WO2012144161A1 - Method for producing silicon core wire - Google Patents

Method for producing silicon core wire Download PDF

Info

Publication number
WO2012144161A1
WO2012144161A1 PCT/JP2012/002505 JP2012002505W WO2012144161A1 WO 2012144161 A1 WO2012144161 A1 WO 2012144161A1 JP 2012002505 W JP2012002505 W JP 2012002505W WO 2012144161 A1 WO2012144161 A1 WO 2012144161A1
Authority
WO
WIPO (PCT)
Prior art keywords
core wire
silicon
mass
hydrofluoric acid
silicon core
Prior art date
Application number
PCT/JP2012/002505
Other languages
French (fr)
Japanese (ja)
Inventor
靖志 黒澤
祢津 茂義
哲郎 岡田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2012144161A1 publication Critical patent/WO2012144161A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Definitions

  • the present invention relates to a method of producing a silicon core wire used for producing a polycrystalline silicon rod.
  • the Siemens method is known as a manufacturing method of the polycrystalline silicon used as the raw material of the single crystal silicon for semiconductors, or the silicon
  • the Siemens method is a method of vapor phase growing polycrystalline silicon on the surface of a silicon core wire by using a CVD (Chemical Vapor Deposition) method by bringing a source gas containing chlorosilane into contact with a heated silicon core wire.
  • CVD Chemical Vapor Deposition
  • the reactor for vapor phase growth of polycrystalline silicon by the Siemens method is composed of an upper structure called bell jar and a lower structure (bottom plate) called base plate, and two silicon core wires in the vertical direction in this space,
  • the torii type is assembled in a horizontal direction, and both ends of the torii type silicon core wire are fixed to a pair of metal electrodes disposed on the base plate via a pair of carbon core wire holders.
  • the electrode passes through the base plate with an insulator interposed, and is connected to another electrode through a wire or is connected to a power source disposed outside the reactor.
  • the electrode, the base plate and the bell jar are cooled using a coolant such as water in order to prevent the deposition of polycrystalline silicon during vapor phase growth.
  • a mixed gas of, for example, trichlorosilane and hydrogen as a source gas is supplied from the gas nozzle into the reaction furnace while conducting current from the electrode and heating the silicon core wire to a temperature range of 900 ° C. to 1200 ° C. in a hydrogen atmosphere,
  • the silicon is vapor-phase grown on the core line, and a polycrystalline silicon rod of a desired diameter is formed in an inverted U shape.
  • the silicon core wire used for producing high purity polycrystalline silicon needs to be a high purity one having a low impurity concentration. is there. Specifically, the material is required to have a high resistance of about 500 ⁇ cm or more.
  • a carbon heater for initial heating is provided at the center or inner peripheral surface of the reactor for the above-mentioned initial heating, and this carbon heater is first Heat is generated by energization, and the silicon core wire disposed around the carbon heater is heated to a desired temperature by radiant heat generated at that time.
  • a voltage of 2.0 V / cm to 8.0 V / cm per length Is required.
  • a voltage of 1600 V to 6400 V is required.
  • the surface temperature is maintained by the heat generation of the silicon core wire itself thereafter without using heating using a carbon heater, so the precipitation reaction proceeds continuously. Therefore, the power supply of the carbon heater is turned off after the above-mentioned energization start to the silicon
  • spark discharge is particularly likely to occur between the silicon core wire and the core wire holder made of carbon.
  • the spark discharge between the silicon core wire and the core wire holder damages the silicon core wire and causes flaws. Such a flaw causes the collapse of the silicon core wire during the polycrystalline silicon deposition reaction, and causes the reduction of the productivity of polycrystalline silicon.
  • the present invention has been made to solve such problems, and aims to suppress the occurrence of spark discharge between a silicon core wire and another conductive member, and to improve the productivity of polycrystalline silicon. Do.
  • the manufacturing method of the silicon core wire concerning the present invention is a manufacturing method of the silicon core wire for polycrystalline silicon stick manufacture, and the mixed acid of hydrofluoric acid and nitric acid is used for the silicon core wire cut out from the silicon ingot. And etching the surface of the silicon core wire with a solution of hydrofluoric acid.
  • the hydrofluoric acid concentration of the hydrofluoric acid solution is 1% by mass or more and 20% by mass or less, and more preferably 3% by mass or more and 10% by mass or less.
  • the mixed acid solution has a hydrofluoric acid concentration of 1% by mass to 50% by mass, and a nitric acid concentration of 1% by mass to 70% by mass, and more preferably, a hydrofluoric acid concentration of 5% by mass to 10%.
  • Mass% or less and nitric acid concentration are 40 mass% or more and 63 mass% or less.
  • the method for producing a silicon core wire according to the present invention includes the step of removing the oxide film on the surface generated during the production of the silicon core wire, so that spark discharge can be prevented when a high voltage is applied.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a reaction furnace 100 for producing polycrystalline silicon.
  • the reaction furnace 100 is an apparatus for vapor phase growing polycrystalline silicon on the surface of a silicon core wire 11 by the Siemens method to obtain a polycrystalline silicon rod 12, and is constituted by a base plate 5 and a bell jar 1.
  • the base plate 5 is provided with a metal electrode 10 for supplying a current to the silicon core wire 11, a gas nozzle 9 for supplying a process gas such as nitrogen gas, hydrogen gas or trichlorosilane gas, and an exhaust port 8 for discharging exhaust gas. . Further, the base plate 5 has an inlet portion 6 and an outlet portion 7 of a refrigerant for cooling itself.
  • the bell jar 1 has an inlet 3 and an outlet 4 for cooling the refrigerant itself, and further has a viewing window 2 for visually confirming the inside from the outside.
  • FIG. 2 is a view for explaining an example of the arrangement of the electrodes 10, the adapter 14, the core holder 13, and the silicon core 11.
  • the metal electrode 10 has a refrigerant inlet 15 and an outlet 16 for cooling itself, and has a structure on which an adapter 14 can be mounted.
  • the core holder 13 is fixed to the upper portion of the adapter 14, and the silicon core 11 is fixed to the core holder 13.
  • the adapter 14 and the core holder 13 do not need to be provided as separate members, and may be an integral core holder in which the adapter 14 and the core holder 13 are a single member.
  • the electrode 10, the adapter 14, the core holder 13, and the silicon core 11 are required to have a contact area necessary for energization. In addition, it is necessary to have sufficient strength to hold a polycrystalline silicon rod obtained by a precipitation reaction of polycrystalline silicon.
  • FIG. 3 is a view for explaining the arrangement of the core holder 13 and the silicon core 11. The current flowing through the silicon core wire 11 flows in the direction of the arrow shown by the broken line.
  • the spark discharge generated between the core wire holder 13 and the silicon core wire 11 is formed on the surface of the silicon core wire 11 and the contact resistance between the core wire holder 13 and the silicon core wire 11 Oxide film is found to be the main cause.
  • the contact resistance can be lowered by improving the fixing method of the silicon core wire 11 or the like. It was also found that the thickness of the oxide film on the surface of the silicon core wire differs depending on the method of manufacturing the silicon core wire, and spark discharge is easily caused when the oxide film which is an insulating film is thick.
  • An oxide film formed on the surface of a silicon crystal is known as a so-called natural oxide film, and its thickness is generally considered to be 0.2 nm to 0.8 nm (see, for example, Non-Patent Document 1) . It is assumed that an oxide film of this thickness does not have a large electrical resistance to cause spark discharge. However, according to experiments conducted by the present inventors, the oxide film on the surface of the silicon core wire may reach 50 nm, which is caused by etching for removing the working strain generated at the time of cutting out the silicon core wire. It turned out that it was in the process.
  • FIG. 4 and FIG. 5 are respectively the manufacturing process flow diagrams of the present invention and the conventional silicon core wire.
  • the silicon core wire is cut out from a cylindrical ingot of single crystal silicon or polycrystalline silicon (S101), and the removal margin is usually 50 ⁇ m to 200 ⁇ m for the purpose of removing the residual strain generated at the time of cutting.
  • An etching process using a mixed acid solution of hydrofluoric acid and nitric acid to an extent is performed (S102), and after the etching, it is used for a precipitation reaction of polycrystalline silicon (S103).
  • S102 a mixed acid solution of hydrofluoric acid and nitric acid to an extent
  • S103 polycrystalline silicon
  • a thick oxide film is formed on the surface of the silicon core wire in the etching process, which causes spark discharge.
  • the surface of the silicon core wire is cleaned with a hydrofluoric acid solution to remove the surface oxide film.
  • a step (S104) is provided.
  • the hydrofluoric acid concentration of the hydrofluoric acid solution at this time is preferably 1% by mass to 20% by mass, and more preferably 3% by mass to 10% by mass.
  • the temperature of this hydrofluoric acid treatment is preferably 0 to 40 ° C., more preferably 10 to 30 ° C.
  • the hydrofluoric acid treatment time depends on the concentration of hydrofluoric acid and the temperature of the hydrofluoric acid solution, but as a standard, it is preferably 10 to 50 minutes, more preferably 15 to 20 minutes. For example, when the immersion treatment is performed at a hydrofluoric acid solution temperature of 25 ° C. for 15 minutes, the oxide film can be removed by about 50 nm.
  • the mixed acid solution of hydrofluoric acid and nitric acid used in the etching step (S102) preferably has a hydrofluoric acid concentration of 1% by mass to 50% by mass and a nitric acid concentration of 1% by mass to 70% by mass, more preferably Is a hydrofluoric acid concentration of 5% by mass to 10% by mass, and a nitric acid concentration of 40% by mass to 63% by mass.
  • the temperature of the etching solution is controlled to 0 to 50 ° C., preferably 10 to 40 ° C.
  • etching is performed using a mixed acid solution of 5 mass% hydrofluoric acid and 63 mass% nitric acid as an etching solution.
  • the time required to etch away the 200 ⁇ m working strain layer is about 20 minutes, at which time the in-tank etchant temperature rises from 22 ° C to 28 ° C.
  • Example 1 The difference in the thickness of the surface oxide film was confirmed depending on the presence or absence of the hydrofluoric acid treatment after etching with the mixed acid solution of hydrofluoric acid and nitric acid.
  • the mixed acid solution of hydrofluoric acid and nitric acid is 5 mass% of hydrofluoric acid / 63 mass% of nitric acid for Example 1 and Comparative Example 1, and 8 mass% of hydrofluoric acid / 50 mass% of nitric acid for Comparative Example 2.
  • the width of each is 150 ⁇ m.
  • a silicon wafer with a diameter of 8 inches was used as a sample.
  • the oxide film thickness was measured at 4 points (P1 to 4) for each sample. The results are summarized in Table 1. As apparent from the results, when the hydrofluoric acid treatment is not performed, a significantly thick oxide film is present.
  • Example 2 The silicon core wire was actually set in the reaction furnace and only the initial energization was performed, and the presence or absence of the surface flaw was visually confirmed.
  • the silicon core wire is an 8 mm square of polycrystal core and its length is 1500 mm.
  • a mixed acid solution of hydrofluoric acid and nitric acid is 5 mass% of hydrofluoric acid / 63 mass% of nitric acid, and the removal is 150 ⁇ m.
  • Table 2 the precipitation reaction was conducted for experiments of only one batch using eight silicon cores. As is clear from the results, while flaws occurred in 6 out of 8 when the hydrofluoric acid treatment was not performed, occurrence of flaws was observed in all silicon core wires when the hydrofluoric acid treatment was performed. It was not.
  • Example 3 The precipitation reaction of polycrystalline silicon was actually performed, and the yield was compared in the sequence of growing polycrystalline silicon to 120 mm ⁇ .
  • the silicon core wire is an 8 mm square of polycrystal core and its length is 1500 mm.
  • a mixed acid solution of hydrofluoric acid and nitric acid is 5 mass% of hydrofluoric acid / 63 mass% of nitric acid, and the removal is 150 ⁇ m.
  • Table 3 In each of Example 3 and Comparative Example 4, five batches of experiments were conducted using eight silicon cores per batch.
  • the present invention it is possible to prevent problems such as the collapse of the silicon core wire at the initial stage of the reaction in the Siemens method, and to improve the operation rate of the polycrystalline silicon manufacturing apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

In the present invention: a silicon core wire is cut out (S101) from a monocrystalline silicon or polycrystalline silicon cylindrical ingot; with the objective of eliminating residual warping arising during cutting processing, etching processing is performed (S102) by means of a mixed acid solution of hydrofluoric acid and nitric acid in a manner so that the amount removed is normally on the order of 50-200 μm; and the core wire is used (S103) in a precipitation reaction of polycrystalline silicon after etching. In the etching processing step, a thick oxide film is formed on the surface of the silicon core wire, and the film is a factor causing spark discharging. Thus, the present invention, a step (S104) is provided that eliminates the surface oxide film by cleaning the surface of the silicon core wire with a hydrofluoric acid solution following the step for eliminating processing warping of the surface by etching the silicon core wire using a mixed acid solution of hydrofluoric acid and nitric acid.

Description

シリコン芯線の製造方法Method of manufacturing silicon core wire
 本発明は、多結晶シリコン棒の製造に用いられるシリコン芯線の製造方法に関する。 The present invention relates to a method of producing a silicon core wire used for producing a polycrystalline silicon rod.
 半導体用単結晶シリコンあるいは太陽電池用シリコンの原料となる多結晶シリコンの製造方法として、シーメンス法が知られている。シーメンス法は、クロロシランを含む原料ガスを加熱されたシリコン芯線に接触させることにより、該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法を用いて気相成長させる方法である。 The Siemens method is known as a manufacturing method of the polycrystalline silicon used as the raw material of the single crystal silicon for semiconductors, or the silicon | silicone for solar cells. The Siemens method is a method of vapor phase growing polycrystalline silicon on the surface of a silicon core wire by using a CVD (Chemical Vapor Deposition) method by bringing a source gas containing chlorosilane into contact with a heated silicon core wire.
 シーメンス法により多結晶シリコンを気相成長する際の反応炉は、ベルジャーと呼ばれる上部構造体とベースプレートと呼ばれる下部構造体(底板)により構成され、この空間内に、シリコン芯線を鉛直方向2本、水平方向1本の鳥居型に組み立て、該鳥居型のシリコン芯線の両端を一対のカーボン製の芯線ホルダを介してベースプレート上に配置した一対の金属製の電極に固定する。 The reactor for vapor phase growth of polycrystalline silicon by the Siemens method is composed of an upper structure called bell jar and a lower structure (bottom plate) called base plate, and two silicon core wires in the vertical direction in this space, The torii type is assembled in a horizontal direction, and both ends of the torii type silicon core wire are fixed to a pair of metal electrodes disposed on the base plate via a pair of carbon core wire holders.
 電極は絶縁物を挟んでベースプレートを貫通し、配線を通して別の電極に接続されるか、反応炉外に配置された電源に接続される。気相成長中に多結晶シリコンが析出することを防止するために、電極とベースプレートとベルジャーは水などの冷媒を用いて冷却される。 The electrode passes through the base plate with an insulator interposed, and is connected to another electrode through a wire or is connected to a power source disposed outside the reactor. The electrode, the base plate and the bell jar are cooled using a coolant such as water in order to prevent the deposition of polycrystalline silicon during vapor phase growth.
 電極から電流を導通させてシリコン芯線を水素雰囲気中で900℃以上1200℃以下の温度範囲に加熱しながら、原料ガスとして例えばトリクロロシランと水素の混合ガスをガスノズルから反応炉内に供給すると、シリコン芯線上にシリコンが気相成長し、所望の直径の多結晶シリコン棒が逆U字状に形成される。 When a mixed gas of, for example, trichlorosilane and hydrogen as a source gas is supplied from the gas nozzle into the reaction furnace while conducting current from the electrode and heating the silicon core wire to a temperature range of 900 ° C. to 1200 ° C. in a hydrogen atmosphere, The silicon is vapor-phase grown on the core line, and a polycrystalline silicon rod of a desired diameter is formed in an inverted U shape.
 ところで、シリコン芯線は多結晶又は単結晶のシリコンインゴットを切り出し加工することによって製作されるが、高純度多結晶シリコン製造のために用いられるシリコン芯線は不純物濃度の低い高純度なものである必要がある。具体的には、比抵抗が500Ωcm程度以上の高抵抗のものであることが求められる。 By the way, although a silicon core wire is manufactured by cutting out and processing a polycrystalline or single crystal silicon ingot, the silicon core wire used for producing high purity polycrystalline silicon needs to be a high purity one having a low impurity concentration. is there. Specifically, the material is required to have a high resistance of about 500 Ωcm or more.
 このような高抵抗のシリコン芯線の通電は、一般に常温では開始できないため、予めシリコン芯線を200~400℃程度に初期加熱して比抵抗を下げて(すなわち導電性を高めて)から通電する必要がある。このため、シリコン芯線は芯線ホルダとの間で良好な通電が確保されることが好ましく、例えば特許文献1(特開2010-235440号公報)に開示のような方法が提案されている。 Since it is generally not possible to start the conduction of such high resistance silicon core wire, it is necessary to perform initial heating of the silicon core wire to about 200 to 400 ° C. in advance to reduce specific resistance (that is, increase conductivity) before conducting current. There is. For this reason, it is preferable that the silicon core wire and the core wire holder ensure good electrical conduction, and for example, a method as disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-235440) is proposed.
 一方、シリコン芯線は通常、多結晶又は単結晶の棒から短冊状に切り出されるが、この切出しの際に、表面に加工歪が発生する。このような加工歪がある状態のシリコン芯線は、強度的に弱く、また表面不純物も多い。このため、多結晶シリコン製造装置内にセットする前に、シリコン芯線の表面を50μm~200μm程度エッチングするのが通常である(例えば、特許文献2:特開2005-112662号公報を参照)。このエッチングには、フッ酸と硝酸の混合液が使用される。シリコン芯線の切り出し方法によって加工歪の深さが決まるので、この加工歪を除去できる深さまでエッチングが行われる。 On the other hand, although a silicon | silicone core wire is usually cut out in strip shape from the rod of a polycrystal or a single crystal, the process distortion generate | occur | produces on the surface in the case of this cutting out. The silicon core wire in the state with such processing distortion is weak in strength and also has many surface impurities. Therefore, it is usual to etch the surface of the silicon core wire by about 50 μm to 200 μm before setting in the polycrystalline silicon manufacturing apparatus (see, for example, Patent Document 2: Japanese Patent Application Laid-Open No. 2005-112662). A mixed solution of hydrofluoric acid and nitric acid is used for this etching. Since the depth of the processing strain is determined by the method of cutting out the silicon core wire, the etching is performed to such a depth that the processing strain can be removed.
特開2010-235440号公報JP, 2010-235440, A 特開2005-112662号公報JP 2005-112662 A
 多結晶シリコン製造のためのCVD反応では、上述のような初期加熱のために、反応炉の中央または内周面に初期加熱用のカーボンヒーターを設けておき、反応開始時には、先ずこのカーボンヒーターを通電により発熱させ、その際に発生する輻射熱によってカーボンヒーター周辺に配置されているシリコン芯線を所望の温度にまで加熱する。 In the CVD reaction for polycrystalline silicon production, a carbon heater for initial heating is provided at the center or inner peripheral surface of the reactor for the above-mentioned initial heating, and this carbon heater is first Heat is generated by energization, and the silicon core wire disposed around the carbon heater is heated to a desired temperature by radiant heat generated at that time.
 このような初期加熱によりシリコン芯線の温度が200℃~400℃に達した状態において、シリコン芯線への通電を開始するためには、長さ当たり2.0V/cm~8.0V/cmの電圧が必要となる。例えば、長さ2mのシリコン芯線を4本つないで通電を開始する場合には、1600V~6400Vの電圧が必要となる。 In order to start energization of the silicon core wire in the state where the temperature of the silicon core wire reaches 200 ° C. to 400 ° C. by such initial heating, a voltage of 2.0 V / cm to 8.0 V / cm per length Is required. For example, in the case where four silicon cores each having a length of 2 m are connected to start energization, a voltage of 1600 V to 6400 V is required.
 一旦シリコン芯線への通電が開始されれば、その後はカーボンヒーターを用いた加熱を利用しなくとも、シリコン芯線自身の発熱により表面温度が維持されるため、析出反応は持続的に進行する。そのため、上述のシリコン芯線への通電開始後は、カーボンヒーターの電源はOFFされる。 Once energization of the silicon core wire is started, the surface temperature is maintained by the heat generation of the silicon core wire itself thereafter without using heating using a carbon heater, so the precipitation reaction proceeds continuously. Therefore, the power supply of the carbon heater is turned off after the above-mentioned energization start to the silicon | silicone core wire is started.
 上述のとおり初期通電時には高い電圧が必要とされるため、導電部材の接触部分で火花放電が発生する可能性が高い。本発明者らの経験によると、特に、シリコン芯線とカーボン製の芯線ホルダの間において火花放電が発生し易い。 As described above, since a high voltage is required at the time of initial energization, there is a high possibility that spark discharge will occur at the contact portion of the conductive member. According to the experience of the present inventors, spark discharge is particularly likely to occur between the silicon core wire and the core wire holder made of carbon.
 シリコン芯線と芯線ホルダの間での火花放電は、シリコン芯線にダメージを与え、キズを発生させる原因となる。このようなキズは、多結晶シリコン析出反応中におけるシリコン芯線の倒壊原因となり、多結晶シリコンの生産性を低下させる要因となる。 The spark discharge between the silicon core wire and the core wire holder damages the silicon core wire and causes flaws. Such a flaw causes the collapse of the silicon core wire during the polycrystalline silicon deposition reaction, and causes the reduction of the productivity of polycrystalline silicon.
 本発明は、かかる問題を解決するためになされたものであり、シリコン芯線と他の導電部材の間での火花放電の発生を抑制し、多結晶シリコンの生産性の向上を図ることを目的とする。 The present invention has been made to solve such problems, and aims to suppress the occurrence of spark discharge between a silicon core wire and another conductive member, and to improve the productivity of polycrystalline silicon. Do.
 上述の課題を解決するために、本発明に係るシリコン芯線の製造方法は、多結晶シリコン棒製造用のシリコン芯線の製造方法であって、シリコンインゴットより切り出したシリコン芯線をフッ酸と硝酸の混酸溶液でエッチングして表面の加工歪みを除去する工程と、該エッチング工程に続いて前記シリコン芯線の表面をフッ酸溶液で洗浄する工程とを備えている。 In order to solve the above-mentioned subject, the manufacturing method of the silicon core wire concerning the present invention is a manufacturing method of the silicon core wire for polycrystalline silicon stick manufacture, and the mixed acid of hydrofluoric acid and nitric acid is used for the silicon core wire cut out from the silicon ingot. And etching the surface of the silicon core wire with a solution of hydrofluoric acid.
 好ましくは、前記フッ酸溶液のフッ酸濃度が1質量%以上20質量%以下であり、更に好ましくは、3質量%以上10質量%以下である。 Preferably, the hydrofluoric acid concentration of the hydrofluoric acid solution is 1% by mass or more and 20% by mass or less, and more preferably 3% by mass or more and 10% by mass or less.
 また、好ましくは、前記混酸溶液は、フッ酸濃度が1質量%以上50質量%以下、硝酸濃度が1質量%以上70質量%以下であり、更に好ましくは、フッ酸濃度が5質量%以上10質量%以下、硝酸濃度が40質量%以上63質量%以下である。 Preferably, the mixed acid solution has a hydrofluoric acid concentration of 1% by mass to 50% by mass, and a nitric acid concentration of 1% by mass to 70% by mass, and more preferably, a hydrofluoric acid concentration of 5% by mass to 10%. Mass% or less and nitric acid concentration are 40 mass% or more and 63 mass% or less.
 本発明に係るシリコン芯線の製造方法は、シリコン芯線の製作時に生成する表面の酸化膜を除去する工程を含むため、高電圧を印加した際の火花放電が防止される。 The method for producing a silicon core wire according to the present invention includes the step of removing the oxide film on the surface generated during the production of the silicon core wire, so that spark discharge can be prevented when a high voltage is applied.
多結晶シリコンの気相成長装置の構成を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the structure of the vapor phase growth apparatus of polycrystalline silicon. シリコン芯線を芯線ホルダに保持させた状態を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the state which the silicon | silicone core wire was hold | maintained at the core wire holder. シリコン芯線を芯線ホルダに保持させた状態を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the state which the silicon | silicone core wire was hold | maintained at the core wire holder. 本発明のシリコン芯線の製作工程フロー図である。It is a manufacturing-process flow diagram of the silicon | silicone core wire of this invention. 従来のシリコン芯線の製作工程フロー図である。It is a manufacturing-process flowchart of the conventional silicon | silicone core wire.
 以下に、図面を参照して、本発明を実施するための形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、多結晶シリコン製造のための反応炉100の構成の一例を示す概略断面図である。反応炉100は、シーメンス法によりシリコン芯線11の表面に多結晶シリコンを気相成長させて多結晶シリコン棒12を得るための装置であり、ベースプレート5とベルジャー1により構成される。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a reaction furnace 100 for producing polycrystalline silicon. The reaction furnace 100 is an apparatus for vapor phase growing polycrystalline silicon on the surface of a silicon core wire 11 by the Siemens method to obtain a polycrystalline silicon rod 12, and is constituted by a base plate 5 and a bell jar 1.
 ベースプレート5には、シリコン芯線11に電流を供給する金属電極10と、窒素ガス、水素ガス、トリクロロシランガスなどのプロセスガスを供給するガスノズル9と、排気ガスを排出する排気口8が配置されている。また、ベースプレート5には、自身を冷却するための冷媒の入口部6と出口部7を有している。 The base plate 5 is provided with a metal electrode 10 for supplying a current to the silicon core wire 11, a gas nozzle 9 for supplying a process gas such as nitrogen gas, hydrogen gas or trichlorosilane gas, and an exhaust port 8 for discharging exhaust gas. . Further, the base plate 5 has an inlet portion 6 and an outlet portion 7 of a refrigerant for cooling itself.
 ベルジャー1は、自身を冷却するための冷媒の入口部3と出口部4を有し、さらに、外部から内部を目視確認するためののぞき窓2を有している。 The bell jar 1 has an inlet 3 and an outlet 4 for cooling the refrigerant itself, and further has a viewing window 2 for visually confirming the inside from the outside.
 図2は、電極10、アダプタ14、芯線ホルダ13、およびシリコン芯線11の配置関係の一例を説明するための図である。金属製の電極10は、自身を冷却するための冷媒の入口15と出口16を有しており、上部にはアダプタ14を載置できる構造になっている。アダプタ14の上部には芯線ホルダ13が固定され、さらに、芯線ホルダ13にはシリコン芯線11が固定される。なお、アダプタ14と芯線ホルダ13は別の部材として設ける必要はなく、アダプタ14と芯線ホルダ13が単一の部材としてある、一体型の芯線ホルダとしてもよい。 FIG. 2 is a view for explaining an example of the arrangement of the electrodes 10, the adapter 14, the core holder 13, and the silicon core 11. The metal electrode 10 has a refrigerant inlet 15 and an outlet 16 for cooling itself, and has a structure on which an adapter 14 can be mounted. The core holder 13 is fixed to the upper portion of the adapter 14, and the silicon core 11 is fixed to the core holder 13. The adapter 14 and the core holder 13 do not need to be provided as separate members, and may be an integral core holder in which the adapter 14 and the core holder 13 are a single member.
 電極10、アダプタ14、芯線ホルダ13、およびシリコン芯線11は、通電のために必要な接触面積を有することが必要とされる。また、多結晶シリコンの析出反応により得られる多結晶シリコン棒を保持するための十分な強度を有することが必要である。 The electrode 10, the adapter 14, the core holder 13, and the silicon core 11 are required to have a contact area necessary for energization. In addition, it is necessary to have sufficient strength to hold a polycrystalline silicon rod obtained by a precipitation reaction of polycrystalline silicon.
 図3は、芯線ホルダ13とシリコン芯線11の配置関係を説明するための図である。シリコン芯線11に流れる電流は破線で示した矢印の方向に流れる。 FIG. 3 is a view for explaining the arrangement of the core holder 13 and the silicon core 11. The current flowing through the silicon core wire 11 flows in the direction of the arrow shown by the broken line.
 本発明者らが調査した結果によれば、芯線ホルダ13とシリコン芯線11の間に発生する火花放電は、芯線ホルダ13とシリコン芯線11の間の接触抵抗及びシリコン芯線11の表面に形成されている酸化膜が主な原因であることが判明した。 According to the results of investigation by the present inventors, the spark discharge generated between the core wire holder 13 and the silicon core wire 11 is formed on the surface of the silicon core wire 11 and the contact resistance between the core wire holder 13 and the silicon core wire 11 Oxide film is found to be the main cause.
 このうち、接触抵抗は、シリコン芯線11の固定方法を改善するなどして下げることができることが分かった。また、シリコン芯線表面の酸化膜については、シリコン芯線の製造方法によりその厚さが異なり、絶縁膜である酸化膜が厚い場合には火花放電を引き起こし易いことが判明した。 Among them, it was found that the contact resistance can be lowered by improving the fixing method of the silicon core wire 11 or the like. It was also found that the thickness of the oxide film on the surface of the silicon core wire differs depending on the method of manufacturing the silicon core wire, and spark discharge is easily caused when the oxide film which is an insulating film is thick.
 シリコン結晶の表面に形成される酸化膜は、いわゆる自然酸化膜として知られており、一般に、その厚さは0.2nm~0.8nmと考えられている(例えば、非特許文献1を参照)。この程度の厚みの酸化膜であれば、火花放電を引き起こすほどの大きな電気抵抗とはならないと推測される。しかし、本発明者らが行った実験によれば、シリコン芯線表面の酸化膜は50nmにも達することがあり、その原因は、シリコン芯線の切出しの際に発生する加工歪を取り除くための、エッチング工程にあることが判明した。つまり、シリコン芯線をフッ酸と硝酸の混合液(混酸溶液)でエッチングを行った後に、いわゆる自然酸化膜の厚みをはるかに超える厚みの酸化膜が形成され、これが電気的抵抗として作用することで火花放電を引き起こすのである。 An oxide film formed on the surface of a silicon crystal is known as a so-called natural oxide film, and its thickness is generally considered to be 0.2 nm to 0.8 nm (see, for example, Non-Patent Document 1) . It is assumed that an oxide film of this thickness does not have a large electrical resistance to cause spark discharge. However, according to experiments conducted by the present inventors, the oxide film on the surface of the silicon core wire may reach 50 nm, which is caused by etching for removing the working strain generated at the time of cutting out the silicon core wire. It turned out that it was in the process. That is, after the silicon core wire is etched with a mixed solution (mixed acid solution) of hydrofluoric acid and nitric acid, an oxide film having a thickness far exceeding the thickness of a so-called natural oxide film is formed, and this acts as an electrical resistance. It causes spark discharge.
 図4および図5はそれぞれ、本発明および従来のシリコン芯線の製作工程フロー図である。これらの図に示すように、シリコン芯線は単結晶シリコン又は多結晶シリコンの円柱形状のインゴットから切り出され(S101)、切断化工時に生じた残留歪を除去する目的で、取りしろが通常50μm~200μm程度となるようなフッ酸と硝酸の混酸溶液によるエッチング処理が行われ(S102)、そのエッチングの後に多結晶シリコンの析出反応に用いられる(S103)。しかし、本発明者らの検討によれば、エッチング処理の工程でシリコン芯線表面に厚い酸化膜が形成され、これが火花放電を引き起こす原因となるのである。 FIG. 4 and FIG. 5 are respectively the manufacturing process flow diagrams of the present invention and the conventional silicon core wire. As shown in these figures, the silicon core wire is cut out from a cylindrical ingot of single crystal silicon or polycrystalline silicon (S101), and the removal margin is usually 50 μm to 200 μm for the purpose of removing the residual strain generated at the time of cutting. An etching process using a mixed acid solution of hydrofluoric acid and nitric acid to an extent is performed (S102), and after the etching, it is used for a precipitation reaction of polycrystalline silicon (S103). However, according to the study of the present inventors, a thick oxide film is formed on the surface of the silicon core wire in the etching process, which causes spark discharge.
 そこで、本発明では、シリコン芯線をフッ酸と硝酸の混酸溶液でエッチングして表面の加工歪みを除去する工程に続いて、シリコン芯線の表面をフッ酸溶液で洗浄して表面酸化膜を除去する工程(S104)を備えることにしている。 Therefore, in the present invention, following the step of etching the silicon core wire with a mixed acid solution of hydrofluoric acid and nitric acid to remove the processing distortion of the surface, the surface of the silicon core wire is cleaned with a hydrofluoric acid solution to remove the surface oxide film. A step (S104) is provided.
 このときのフッ酸溶液のフッ酸濃度は、好ましくは1質量%以上20質量%以下であり、より好ましくは3質量%以上10質量%以下である。 The hydrofluoric acid concentration of the hydrofluoric acid solution at this time is preferably 1% by mass to 20% by mass, and more preferably 3% by mass to 10% by mass.
 また、このフッ酸処理の温度は、好ましくは0~40℃であり、より好ましくは10~30℃である。フッ酸処理時間(浸漬時間)は、フッ酸溶液のフッ酸濃度濃度および温度に依存するが、目安として、好ましくは10~50分であり、より好ましくは15~20分である。例えば、フッ酸溶液温度25℃で15分間の浸漬処理を行った場合、50nm程度の酸化膜の除去が可能である。 The temperature of this hydrofluoric acid treatment is preferably 0 to 40 ° C., more preferably 10 to 30 ° C. The hydrofluoric acid treatment time (immersion time) depends on the concentration of hydrofluoric acid and the temperature of the hydrofluoric acid solution, but as a standard, it is preferably 10 to 50 minutes, more preferably 15 to 20 minutes. For example, when the immersion treatment is performed at a hydrofluoric acid solution temperature of 25 ° C. for 15 minutes, the oxide film can be removed by about 50 nm.
 なお、このようなフッ酸処理を施したシリコン芯線は、そのまま大気中に放置すると自然酸化膜が成長するが、1ヶ月程度以内の放置であれば通電時の電気抵抗となって火花放電を引き起こす原因になることは無い。 When the silicon core wire treated with such a hydrofluoric acid treatment is left as it is in the air, a natural oxide film grows, but if it is left for about one month, it becomes an electrical resistance at the time of energization and causes spark discharge. There is no cause.
 ちなみに、エッチング工程(S102)で用いるフッ酸と硝酸の混酸溶液は、好ましくは、フッ酸濃度が1質量%以上50質量%以下、硝酸濃度が1質量%以上70質量%以下であり、より好ましくは、フッ酸濃度が5質量%以上10質量%以下、硝酸濃度が40質量%以上63質量%以下である。各酸の濃度を上記の範囲とすることで、合理的なエッチング時間内で必要とするエッチング量を得ることができる。 Incidentally, the mixed acid solution of hydrofluoric acid and nitric acid used in the etching step (S102) preferably has a hydrofluoric acid concentration of 1% by mass to 50% by mass and a nitric acid concentration of 1% by mass to 70% by mass, more preferably Is a hydrofluoric acid concentration of 5% by mass to 10% by mass, and a nitric acid concentration of 40% by mass to 63% by mass. By setting the concentration of each acid in the above range, the required etching amount can be obtained within a reasonable etching time.
 また、エッチング液の温度は0~50℃、好ましくは10~40℃に管理する。例えば、300リットル容積のエッチング槽に7mm角で長さ1500mmのシリコン芯線を同時に50本浸漬し、エッチング液として5質量%フッ酸と63質量%硝酸の混酸溶液を用いてエッチングを行った場合、200μmの加工歪み層をエッチング除去するのに必要な時間は約20分であり、このとき、槽内エッチング液温度は22℃から28℃に上昇する。 Further, the temperature of the etching solution is controlled to 0 to 50 ° C., preferably 10 to 40 ° C. For example, when 50 silicon cores of 7 mm square and 1500 mm long are simultaneously immersed in a 300-liter volume etching tank, and etching is performed using a mixed acid solution of 5 mass% hydrofluoric acid and 63 mass% nitric acid as an etching solution, The time required to etch away the 200 μm working strain layer is about 20 minutes, at which time the in-tank etchant temperature rises from 22 ° C to 28 ° C.
 [実施例1]
 フッ酸と硝酸の混酸溶液によるエッチング後のフッ酸処理の有無による、表面酸化膜の厚さの違いを確認した。なお、フッ酸と硝酸の混酸溶液は、実施例1および比較例1についてはフッ酸5質量%/硝酸63質量%、比較例2についてはフッ酸8質量%/硝酸50質量%であり、取りしろは何れについても150μmである。また、表面の酸化膜厚をエリプソ測定によって求めるため、試料としては8インチ径のシリコンウェーハを用いた。なお、酸化膜厚測定は、各試料につき、4ポイント(P1~4)で行った。その結果を表1に纏めた。結果から明らかなように、フッ酸処理を行わない場合には、顕著に厚い酸化膜が存在している。
Example 1
The difference in the thickness of the surface oxide film was confirmed depending on the presence or absence of the hydrofluoric acid treatment after etching with the mixed acid solution of hydrofluoric acid and nitric acid. The mixed acid solution of hydrofluoric acid and nitric acid is 5 mass% of hydrofluoric acid / 63 mass% of nitric acid for Example 1 and Comparative Example 1, and 8 mass% of hydrofluoric acid / 50 mass% of nitric acid for Comparative Example 2. The width of each is 150 μm. In addition, in order to obtain the oxide film thickness on the surface by ellipsometry, a silicon wafer with a diameter of 8 inches was used as a sample. The oxide film thickness was measured at 4 points (P1 to 4) for each sample. The results are summarized in Table 1. As apparent from the results, when the hydrofluoric acid treatment is not performed, a significantly thick oxide film is present.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 実際に反応炉内にシリコン芯線をセットして初期通電のみを行って、表面のキズの有無を目視確認した。シリコン芯線は多結晶芯の8mm角で長さは1500mmである。また、フッ酸と硝酸の混酸溶液はフッ酸5質量%/硝酸63質量%で取りしろが150μmである。その結果を表2に纏めた。なお、実施例2および比較例3ともに、析出反応は8本のシリコン芯線を用いて1バッチのみの実験を行っている。結果から明らかなように、フッ酸処理を行わない場合には8本中6本でキズが発生したのに対し、フッ酸処理を行った場合にはすべてのシリコン芯線においてキズの発生が認められなかった。
Example 2
The silicon core wire was actually set in the reaction furnace and only the initial energization was performed, and the presence or absence of the surface flaw was visually confirmed. The silicon core wire is an 8 mm square of polycrystal core and its length is 1500 mm. Also, a mixed acid solution of hydrofluoric acid and nitric acid is 5 mass% of hydrofluoric acid / 63 mass% of nitric acid, and the removal is 150 μm. The results are summarized in Table 2. In both of Example 2 and Comparative Example 3, the precipitation reaction was conducted for experiments of only one batch using eight silicon cores. As is clear from the results, while flaws occurred in 6 out of 8 when the hydrofluoric acid treatment was not performed, occurrence of flaws was observed in all silicon core wires when the hydrofluoric acid treatment was performed. It was not.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例3]
 実際に多結晶シリコンの析出反応を行い、120mmφまで多結晶シリコンを成長させるシーケンスで収率を比較した。シリコン芯線は多結晶芯の8mm角で長さは1500mmである。また、フッ酸と硝酸の混酸溶液はフッ酸5質量%/硝酸63質量%で取りしろが150μmである。その結果を表3に纏めた。なお、実施例3および比較例4ともに、1バッチ8本のシリコン芯線を用いて5バッチの実験を行っている。結果から明らかなように、フッ酸処理を行わない場合には収率が20%(4バッチで途中倒壊発生、1バッチのみ120mmφまで成長)であるのに対し、フッ酸処理を行った場合にはすべてのバッチで予定通り120mmφまでの成長を行うことができた。
[Example 3]
The precipitation reaction of polycrystalline silicon was actually performed, and the yield was compared in the sequence of growing polycrystalline silicon to 120 mmφ. The silicon core wire is an 8 mm square of polycrystal core and its length is 1500 mm. Also, a mixed acid solution of hydrofluoric acid and nitric acid is 5 mass% of hydrofluoric acid / 63 mass% of nitric acid, and the removal is 150 μm. The results are summarized in Table 3. In each of Example 3 and Comparative Example 4, five batches of experiments were conducted using eight silicon cores per batch. As is clear from the results, when the hydrofluoric acid treatment is not performed, the yield is 20% (the occurrence of partial collapse in 4 batches, and only 1 batch grows up to 120 mmφ), while the hydrofluoric acid treatment is performed. Was able to perform growth up to 120 mmφ on schedule in all batches.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、シーメンス法における反応初期のシリコン芯線の倒壊といったトラブルを防止することができ、多結晶シリコン製造装置の稼働率を向上させることが可能となる。 According to the present invention, it is possible to prevent problems such as the collapse of the silicon core wire at the initial stage of the reaction in the Siemens method, and to improve the operation rate of the polycrystalline silicon manufacturing apparatus.
1 ベルジャー
2 のぞき窓
3 冷媒入口(ベルジャー)
4 冷媒出口(ベルジャー)
5 ベースプレート
6 冷媒入口(ベースプレート)
7 冷媒出口(ベースプレート)
8 反応排ガス出口
9 原料ガス供給ノズル
10 電極
11 シリコン芯線
12 シリコン棒
13 芯線ホルダ
14 アダプタ
15 冷媒入口(電極)
16 冷媒出口(電極)
100 反応炉
1 bell jar 2 viewing window 3 refrigerant inlet (bell jar)
4 Refrigerant outlet (bell jar)
5 Base plate 6 refrigerant inlet (base plate)
7 Refrigerant outlet (base plate)
8 reaction exhaust gas outlet 9 source gas supply nozzle 10 electrode 11 silicon core 12 silicon rod 13 core holder 14 adapter 15 refrigerant inlet (electrode)
16 Refrigerant outlet (electrode)
100 reactors

Claims (5)

  1.  多結晶シリコン棒製造用のシリコン芯線の製造方法であって、
     シリコンインゴットより切り出したシリコン芯線をフッ酸と硝酸の混酸溶液でエッチングして表面の加工歪みを除去する工程と、該エッチング工程に続いて前記シリコン芯線の表面をフッ酸溶液で洗浄する工程とを備えている、シリコン芯線の製造方法。
    A method of producing a silicon core wire for producing a polycrystalline silicon rod, comprising:
    Etching the silicon core wire cut out from the silicon ingot with a mixed acid solution of hydrofluoric acid and nitric acid to remove processing distortion of the surface; and following the etching step, cleaning the surface of the silicon core wire with a hydrofluoric acid solution A method of manufacturing a silicon core wire provided.
  2.  前記フッ酸溶液のフッ酸濃度が1質量%以上20質量%以下である、請求項1に記載のシリコン芯線の製造方法。 The manufacturing method of the silicon | silicone core wire of Claim 1 whose hydrofluoric acid concentration of the said hydrofluoric acid solution is 1 mass% or more and 20 mass% or less.
  3.  前記フッ酸溶液のフッ酸濃度が3質量%以上10質量%以下である、請求項2に記載のシリコン芯線の製造方法。 The manufacturing method of the silicon | silicone core wire of Claim 2 which is 3 mass% or more and 10 mass% or less of the hydrofluoric acid concentration of the said hydrofluoric acid solution.
  4.  前記混酸溶液は、フッ酸濃度が1質量%以上50質量%以下、硝酸濃度が1質量%以上70質量%以下である、請求項1乃至3の何れか1項に記載のシリコン芯線の製造方法。 The method for producing a silicon core wire according to any one of claims 1 to 3, wherein the mixed acid solution has a hydrofluoric acid concentration of 1% by mass to 50% by mass and a nitric acid concentration of 1% by mass to 70% by mass. .
  5.  前記混酸溶液は、フッ酸濃度が5質量%以上10質量%以下、硝酸濃度が40質量%以上63質量%以下である、請求項4に記載のシリコン芯線の製造方法。 The method for producing a silicon core wire according to claim 4, wherein the mixed acid solution has a hydrofluoric acid concentration of 5% by mass to 10% by mass, and a nitric acid concentration of 40% by mass to 63% by mass.
PCT/JP2012/002505 2011-04-19 2012-04-11 Method for producing silicon core wire WO2012144161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011092851A JP2012224499A (en) 2011-04-19 2011-04-19 Method for producing silicon core wire
JP2011-092851 2011-04-19

Publications (1)

Publication Number Publication Date
WO2012144161A1 true WO2012144161A1 (en) 2012-10-26

Family

ID=47041295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002505 WO2012144161A1 (en) 2011-04-19 2012-04-11 Method for producing silicon core wire

Country Status (2)

Country Link
JP (1) JP2012224499A (en)
WO (1) WO2012144161A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555524A (en) * 2019-11-05 2022-05-27 株式会社德山 Etching device and etching method for silicon core wire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018675A (en) * 2011-07-11 2013-01-31 Shin-Etsu Chemical Co Ltd Apparatus for manufacturing polycrystalline silicon
JP5820917B2 (en) * 2014-10-03 2015-11-24 信越化学工業株式会社 Method for producing polycrystalline silicon
WO2021090565A1 (en) * 2019-11-05 2021-05-14 株式会社トクヤマ Etching device for silicon core wire and etching method for silicon core wire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848512A (en) * 1994-08-10 1996-02-20 Tokuyama Corp Polycrystalline silicon particle
JPH0867511A (en) * 1994-08-31 1996-03-12 Tokuyama Corp Production of polycrystal silicon
JPH11168076A (en) * 1997-09-19 1999-06-22 Wacker Chemie Gmbh Polycrystalline silicon
JP2004149324A (en) * 2002-10-28 2004-05-27 Sumitomo Mitsubishi Silicon Corp Polycrystalline silicon rod, production method therefor, and silicon core material used for producing the rod
JP2005112662A (en) * 2003-10-07 2005-04-28 Sumitomo Titanium Corp Polycrystalline silicon rod and method of manufacturing the same
JP2009173531A (en) * 2007-12-28 2009-08-06 Mitsubishi Materials Corp Silicon seed rod assembly of polycrystalline silicon, method of forming the same, polycrystalline silicon producing apparatus, and method of producing polycrystalline silicon
JP2010235440A (en) * 2009-03-10 2010-10-21 Mitsubishi Materials Corp Manufacturing apparatus of polycrystalline silicon
JP2011063471A (en) * 2009-09-16 2011-03-31 Shin-Etsu Chemical Co Ltd Polycrystalline silicon mass and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848512A (en) * 1994-08-10 1996-02-20 Tokuyama Corp Polycrystalline silicon particle
JPH0867511A (en) * 1994-08-31 1996-03-12 Tokuyama Corp Production of polycrystal silicon
JPH11168076A (en) * 1997-09-19 1999-06-22 Wacker Chemie Gmbh Polycrystalline silicon
JP2004149324A (en) * 2002-10-28 2004-05-27 Sumitomo Mitsubishi Silicon Corp Polycrystalline silicon rod, production method therefor, and silicon core material used for producing the rod
JP2005112662A (en) * 2003-10-07 2005-04-28 Sumitomo Titanium Corp Polycrystalline silicon rod and method of manufacturing the same
JP2009173531A (en) * 2007-12-28 2009-08-06 Mitsubishi Materials Corp Silicon seed rod assembly of polycrystalline silicon, method of forming the same, polycrystalline silicon producing apparatus, and method of producing polycrystalline silicon
JP2010235440A (en) * 2009-03-10 2010-10-21 Mitsubishi Materials Corp Manufacturing apparatus of polycrystalline silicon
JP2011063471A (en) * 2009-09-16 2011-03-31 Shin-Etsu Chemical Co Ltd Polycrystalline silicon mass and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555524A (en) * 2019-11-05 2022-05-27 株式会社德山 Etching device and etching method for silicon core wire
US11998955B2 (en) 2019-11-05 2024-06-04 Tokuyama Corporation Etching device for silicon core wire and etching method for silicon core wire

Also Published As

Publication number Publication date
JP2012224499A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5751748B2 (en) Polycrystalline silicon lump group and method for producing polycrystalline silicon lump group
JP5194003B2 (en) Method for producing high purity polycrystalline silicon rod using metal core means
JP2009263149A (en) Method for manufacturing polycrystalline silicon rod
WO2012144161A1 (en) Method for producing silicon core wire
JP2003119015A (en) Method of producing rod-shaped high purity polycrystalline silicon
JP2010180078A (en) Process for producing polycrystal silicon
JP2011162414A (en) Method for producing silicon carbide crystal and silicon carbide crystal
JP5820917B2 (en) Method for producing polycrystalline silicon
US10487417B2 (en) Method for manufacturing a FZ silicon single crystal subject to additional gallium doping for solar cells
JP5653830B2 (en) Polycrystalline silicon manufacturing apparatus and polycrystalline silicon manufacturing method
JP5579634B2 (en) Reactor for producing polycrystalline silicon and method for producing polycrystalline silicon
JP2013256445A (en) Method for producing single crystal silicon
JP2013018675A (en) Apparatus for manufacturing polycrystalline silicon
JP7047688B2 (en) Manufacturing method of polycrystalline silicon rod
JP5820896B2 (en) Method for producing polycrystalline silicon
JP5507505B2 (en) Method for producing polycrystalline silicon
JPS6374909A (en) Production of polycrystalline silicon rod having large diameter
JP5539292B2 (en) Method for producing polycrystalline silicon
JP6250827B2 (en) Method for producing polycrystalline silicon
JP5868301B2 (en) Polycrystalline silicon production equipment
JP2013071856A (en) Apparatus and method for producing polycrystalline silicon
CN107848810B (en) Reactor for producing polycrystalline silicon and method for producing polycrystalline silicon
JP2007063048A (en) Semiconductor ingot and method for producing solar cell element
JP5954046B2 (en) Method for manufacturing silicon carbide substrate
KR101420338B1 (en) Insulation Sleeve for CVD Reactor and CVD Reactor with The Insulation Sleeve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774196

Country of ref document: EP

Kind code of ref document: A1