JP5012385B2 - Method for producing polycrystalline silicon rod - Google Patents

Method for producing polycrystalline silicon rod Download PDF

Info

Publication number
JP5012385B2
JP5012385B2 JP2007261113A JP2007261113A JP5012385B2 JP 5012385 B2 JP5012385 B2 JP 5012385B2 JP 2007261113 A JP2007261113 A JP 2007261113A JP 2007261113 A JP2007261113 A JP 2007261113A JP 5012385 B2 JP5012385 B2 JP 5012385B2
Authority
JP
Japan
Prior art keywords
pair
silicon
silicon core
connecting member
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007261113A
Other languages
Japanese (ja)
Other versions
JP2009091170A (en
Inventor
俊秀 遠藤
敏由記 石井
昌晃 坂口
直紀 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007261113A priority Critical patent/JP5012385B2/en
Publication of JP2009091170A publication Critical patent/JP2009091170A/en
Application granted granted Critical
Publication of JP5012385B2 publication Critical patent/JP5012385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、多結晶シリコンロッドの製造方法に関する。   The present invention relates to a method for manufacturing a polycrystalline silicon rod.

半導体材料となる高純度の多結晶シリコンの製造方法としてシーメンス法がある。シーメンス法は、クロロシランと水素との混合ガスからなる原料ガスを加熱したシリコン芯棒に接触させ、その表面に原料ガスの加熱分解によって生じた多結晶シリコンを析出させる製造方法であり、密閉した反応炉に多数のシリコン芯棒を立設した多結晶シリコン反応炉が用いられている。一般にシリコン芯棒は、柱状に形成されており、その先端を隣り合う他のシリコン芯棒の先端と連結部材により連結されている。そして、シリコン芯棒の基端は、反応炉の炉底に設置された電極に固定されている。操業時には、この両端に電極からシリコン芯棒全体に通電し、そのジュール熱によってシリコン芯棒全体を原料ガスの加熱分解温度まで加熱する(例えば、特許文献1参照)。
特許第3881647号公報
There is a Siemens method as a method for producing high-purity polycrystalline silicon as a semiconductor material. The Siemens method is a manufacturing method in which a raw material gas composed of a mixed gas of chlorosilane and hydrogen is brought into contact with a heated silicon core rod, and polycrystalline silicon generated by thermal decomposition of the raw material gas is deposited on the surface thereof, and a sealed reaction A polycrystalline silicon reactor in which a large number of silicon core rods are installed in the furnace is used. Generally, a silicon core rod is formed in a columnar shape, and its tip is connected to the tip of another adjacent silicon core rod by a connecting member. And the base end of the silicon | silicone core rod is being fixed to the electrode installed in the furnace bottom of the reaction furnace. During operation, the entire silicon core rod is energized from the electrodes at both ends, and the entire silicon core rod is heated to the thermal decomposition temperature of the raw material gas by the Joule heat (see, for example, Patent Document 1).
Japanese Patent No. 3881647

しかしながら、上記従来の多結晶シリコンロッドの製造方法には、以下の課題がある。すなわち、上記従来の多結晶シリコンロッドの製造方法は、一対のシリコン芯棒を連結部材により連結させることで互いに導通させるが、シリコン芯棒と連結部材との導通状態を良好にしてシリコン芯棒の加熱状態を均一にすることが望まれている。   However, the conventional method for manufacturing a polycrystalline silicon rod has the following problems. That is, in the above conventional method for manufacturing a polycrystalline silicon rod, a pair of silicon core rods are connected to each other by a connecting member, and the silicon core rod and the connecting member are electrically connected to each other. It is desired to make the heating state uniform.

本発明は、前述の課題に鑑みてなされたもので、シリコン芯棒と連結部材との導通状態を良好にした多結晶シリコンロッドの製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a polycrystalline silicon rod in which the conductive state between the silicon core rod and the connecting member is improved.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の多結晶シリコンロッドの製造方法は、反応炉の底部に立設された少なくとも一対のシリコン芯棒それぞれの先端を、連結部材に形成された一対の挿入口それぞれに挿入して互いに連結し、前記シリコン芯棒の周面に多結晶シリコンを成長させる多結晶シリコンロッドの製造方法であって、前記一対のシリコン芯棒それぞれを、前記底部に立設する工程と、立設した該一対のシリコン芯棒それぞれの先端を前記一対の挿入口の間隔が前記立設した一対のシリコン芯棒それぞれにおける先端の間隔よりも短い前記連結部材で連結する工程とを有することを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, in the method for producing a polycrystalline silicon rod according to the present invention, the tips of at least a pair of silicon core rods erected on the bottom of the reactor are inserted into a pair of insertion ports formed in the connecting member. A method of manufacturing a polycrystalline silicon rod that is connected and grows polycrystalline silicon on a peripheral surface of the silicon core rod, the step of standing each of the pair of silicon core rods on the bottom, Connecting the tip of each of the pair of silicon core rods with the connecting member in which the distance between the pair of insertion openings is shorter than the distance between the tips of the pair of silicon core rods standing upright.

この発明によれば、連結部材により一対のシリコン芯棒を連結させた際、一対のシリコン芯棒それぞれの先端と挿入口の内周面とをより確実に接触させることができる。したがって、一対のシリコン芯棒の導通状態が向上し、通電加熱時に一対のシリコン芯棒を良好に加熱できる。すなわち、一対のシリコン芯棒それぞれの先端を連結部材で連結する際、一対の挿入口の間隔が立設した一対のシリコン芯棒それぞれにおける先端の間隔よりも短いため、一対のシリコン芯棒それぞれの先端を接近させた状態で連結部材により連結する。このとき、一対のシリコン芯棒が撓んだ状態で連結されるため、連結部材が一対のシリコン芯棒の離間方向に引っ張られる。これにより、先端部における一対のシリコン芯棒が離間する側の外周面と、挿入口における一対のシリコン芯棒が離間する側の内周面とが良好に接触する。したがって、シリコン芯棒と連結部材とが良好に接触する。
また、一対のシリコン芯棒が連結部材を離間方向に引っ張ることにより、シリコン芯棒の先端部の外周面と挿入口の内周面との間に摩擦力が発生する。このため、反応炉内部に反応ガスを導入して底部から上方に向かう気流が発生した際に、連結部材がシリコン芯棒から外れにくくなる。
According to this invention, when the pair of silicon core rods are connected by the connecting member, the tips of the pair of silicon core rods and the inner peripheral surface of the insertion port can be brought into contact with each other more reliably. Therefore, the conduction state of the pair of silicon core rods is improved, and the pair of silicon core rods can be favorably heated during energization heating. That is, when connecting the tip of each of the pair of silicon core rods with the connecting member, the interval between the pair of insertion holes is shorter than the distance between the tips of each of the pair of silicon core rods standing upright. It connects with a connection member in the state which made the front end approach. At this time, since the pair of silicon core rods are connected in a bent state, the connecting member is pulled in the separating direction of the pair of silicon core rods. Thereby, the outer peripheral surface on the side where the pair of silicon core rods are separated from each other at the distal end portion and the inner peripheral surface on the side where the pair of silicon core rods are separated from each other in the insertion port are in good contact. Therefore, the silicon core rod and the connecting member are in good contact.
Further, when the pair of silicon core rods pulls the connecting member in the separating direction, a frictional force is generated between the outer peripheral surface of the tip portion of the silicon core rod and the inner peripheral surface of the insertion port. For this reason, when the reaction gas is introduced into the reaction furnace and an air flow is generated upward from the bottom, the connecting member is unlikely to come off the silicon core rod.

また、多結晶シリコンロッドの製造方法は、前記先端部の先端が、前記連結部材から突出していることが好ましい。
この発明では、反応炉内部に反応ガスを導入して底部から上方に向かう気流が発生した際に、連結部材がシリコン芯棒からより外れにくくなる。
In the method for producing a polycrystalline silicon rod, it is preferable that the tip of the tip portion protrudes from the connecting member.
In this invention, when the reaction gas is introduced into the reaction furnace and an air flow is generated upward from the bottom, the connecting member is less likely to come off the silicon core rod.

本発明の多結晶シリコンロッドの製造方法によれば、一対のシリコン芯棒それぞれの先端部と挿入口の内周面とをより確実に接触させて導通状態が向上するため、通電加熱時において一対のシリコン芯棒を良好に加熱できる。また、シリコン芯棒の先端部の外周面と挿入口の内周面との間に発生した摩擦力により、反応ガスを導入して底部から上方に向かう気流が発生した際に、連結部材がシリコン芯棒から外れにくくなる。   According to the method for manufacturing a polycrystalline silicon rod of the present invention, since the conduction state is improved by more reliably bringing the tip of each of the pair of silicon core rods into contact with the inner peripheral surface of the insertion opening, The silicon core rod can be heated well. In addition, when the reactive gas is introduced and an upward air flow is generated from the bottom due to the frictional force generated between the outer peripheral surface of the tip of the silicon core rod and the inner peripheral surface of the insertion port, the connecting member becomes silicon. It becomes difficult to come off the core rod.

以下、本発明による多結晶シリコンロッドの製造方法の一実施形態を図面に基づいて説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。
まず、本実施形態における多結晶シリコンロッドの製造方法に用いられる多結晶シリコン反応炉(以下、反応炉と省略する)について説明する。
Hereinafter, an embodiment of a method for producing a polycrystalline silicon rod according to the present invention will be described with reference to the drawings. In each drawing used in the following description, the scale is appropriately changed to make each member a recognizable size.
First, a polycrystalline silicon reactor (hereinafter abbreviated as a reactor) used in the method for producing a polycrystalline silicon rod in the present embodiment will be described.

反応炉1は、図1に示すように、炉台(底部)11と、釣鐘形状を有して炉台11を覆うベルジャ12とを備えている。
炉台11には、複数対のシリコン芯棒13それぞれを保持する電極14と、反応炉1の内部に原料ガスを導入する導入口15と、反応後のガスを反応炉1の外部に排出する排出口16とがそれぞれ複数設けられている。
As shown in FIG. 1, the reaction furnace 1 includes a furnace base (bottom part) 11 and a bell jar 12 having a bell shape and covering the furnace base 11.
In the furnace 11, an electrode 14 that holds each of a plurality of pairs of silicon cores 13, an introduction port 15 that introduces a raw material gas into the reaction furnace 1, and an exhaust that discharges the reacted gas to the outside of the reaction furnace 1. A plurality of outlets 16 are provided.

シリコン芯棒13は、図1及び図2に示すように、多結晶シリコンにより形成されており、芯棒本体13Aと芯棒本体13Aの先端に一体的に形成された先端部13Bとを有する。芯棒本体13Aは、一辺が例えば数cm程度のほぼ四角柱状を有している。先端部13Bは、芯棒本体13Aと一体的に形成されて芯棒本体13Aの先端から突出する円柱状の凸部であって芯棒本体13Aよりも細い。そして、シリコン芯棒13は、芯棒本体13Aの基端が電極14に保持、固定されている。
また、シリコン芯棒13は、隣り合う他のシリコン芯棒13と連結部材17により連結されている。
As shown in FIGS. 1 and 2, the silicon core rod 13 is made of polycrystalline silicon, and has a core rod main body 13A and a tip portion 13B integrally formed at the tip of the core rod main body 13A. The core rod body 13A has a substantially quadrangular prism shape with one side of about several centimeters, for example. The tip portion 13B is a cylindrical convex portion that is formed integrally with the core rod body 13A and protrudes from the tip of the core rod body 13A, and is thinner than the core rod body 13A. In the silicon core rod 13, the base end of the core rod body 13 </ b> A is held and fixed to the electrode 14.
The silicon core 13 is connected to another adjacent silicon core 13 by a connecting member 17.

連結部材17は、図1及び図2に示すように、平面視で矩形の板状を有しており、シリコン芯棒13と同様に多結晶シリコンにより形成されている。そして、連結部材17には、一対の貫通孔である挿入口17aが形成されている。この挿入口17aは、例えばドリルなどを用いて連結部材17に穿孔することで形成されている。また、連結部材17の挿入口17aには、シリコン芯棒13の先端部13Bが挿通されている。ここで、一対の挿入口17aの中心間隔は、連結部材17により連結される一対のシリコン芯棒13の基端における中心間隔とほぼ同等となっている。
また、先端部13Bは、連結部材17から突出している。ここで、連結部材17は、一対のシリコン芯棒13によって、一対のシリコン芯棒13の離間方向に引っ張られている。
また、図1に示すベルジャ12の外周には、熱損傷を防止するための水冷ジャケットなどの冷却手段(図示略)が設けられている。
As shown in FIGS. 1 and 2, the connecting member 17 has a rectangular plate shape in plan view, and is formed of polycrystalline silicon like the silicon core rod 13. The connecting member 17 is formed with an insertion port 17a which is a pair of through holes. The insertion port 17a is formed by drilling the connecting member 17 using, for example, a drill. Further, the distal end portion 13 </ b> B of the silicon core rod 13 is inserted through the insertion port 17 a of the connecting member 17. Here, the center interval between the pair of insertion openings 17 a is substantially equal to the center interval at the base end of the pair of silicon core rods 13 connected by the connecting member 17.
Further, the distal end portion 13 </ b> B protrudes from the connecting member 17. Here, the connecting member 17 is pulled by the pair of silicon core rods 13 in the separating direction of the pair of silicon core rods 13.
Further, a cooling means (not shown) such as a water cooling jacket for preventing thermal damage is provided on the outer periphery of the bell jar 12 shown in FIG.

次に、以上のような構成の反応炉1を用いた多結晶シリコンロッドの製造方法について説明する。
まず、シリコン芯棒13を、電極14により保持して炉台11から立設させる。ここでは、図3に示すように、連結部材17により連結される一対のシリコン芯棒13を、それぞれの中心軸線が基端から先端に向かうにしたがって離間するように傾けて保持、固定する。このとき、一対のシリコン芯棒13それぞれの先端の間隔は、連結部材17に形成された一対の挿入口17aそれぞれの間隔よりも広くなっている。
Next, a method for manufacturing a polycrystalline silicon rod using the reaction furnace 1 having the above configuration will be described.
First, the silicon core rod 13 is held by the electrode 14 and is erected from the furnace table 11. Here, as shown in FIG. 3, the pair of silicon core rods 13 connected by the connecting member 17 are held and fixed so as to be inclined so that the respective central axes are separated from the proximal end toward the distal end. At this time, the distance between the tips of the pair of silicon core rods 13 is wider than the distance between the pair of insertion ports 17 a formed in the connecting member 17.

そして、連結部材17により、隣り合う一対のシリコン芯棒13を連結する。ここでは、立設した一対のシリコン芯棒13それぞれ撓ませながら互いの先端を接近させた状態で、シリコン芯棒13の先端を一対の挿入口17aそれぞれに挿通する。このとき、一対のシリコン芯棒13は、撓んだ状態で連結部材17により連結されるため、図2に示すように、連結部材17を一対のシリコン芯棒13の離間方向で引っ張る。これにより、一対のシリコン芯棒13それぞれの先端部13Bにおけるシリコン芯棒13が離間する側の外周面と、連結部材17の挿入口17aにおけるシリコン芯棒13が離間する側の内周面とが十分に接触する。   Then, a pair of adjacent silicon core rods 13 are connected by the connecting member 17. Here, the tip ends of the silicon core rods 13 are respectively inserted into the pair of insertion openings 17a in a state where the tip ends of the silicon core rods 13 are bent while being bent. At this time, since the pair of silicon core rods 13 are coupled by the coupling member 17 in a bent state, the coupling member 17 is pulled in the separating direction of the pair of silicon core rods 13 as shown in FIG. Thereby, the outer peripheral surface on the side where the silicon core rod 13 is separated from the tip portion 13B of each of the pair of silicon core rods 13 and the inner peripheral surface on the side where the silicon core rod 13 is separated in the insertion port 17a of the connecting member 17 are formed. Make sufficient contact.

この状態で、電極14に電流を流し、シリコン芯棒13を通電させることでジュール熱を発生させ、シリコン芯棒13を1100℃まで加熱する。そして、導入口15から11N(99.999999999%)の純度を有するトリクロロシラン(TCS:SiHCl)と水素との混合気体である原料ガスを導入する。このとき、上述したように一対のシリコン芯棒13と連結部材17との接触状態が向上しているため、一対のシリコン芯棒13が良好に加熱される。 In this state, current is passed through the electrode 14 to energize the silicon core rod 13 to generate Joule heat, and the silicon core rod 13 is heated to 1100 ° C. Then, a raw material gas which is a mixed gas of trichlorosilane (TCS: SiHCl 3 ) having a purity of 11N (99.99999999999%) and hydrogen is introduced from the introduction port 15. At this time, since the contact state between the pair of silicon core rods 13 and the connecting member 17 is improved as described above, the pair of silicon core rods 13 are heated favorably.

導入された原料ガスは、加熱したシリコン芯棒13及び連結部材17に接触することで加熱分解され、シリコン芯棒13及び連結部材17の表面に多結晶シリコンが析出することで多結晶シリコン層を形成し、次第に太く成長して直径数十センチの多結晶シリコンロッドになる。このとき、一対のシリコン芯棒13それぞれの先端部13Bが連結部材17の挿入口17aに挿通しているため、供給された反応ガスが連結部材17に吹き当たっても連結部材17が一対のシリコン芯棒13から外れにくくなる。
なお、反応後のガスは、排出口16から外部に排気される。以上のようにして、多結晶シリコンロッドを製造する。このように製造された多結晶シリコンロッドから、これをルツボ内で溶融して引き上げるCZ(チョクラルスキー)法によって単結晶シリコンインゴットが製造される。
The introduced source gas is thermally decomposed by contacting the heated silicon core rod 13 and the connecting member 17, and polycrystalline silicon is deposited on the surfaces of the silicon core rod 13 and the connecting member 17, thereby forming a polycrystalline silicon layer. After forming, it gradually grows to become a polycrystalline silicon rod with a diameter of several tens of centimeters. At this time, since the tip 13B of each of the pair of silicon core rods 13 is inserted through the insertion port 17a of the connecting member 17, the connecting member 17 remains in the pair of silicon even if the supplied reaction gas blows against the connecting member 17. It becomes difficult to come off from the core rod 13.
The gas after the reaction is exhausted to the outside from the discharge port 16. A polycrystalline silicon rod is manufactured as described above. From the thus produced polycrystalline silicon rod, a single crystal silicon ingot is produced by a CZ (Czochralski) method in which the rod is melted and pulled up in a crucible.

このような多結晶シリコンロッドの製造方法によれば、一対のシリコン芯棒13と連結部材17との接触状態が向上するため、一対のシリコン芯棒13を良好に加熱できる。これにより、シリコン芯棒13の周面に、良質な多結晶シリコン層を成長させることができる。
また、一対のシリコン芯棒13それぞれの先端部の外周面と一対の挿入口17aそれぞれの内周面との間に摩擦力が発生すると共に、先端部13Bを挿入口17aに挿通させることで、連結部材17に反応ガスが吹き当たっても連結部材17が一対のシリコン芯棒13から外れない。
According to such a method for manufacturing a polycrystalline silicon rod, since the contact state between the pair of silicon core rods 13 and the connecting member 17 is improved, the pair of silicon core rods 13 can be heated satisfactorily. Thereby, a good quality polycrystalline silicon layer can be grown on the peripheral surface of the silicon core rod 13.
In addition, a frictional force is generated between the outer peripheral surface of each distal end portion of the pair of silicon core rods 13 and the inner peripheral surface of each of the pair of insertion ports 17a, and the distal end portion 13B is inserted through the insertion port 17a. Even if the reactive gas blows against the connecting member 17, the connecting member 17 does not come off from the pair of silicon core rods 13.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、芯棒本体は、四角柱状となっているが、円柱状など他の柱状であってもよい。同様に、先端部は、円柱状となっているが、芯棒本体よりも細ければ、他の柱状であってもよい。
また、シリコン芯棒は、少なくとも一対立設されていればよい。
そして、連結部材により連結される一対のシリコン芯棒それぞれは、基端から先端に向かうにしたがって互いに離間するように立設されているが、立設したときよりも互いの先端が接近するように撓ませた状態で連結部材により連結されればよく、互いの中心軸線が平行となるように立設されてもよい。
さらに、連結部材に形成された一対の挿入口の中心間隔は、立設させたときの一対のシリコン芯棒それぞれの先端の距離よりも短ければよい。
また、先端部を連結部材から突出させているが、挿入口にシリコン芯棒の先端部を挿入させることにより一対のシリコン芯棒が連結されればよく、供給される反応ガスによって一対のシリコン芯棒から連結部材が外れなければ、突出させなくてもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, the core rod body has a quadrangular column shape, but may have another column shape such as a columnar shape. Similarly, the tip portion has a columnar shape, but may have another columnar shape as long as it is thinner than the core rod body.
Moreover, the silicon | silicone core rod should just be provided at least 1 opposed.
Each of the pair of silicon core rods connected by the connecting member is erected so as to be separated from each other as it goes from the proximal end to the distal end, but the distal ends are closer to each other than when standing upright. What is necessary is just to be connected by a connection member in the bent state, and may stand up so that a mutual center axis may become parallel.
Furthermore, the distance between the centers of the pair of insertion openings formed in the connecting member may be shorter than the distance between the tips of the pair of silicon core rods when they are erected.
Moreover, although the front-end | tip part has protruded from the connection member, a pair of silicon | silicone core rods should just be connected by inserting the front-end | tip part of a silicon | silicone core rod in an insertion port, and a pair of silicon | silicone cores with the reaction gas supplied If the connecting member does not come off the rod, it does not have to be projected.

この発明によれば、シリコン芯棒と連結部材との導通状態を良好にした多結晶シリコンロッドの製造方法に関して、産業上の利用可能性が認められる。   According to this invention, industrial applicability is recognized regarding the manufacturing method of the polycrystal silicon rod which made favorable the conduction | electrical_connection state of a silicon | silicone core rod and a connection member.

本発明の一実施形態における多結晶シリコン反応炉の部分切欠斜視図である。1 is a partially cutaway perspective view of a polycrystalline silicon reactor in an embodiment of the present invention. 連結部材によるシリコン芯棒の連結状態を示す断面図である。It is sectional drawing which shows the connection state of the silicon | silicone core rod by a connection member. 連結部材によるシリコン芯棒の立設状態を示す断面図である。It is sectional drawing which shows the standing state of the silicon | silicone core rod by a connection member.

符号の説明Explanation of symbols

1 反応炉(多結晶シリコン反応炉)
11 炉台(底部)
13 シリコン芯棒
17 連結部材
17a 挿入口
1 reactor (polycrystalline silicon reactor)
11 Furnace (bottom)
13 Silicon core rod 17 Connecting member 17a Insertion slot

Claims (2)

反応炉の底部に立設された少なくとも一対のシリコン芯棒それぞれの先端を、連結部材に形成された一対の挿入口それぞれに挿入して互いに連結し、
前記シリコン芯棒の周面に多結晶シリコンを成長させる多結晶シリコンロッドの製造方法であって、
前記一対のシリコン芯棒それぞれを前記底部に立設する工程と、
立設した該一対のシリコン芯棒それぞれの先端を、前記一対の挿入口の間隔が前記立設した一対のシリコン芯棒それぞれにおける先端の間隔よりも短い前記連結部材で連結する工程とを有することを特徴とする多結晶シリコンロッドの製造方法。
Inserting the tips of at least a pair of silicon cores erected at the bottom of the reactor into each of a pair of insertion ports formed in the connecting member, and connecting each other,
A method for producing a polycrystalline silicon rod for growing polycrystalline silicon on a peripheral surface of the silicon core rod,
Erecting each of the pair of silicon core rods on the bottom,
Connecting the tip ends of the pair of standing silicon core rods with the connecting member in which the distance between the pair of insertion ports is shorter than the distance between the tip ends of the pair of silicon core rods standing upright. A method for producing a polycrystalline silicon rod.
前記一対のシリコン芯棒それぞれの先端を、前記連結部材から突出させることを特徴とする請求項1に記載の多結晶シリコンロッドの製造方法。   The method for producing a polycrystalline silicon rod according to claim 1, wherein tips of the pair of silicon core rods are protruded from the connecting member.
JP2007261113A 2007-10-04 2007-10-04 Method for producing polycrystalline silicon rod Active JP5012385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261113A JP5012385B2 (en) 2007-10-04 2007-10-04 Method for producing polycrystalline silicon rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261113A JP5012385B2 (en) 2007-10-04 2007-10-04 Method for producing polycrystalline silicon rod

Publications (2)

Publication Number Publication Date
JP2009091170A JP2009091170A (en) 2009-04-30
JP5012385B2 true JP5012385B2 (en) 2012-08-29

Family

ID=40663525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261113A Active JP5012385B2 (en) 2007-10-04 2007-10-04 Method for producing polycrystalline silicon rod

Country Status (1)

Country Link
JP (1) JP5012385B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444839B2 (en) * 2008-05-28 2014-03-19 三菱マテリアル株式会社 Trichlorosilane production apparatus and production method
JP5996687B2 (en) * 2015-02-10 2016-09-21 浜松ホトニクス株式会社 Inspection apparatus and inspection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729874B2 (en) * 1989-11-04 1995-04-05 コマツ電子金属株式会社 Bridge for connecting core wires of polycrystalline silicon manufacturing equipment
JP4031782B2 (en) * 2004-07-01 2008-01-09 株式会社大阪チタニウムテクノロジーズ Polycrystalline silicon manufacturing method and seed holding electrode
JP2006240934A (en) * 2005-03-04 2006-09-14 Tokuyama Corp Apparatus for manufacturing polycrystal silicon
JP4941631B2 (en) * 2005-11-21 2012-05-30 三菱マテリアル株式会社 Silicon seed and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009091170A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5194003B2 (en) Method for producing high purity polycrystalline silicon rod using metal core means
TW201009111A (en) Chuck and bridge connection points for tube filaments in a chemical vapor deposition reactor
JP3909242B2 (en) Apparatus for depositing semiconductor material, method for producing polycrystalline silicon rods, use of carbon electrodes for said production method
JP5339945B2 (en) Production method of polycrystalline silicon
EP2505554B1 (en) Carbon electrode and equipment for manufacturing polycrystalline silicon rod
JP5434698B2 (en) Polycrystalline silicon production equipment
KR20090101098A (en) Polycrystalline silicon reactor
JP5012385B2 (en) Method for producing polycrystalline silicon rod
CA2731748A1 (en) Conical graphite electrode with raised edge
JP5012386B2 (en) Method for producing polycrystalline silicon rod
TWI529846B (en) Chuck for chemical vapor deposition systems and related methods therefor
CN109153574A (en) Polycrystalline silicon rod and its manufacturing method
JP3881647B2 (en) Polycrystalline silicon rod and manufacturing method thereof
CN105848774B (en) For manufacturing the device of polysilicon
JP5666983B2 (en) Silicon core wire holder and method for producing polycrystalline silicon
JPH09263491A (en) Device for producing silicon single crystal
US6676916B2 (en) Method for inducing controlled cleavage of polycrystalline silicon rod
WO2012144161A1 (en) Method for producing silicon core wire
JP7061982B2 (en) Silicon core wire
KR101435875B1 (en) Method for recycling the carbon-chuck
KR100907908B1 (en) Silicon Monocrystalline Ingot Production Equipment
CN114206776A (en) Silicon core wire for polycrystalline silicon deposition and method for producing same
TW201522724A (en) Chemical vapor deposition reactor for producing polysilicon
KR101420338B1 (en) Insulation Sleeve for CVD Reactor and CVD Reactor with The Insulation Sleeve
JP5100603B2 (en) Cat-PECVD equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250