JP5012038B2 - Metal ring manufacturing method - Google Patents

Metal ring manufacturing method Download PDF

Info

Publication number
JP5012038B2
JP5012038B2 JP2007010153A JP2007010153A JP5012038B2 JP 5012038 B2 JP5012038 B2 JP 5012038B2 JP 2007010153 A JP2007010153 A JP 2007010153A JP 2007010153 A JP2007010153 A JP 2007010153A JP 5012038 B2 JP5012038 B2 JP 5012038B2
Authority
JP
Japan
Prior art keywords
intermediate material
peripheral surface
metal ring
manufacturing
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007010153A
Other languages
Japanese (ja)
Other versions
JP2008173674A5 (en
JP2008173674A (en
Inventor
一登 小林
慶一 堀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007010153A priority Critical patent/JP5012038B2/en
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to US12/303,817 priority patent/US8177435B2/en
Priority to EP07744879A priority patent/EP2022995B1/en
Priority to CN201110454305.6A priority patent/CN102537051B/en
Priority to PCT/JP2007/061550 priority patent/WO2007142298A1/en
Priority to CN2007800211585A priority patent/CN101466957B/en
Priority to EP11010301.7A priority patent/EP2447558B1/en
Publication of JP2008173674A publication Critical patent/JP2008173674A/en
Publication of JP2008173674A5 publication Critical patent/JP2008173674A5/ja
Priority to US13/443,088 priority patent/US8966767B2/en
Application granted granted Critical
Publication of JP5012038B2 publication Critical patent/JP5012038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えばシェル型ニードル軸受を通過する潤滑油の流量を絞る事を目的として、このシェル型ニードル軸受に組み込む、金属製で短円筒状のシールリングの製造方法の改良に関する。   The present invention relates to an improvement in a method for manufacturing a metal short cylindrical seal ring incorporated in a shell type needle bearing for the purpose of, for example, reducing the flow rate of lubricating oil passing through the shell type needle bearing.

例えば自動車用の自動変速機等の、大きなラジアル荷重が加わる回転支持部分には、図8の(A)に示す様なシェル型ニードル軸受1が組み込まれている。このシェル型ニードル軸受1は、シェルと呼ばれる鍔付外輪2の内径側に複数本のニードル3を保持して成る。この様なシェル型ニードル軸受1を上記回転支持部分に組み込んだ状態では、潤滑油を軸方向に流通させて、このシェル型ニードル軸受1及び更に下流側に存在する可動部分を潤滑する。上記図8の(A)に示したシェル型ニードル軸受1は、潤滑油の流通に対する抵抗が小さい。この為、そのままでは各部に供給する潤滑油の量が不適切になる場合がある。そこで、この様な場合には、図8の(B)に示す様な、鍔付外輪2の内径側に各ニードル3と共にシールリング4を組み込んだシェル型ニードル軸受1aを使用する。このシールリング4は、上記鍔付外輪の内径側を通過する潤滑油の流れに対する抵抗になり、上記各部に供給する潤滑油の量を適正にする。 For example, a shell-type needle bearing 1 as shown in FIG. 8A is incorporated in a rotation support portion to which a large radial load is applied, such as an automatic transmission for an automobile. This shell type needle bearing 1 is formed by holding a plurality of needles 3 on the inner diameter side of a flanged outer ring 2 called a shell. In a state where such a shell type needle bearing 1 is incorporated in the rotation support portion, lubricating oil is circulated in the axial direction to lubricate the shell type needle bearing 1 and the movable portion further downstream. The shell type needle bearing 1 shown in FIG. 8A has a low resistance to the flow of the lubricating oil. For this reason, the amount of lubricating oil supplied to each part may become inappropriate if it is left as it is. Therefore, in such a case, as shown in FIG. 8B, a shell type needle bearing 1a in which the seal ring 4 is incorporated together with each needle 3 on the inner diameter side of the flanged outer ring 2 is used. The seal ring 4 becomes a resistance against the flow of the lubricating oil passing through the inner diameter side of the flanged outer ring 2 and makes the amount of the lubricating oil supplied to the respective parts appropriate.

例えば、自動車用変速機の回転支持部を構成するシェル型ニードル軸受に組み込む上記シールリング4は、例えば径方向に関する厚さ寸法(断面高さ)が1.0〜2.5mm程度の薄肉である。又、内外径は、上記潤滑油の流量を絞るべき程度に応じて、上記シールリング4の内径側に配置する回転軸の外径或いは外径側に配置する鍔付外輪2の内径との関係で規制する。更に、上記シールリング4の軸方向寸法に関しても、上記潤滑油の流量を絞るべき程度や、上記鍔付外輪2の軸方向寸法と上記各ニードル3の軸方向寸法との差に応じて規制する。従って、上記潤滑油を所望通りに絞ると共に、上記シェル型ニードル軸受1aを正常に機能させる為には、上記シールリング4の寸法(内外径及び軸方向長さ)の精度を確保する必要がある。   For example, the seal ring 4 incorporated in a shell-type needle bearing that constitutes a rotation support portion of an automobile transmission has a thin wall thickness (cross-sectional height) of about 1.0 to 2.5 mm, for example, in the radial direction. . Further, the inner and outer diameters are related to the outer diameter of the rotary shaft arranged on the inner diameter side of the seal ring 4 or the inner diameter of the brazed outer ring 2 arranged on the outer diameter side according to the degree to which the flow rate of the lubricating oil should be reduced. Regulate with. Furthermore, the axial dimension of the seal ring 4 is also regulated according to the degree to which the flow rate of the lubricating oil should be reduced and the difference between the axial dimension of the brazed outer ring 2 and the axial dimension of each needle 3. . Therefore, in order to squeeze the lubricating oil as desired and allow the shell-type needle bearing 1a to function normally, it is necessary to ensure the accuracy of the dimensions (inner / outer diameter and axial length) of the seal ring 4. .

この為従来は、旋削等の切削加工により上記シールリング4を造っていたが、コストが嵩む事が避けられなかった。これに対して特許文献1、2には、塑性加工により短円筒状の金属製部品を造る方法が記載されている。但し、これら特許文献1、2に記載された製造方法は、上記シールリング4の様な高精度薄肉リングを造る事を意図したものではない。従って、上記特許文献1、2に記載された製造方法によっては、上記シールリング4の様な、薄肉で、しかも内外径の寸法及び断面形状の精度を十分に確保する必要がある高精度薄肉リングを造る事は難しい。   For this reason, in the past, the seal ring 4 was made by cutting such as turning, but it was inevitable that the cost would increase. On the other hand, Patent Documents 1 and 2 describe a method of making a short cylindrical metal part by plastic working. However, the manufacturing methods described in these Patent Documents 1 and 2 are not intended to produce a high-precision thin ring like the seal ring 4. Therefore, depending on the manufacturing method described in Patent Documents 1 and 2, a high-accuracy thin-walled ring, such as the above-described seal ring 4, that is thin and needs to sufficiently secure the accuracy of the inner and outer diameters and the cross-sectional shape. It is difficult to build.

特開平10−146642号公報Japanese Patent Laid-Open No. 10-146642 特開2000−94080号公報JP 2000-94080 A

本発明は、上述の様な事情に鑑みて、シェル型ニードル軸受に組み込むシールリングの様な、薄肉で、しかも内外径の寸法及び断面形状の精度を十分に確保する必要がある高精度薄肉リングを、低コストで造れる製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is a high-accuracy thin-walled ring that is thin and has sufficient inner and outer diameter dimensions and cross-sectional accuracy, such as a seal ring incorporated in a shell-type needle bearing. Is invented to realize a manufacturing method that can be manufactured at low cost.

本発明の金属製リングの製造方法は、下記の第一〜第四工程を備える。
「第一工程」:金属板を打ち抜く事により円輪状の第一中間素材とする。
「第二工程」:この第一中間素材の内径寄り部分を軸方向に直角に折り曲げるバーリング加工を施す事により、円筒部及びこの円筒部の軸方向一端部から径方向外方に折れ曲がった外向鍔部を備えた、断面L字形で全体が円環状の第二中間素材とする。
「第三工程」:この第二中間素材の外向鍔部を除去して、円筒状の第三中間素材とする。「第四工程」:冷間ローリング加工によりこの第三中間素材の内外径及び断面形状を整えて、必要とする形状精度及び寸法精度を有する金属製リングとする。尚、この形状精度には、断面形状に関する精度は勿論、真円度等、全体形状に関する精度も含む。
The manufacturing method of the metal ring of the present invention includes the following first to fourth steps.
“First step”: A ring-shaped first intermediate material is formed by punching a metal plate.
“Second step”: By applying a burring process that bends the portion of the first intermediate material closer to the inner diameter at right angles to the axial direction, the cylindrical portion and the outward fold that is bent radially outward from one axial end portion of the cylindrical portion A second intermediate material having an L-shaped cross section and having an annular shape as a whole is provided.
“Third step”: The outwardly-extending flange portion of the second intermediate material is removed to obtain a cylindrical third intermediate material. “Fourth step”: The inner and outer diameters and the cross-sectional shape of the third intermediate material are adjusted by cold rolling to obtain a metal ring having the required shape accuracy and dimensional accuracy. The shape accuracy includes not only the accuracy related to the cross-sectional shape but also the accuracy related to the entire shape such as roundness.

上述の様な本発明の金属製リングの製造方法を実施する場合に、具体的には、請求項2に記載した様に、上記第四工程時に、上記第三中間素材を円環状のダイスの内周面に保持する。そして、この状態で、ローラによりこの第三中間素材の内周面をこのダイスの内周面に向けて押し付ける。
この様な請求項2に記載した発明を実施する場合に、好ましくは、請求項3に記載した様に、上記第三工程で、完成後の金属製リングの外径に一致する外径を有する第三中間素材を形成する。その後、上記第四工程で、この第三中間素材の外径を変化させず、内径及び内周面の形状を変化させる。
又、本発明を実施する場合に好ましくは、請求項4に記載した様に、上記第一工程の後、上記第四工程の前、即ち、この第一工程と上記第二工程との間、この第二工程と上記第三工程との間、或いは、この第三工程と上記第四工程との間のうちの何れかの間で、中間素材(第一〜第三中間素材のうちの何れか)に予備成形を施す。そして、当該中間素材の外周面両端縁のうちの少なくとも一方の端縁の断面形状を、例えば四分の一円弧状の凸円弧形にする。
When the manufacturing method of the metal ring of the present invention as described above is carried out, specifically, as described in claim 2, the third intermediate material is made of an annular die in the fourth step. Hold on the inner surface. In this state, the inner peripheral surface of the third intermediate material is pressed against the inner peripheral surface of the die by the roller.
In carrying out the invention described in claim 2, preferably, as described in claim 3, the third step has an outer diameter that matches the outer diameter of the metal ring after completion. Forming a third intermediate material; Thereafter, in the fourth step, the outer diameter of the third intermediate material is not changed, and the inner diameter and the shape of the inner peripheral surface are changed.
When the present invention is carried out, preferably, as described in claim 4, after the first step, before the fourth step, that is, between the first step and the second step, Between the second step and the third step or between the third step and the fourth step, an intermediate material (any one of the first to third intermediate materials) )) Is preformed. And the cross-sectional shape of at least one edge of the outer peripheral surface both ends edge of the said intermediate material is made into the convex circular arc shape of 1/4 arc shape, for example.

上述の様に構成する本発明の金属製リングの製造方法によれば、薄肉で、しかも内外径の寸法及び断面形状の精度を十分に確保する必要がある高精度薄肉リングを、低コストで造れる。
即ち、本発明の製造方法の場合には、造るべき金属製リングの径方向厚さに応じて原材料となる金属板の厚さを選択すれば、薄肉の金属製リングでも、厚さ寸法に関して必要な精度を確保しつつ、言い換えれば内外径の精度を十分に確保しつつ、形状精度に関しても良好な高精度薄肉リングを造れる。
特に、請求項2、3に示した様に、ダイスの内周面に第三中間素材を保持した状態で、この第三中間素材に冷間ローリング加工を施せば、優れた形状精度及び寸法精度を有する金属製リングを能率良く造れる。
更に、請求項4に記載した様に、中間素材の外周面端縁の断面形状を凸円弧形にする予備成形を行なえば、この端縁がシャープエッジではない、良質の金属製リングを能率良く造れる。
According to the metal ring manufacturing method of the present invention configured as described above, it is possible to manufacture a high-accuracy thin-walled ring that is thin and requires sufficient accuracy of inner and outer diameter dimensions and cross-sectional shapes at low cost. .
That is, in the case of the manufacturing method of the present invention, if the thickness of the metal plate as the raw material is selected according to the radial thickness of the metal ring to be manufactured, the thickness dimension is necessary even for a thin metal ring. In addition, it is possible to produce a high-accuracy thin ring with good shape accuracy while ensuring sufficient accuracy of the inner and outer diameters.
In particular, as shown in claims 2 and 3, if the third intermediate material is cold-rolled with the third intermediate material held on the inner peripheral surface of the die, excellent shape accuracy and dimensional accuracy are obtained. It is possible to efficiently make a metal ring having
Furthermore, as described in claim 4, if preforming is performed so that the cross-sectional shape of the outer peripheral surface edge of the intermediate material is a convex arc shape, a high-quality metal ring whose edge is not a sharp edge can be efficiently obtained. Can be made well.

[実施の形態の第1例]
図1〜4は、請求項1〜3に対応する、本発明の実施の形態の第1例を示している。尚、本発明の実施に供する金属板の材質は、塑性変形可能な材質であれば特に問わないが、一般的には、低炭素鋼板の如き軟鋼板等の、鉄系合金を使用する。但し、必要に応じて、銅又は銅系合金、アルミニウム又はアルミニウム系合金等の非鉄金属を使用する事もできる。
本例の金属製リングの製造方法は、先ず、アンコイラから引き出した長尺な金属板を、プレス等により円形に打ち抜き加工する事により、図1の(A)に示す様な素材5を形成する。
次いで、第一工程として、プレス等による打ち抜き加工で、上記素材5の中央部を打ち抜く事により、図1の(B)の上段に示した様な、円輪状の第一中間素材6とする。打ち抜きの結果生じた、この図1の(B)の下段に示した円板状スクラップ7は、廃棄するか、或いは、より小径の金属製リングを造る為の素材として利用する。
[First example of embodiment]
1-4 show a first example of an embodiment of the present invention corresponding to claims 1 to 3. The material of the metal plate used in the practice of the present invention is not particularly limited as long as it is a plastically deformable material, but generally an iron-based alloy such as a mild steel plate such as a low carbon steel plate is used. However, a non-ferrous metal such as copper or a copper-based alloy, aluminum, or an aluminum-based alloy can be used as necessary.
In the metal ring manufacturing method of this example, first, a long metal plate drawn out from an uncoiler is punched into a circular shape by a press or the like, thereby forming a material 5 as shown in FIG. .
Next, as a first step, the center part of the material 5 is punched out by punching using a press or the like, so that the first intermediate material 6 having an annular shape as shown in the upper part of FIG. The disc-like scrap 7 shown in the lower part of FIG. 1B generated as a result of punching is discarded or used as a material for making a metal ring with a smaller diameter.

上記第一中間素材6には、第二工程として、この第一中間素材6の内径寄り部分を軸方向に直角に折り曲げるバーリング加工を施す。このバーリング加工は、従来から金属加工の分野で広く知られている様に、この第一中間素材6の外径寄り部分を1対の抑え型により軸方向両側から挟持した状態で、この第一中間素材6の内径寄り部分にパンチ型を押し込む事により行なう。この様にして行なうバーリング加工により、図1の(C)に示す様な、円筒部8及びこの円筒部8の軸方向一端部から径方向外方に折れ曲がった外向鍔部9を備えた、断面L字形で全体が円環状の第二中間素材10とする。本発明の金属製リングの製造方法によれば、この第二中間素材10のうちの円筒部8から高精度薄肉リングを造る。これに対して、上記外向鍔部9のうちでこの円筒部8の外周面よりも径方向外方に存在する部分は、次述する第三工程で、円環状スクラップ11{図1の(D)の下段参照}として廃棄する。
上記第二中間素材10には、続く第三工程で、プレス加工等による打ち抜き加工を施し、上記外向鍔部9を除去して、図1の(D)の上段部分に示した様な、円筒状の第三中間素材12とする。この第三中間素材12の外径は、造るべき金属製リング13の外径と一致している。
As a second step, the first intermediate material 6 is subjected to a burring process in which a portion near the inner diameter of the first intermediate material 6 is bent at right angles to the axial direction. In the burring process, as is widely known in the field of metal processing, the first intermediate material 6 is held in a state where the outer diameter portion of the first intermediate material 6 is clamped from both sides in the axial direction by a pair of holding dies. This is done by pushing a punch die into the inner diameter portion of the intermediate material 6. A cross section provided with a cylindrical portion 8 and an outward flange portion 9 bent radially outward from one axial end portion of the cylindrical portion 8 as shown in FIG. The second intermediate material 10 is L-shaped and annular in its entirety. According to the metal ring manufacturing method of the present invention, a high-precision thin ring is made from the cylindrical portion 8 of the second intermediate material 10. On the other hand, a portion of the outward flange portion 9 that is present radially outward from the outer peripheral surface of the cylindrical portion 8 is an annular scrap 11 {(D of FIG. ) Refer to the lower section} and discard.
In the subsequent third step, the second intermediate material 10 is punched by pressing or the like, and the outward flange 9 is removed to form a cylinder as shown in the upper part of FIG. The third intermediate material 12 is shaped like a sheet. The outer diameter of the third intermediate material 12 coincides with the outer diameter of the metal ring 13 to be manufactured.

この様にして得られた第三中間素材12には、続く第四工程で、冷間ローリング加工を施す。そして、この冷間ローリング加工による塑性加工により、上記第三中間素材12の内外径及び断面形状を整えて、図1の(E)に示す様な、必要とする形状精度及び寸法精度を有する金属製リング13とする。上記第三中間素材12をこの金属製リング13に加工する冷間ローリング加工に就いて、図2〜4により詳しく説明する。   The third intermediate material 12 obtained in this way is subjected to cold rolling in the subsequent fourth step. Then, by the plastic working by the cold rolling process, the inner and outer diameters and the cross-sectional shape of the third intermediate material 12 are adjusted, and the metal having the required shape accuracy and dimensional accuracy as shown in FIG. The ring 13 is used. The cold rolling process for processing the third intermediate material 12 into the metal ring 13 will be described in detail with reference to FIGS.

上記第三中間素材12は、円環状のダイス14に内嵌支持する。このダイス14は、互いに同心の円筒面である内外両周面を有し、それぞれの外周面をこのダイス14の外周面に転がり接触させた、図示しない複数個の支持ローラにより、(径方向の変位を阻止した状態で)回転のみ自在に支持されている。又、上記ダイス14は、造るべき金属製リング13(及び上記第三中間素材12)の外径に一致する内径を有する。上記第四工程時には、この第三中間素材12を上記ダイス14の内周面に保持する。そして、この状態で、特許請求の範囲に記載したローラである押圧ローラ15により、上記第三中間素材12を上記ダイス14の内周面に向けて、図2の矢印の方向に押し付ける。   The third intermediate material 12 is fitted and supported by an annular die 14. The die 14 has both inner and outer peripheral surfaces that are concentric cylindrical surfaces, and a plurality of support rollers (not shown) in which each outer peripheral surface is in rolling contact with the outer peripheral surface of the die 14 (in the radial direction). It is supported only for rotation (with displacement prevented). The die 14 has an inner diameter that matches the outer diameter of the metal ring 13 (and the third intermediate material 12) to be manufactured. During the fourth step, the third intermediate material 12 is held on the inner peripheral surface of the die 14. In this state, the third intermediate material 12 is pressed in the direction of the arrow in FIG. 2 toward the inner peripheral surface of the die 14 by the pressing roller 15 which is a roller described in the claims.

上記押圧ローラ15の中間部外周面で上記第三中間素材12に整合する部分には凹溝16が、全周に亙って形成されている。この凹溝16の断面形状は矩形で、軸方向に関する幅寸法は、上記造るべき金属製リング13の幅寸法に一致している。又、上記押圧ローラ15の径方向に関する、上記凹溝16の深さは、上記造るべき金属製リング13の厚さ寸法以下としている。上記第三中間素材12を上記金属製リング13に加工する際には、この様な押圧ローラ15を上記ダイス14の内周面に、自転させつつ押し付ける。そして、このダイス14の内周面と上記凹溝16の内面との間で、上記第三中間素材12の円周方向の一部を強く抑え付ける。   On the outer peripheral surface of the intermediate portion of the pressing roller 15, a concave groove 16 is formed over the entire periphery in a portion aligned with the third intermediate material 12. The cross-sectional shape of the concave groove 16 is rectangular, and the width dimension in the axial direction matches the width dimension of the metal ring 13 to be formed. Further, the depth of the concave groove 16 in the radial direction of the pressing roller 15 is set to be equal to or less than the thickness dimension of the metal ring 13 to be manufactured. When the third intermediate material 12 is processed into the metal ring 13, the pressing roller 15 is pressed against the inner peripheral surface of the die 14 while rotating. A part of the third intermediate material 12 in the circumferential direction is strongly suppressed between the inner peripheral surface of the die 14 and the inner surface of the concave groove 16.

上記押圧ローラ15の押し付けに伴って上記ダイス14は、この押圧ローラ15の自転方向と同方向に回転しつつ、この押圧ローラ15による押圧力を支承する。又、上記第三中間素材12も、上記ダイス14と共に回転する。従って、この第三中間素材12のうちで、このダイス14の内周面と上記凹溝16の内面との間で強く抑え付けられる部分は、円周方向に関して連続的に変化する。この結果、上記第三中間素材12の断面形状が、全周に亙って、図4の(A)→(B)に示す様に変化する。即ち、この第三中間素材12の断面形状が、上記ダイス14の内周面と上記凹溝16の内面とに合致する様に塑性変形して、上記金属製リング13となる。即ち、上記ダイス14と上記押圧ローラ15とを使用して行なう上記第四工程時には、上記第三中間素材12の外径及び外周面の形状を変化させず、内径及び内周面の形状を変化させて、上記金属製リング13に加工する。   As the pressing roller 15 is pressed, the die 14 supports the pressing force of the pressing roller 15 while rotating in the same direction as the rotation direction of the pressing roller 15. The third intermediate material 12 also rotates with the die 14. Accordingly, a portion of the third intermediate material 12 that is strongly restrained between the inner peripheral surface of the die 14 and the inner surface of the concave groove 16 continuously changes in the circumferential direction. As a result, the cross-sectional shape of the third intermediate material 12 changes as shown in FIGS. 4A to 4B over the entire circumference. That is, the third intermediate material 12 is plastically deformed so that the cross-sectional shape of the third intermediate material 12 matches the inner peripheral surface of the die 14 and the inner surface of the concave groove 16, thereby forming the metal ring 13. That is, at the time of the fourth step using the die 14 and the pressing roller 15, the outer diameter and the outer peripheral surface of the third intermediate material 12 are not changed, and the inner diameter and the inner peripheral shape are changed. Then, the metal ring 13 is processed.

上述の様に構成する本例の金属製リングの製造方法によれば、薄肉で、しかも内外径の寸法及び断面形状の精度を十分に確保する必要がある、高精度薄肉リングである上記金属製リング13を、低コストで造れる。即ち、本例の製造方法の場合には、造るべき金属製リング13の径方向厚さに応じて、素材5となる金属板の厚さを選択すれば、薄肉の金属製リング13でも厚さ寸法に関して必要な精度を確保しつつ、言い換えれば内外径の精度を十分に確保しつつ、形状精度に関しても良好な高精度薄肉リングを造れる。特に、上記第三中間素材12を上記金属製リング13に加工する冷間ローリング加工を、上述の様なダイス14と押圧ローラ15とを利用して行なうので、優れた形状精度及び寸法精度を有する金属製リング13を能率良く造れる。   According to the manufacturing method of the metal ring of the present example configured as described above, the metal ring is a high-accuracy thin ring that is thin and needs to have sufficient inner and outer diameter dimensions and cross-sectional accuracy. The ring 13 can be manufactured at low cost. In other words, in the case of the manufacturing method of this example, if the thickness of the metal plate to be the material 5 is selected according to the radial thickness of the metal ring 13 to be manufactured, even the thin metal ring 13 has a thickness. While ensuring the necessary accuracy with respect to dimensions, in other words, it is possible to produce a high-accuracy thin ring with good accuracy in terms of shape accuracy while sufficiently ensuring the accuracy of the inner and outer diameters. In particular, since the cold rolling process for processing the third intermediate material 12 into the metal ring 13 is performed using the die 14 and the pressing roller 15 as described above, it has excellent shape accuracy and dimensional accuracy. The metal ring 13 can be made efficiently.

[実施の形態の第2例]
図5〜7は、請求項1〜4に対応する、本発明の実施の形態の第2例を示している。上述の第1例の場合、得られる金属製リング13の断面形状の四隅部(内外両周面の軸方向両端縁)が尖っていた(当該部分の断面形状の曲率半径が極端に小さかった)。これに対して本例の場合には、断面形状の四隅部を凸円弧面とする(隅Rを形成する)事を意図している。内周縁の軸方向両端縁の隅Rに関しては、上述した実施の形態の第2例でも、押圧ローラ15の外周面に形成した凹溝16の底面隅部に隅Rを設ければ(底面隅部の断面形状を凹円弧面とすれば)形成できる。これに対して、外周面の軸方向両端縁の隅Rをダイスの内周面の形状のみで造ると、完成後の金属製リングを当該ダイスの内周面から取り出せなくなる。
[Second Example of Embodiment]
FIGS. 5-7 has shown the 2nd example of embodiment of this invention corresponding to Claims 1-4. In the case of the above-mentioned first example, the four corners of the cross-sectional shape of the metal ring 13 to be obtained (both axial end edges of the inner and outer peripheral surfaces) were pointed (the radius of curvature of the cross-sectional shape of the part was extremely small). . On the other hand, in the case of this example, it is intended that the four corners of the cross-sectional shape be convex arc surfaces (form corner R). Regarding the corners R of the inner peripheral edge in the axial direction, even in the second example of the embodiment described above, if the corners R are provided at the bottom corners of the concave grooves 16 formed on the outer peripheral surface of the pressing roller 15 (bottom corners). (If the cross-sectional shape of the part is a concave arc surface), it can be formed. On the other hand, if the corners R at both ends in the axial direction of the outer peripheral surface are made only by the shape of the inner peripheral surface of the die, the completed metal ring cannot be taken out from the inner peripheral surface of the die.

本例の製造方法は、この様な事情に鑑みて、内周面の軸方向両端縁だけでなく、外周面の軸方向両端縁にも隅Rを形成した金属製リング13aを、ダイス14aから取り出せる製造方法の実現を意図して考えたものである。尚、本例の製造方法を示す図5で、(A)〜(C)は、上述した実施の形態の第1例を示す、図1の(A)〜(C)と同じである。又、図5の(E)は、一部に次述する隅R部17が形成されている点を除き、上記図1の(D)と同じである。本例の特徴は、図5の(D)に示した予備加工工程を設けると共に、(F)で行なう、冷間ローリング加工に使用するダイス14aの内周面形状を工夫した点にある。そこで、上述した実施の形態の第1例と同様の部分に関する、重複する図示並びに説明は、省略若しくは簡略にし、以下、この第1例と異なる部分を中心に説明する。   In view of such circumstances, the manufacturing method of the present example includes a metal ring 13a in which corners R are formed not only on both axial edges of the inner peripheral surface but also on both axial edges of the outer peripheral surface, from the die 14a. The idea is to realize a manufacturing method that can be taken out. 5A to 5C showing the manufacturing method of this example, (A) to (C) are the same as (A) to (C) of FIG. 1 showing the first example of the embodiment described above. FIG. 5E is the same as FIG. 1D except that a corner R portion 17 described below is formed in part. The feature of this example is that the preliminary processing step shown in FIG. 5D is provided and the shape of the inner peripheral surface of the die 14a used in the cold rolling process performed in (F) is devised. Therefore, overlapping illustrations and descriptions regarding the same parts as those of the first example of the above-described embodiment are omitted or simplified, and hereinafter, different parts from the first example will be mainly described.

上述の様な意図で考えた、本例の金属製リングの製造方法の場合には、図5の(E)の上段に示した第三中間素材12aの外周面一端縁部に、図6に示す様な隅R部17を形成する。この隅R部17を形成する工程は、上記第三中間素材12aを図7に示したダイス14aの内周面にセット(円環状のダイス14aに内嵌)する以前に行なえば良い。即ち、図5の(B)→(C)の間、同(C)→(E)の間、同(E)→(F)の間の何れで行なっても良い。本例の場合には、(C)に示した第二中間素材10を(E)に示した第三中間素材12aに加工する以前に、図5の(D)で、円筒部8の外周面先端縁部に、上記図6に示す様な隅R部17を形成する。この様な隅R部17の形成作業は、上記円筒部8を円筒状の中子に外嵌した状態で、この円筒部8の外周面先端縁部に、先端面に凹円弧面状の押圧面を全周に亙って形成した円環状の押型を押し付け、この外周面先端縁部を塑性変形させる事で行なう。   In the case of the metal ring manufacturing method of the present example, which is considered with the above-described intention, FIG. 6 shows one end edge of the outer peripheral surface of the third intermediate material 12a shown in the upper part of FIG. A corner R portion 17 as shown is formed. The step of forming the corner R portion 17 may be performed before the third intermediate material 12a is set on the inner peripheral surface of the die 14a shown in FIG. 7 (internally fitted into the annular die 14a). That is, the process may be performed between (B) and (C), between (C) and (E), and between (E) and (F) in FIG. In the case of this example, before the second intermediate material 10 shown in (C) is processed into the third intermediate material 12a shown in (E), the outer peripheral surface of the cylindrical portion 8 in FIG. A corner R portion 17 as shown in FIG. 6 is formed at the leading edge. The corner R portion 17 is formed in such a manner that the cylindrical portion 8 is externally fitted to the cylindrical core, and a concave arcuate surface-like pressure is applied to the distal end edge of the outer peripheral surface of the cylindrical portion 8. This is done by pressing an annular pressing die formed over the entire surface and plastically deforming the outer edge of the outer peripheral surface.

この様にして行なう予備加工工程で、上記円筒部8の外周面先端縁部に上記隅R部17を形成した、図5の(D)に示した予備中間素材18には、前述した実施の形態の第1例の場合と同様に、プレス加工等による打ち抜き加工を施す。そして、外向鍔部9を除去して、図5の(E)の上段部分に示した様な、円筒状の第三中間素材12aとする。この第三中間素材12aの内外両周面の軸方向両端縁部のうち、外周面の軸方向一端縁には、上記隅R部が設けられている。これに対して、外周面の軸方向他端縁及び内周面の軸方向両端縁は、尖ったままである。そこで、図5の(E)→(F)に示した第四工程で、上記第三中間素材12aの内外径及び断面形状を整える際に、上記外周面の軸方向他端縁及び内周面の軸方向両端縁に隅R部を形成する。そして、断面形状の四隅部分に何れも隅R部を形成し、且つ、必要とする形状精度及び寸法精度を有する、前記金属製リング13aとする。 In preliminary processing steps performed in this manner, the formation of the corner R portion 17 on the outer circumferential surface leading edge of the upper Kien tubular portion 8, the pre-intermediate material 18 shown in (D) in FIG. 5, described above As in the case of the first example of the embodiment, punching by press working or the like is performed. And the outward eaves part 9 is removed and it is set as the cylindrical 3rd intermediate | middle raw material 12a as shown to the upper stage part of (E) of FIG. Of the both end edges in the axial direction of the inner and outer peripheral surfaces of the third intermediate material 12a, the corner R portion is provided at one axial end edge of the outer peripheral surface. In contrast, the other axial end edge of the outer peripheral surface and the both axial end edges of the inner peripheral surface remain pointed. Therefore, when adjusting the inner and outer diameters and the cross-sectional shape of the third intermediate material 12a in the fourth step shown in FIGS. 5E to 5F, the other axial end edge and the inner peripheral surface of the outer peripheral surface are arranged. Corner R portions are formed at both ends in the axial direction. And it is set as the said metal ring 13a which forms the corner | angular R part in all the four corner parts of cross-sectional shape, and has the required shape precision and dimensional accuracy.

この様な金属製リング13aを得る為に、上記第四工程に使用する円環状のダイス14aの内周面は、図7に示す様に、互いに同心の円筒面である大径部19と小径部20とを段差部21により連続させた、段付円筒面としている。又、この段差部21を、断面形状が四分の一円弧状の凹円弧面としている。又、押圧ローラ15aの外周面に形成した凹溝16aの底部軸方向両端隅部に関しても、断面形状が四分の一円弧状の凹円弧面としている。冷間ローリング加工装置に関するその他の部分の構成に就いては、前述した実施の形態の第1例の場合と同様である。   In order to obtain such a metal ring 13a, the inner peripheral surface of the annular die 14a used in the fourth step is composed of a large diameter portion 19 which is a concentric cylindrical surface and a small diameter as shown in FIG. A stepped cylindrical surface in which the portion 20 is continuous with the stepped portion 21 is used. Further, the stepped portion 21 is a concave arc surface whose cross-sectional shape is a quarter arc. Further, the bottom axial end corners of the concave groove 16a formed on the outer peripheral surface of the pressing roller 15a are also concave arc surfaces having a quarter arc shape in cross section. About the structure of the other part regarding a cold rolling processing apparatus, it is the same as that of the case of the 1st example of embodiment mentioned above.

本例の場合には、上記ダイス14aに上記第三中間素材12aを、このダイス14aの内周面に設けた、上記凹円弧面である段差部21に、この第三中間素材12aの外周面の軸方向他端縁(尖った縁)を対向させた状態で内嵌する。そして、前述した実施の形態の第1例の場合と同様に、上記押圧ローラ15aにより、上記第三中間素材12aを、上記ダイス14aの内周面に向けて押し付ける。この押し付けの結果、この第三中間素材12aの断面形状が、全周に亙って、図7の(A)→(B)に示す様に変化する。即ち、この第三中間素材12aの断面形状が、上記ダイス14aの内周面と上記凹溝16aの内面とに合致する様に塑性変形して、上記金属製リング13aとなる。この際、この凹溝16aの底部軸方向両端隅部を構成する凹円弧面の形状が上記第三中間素材12aの内周面両端縁部に、上記段差部21の形状がこの第三中間素材12aの外周面の軸方向他端縁部に、それぞれ転写される。この第三中間素材12aの外周面の軸方向一端縁部には、元々前記隅R部17が形成されているので、上記第四工程の結果得られる、上記金属製リング13aの内外両周面の軸方向両端縁部には、それぞれ断面形状が四分の一円弧状である隅R部が形成されている。   In the case of this example, the third intermediate material 12a is provided on the die 14a, and the stepped portion 21 that is the concave arc surface provided on the inner peripheral surface of the die 14a is provided on the outer peripheral surface of the third intermediate material 12a. The other end in the axial direction (pointed edge) is fitted in the opposite direction. Then, as in the case of the first example of the above-described embodiment, the third intermediate material 12a is pressed against the inner peripheral surface of the die 14a by the pressing roller 15a. As a result of this pressing, the cross-sectional shape of the third intermediate material 12a changes over the entire circumference as shown in FIGS. That is, the third intermediate material 12a is plastically deformed so that the cross-sectional shape of the third intermediate material 12a matches the inner peripheral surface of the die 14a and the inner surface of the concave groove 16a, thereby forming the metal ring 13a. At this time, the shape of the concave arc surface constituting the corners on both ends in the bottom axial direction of the concave groove 16a is at the both edges of the inner peripheral surface of the third intermediate material 12a, and the shape of the stepped portion 21 is the third intermediate material. Transferred to the other axial end edge of the outer peripheral surface of 12a. Since the corner R portion 17 is originally formed at one end edge in the axial direction of the outer peripheral surface of the third intermediate material 12a, both inner and outer peripheral surfaces of the metal ring 13a obtained as a result of the fourth step. Corner end R portions each having a quarter arc shape in cross section are formed at both end edges in the axial direction.

上述の様に構成する本例の金属製リングの製造方法によれば、内外両周面の軸方向両端縁部に、それぞれ断面形状が四分の一円弧状である隅R部が形成された、良質の金属製リング13aを、工業的手法により能率良く造れる。即ち、単に内外両周面の軸方向両端縁部に隅R部を形成するのであれば、前述した実施の形態の第1例で造った金属製リング13に、旋削、研削等の機械加工を施す事でも造れる。但し、この様な機械加工により隅R部を形成する方法では、加工コストが嵩み、得られた金属製リング、延てはこの金属製リングを組み込んだ、自動車用変速機等の、各種機械装置のコストが嵩む事が避けられない。これに対して本例の製造方法によれば、上記金属製リング13aの製造コストを低く抑えられる。   According to the metal ring manufacturing method of the present example configured as described above, corner R portions each having a quarter arc shape in cross section are formed at both axial end edges of the inner and outer peripheral surfaces. A high-quality metal ring 13a can be efficiently manufactured by an industrial method. That is, if the corner R portions are simply formed at both end edges in the axial direction of both the inner and outer peripheral surfaces, the metal ring 13 made in the first example of the embodiment described above is subjected to machining such as turning and grinding. It can be made by applying. However, in the method of forming the corner R portion by such machining, the machining cost is increased, and the obtained metal ring, and thus various machines such as an automobile transmission incorporating this metal ring are incorporated. It is inevitable that the cost of the apparatus increases. On the other hand, according to the manufacturing method of this example, the manufacturing cost of the metal ring 13a can be kept low.

本発明の製造方法は、前述した様な、シェル型ニードル軸受に組み込むシールリングに限らず、電気機器、精密機械等、各種機械装置に組み込む高精度薄肉リングの製造に利用できる。   The production method of the present invention is not limited to the seal ring incorporated in the shell-type needle bearing as described above, but can be used for producing a high-precision thin ring incorporated in various mechanical devices such as electrical equipment and precision machines.

本発明の実施の形態の第1例を工程順に示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention in process order. 冷間ローリング加工の実施状況を示す側面図。The side view which shows the implementation condition of cold rolling process. 図3のa−a断面図。FIG. 4 is a cross-sectional view taken along the line aa in FIG. 3. (A)は冷間ローリング加工の開始前の状態を、(B)は加工後の状態を、それぞれ示す、図3のb部拡大図。3A is an enlarged view of a portion b in FIG. 3, showing a state before the start of the cold rolling process, and FIG. 本発明の実施の形態の第2例を工程順に示す断面図。Sectional drawing which shows the 2nd example of embodiment of this invention in order of a process. 図5の(D)のc部拡大図。The c section enlarged view of (D) of FIG. (A)は冷間ローリング加工の開始前の状態を、(B)は加工後の状態を、それぞれ示す、図4と同様の図。(A) is the same figure as FIG. 4 which shows the state before the start of cold rolling, and (B) shows the state after a process, respectively. 従来から知られているシェル型ニードル軸受の構造の2例を示す、部分断面図。The fragmentary sectional view which shows two examples of the structure of the shell type needle bearing known conventionally.

符号の説明Explanation of symbols

1、1a シェル型ニードル軸受
鍔付外輪
3 ニードル
4 シールリング
5 素材
6 第一中間素材
7 円板状スクラップ
8 円筒部
9 外向鍔部
10 第二中間素材
11 円環状スクラップ
12、12a 第三中間素材
13、13a 金属製リング
14、14a ダイス
15、15a 押圧ローラ
16、16a 凹溝
17 隅R部
18 予備中間素材
19 大径部
20 小径部
21 段差部
DESCRIPTION OF SYMBOLS 1, 1a Shell type needle bearing 2 Outer ring | wheel with 3 ribs 3 Needle 4 Seal ring 5 Material 6 First intermediate material 7 Disc-shaped scrap 8 Cylindrical part 9 Outward flange part 10 Second intermediate material 11 Toroidal scrap 12, 12a Third intermediate Material 13, 13a Metal ring 14, 14a Die 15, 15a Pressure roller 16, 16a Groove 17 Corner R part 18 Preliminary intermediate material 19 Large diameter part 20 Small diameter part 21 Step part

Claims (4)

金属板を打ち抜く事により円輪状の第一中間素材とする第一工程と、この第一中間素材の内径寄り部分を軸方向に直角に折り曲げるバーリング加工を施す事により、円筒部及びこの円筒部の軸方向一端部から径方向外方に折れ曲がった外向鍔部を備えた、断面L字形で全体が円環状の第二中間素材とする第二工程と、この第二中間素材の外向鍔部を除去して円筒状の第三中間素材とする第三工程と、冷間ローリング加工によりこの第三中間素材の内外径及び断面形状を整えて、必要とする形状精度及び寸法精度を有する金属製リングとする第四工程とを備えた金属製リングの製造方法。   A cylindrical part and a cylindrical part of the cylindrical part are formed by punching a metal plate and performing a burring process in which a portion near the inner diameter of the first intermediate material is bent at right angles to the axial direction. A second step with an L-shaped cross section and an overall annular intermediate material with an outward flange bent radially outward from one end in the axial direction, and removing the outward flange of this second intermediate material A third step of forming a cylindrical third intermediate material, and adjusting the inner and outer diameters and cross-sectional shape of the third intermediate material by cold rolling, and a metal ring having the required shape accuracy and dimensional accuracy A metal ring manufacturing method comprising a fourth step. 第四工程時に、第三中間素材を円環状のダイスの内周面に保持した状態で、ローラによりこの第三中間素材の内周面をこのダイスの内周面に向けて押し付ける、請求項1に記載した金属製リングの製造方法。   The third intermediate material is held on the inner peripheral surface of the annular die during the fourth step, and the inner peripheral surface of the third intermediate material is pressed against the inner peripheral surface of the die by a roller. The manufacturing method of metal rings described in 1. 第三工程で、完成後の金属製リングの外径に一致する外径を有する第三中間素材を形成した後、第四工程で、この第三中間素材の外径を変化させず、内径及び内周面の形状を変化させる、請求項2に記載した金属製リングの製造方法。   In the third step, after forming the third intermediate material having an outer diameter that matches the outer diameter of the finished metal ring, in the fourth step, the outer diameter of the third intermediate material is not changed, and the inner diameter and The manufacturing method of the metal ring of Claim 2 which changes the shape of an internal peripheral surface. 第一工程の後、第四工程の前に、中間素材の外周面両端縁のうちの少なくとも一方の端縁の断面形状を凸円弧形にする予備成形を行なう、請求項1〜3のうちの何れか1項に記載した金属製リングの製造方法。   After the first step and before the fourth step, preforming is performed in which the cross-sectional shape of at least one edge of the outer peripheral surface both ends of the intermediate material is a convex arc shape. The manufacturing method of metal rings described in any one of the above.
JP2007010153A 2006-06-08 2007-01-19 Metal ring manufacturing method Active JP5012038B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007010153A JP5012038B2 (en) 2007-01-19 2007-01-19 Metal ring manufacturing method
EP07744879A EP2022995B1 (en) 2006-06-08 2007-06-07 Shell needle bearing with seal ring and its manufacturing method
CN201110454305.6A CN102537051B (en) 2006-06-08 2007-06-07 Drawn cup needle roller bearing having a seal ring and its manufacture method
PCT/JP2007/061550 WO2007142298A1 (en) 2006-06-08 2007-06-07 Shell needle bearing with seal ring and its manufacturing method
US12/303,817 US8177435B2 (en) 2006-06-08 2007-06-07 Manufacturing method of a drawn cup needle roller bearing having seal ring
CN2007800211585A CN101466957B (en) 2006-06-08 2007-06-07 Shell needle bearing with seal ring and its manufacturing method
EP11010301.7A EP2447558B1 (en) 2006-06-08 2007-06-07 Method for manufacturing a drawn cup needle roller bearing having a seal ring
US13/443,088 US8966767B2 (en) 2006-06-08 2012-04-10 Manufacturing method of a drawn cup needle roller bearing having seal ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010153A JP5012038B2 (en) 2007-01-19 2007-01-19 Metal ring manufacturing method

Publications (3)

Publication Number Publication Date
JP2008173674A JP2008173674A (en) 2008-07-31
JP2008173674A5 JP2008173674A5 (en) 2010-02-04
JP5012038B2 true JP5012038B2 (en) 2012-08-29

Family

ID=39701086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010153A Active JP5012038B2 (en) 2006-06-08 2007-01-19 Metal ring manufacturing method

Country Status (1)

Country Link
JP (1) JP5012038B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263457B1 (en) 2008-09-09 2013-05-10 주식회사 만도 A damping force adjustable shock absorber
FR2974523B1 (en) * 2011-04-29 2014-05-16 Ntn Snr Roulements METHOD OF MANUFACTURING TWO WASHERS COMPRISING EACH A RUNWAY
JP5622324B2 (en) * 2011-07-01 2014-11-12 株式会社産栄工業 Method for forming metal cylinder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788852B2 (en) * 1986-05-13 1995-09-27 エヌティエヌ株式会社 Needle roller bearings for air conditioner compressors
JPH02274337A (en) * 1989-04-14 1990-11-08 Sumitomo Metal Ind Ltd Production of laminated metallic belt
JP3922729B2 (en) * 1993-02-10 2007-05-30 日本精工株式会社 Radial needle bearing
JP3458242B2 (en) * 1993-10-04 2003-10-20 高周波熱錬株式会社 Method of manufacturing seal ring for floating seal
JPH0790308B2 (en) * 1993-11-08 1995-10-04 株式会社桜井製作所 Pipe ring manufacturing method
JPH09141364A (en) * 1995-11-22 1997-06-03 Okada Kanagata:Kk Production of thin-walled seamless ring and thin-walled seamless ring
JPH1061669A (en) * 1996-08-19 1998-03-06 Ntn Corp Cylindrical roller bearing

Also Published As

Publication number Publication date
JP2008173674A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
EP2103826B1 (en) Manufacturing method for bearing outer ring
JP5309690B2 (en) Manufacturing method of inner and outer rings of rolling bearing
US9056375B2 (en) Manufacturing method for bearing outer ring
EP2022995A1 (en) Shell needle bearing with seal ring and its manufacturing method
JP6006810B2 (en) Molding method for industrial housing
WO2018016488A1 (en) Method for manufacturing cylindrical ring member, bearing, clutch, vehicle, and machine
JP5408226B2 (en) Method for manufacturing shell needle bearing with seal ring
JP5012038B2 (en) Metal ring manufacturing method
JP4483365B2 (en) Thrust cylindrical roller bearing cage and manufacturing method thereof
JP5034684B2 (en) Method for manufacturing rolling ring bearing ring
JP2006181638A (en) Raceway ring for radial ball bearing and its manufacturing method
JP2006123003A (en) Method and apparatus for producing high precision ring
JP4572644B2 (en) Manufacturing method of high precision ring
JP4826491B2 (en) Method for manufacturing bearing ring member
JP4978318B2 (en) Method for manufacturing shell needle bearing with seal ring
JP5625550B2 (en) Manufacturing apparatus and manufacturing method of flanged hollow shaft member
WO2017047327A1 (en) Cage for tapered roller bearing and manufacturing method therefor
JP6256667B2 (en) Manufacturing method and manufacturing system for ring-shaped member for vehicle, manufacturing method and manufacturing system for synchronizer ring, and manufacturing method and manufacturing system for vehicle
JP2005321027A (en) Retainer for roller bearing and manufacturing method
JP2007229754A (en) Method for manufacturing annular formed article
JP2006341255A (en) High-precision ring manufacturing method
JP2023161392A (en) Cage for bearing and method of manufacturing cage for bearing
JP4269962B2 (en) Method for manufacturing cage for radial needle bearing
JP2004028270A (en) Method for manufacturing retainer for conical roller bearing
JP2020537094A (en) Roll forming method for manufacturing roller bearing seal cases

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150