JP5012573B2 - Buried pipe monitoring device - Google Patents

Buried pipe monitoring device Download PDF

Info

Publication number
JP5012573B2
JP5012573B2 JP2008052114A JP2008052114A JP5012573B2 JP 5012573 B2 JP5012573 B2 JP 5012573B2 JP 2008052114 A JP2008052114 A JP 2008052114A JP 2008052114 A JP2008052114 A JP 2008052114A JP 5012573 B2 JP5012573 B2 JP 5012573B2
Authority
JP
Japan
Prior art keywords
signal
buried pipe
superimposed
damage
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008052114A
Other languages
Japanese (ja)
Other versions
JP2009210328A (en
Inventor
健一 原賀
守男 炭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2008052114A priority Critical patent/JP5012573B2/en
Publication of JP2009210328A publication Critical patent/JP2009210328A/en
Application granted granted Critical
Publication of JP5012573B2 publication Critical patent/JP5012573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は埋設管損傷監視装置に関し、さらに具体的には埋設管の損傷監視と埋設管の腐食防止を同時に行うことができる埋設管損傷監視装置に関する。   The present invention relates to a buried pipe damage monitoring apparatus, and more specifically to a buried pipe damage monitoring apparatus capable of simultaneously monitoring damage to a buried pipe and preventing corrosion of the buried pipe.

地中に埋設される埋設管は、掘削工事における掘削機械により損傷を受ける場合があり、埋設管が損傷を受けると土壌との接触等により埋設管の腐食が進行してしまう。このため埋設管の損傷をいち早く検出する必要があり、埋設管の損傷を監視するための各種方法が検討されている。   The buried pipe buried in the ground may be damaged by a drilling machine in excavation work, and when the buried pipe is damaged, the buried pipe is corroded by contact with soil or the like. For this reason, it is necessary to quickly detect damage to the buried pipe, and various methods for monitoring the damage to the buried pipe have been studied.

このような埋設管の損傷発生を監視する方法としては、埋設管の送信部から監視用交流信号を常時印加し、これを送信部から離れた受信部において常時受信して、その抵抗値が基準値より低下した場合には警報を出す方法が挙げられる。   As a method for monitoring the occurrence of such damage to the buried pipe, a monitoring AC signal is constantly applied from the buried pipe transmitting section, and this is always received by the receiving section away from the transmitting section, and the resistance value is the reference. There is a method of issuing an alarm when the value falls below the value.

また、埋設管塗覆装に既存の損傷があり、土壌と埋設管鋼面が接触している場合、埋設管から土壌には腐食電流が流出し、埋設管が腐食する危険性がある。   In addition, when there is an existing damage to the buried pipe coating and the soil and the buried pipe steel surface are in contact with each other, there is a risk that a corrosion current flows from the buried pipe to the soil and the buried pipe is corroded.

このような腐食電流の流出による埋設管の腐食を防止する方法としては、外部電源装置から地中に埋設した電極に、埋設管に流出する腐食電流に対応する電気防食直流信号を印加することで電気化学的に埋設管の腐食を防止する方法が挙げられる。   As a method of preventing the corrosion of the buried pipe due to the outflow of such a corrosion current, an anticorrosion DC signal corresponding to the corrosion current flowing into the buried pipe is applied to the electrode buried in the ground from the external power supply device. There is a method of electrochemically preventing the corrosion of the buried pipe.

このように、現状においては埋設管の損傷監視と埋設管の腐食防止を行うために、埋設管に上記損傷監視信号と電気防食直流信号それぞれの信号を別々に印加している。   Thus, in the present situation, in order to monitor damage to the buried pipe and prevent corrosion of the buried pipe, the damage monitoring signal and the electric protection DC signal are separately applied to the buried pipe.

しかしながら、損傷監視信号と電気防食信号を別々に印加した場合、電気防食直流信号が完全な直流信号ではなく周波数成分を有しているため損傷監視用信号と干渉し、埋設管損傷監視において電気防食直流信号はノイズ源となってしまう。これにより、埋設管に損傷がない場合であっても電気防食信号の影響により、損傷監視信号から得られる抵抗値は変動し、変動値が基準値を超えることで誤報が発生する問題が生じ得る。   However, if the damage monitoring signal and the cathodic protection signal are applied separately, the cathodic protection DC signal has a frequency component, not a complete DC signal, and therefore interferes with the damage monitoring signal, so that the cathodic protection in buried pipe damage monitoring. The DC signal becomes a noise source. As a result, even if the buried pipe is not damaged, the resistance value obtained from the damage monitoring signal fluctuates due to the influence of the electric protection signal, and a problem may occur in that false alarms occur due to the fluctuation value exceeding the reference value. .

このようなノイズの影響による誤報発生を防止する方法として、特許文献1には、受信電圧をデジタル量に変換し移動平均処理を行った後に、現在と過去の時点との値を比較することで受信電圧の変化を検出する技術について開示されている。特許文献2には埋設管に接続している排流器と並列に通過フィルタを接続することでノイズを低減する技術について開示がされている。
特開平9−33474号公報 特開平7−55751号公報
As a method for preventing the occurrence of false alarms due to the influence of noise, Patent Document 1 discloses a method of comparing the current and past values after converting the received voltage into a digital quantity and performing a moving average process. A technique for detecting a change in received voltage is disclosed. Patent Document 2 discloses a technique for reducing noise by connecting a pass filter in parallel with a drain that is connected to a buried pipe.
Japanese Patent Laid-Open No. 9-33474 Japanese Patent Laid-Open No. 7-55751

しかしながら、特許文献1に開示された技術によれば、計測データをデジタル値に変換し、移動平均処理によるノイズ低減を行っているが、移動平均処理を行うことにより、計測値の変化が穏やかになり、埋設管の損傷が短時間の場合には、損傷を見落とす恐れがある。特許文献2に開示された技術によれば、排流器にフィルタを挿入することでノイズ低減を図ることはできるが、排流器は回路抵抗を大きくすることはできないことから完全なフィルタができず、ノイズ低減の観点からは十分とはいえない。   However, according to the technique disclosed in Patent Document 1, measurement data is converted into a digital value and noise is reduced by moving average processing. However, by performing moving average processing, changes in measurement values are moderated. Therefore, if the buried pipe is damaged for a short time, the damage may be overlooked. According to the technique disclosed in Patent Document 2, noise can be reduced by inserting a filter into the drain, but since the drain cannot increase the circuit resistance, a complete filter can be obtained. However, it is not sufficient from the viewpoint of noise reduction.

本発明はこのような状況に鑑みてなされたものであり、重畳信号を埋設管に印加することで、埋設管の損傷監視におけるノイズの発生を防止し、埋設管の損傷がない場合であってもノイズの影響により生ずる誤報の発生を防止できる。さらには重畳信号により埋設管の腐食防止をも同時に行うことができる埋設管損傷監視装置を提供することを主たる課題とする。   The present invention has been made in view of such a situation, and by applying a superimposed signal to the buried pipe, it is possible to prevent the occurrence of noise in the buried pipe damage monitoring and there is no damage to the buried pipe. Can also prevent the occurrence of false alarms caused by the effects of noise. Furthermore, it is a main object to provide a buried pipe damage monitoring device capable of simultaneously preventing corrosion of a buried pipe by a superimposed signal.

前記課題を解決するための本願発明の埋設管監視装置は、地中埋設管の損傷監視装置において、埋設管の少なくとも一点以上の発信地点から、直流信号にM系列信号を重畳した重畳信号を発信する重畳信号発信部と、前記重畳信号を受信する重畳信号受信部と、前記重畳信号受信部で受信した信号を演算する処理部と、前記処理部で演算した値と、埋設管に損傷がない場合における基準値との比較を行う比較部と、前記比較部における比較結果に応じて埋設管の損傷を判定する判定部と、を含み、前記発信地点のマイナス側端子を埋設管に接続し、かつ前記発信地点に参照電極を設け、前記マイナス側端子と前記参照電極の電位が一定となるように制御することを特徴とする。 The buried pipe monitoring device of the present invention for solving the above-mentioned problem is a damage monitoring device for underground buried pipes, which transmits a superimposed signal in which an M-sequence signal is superimposed on a DC signal from at least one transmission point of the buried pipe. The superimposed signal transmitting unit, the superimposed signal receiving unit that receives the superimposed signal, the processing unit that calculates the signal received by the superimposed signal receiving unit, the value calculated by the processing unit, and the embedded pipe are not damaged a comparing unit for comparing the reference value in the case, seen contains and a determination unit damage buried pipe in accordance with the comparison result of the comparison unit, to connect the negative terminal of the origination point to the buried pipe In addition, a reference electrode is provided at the transmission point, and control is performed so that the potential of the negative terminal and the reference electrode is constant .

また、前記重畳信号は、印加電圧が0.1V〜60Vである直流信号に、基本周波数が1Hz〜1000Hz、振幅が0.1〜10VであるM系列信号を重畳した重畳信号であってもよい。 Further, the superimposed signal is a DC signal applied voltage is 0.1V~60V, even superimposed signal fundamental frequency 1Hz~1000Hz, amplitude is superimposed a 0.1~10V der Ru M-sequence signal Good.

また、前記比較部は、M系列信号の相関ピーク値の変化による、埋設管の管内電流または接地抵抗と、埋設管に損傷がない場合におけるこれらとを比較するものであってもよい。   Further, the comparison unit may compare the in-pipe current or ground resistance of the buried pipe due to the change in the correlation peak value of the M-sequence signal and those when the buried pipe is not damaged.

また、前記重畳信号発信部は、少なくともM系列信号発生器と高整流直流信号発生器とを含んでいてもよい。   The superimposed signal transmission unit may include at least an M-sequence signal generator and a highly rectified DC signal generator.

前記課題を解決するための本願発明の埋設管損傷監視方法は、地中埋設管の損傷監視方法であって、埋設管の少なくとも一点以上の発信地点から直流信号にM系列信号を重畳した重畳信号を発信し、前記重畳信号を、前記発信地点、または埋設管の離れた地点で受信し、前記受信信号を演算し、前記演算値と、埋設管に損傷がない場合における基準値とを比較し、前記比較結果に応じて損傷の有無を判定するとともに、前記発信地点のマイナス側端子を埋設管に接続し、かつ前記発信地点に参照電極を設け、前記マイナス側端子と前記参照電極の電位が一定となるように制御することを特徴とする。 The buried pipe damage monitoring method of the present invention for solving the above-mentioned problem is a method for monitoring damage to underground pipes, and is a superimposed signal in which an M-sequence signal is superimposed on a DC signal from at least one transmission point of the buried pipe. The superimposition signal is received at the transmission point or a point away from the buried pipe, the received signal is calculated, and the calculated value is compared with a reference value when the buried pipe is not damaged. Determining whether there is damage according to the comparison result, connecting the minus side terminal of the transmission point to an embedded pipe, and providing a reference electrode at the transmission point, and the potential of the minus side terminal and the reference electrode is Control is performed so as to be constant .

また、前記重畳信号は、印加電圧が0.1V〜60Vである直流信号に、基本周波数が1Hz〜1000Hz、振幅が0.1V〜10VであるM系列信号を重畳した重畳信号であってもよい。 Further, the superimposed signal is a DC signal applied voltage is 0.1V~60V, even superimposed signal fundamental frequency 1Hz~1000Hz, amplitude is superimposed a 0.1V~10V der Ru M-sequence signal Good.

本発明によれば、従来から用いられている埋設管の腐食防止信号と、損傷監視信号を夫々別々に埋設管に印加するのではなく、直流信号にM系列信号を重畳した重畳信号を埋設管に印加することで、埋設管の腐食防止と埋設管の損傷監視を一つの信号で行うことができることから、ノイズ源であった腐食防止信号を発信するための外部電源装置を用いることなく損傷監視を行うことができる。これにより、損傷監視信号にて測定される埋設管の接地抵抗が上がり、埋設管が損傷したときの埋設管の接地抵抗の差が大きくなるとともに、ノイズによる埋設管の接地抵抗の変動をなくすことができる。換言すれば、本発明は、一つの信号で埋設管の腐食防止と埋設管の損傷監視を行うことができることを特徴とし、これにより損傷の有無をより正確に行うことができる。   According to the present invention, instead of applying a corrosion prevention signal and a damage monitoring signal for a buried pipe, which have been conventionally used, to the buried pipe separately, a superimposed signal obtained by superimposing an M series signal on a DC signal is buried. By applying to, it is possible to carry out corrosion prevention of buried pipes and damage monitoring of buried pipes with a single signal, so damage monitoring can be performed without using an external power supply to send a corrosion prevention signal that was a noise source. It can be performed. This increases the grounding resistance of the buried pipe measured by the damage monitoring signal, increases the difference in grounding resistance of the buried pipe when the buried pipe is damaged, and eliminates fluctuations in the grounding resistance of the buried pipe due to noise. Can do. In other words, the present invention is characterized in that the corrosion of the buried pipe can be prevented and the damage of the buried pipe can be monitored with one signal, whereby the presence or absence of damage can be more accurately performed.

まずはじめに、本願の埋設管損傷監視装置について、図面を用いて具体的に説明する。   First, the buried pipe damage monitoring apparatus of the present application will be specifically described with reference to the drawings.

図1は本願発明の埋設管損傷監視装置を概念的に示したものである。図1に示すように重畳信号発信部11は埋設管10に、直流信号にM系列信号を重畳した重畳信号を印加するものであり重畳信号発信部11のプラス側端子を通電電極14に接続するとともに、マイナス側端子21を埋設管10に接続して構成されている。重畳信号受信部19は、第一信号受信部12と第二信号受信部13とから構成され、第一信号受信部12は、地中に埋設された照合電極15と埋設管10の各検出地点に接続され、各検出地点において埋設管10のM系列管対地電位信号を受信する。第二受信部13は各計測区間ごとに埋設管10のM系列管対管電位を受信するものであり、処理部16において埋設管10の導体抵抗で除すことでM系列管内電流を算出することができる。例えば、埋設管10の検出区間P1に接続されたQ1とQ2との間の埋設管のM系列管対管電位信号を測定し、Q1とQ2の間の導体抵抗で除してM系列管内電流を算出することができる。処理部16は前記第一受信部12、及び第二受信部13で受信した信号からM系列接地抵抗を演算するために設けられている。比較部17は処理部16で演算したM系列接地抵抗と、埋設管に損傷がない場合のM系列接地抵抗の基準値とを比較するために設けられている。判定部18は前記処理装置17で比較した比較結果に応じて埋設管の有無を判定するために設けられている。   FIG. 1 conceptually shows the buried pipe damage monitoring apparatus of the present invention. As shown in FIG. 1, the superimposed signal transmission unit 11 applies a superimposed signal obtained by superimposing an M-sequence signal on a DC signal to the buried pipe 10, and connects the plus side terminal of the superimposed signal transmission unit 11 to the energizing electrode 14. At the same time, the minus side terminal 21 is connected to the buried pipe 10. The superimposition signal receiving unit 19 includes a first signal receiving unit 12 and a second signal receiving unit 13, and the first signal receiving unit 12 is configured to detect each of the verification electrode 15 and the detection tube 10 embedded in the ground. The M series pipe ground potential signal of the buried pipe 10 is received at each detection point. The second receiving unit 13 receives the M-series tube-to-tube potential of the embedded tube 10 for each measurement section, and calculates the M-series in-tube current by dividing by the conductor resistance of the embedded tube 10 in the processing unit 16. be able to. For example, the M series pipe-to-tube potential signal of the buried pipe between Q1 and Q2 connected to the detection section P1 of the buried pipe 10 is measured and divided by the conductor resistance between Q1 and Q2, and the M series pipe current Can be calculated. The processing unit 16 is provided to calculate the M series ground resistance from the signals received by the first receiving unit 12 and the second receiving unit 13. The comparison unit 17 is provided to compare the M series ground resistance calculated by the processing unit 16 with the reference value of the M series ground resistance when the buried pipe is not damaged. The determination unit 18 is provided to determine the presence / absence of an embedded pipe according to the comparison result compared by the processing device 17.

本願発明は、重畳信号発信部11から、M系列信号と直流信号を重畳した一の信号を埋設管10に印加することで、外部電源を用いることなくノイズの影響の無い信号を得ることができ、これにより埋設管の腐食防止と、埋設管の損傷監視を一度に行うことができることに特徴を有している。従って、第一信号受信部12で管対地電位信号を受信することができ、第二信号受信部13で管対管電位信号を受信することができ、第一信号受信部12及び第二信号受信部で得られた信号からM系列管対地電位、M系列管対管電位、M系列接地抵抗、直流管対地電位、直流管対管電位、直流接地抵抗等の各種信号を測定することができ、これらの計測値と埋設管に損傷がない場合における基準値との比較をし、比較結果に応じて損傷の有無を判定する各種手段や装置については特に限定されることはなく、従来公知のそれを適宜用いることができる。例えば、第一信号受信部12及び第二信号受信部13の設置箇所は図示するように埋設管10に沿って各地点ごとにR1、R2、・・・Rnや、Q1、Q2、Q3・・・Qnのように複数地点に設置してもよい。   The present invention can obtain a signal free from the influence of noise without using an external power source by applying one signal obtained by superimposing an M-sequence signal and a DC signal to the buried pipe 10 from the superimposed signal transmission unit 11. Thus, it is characterized in that the corrosion of the buried pipe can be prevented and the damage of the buried pipe can be monitored at a time. Accordingly, the tube-to-ground potential signal can be received by the first signal receiving unit 12, the tube-to-tube potential signal can be received by the second signal receiving unit 13, and the first signal receiving unit 12 and the second signal receiving unit can receive the signal. Various signals such as M series tube to ground potential, M series tube to tube potential, M series ground resistance, DC tube to ground potential, DC tube to tube potential, DC ground resistance can be measured from the signal obtained at There is no particular limitation on various means and devices for comparing these measured values with the reference values when there is no damage to the buried pipe, and determining the presence or absence of damage according to the comparison results. Can be used as appropriate. For example, the installation locations of the first signal receiving unit 12 and the second signal receiving unit 13 are R1, R2,... Rn, Q1, Q2, Q3,. -You may install in multiple places like Qn.

また重畳信号発信部11において、信号受信部19を設置し、第一信号受信部12で管対地電位信号を受信するとともに、第二信号受信部13で管対管電位信号を受信する代わりに重畳信号発信部11の出力電流を測定してもよい。   In addition, in the superimposed signal transmission unit 11, a signal receiving unit 19 is installed so that the first signal receiving unit 12 receives the tube-to-ground potential signal and the second signal receiving unit 13 receives the tube-to-tube potential signal instead of superimposing. The output current of the signal transmission unit 11 may be measured.

また、重畳信号発信部11において、参照電極20を設けマイナス側端子21と参照電極の電位を一定となるように設定しても良い。マイナス側端子21と参照電極間20を定電位制御することで、直流管対地電位や、M系列管対地電位は一定となり、より正確にM系列接地抵抗やM系列管対管電位を測定することができる。   In addition, in the superimposed signal transmission unit 11, the reference electrode 20 may be provided and the potential of the negative terminal 21 and the reference electrode may be set to be constant. By controlling constant potential between the negative terminal 21 and the reference electrode 20, the DC tube ground potential and the M series tube ground potential become constant, and the M series ground resistance and M series tube potential can be measured more accurately. Can do.

次に本願発明の特徴である直流信号にM系列信号を重畳させた重畳信号について説明する。前述したように埋設管塗覆装に損傷があり、土壌と埋設管鋼面が接触している場合、埋設管から土壌に腐食電流が流出し、埋設管が腐食する危険性がある。このように埋設管から土壌へ腐食電流が流出しないよう、土壌に対して埋設管の電位を、電気防食管理基準値より下げることで埋設管の腐食を防止することが可能となる。従って、このような観点から、前記直流信号は損傷監視信号が重畳した場合の管対地電位の瞬間最大値が電気防食管理基準値よりマイナス側となるような直流信号であることがより好ましい。このような直流信号としては0.1V〜60Vを印加する直流信号が挙げられる。   Next, a superimposed signal obtained by superimposing an M-sequence signal on a DC signal, which is a feature of the present invention, will be described. As described above, when the buried pipe coating is damaged and the soil and the buried pipe steel surface are in contact with each other, there is a risk that a corrosion current flows from the buried pipe to the soil and the buried pipe is corroded. Thus, the corrosion of the buried pipe can be prevented by lowering the potential of the buried pipe from the galvanic corrosion control reference value so that the corrosion current does not flow out from the buried pipe to the soil. Therefore, from this point of view, the DC signal is more preferably a DC signal such that the instantaneous maximum value of the tube-to-ground potential when the damage monitoring signal is superimposed is on the negative side with respect to the erosion control reference value. Examples of such a DC signal include a DC signal that applies 0.1V to 60V.

M系列信号は、基本周波数をもつ擬似ランダム信号であり、擬似ランダム信号の相関ピーク値の変化による管対地電位、管内電流、接地抵抗の変化により、埋設管10の損傷を監視するために設けられる。このような観点からM系列信号は、基本周波数が1Hz〜1000Hzであり、振幅が0.1V〜10VのM系列信号であることが好ましい。このような範囲内のM系列信号は商用周波数成分との弁別および交流腐食発生防止の点で有効である。   The M-sequence signal is a pseudo-random signal having a fundamental frequency, and is provided for monitoring damage to the buried pipe 10 due to changes in the pipe-to-ground potential, the pipe current, and the ground resistance due to changes in the correlation peak value of the pseudo-random signal. . From such a viewpoint, the M-sequence signal is preferably an M-sequence signal having a fundamental frequency of 1 Hz to 1000 Hz and an amplitude of 0.1 V to 10 V. An M-sequence signal within such a range is effective for discrimination from commercial frequency components and prevention of AC corrosion.

次に、直流信号にM系列信号を重畳する方法について説明する。   Next, a method for superimposing an M-sequence signal on a DC signal will be described.

直流信号にM系列信号を重畳する方法としては、直流信号にM系列信号を重畳させることができるものであれば、その方法については特に限定されることはなく、従来公知の方法を適宜選択することができる。直流信号にM系列信号を重畳させる方法として例えば、高整流直流信号発生器とM系列信号発生器を組み合わせる方法が挙げられる。   The method for superimposing the M series signal on the DC signal is not particularly limited as long as the M series signal can be superimposed on the DC signal, and a conventionally known method is appropriately selected. be able to. As a method for superimposing the M-sequence signal on the DC signal, for example, a method of combining a high rectification DC signal generator and an M-sequence signal generator can be cited.

このように直流信号にM系列信号を重畳した一の重畳信号を埋設管に印加することで、直流信号の効果により、埋設管の防食効果を図ることができ、M系列信号の効果により、埋設管の損傷監視を行うことができる。また、一の重畳信号で腐食防止と損傷監視を行うことができることから、ノイズ発生要因であった外部電源装置を用いずノイズの影響のない各種信号を得ることができる。これによりノイズの影響による誤報の発生も防止することが可能となる。   In this way, by applying one superimposed signal obtained by superimposing the M-sequence signal to the DC signal to the buried pipe, the anticorrosion effect of the buried pipe can be achieved by the effect of the DC signal, and the buried effect is obtained by the effect of the M-sequence signal. Tube damage can be monitored. Further, since corrosion prevention and damage monitoring can be performed with one superimposed signal, various signals that are not affected by noise can be obtained without using an external power supply device that has been a cause of noise generation. As a result, it is possible to prevent the occurrence of misinformation due to the influence of noise.

本発明の埋設管監視装置を、実施例を用いてさらに具体的に説明する。   The buried pipe monitoring apparatus of the present invention will be described more specifically with reference to examples.

図2は重畳信号発信部11において、M系列信号発生器30を高整流直流信号発生器32に接続し直流信号にM系列信号を重畳させた重畳信号を通電するための通電装置を示す図であり、図3は図2の通電装置を埋設管10に設置した図である。   FIG. 2 is a diagram showing an energization device for energizing the superimposed signal in which the M-sequence signal generator 30 is connected to the high rectification DC signal generator 32 and the M-sequence signal is superimposed on the DC signal in the superimposed signal transmission unit 11. FIG. 3 is a diagram in which the energizing device of FIG. 2 is installed in the buried pipe 10.

高整流直流信号発生器32の通電電極14をプラス側端子に接続し、マイナス側端子21を埋設管に接続し、参照電極20を亜鉛照合電極22に接続し、マイナス側端子21と参照電極間20が−1.5V一定となるように設定した。また高整流直流信号発生器32の外部入力端子にはM系列信号を入力し、このときアンプ31でM系列印加電圧が4Vになるように調整し、模擬損傷を与えた場合の、M系列管対地電位、M系列管対管電位、M系列管内電流、M系列接地抵抗、直流管対地電位の各種測定を行った。また、比較例として外部電源装置とM系列信号を並列に印加した場合の各種測定を行った。埋設管10に重畳信号発信部11から直流信号とM系列信号を重畳した重畳信号を印加した場合の各種測定結果を図4に、路線に外部電源装置とM系列信号を並列にそれぞれ印加した場合の各種測定結果を図5に示す。   The energizing electrode 14 of the high rectification DC signal generator 32 is connected to the plus terminal, the minus terminal 21 is connected to the buried pipe, the reference electrode 20 is connected to the zinc verification electrode 22, and between the minus terminal 21 and the reference electrode 20 was set to be -1.5V constant. In addition, an M-sequence signal is input to the external input terminal of the high rectification DC signal generator 32, and at this time, the M-sequence applied voltage is adjusted to 4V by the amplifier 31 to simulate simulated damage. Various measurements were made of ground potential, M-series tube-to-tube potential, M-series tube current, M-series ground resistance, and DC tube-to-ground potential. As a comparative example, various measurements were performed when an external power supply and an M-sequence signal were applied in parallel. FIG. 4 shows various measurement results when a superimposed signal obtained by superimposing a DC signal and an M-sequence signal is applied to the buried pipe 10 from the superimposed signal transmission unit 11, and when an external power supply device and an M-sequence signal are applied in parallel to the route, respectively. The various measurement results are shown in FIG.

図4から明らかなように、高整流直流電源装置32にて直流信号とM系列信号を重畳した信号を印加した場合には、直流管対地電位e(i)とM系列管対地電位a(i)は、ほぼ一定に保たれている。これは、高整流直流電源装置32においてマイナス側端子21と参照電極20の電位が定電位制御されているためである。また、直流管対地電位e(i)が電気防食管理基準値よりマイナスの電位となっていることから、直流信号にM系列信号を重畳した重畳信号を埋設管10に印加することで腐食防止効果を図ることができることが確認された。   As is apparent from FIG. 4, when a signal obtained by superimposing a DC signal and an M series signal is applied by the high rectification DC power supply 32, the DC pipe ground potential e (i) and the M series pipe ground potential a (i ) Is kept almost constant. This is because the potential of the negative terminal 21 and the reference electrode 20 is controlled at a constant potential in the high rectification DC power supply 32. Further, since the DC pipe ground potential e (i) is a negative potential from the cathodic protection control reference value, the corrosion prevention effect can be obtained by applying a superimposed signal in which the M series signal is superimposed on the DC signal to the buried pipe 10. It was confirmed that this can be achieved.

また図4と図5を比較すると明らかなように、比較例である図5のM系列管対管電位b(ii)、M系列管内電流c(ii)、及びM系列接地抵抗d(ii)は、外部電源装置から印加される直流信号の影響によりノイズによる変動が生じ、損傷の程度が低い場合には、X(ii)、Y(ii)に示すように管対管電位及び管内電流の増加、及び接地抵抗の低下は、損傷がない場合の変動の範囲内となってしまい損傷を検知することができない。一方、直流信号とM系列信号を重畳した信号を埋設管10に印加した場合には、埋設管10の損傷の程度が低い場合でも、X(i)、Y(i)に示すように損傷による管対管電位及び管内電流の増加、及び接地抵抗の低下は、ノイズの影響をほとんど受けることなく、管対管電位及び管内電流の増加、及び接地抵抗の低下を、埋設管10の損傷がない場合の基準値と比較することで損傷を正確に検知することができる。   4 and FIG. 5, it is clear that the M series tube-to-tube potential b (ii), the M series in-tube current c (ii), and the M series ground resistance d (ii) of FIG. If the fluctuation due to noise occurs due to the influence of the DC signal applied from the external power supply device and the degree of damage is low, the tube-to-tube potential and the current in the tube as shown in X (ii) and Y (ii) The increase and the decrease in ground resistance fall within the range of fluctuation when there is no damage, and the damage cannot be detected. On the other hand, when a signal in which a DC signal and an M-sequence signal are superimposed is applied to the buried pipe 10, even if the degree of damage of the buried pipe 10 is low, as shown by X (i) and Y (i), The increase in the tube-to-tube potential and the current in the tube and the decrease in the grounding resistance are hardly affected by noise, and the increase in the tube-to-tube potential and the current in the tube and the decrease in the grounding resistance do not damage the embedded tube 10. The damage can be accurately detected by comparing with the reference value of the case.

埋設管損傷監視装置を概念的に示した図である。It is the figure which showed the buried pipe damage monitoring apparatus notionally. 直流信号にM系列信号を重畳させた重畳信号を通電するための通電装置を示す図である。It is a figure which shows the electricity supply apparatus for supplying with the superimposed signal which superimposed the M series signal on the direct-current signal. 図2の通電装置を埋設管に設置した図である。It is the figure which installed the electricity supply apparatus of FIG. 2 in the buried pipe. 重畳信号印加時の各測定値を示す図である。It is a figure which shows each measured value at the time of superimposition signal application. 外部電源による直流出力時の各測定値を示す図である。It is a figure which shows each measured value at the time of the DC output by an external power supply.

符号の説明Explanation of symbols

10…埋設管
11…重畳信号発信部
12…第一信号受信部
13…第二信号受信部
14…通電電極
15…照合電極
16…処理部
17…比較部
18…判定部
19…信号受信部
20…参照電極
21…マイナス側端子
30…M系列信号発信機
31…アンプ
32…高整流直流電源装置
DESCRIPTION OF SYMBOLS 10 ... Embedded pipe 11 ... Superimposition signal transmission part 12 ... 1st signal receiving part 13 ... 2nd signal receiving part 14 ... Current supply electrode 15 ... Collation electrode 16 ... Processing part 17 ... Comparison part 18 ... Determination part 19 ... Signal receiving part 20 Reference electrode 21 Negative terminal 30 M-sequence signal transmitter 31 Amplifier 32 High rectification DC power supply

Claims (6)

地中埋設管の損傷監視装置において、
埋設管の少なくとも一点以上の発信地点から、直流信号にM系列信号を重畳した重畳信号を発信する重畳信号発信部と、
前記重畳信号を受信する重畳信号受信部と、
前記重畳信号受信部で受信した信号を演算する処理部と、
前記処理部で演算した値と、埋設管に損傷がない場合における基準値との比較を行う比較部と、
前記比較部における比較結果に応じて埋設管の損傷を判定する判定部と、
を含み、
前記発信地点のマイナス側端子を埋設管に接続し、かつ前記発信地点に参照電極を設け、前記マイナス側端子と前記参照電極の電位が一定となるように制御することを特徴とする埋設管の損傷監視装置。
In the damage monitoring device for underground pipes,
A superimposition signal transmitter for transmitting a superposition signal in which an M-sequence signal is superposed on a DC signal from at least one transmission point of the buried pipe;
A superimposed signal receiving unit for receiving the superimposed signal;
A processing unit for calculating a signal received by the superimposed signal receiving unit;
A comparison unit that compares the value calculated by the processing unit with a reference value when the buried pipe is not damaged;
A determination unit for determining damage of the buried pipe according to the comparison result in the comparison unit;
Only including,
A buried pipe characterized in that a negative terminal of the transmission point is connected to an embedded pipe, a reference electrode is provided at the transmission point, and the potential of the negative terminal and the reference electrode is controlled to be constant . Damage monitoring device.
前記重畳信号は、印加電圧が0.1V〜60Vである直流信号に、基本周波数が1Hz〜1000Hz、振幅が0.1〜10VであるM系列信号を重畳した重畳信号であることを特徴とする請求項1に記載の埋設管監視装置。 The superimposed signal is a DC signal applied voltage is 0.1V~60V, and wherein the fundamental frequency 1Hz~1000Hz, a superimposed signal amplitude is superimposed a 0.1~10V der Ru M-sequence signal The buried pipe monitoring apparatus according to claim 1. 前記比較部は、M系列信号の相関ピーク値の変化による、埋設管の管内電流または接地抵抗と、埋設管に損傷がない場合におけるこれらとを比較するものであることを特徴とする請求項1または2に記載の埋設管損傷監視装置。   The comparison section compares the in-pipe current or grounding resistance of the buried pipe due to a change in the correlation peak value of the M-sequence signal with those when the buried pipe is not damaged. Or the buried pipe damage monitoring device according to 2; 前記重畳信号発信部は、少なくともM系列信号発生器と高整流直流信号発生器とを含むことを特徴とする請求項1〜3のいずれか一項に記載の埋設管損傷監視装置。   The buried pipe damage monitoring apparatus according to any one of claims 1 to 3, wherein the superimposed signal transmission unit includes at least an M-sequence signal generator and a high rectification DC signal generator. 地中埋設管の損傷監視方法であって、
埋設管の少なくとも一点以上の発信地点から直流信号にM系列信号を重畳した重畳信号を発信し、
前記重畳信号を、前記発信地点、または埋設管の離れた地点で受信し、
前記受信信号を演算し、
前記演算値と、埋設管に損傷がない場合における基準値とを比較し、
前記比較結果に応じて損傷の有無を判定するとともに、
前記発信地点のマイナス側端子を埋設管に接続し、かつ前記発信地点に参照電極を設け、前記マイナス側端子と前記参照電極の電位が一定となるように制御することを特徴とする埋設管損傷監視方法。
A method for monitoring damage to underground pipes,
A superimposition signal in which an M series signal is superimposed on a DC signal is transmitted from at least one transmission point of the buried pipe,
The superimposed signal is received at the transmission point or a point away from the buried pipe,
Calculating the received signal;
Compare the calculated value with a reference value when the buried pipe is not damaged,
According to the comparison result and determining the presence or absence of damage ,
Embedded pipe damage characterized by connecting a minus side terminal of the transmission point to an embedded pipe and providing a reference electrode at the transmission point and controlling the potential of the negative side terminal and the reference electrode to be constant. Monitoring method.
前記重畳信号は、印加電圧が0.1V〜60Vである直流信号に、基本周波数が1Hz〜1000Hz、振幅が0.1V〜10VであるM系列信号を重畳した重畳信号であることを特徴とする、請求項5に記載の埋設管損傷監視方法。 The superimposed signal is a DC signal applied voltage is 0.1V~60V, and wherein the fundamental frequency 1Hz~1000Hz, a superimposed signal amplitude is superimposed a 0.1V~10V der Ru M-sequence signal The buried pipe damage monitoring method according to claim 5.
JP2008052114A 2008-03-03 2008-03-03 Buried pipe monitoring device Expired - Fee Related JP5012573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052114A JP5012573B2 (en) 2008-03-03 2008-03-03 Buried pipe monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052114A JP5012573B2 (en) 2008-03-03 2008-03-03 Buried pipe monitoring device

Publications (2)

Publication Number Publication Date
JP2009210328A JP2009210328A (en) 2009-09-17
JP5012573B2 true JP5012573B2 (en) 2012-08-29

Family

ID=41183647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052114A Expired - Fee Related JP5012573B2 (en) 2008-03-03 2008-03-03 Buried pipe monitoring device

Country Status (1)

Country Link
JP (1) JP5012573B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3354236B2 (en) * 1993-11-05 2002-12-09 大阪瓦斯株式会社 Underground pipe damage detector
JPH08304321A (en) * 1995-05-09 1996-11-22 Nippon Steel Corp Method for detecting coating damage of underground buried metal conduit
JP3659450B2 (en) * 1997-08-25 2005-06-15 東京瓦斯株式会社 Judgment device for damage position and damage level of buried metal conductor
JP2001004575A (en) * 1999-06-23 2001-01-12 Nkk Corp Detecting method for damage of paint film on buried painted and covered steel tube
JP4050433B2 (en) * 1999-10-19 2008-02-20 新日鉄エンジニアリング株式会社 Damage determination apparatus and damage determination method for coated buried metal conductor
JP3670241B2 (en) * 2002-02-12 2005-07-13 東邦瓦斯株式会社 Damage monitoring device and damage monitoring method for underground pipe

Also Published As

Publication number Publication date
JP2009210328A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
KR101604344B1 (en) Protection potential measurement system of underground pipeline of high-speed mobile Based on low-power
JP5012573B2 (en) Buried pipe monitoring device
JP4698318B2 (en) Anticorrosion state monitoring method and system
JP2010138448A (en) Cathodic protection system and cathodic protection method for buried pipeline with the use of galvanic anode system
JP4190078B2 (en) Pipeline cathodic protection method and anticorrosion external power device
JP2009244123A (en) Method and apparatus for monitoring damage on coating of underground pipe
CN114878992A (en) Pipeline insulation monitoring method and device
KR102424331B1 (en) Corrosion management automation system of city gas piping
CN109989066B (en) Method and device for processing cathodic protection data
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
JP4867932B2 (en) Embedded pipe damage monitoring method and buried pipe damage monitoring apparatus
Leeds et al. Cathodic protection
JP4962379B2 (en) Buried pipe cathodic protection system
JP5012617B2 (en) Damage monitoring system for buried pipe and noise control method for damage monitoring system for buried pipe
CN111220536A (en) Method, device and system for detecting corrosion probability of pipeline
Lindemuth et al. AC Corrosion Control: When Too Much Cathodic Protection Might Just be a Bad Thing!
JP4005159B2 (en) How to identify damaged sections of a pipeline
JPH1164266A (en) Apparatus for detecting position and level of damage of coated buried metallic conductor
US11480697B2 (en) Earthquake prediction method and earthquake prediction system
JP3214777B2 (en) Method and apparatus for identifying damaged part of coating of buried coated metal pipe
JP2001004575A (en) Detecting method for damage of paint film on buried painted and covered steel tube
JP2009139095A (en) Apparatus and method for monitoring coating damage on underground pipe
JP3737203B2 (en) Method and apparatus for detecting coating damage in buried pipeline
Kajiyama Strategy for eliminating risks of corrosion and overprotection for buried modern pipelines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees