから得られる強度シグナルが含まれる。上記の量又はパラメータと相関する値は、全ての標準的な数学的手法によっても得られることは理解されるべきである。
本明細書で用いる用語「比較する」は、分析するサンプルに含まれるペプチド又はポリペプチドの量を、本明細書中の他の箇所で説明する好適な参照源の量と比較することを含む。本明細書で用いる比較するとは、対応するパラメータ又は値の比較を意味し、例えば絶対量は絶対参照量と比較するが、濃度は参照濃度と比較し、あるいは検査サンプルから得られる強度シグナルは参照サンプルの同種の強度シグナルと比較すると理解される。本発明の方法のステップ(b)に記載の比較は、手動で又はコンピューターによって行うことができる。コンピューターによる比較については、測定した量の値を、コンピュータープログラムによって、データベース中に保存されている適切な参照に対応する値と比較することができる。コンピュータープログラムはさらに比較結果を評価することができる、すなわち、適切な出力フォーマットで所望の評価を自動的に提供することができる。ステップ(a)で測定した量と参照量との比較に基づいて、被験体が実際に心不全に罹患しているかどうかを評価することができる。従って、参照量は、比較される量との相違(差)又は類似性のいずれかによって、心不全に罹患した被験体群に属する被験体を同定することができるように、選択される。
従って、本明細書で用いる「参照量」という用語は、心房細動を示す被験体の中で心不全を罹患している被験体を同定することのできるポリペプチドの量を意味する。従って、参照は、(i)心不全に罹患していることがわかっている、心房細動を示す被験体、又は(ii)心不全に罹患していないことがわかっている、心房細動を示す被験体、のいずれかに由来することができる。さらに、参照量は、好ましくは閾値量を規定する。適切な参照量又は閾値は、分析しようとする参照サンプルと共に(すなわち同時に又は順次的に)試験サンプルから、本発明の方法によって測定することができる。閾値として用いうる好ましい参照量は、正常値の上限(ULN)、すなわち、被験体集団(例えば臨床試験に登録された患者)において見出される生理学的な量の上限値から誘導することができる。所与の被験体集団についてのULNは種々の周知の技術によって決定することができる。適切な技術は、本発明の方法において測定しようとするペプチド又はポリペプチドの量について、集団の中央値を求めることでありうる。GDF-15についての閾値は、好ましくは500〜650 pg/mlの範囲内、より好ましくは550〜650 pg/mlの範囲内、最も好ましくは570 pg/mlである。
原則的に、心房細動を示す被験体のサンプル中のGDF-15量の増大は心不全の指標となることが見出された。従って、心不全のバイオマーカーとしてのGDF-15の測定は、NT-proBNP又は他のナトリウム利尿性ペプチドに基づく心不全の診断を、特に後者のペプチドに基づく診断が擬陽性又は陰性の結果となる状況下で、強化するものである。上記知見及び本発明の方法に基づいて、潜在的な心不全(すなわち、心房細動の場合のように、現在適用される診断基準が無視されるために認識されないままである心不全)をより効率的に処置することができる。本発明の方法は、信頼性があり、迅速なかつコストが低い診断を可能にするという利点があり、携帯用アッセイ、例えばテストストリップにおいてさえ実施することができる。従って、本方法は、特に救急患者の診断に良好に適している。本発明の知見のために、被験体の適切な治療、例えば心不全の治療を信頼性をもって選択することができる。患者の誤った処置により生じる重篤な副作用も回避することができる。
さらに本発明は、心房細動を示す被験体において心不全を診断するためのデバイスであって、
(a)心房細動を示す被験体のサンプル中のGDF-15の量を測定するための手段;及び
(b)(a)の手段によって測定された量を適切な参照量と比較して、心不全の診断が可能となる手段
を含むデバイスに関する。
本明細書で用いる用語「デバイス」は、診断を可能とするために、互いが動作可能となるよう連結された少なくとも上記の手段を含む手段からなるシステムに関する。GDF-15の量を、好ましくはナトリウム利尿ペプチドと組み合わせて測定するための好ましい手段、並びに比較を行うための手段は、本発明の方法に関連して上記に開示されている。動作しうる様式で手段を連結する方法は、デバイスに含まれる手段の種類に応じて変わる。例えば、ペプチドの量を自動的に測定するための手段を適用する場合には、その自動的に作動する手段により得られるデータを、所望の結果を得るために、例えばコンピュータープログラムによって処理することができる。好ましくは、そのような場合、その手段は単一のデバイスによって構成される。従って該デバイスは、適用されるサンプル中のペプチド又はポリペプチドの量の測定について解析するユニット、及び評価のためにその得られたデータを処理するコンピューターユニットを含むことができる。あるいは、テストストリップのような手段をペプチド又はポリペプチドの量を測定するために使用する場合には、比較のための手段は、対照ストリップ、又は測定量を参照量に割り当てる表を含んでもよい。テストストリップは、好ましくは、本明細書で説明するペプチド又はポリペプチドと特異的に結合するリガンドと組み合わせられる。ストリップ又はデバイスは、好ましくは該ペプチド又はポリペプチドと該リガンドとの結合を検出するための手段を含む。検出のための好ましい手段は、上記の本発明の方法に関する実施形態と関連して開示されている。そのような場合、その手段は動作可能なように連結され、システムの使用者はその量の測定結果と取扱説明書に定められる指示又は解説によりその診断値又は予測値を結びつける。その手段は、かかる実施形態で個々のデバイスとして存在してもよく、好ましくはキットとして一緒にパッケージングされる。当業者は、さらなる苦労をすることなくその手段を連結する方法を理解することができる。好ましいデバイスは、専門の臨床医の特別な知識がなくても適用することができるものであり、例えば、単にサンプルを付加すればよいテストストリップ又は電子デバイスである。結果は、臨床医による解釈を必要とする未加工データのアウトプットとして得ることができる。しかし好ましくは、デバイスのアウトプットは、その解釈にあたり臨床医を必要としないように処理された、即ち評価された未加工データである。さらに好ましいデバイスには、分析ユニット/デバイス(例えば、バイオセンサー、アレイ、ナトリウム利尿ペプチドを特異的に認識するリガンドと結合した固体支持体、表面プラズモン共鳴装置、NMR分析装置、質量分析装置等)、及び/又は本発明の方法における上記の評価ユニット/デバイスが含まれる。
最後に、本発明は、本発明の方法を実施するために採用されるキットであって、該方法を行うための取扱説明書と、
(a)心房細動を示す被験体のサンプル中のGDF-15の量を測定するための手段;及び
(b)(a)の手段によって測定された量を適切な参照量と比較して、心不全の診断が可能となる手段
とを含むキットに関する。
本明細書で用いられる用語「キット」は、好ましくは個別に又は単一の容器内で提供される上記手段の集合を意味する。この容器は、好ましくは本発明の方法を行うための説明書を含んでいる。従って、本発明の方法を実施するために採用されるキットは、該方法を実施するために必要な構成要素の全てを、即時使用可能に、例えば測定及び/又は比較に使用される調整された濃度の構成要素を予め混合した形態で、含むものである。
本明細書で引用される全ての参考文献は、それらの全体の開示内容及び本明細書で特別に言及された開示内容について、参照により本明細書に組み入れられる。
以下の実施例は、本発明を例示するにすぎない。何であれ、本発明の範囲を限定するものであると解釈すべきでない。
[実施例1]
血清サンプル及び血漿サンプル中のGDF-15及びNT-proBNPの測定
血清サンプル及び血漿サンプル中のGDF-15の濃度を測定するために、GDF-15アフィニティークロマトグラフィーで精製したポリクローナルヤギ抗ヒトGDF-15 IgG抗体(R&D Systems;AF957)を用いて免疫放射定量分析アッセイ(IRMA)を開発した。Maxisorp Startubes (Nunc)を、0.1 Mの炭酸ナトリウムバッファー(pH 9.0)中の0.5μgの抗GDF-15 IgGにより4℃で一晩かけてコーティングした後、0.1%Tween 20を添加したリン酸緩衝生理食塩水で2回洗った。血清サンプル又は血漿サンプル(100 μL)をアッセイバッファー(30 g/L BSA、10 g/LウシIgG、1%ヤギ血清、0.1%アジ化ナトリウム、1 M NaCl、40 mM リン酸ナトリウムバッファー, pH 7.4)で1:1に希釈し、試験管に入れ、4℃で16時間インキュベートした。2回の洗浄ステップの後、10 ngの[125I]ヨウ素化抗GDF-15 IgG(比活性 0.74 MBq/μg)を200μLのアッセイバッファーで希釈し、これを各試験管に添加して、室温で4時間インキュベートした。3回の最終洗浄ステップ後、結合している放射活性をガンマカウンター(LKB Wallac 1261)で定量した。各実験において、R&D Systemsの組換えヒトGDF-15(957-GD/CF)を用いて標準曲線を作成した。組換えGDF-15タンパク質の新しいバッチでの結果は標準血漿サンプルで試験し、10%を超える偏差は、このアッセイのために調整係数を導入して補正した。同一の患者から得た血清サンプル及び血漿サンプル中のGDF-15の測定は、最終的な希釈係数について補正した後には実質的に同一の結果を生じた。このアッセイの検出限界は20 pg/mLであった。アッセイ内変動係数は、744、1518、及び8618 pg/mLの平均GDF-15レベルについてそれぞれ5.6、5.9、及び6.5%であった。アッセイ間変動係数は、832、4739、及び9230 pg/mLの平均GDF-15レベルについてそれぞれ8.6、5.7、及び4.4%であった。
NT-proBNPレベルは、Elecsys 2010を用いてイムノアッセイで測定し、その検出限界は20 pg/mLであった。
[実施例2]
心房細動によりNT-proBNPレベルは影響を受けるが、GDF-15レベルは影響を受けない
心電図記録法によって調べた際に洞調律を有する合計273人の患者について、GDF-15レベル及びNTproBNPレベルの変化を分析した。心房細動を示す合計17人の患者についても同じ分析を行った。さらに、左心室駆出分画率を測定した。
血漿GDF-15レベル及びNT-proBNPレベルを上記実施例に記載のように測定した。
この研究の結果を以下の表に示す。
Figure 0005015318
表から明らかなとおり、GDF-15は、60%以上のほぼ生理学的LVEFを有する患者と比較して、60%未満(すなわち40〜60%)のLVEFを有する患者では有意に増加した。しかしながら、NT-proBNPはこれらの患者を区別するものではない。心不全の他の症候及び臨床兆候はないか又はわずかにしか顕在化していないため、40〜60%のLVEFを有する患者はおそらくNT-proBNPに基づいた場合には擬陽性と診断される可能性があることに留意する必要がある。

Claims (6)

  1. 心房細動を示す被験体において心不全を検出する方法であって、
    (a)該被験体のサンプル中のGDF-15の量を測定するステップ、及び
    (b)心不全を検出するために、ステップ(a)で測定したGDF-15の量をGDF-15の参照量と比較するステップ
    を含み、該参照量が、心不全に罹患していない、心房細動を示す被験体のサンプル中で測定されたGDF-15の量である、上記方法。
  2. 心不全が60%未満の左心室駆出分画率(LVEF)を伴う、請求項1に記載の方法。
  3. ステップ(a)で測定したGDF-15の量が参照量より多いことは、心不全を示す、請求項1または2に記載の方法。
  4. 被験体がヒトである、請求項1〜のいずれか1項に記載の方法。
  5. 心房細動を示す被験体において心不全を検出するためのデバイスであって、
    (a)心房細動を示す被験体のサンプル中のGDF-15の量を測定するための手段;及び
    (b)(a)の手段によって測定された量をGDF-15の参照量と比較して、心不全の検出が可能となる手段
    を含み、該参照量が、心不全に罹患していない、心房細動を示す被験体のサンプル中で測定されたGDF-15の量である、上記デバイス。
  6. 請求項1〜のいずれか1項に記載の方法を実施するために採用されるキットであって、該方法を行うための取扱説明書と、
    (a)心房細動を示す被験体のサンプル中のGDF-15の量を測定するための手段;及び
    (b)(a)の手段によって測定された量をGDF-15の参照量と比較して、心不全の検出が可能となる手段
    とを含むキット。
JP2010508842A 2007-05-24 2008-05-21 Gdf−15及びナトリウム利尿ペプチドを用いた、心房細動を有する患者の心不全を評価するための手段及び方法 Active JP5015318B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07108852.0 2007-05-24
EP07108852A EP1995596B1 (en) 2007-05-24 2007-05-24 Methods for assessing heart failure in patients with atrial fibrillation using GDF-15
PCT/EP2008/056261 WO2008142110A1 (en) 2007-05-24 2008-05-21 Means and methods for assessing heart failure in patients with atrial fibrillation using gdf-15 and natriuretic peptides

Publications (2)

Publication Number Publication Date
JP2010528275A JP2010528275A (ja) 2010-08-19
JP5015318B2 true JP5015318B2 (ja) 2012-08-29

Family

ID=38190863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010508842A Active JP5015318B2 (ja) 2007-05-24 2008-05-21 Gdf−15及びナトリウム利尿ペプチドを用いた、心房細動を有する患者の心不全を評価するための手段及び方法

Country Status (6)

Country Link
US (1) US7955854B2 (ja)
EP (1) EP1995596B1 (ja)
JP (1) JP5015318B2 (ja)
AT (1) ATE537454T1 (ja)
ES (1) ES2379104T3 (ja)
WO (1) WO2008142110A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2195660A1 (en) * 2007-08-30 2010-06-16 Roche Diagnostics GmbH Means and methods for the discrimination of gdf-15 elevation related or unrelated to cardiac disorders
EP2227696A1 (en) * 2008-01-08 2010-09-15 Roche Diagnostics GmbH Means and methods for assessing the risk of patients presenting to emergency units based on gdf-15
CN102549436A (zh) 2009-07-27 2012-07-04 霍夫曼-拉罗奇有限公司 mimecan在评价心力衰竭中的用途
EP2491401B1 (en) * 2009-10-21 2018-06-06 Mycartis N.V. Mcam as a biomarker for fluid homeostasis
EP2439535A1 (en) * 2010-10-07 2012-04-11 F. Hoffmann-La Roche AG Diagnosis of diabetes related heart disease and GDF-15 and Troponin as predictors for the development of type 2 diabetes mellitus
KR101230088B1 (ko) 2010-11-24 2013-02-05 연세대학교 산학협력단 심방세동의 예후 예측 방법
AU2015273097A1 (en) * 2014-06-13 2016-11-17 Novartis Ag Use of serelaxin to reduce GDF-15
EP3425392A4 (en) 2016-02-29 2020-02-05 Public University Corporation Yokohama City University METHOD FOR DETECTING CASTRATION-RESISTANT PROSTATE CANCER AND REAGENT REAGENT
EP3472622B1 (en) * 2016-06-17 2020-08-05 Roche Diagnostics GmbH Circulating angiopoietin-2 (ang-2) for the prediction of recurrence of atrial fibrillation
WO2018167447A1 (en) 2017-03-14 2018-09-20 University Of Sheffield Low dose aspirin (1-50 mg) together with antiplatelets such as ticagrelor of anticoagulants
JP7127422B2 (ja) 2017-08-30 2022-08-30 東ソー株式会社 癌を検出する方法及び検出試薬
JP7419341B2 (ja) * 2018-07-31 2024-01-22 エフ. ホフマン-ラ ロシュ アーゲー 心房細動の評価における循環DKK3(Dickkopf関連タンパク質3)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1759214B1 (en) * 2004-06-15 2013-04-24 F.Hoffmann-La Roche Ag The use of cardiac hormones for diagnosing the risk of suffering from a cardiovascular complication as a consequence of cardiotoxic medication
CA2598582A1 (en) * 2005-02-17 2006-08-24 Georg Hess Use of nt-proanp/nt-probnp ratio for diagnosing cardiac dysfunctions
WO2008015254A2 (en) * 2006-08-04 2008-02-07 Medizinische Hochschule Hannover Means and methods for assessing the risk of cardiac interventions based on gdf-15
EP2195660A1 (en) * 2007-08-30 2010-06-16 Roche Diagnostics GmbH Means and methods for the discrimination of gdf-15 elevation related or unrelated to cardiac disorders

Also Published As

Publication number Publication date
EP1995596B1 (en) 2011-12-14
US7955854B2 (en) 2011-06-07
WO2008142110A1 (en) 2008-11-27
US20100159608A1 (en) 2010-06-24
ES2379104T3 (es) 2012-04-20
ATE537454T1 (de) 2011-12-15
EP1995596A1 (en) 2008-11-26
JP2010528275A (ja) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5015318B2 (ja) Gdf−15及びナトリウム利尿ペプチドを用いた、心房細動を有する患者の心不全を評価するための手段及び方法
JP4944185B2 (ja) 症状のある患者における急性および慢性の心筋壊死の区別のための手段と方法
JP4823170B2 (ja) 進行型冠動脈疾患およびその合併症のインジケーターとしての心筋トロポニン
JP4731525B2 (ja) 心因性と肺因性の急性呼吸窮迫を鑑別する手段と方法
JP5198565B2 (ja) 心疾患に関連する又は関連しないgdf−15の上昇の区別のための手段及び方法
EP1722232A1 (en) Devices and methods for diagnosing or predicting early stage cardiac dysfunctions
JP2011501112A (ja) 心筋梗塞のモニタリング及びその治療のための手段及び方法
JP2011523044A (ja) 拡張型心筋症の区別のための及び特異的治療とその結果の基礎としてのマルチマーカーパネル
US8497095B2 (en) Biochemical markers for acute pulmonary embolism
JP2011509403A (ja) Gdf−15に基づいて救急室を受診する患者のリスクを評価するための手段及び方法
JP2010539449A (ja) 右心不全の異なる病因の鑑別
JP2020034564A (ja) 心不全リスクの予測改善のためのバイオマーカー
JP2011501113A (ja) 急性冠症候群を有する患者での既存の心筋機能不全の評価のためのナトリウム利尿ペプチド/トロポニン比
JP2013527453A (ja) 急性炎症における生存および回復を推定するためのgdf−15に基づく手段および方法
US20100261283A1 (en) Surfactant proteins b and d for differential diagnosis of dyspnea
JP4664939B2 (ja) 息切れの心臓原因および肺原因を鑑別するための手段および方法
JP2010525307A (ja) Gdf−15に基づき安定型冠動脈性心疾患に罹患している患者における心臓インターベンションのリスクを評価するための手段及び方法
EP2597466A1 (en) Means and methods for proSP-B based diagnosis of alveolar damage in pulmonary hypertension patients

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5015318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250