JP2006341255A - High-precision ring manufacturing method - Google Patents

High-precision ring manufacturing method Download PDF

Info

Publication number
JP2006341255A
JP2006341255A JP2005166450A JP2005166450A JP2006341255A JP 2006341255 A JP2006341255 A JP 2006341255A JP 2005166450 A JP2005166450 A JP 2005166450A JP 2005166450 A JP2005166450 A JP 2005166450A JP 2006341255 A JP2006341255 A JP 2006341255A
Authority
JP
Japan
Prior art keywords
intermediate material
ring
axial direction
thickness
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166450A
Other languages
Japanese (ja)
Inventor
Kazuto Kobayashi
一登 小林
Kohei Mori
浩平 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005166450A priority Critical patent/JP2006341255A/en
Priority to PCT/JP2005/017297 priority patent/WO2006033327A1/en
Priority to US11/663,473 priority patent/US20080089631A1/en
Priority to EP05785450A priority patent/EP1792672A4/en
Publication of JP2006341255A publication Critical patent/JP2006341255A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of easily and efficiently manufacturing a high-precision ring for a stock to manufacture a bearing ring to constitute a radial ball bearing through cold working. <P>SOLUTION: A first high-precision ring 14 and a second intermediate stock 27 shown in Fig.(F) are manufactured from a billet 13 shown in Fig.(A) via a preliminary intermediate stock 16 shown in Fig.(B), a second preliminary intermediate stock 17 shown in Fig.(C), a third preliminary intermediate stock 20 shown in Fig.(D) and a first intermediate stock 23 shown in Fig.(E). An inner ring is formed by the first high-precision ring 14. The second intermediate stock 27 is subjected to inversion working for changing the sectional shape by 90° in the direction in which the inside diameter side having the large thickness dimension is expanded and similarly the outside diameter side having the small thickness dimension is contracted. A cylindrical second high-precision ring is manufactured while regulating the inside diameter, the outside diameter and the axial length, and an outer ring is formed out of the second high-precision ring. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明に係る高精度リングの製造方法は、例えばラジアル玉軸受を構成する内輪及び外輪を冷間加工で造る為の素材となる高精度リングを造る為に利用する。又、この様な高精度リングにより造られる内輪及び外輪を組み込んだラジアル玉軸受は、例えば、電気掃除機、換気扇等、各種家庭用電気製品に組み込む電動モータ、或いは各種自動車用補機等の回転支持部の様に、あまり高度の回転精度を要求されない部分に使用する。   The method for producing a high-accuracy ring according to the present invention is used for producing a high-accuracy ring which is a material for producing an inner ring and an outer ring constituting a radial ball bearing by cold working, for example. In addition, radial ball bearings incorporating inner and outer rings made of such a high-precision ring are, for example, electric motors incorporated in various household electrical products such as vacuum cleaners and ventilation fans, or rotations of various auxiliary machinery for automobiles, etc. Used for parts that do not require a high degree of rotational accuracy, such as support parts.

各種回転機器の回転支持部に、図6に示す様なラジアル玉軸受1が組み込まれている。このラジアル玉軸受1は、単列深溝型であって、互いに同心に配置された外輪2と内輪3との間に複数個の玉4、4を設置して成る。このうちの外輪2の内周面の軸方向中間部に深溝型の外輪軌道5を、内輪3の外周面の軸方向中間部に深溝型の内輪軌道6を、それぞれ全周に亙って形成している。上記各玉4、4は、保持器7により保持された状態で、上記外輪軌道5と上記内輪軌道6との間に転動自在に配置している。そして、この構成により、上記外輪2と上記内輪3との相対回転を自在としている。尚、図6に示した例では、上記保持器7として、金属製の波形保持器を使用しているが、合成樹脂製の冠型保持器を使用する場合も多い。又、上記外輪2の両端部内周面に形成した係止溝に、それぞれ密封板(接触型のシール板及び非接触型のシールド板を含む。本明細書全体で同じ。)の外周縁を係止する構造を採用する場合も多い。この場合に上記両密封板の内周縁は、上記内輪3の両端部外周面に、全周に亙って摺接若しくは近接対向させる。   A radial ball bearing 1 as shown in FIG. 6 is incorporated in a rotation support portion of various rotating devices. This radial ball bearing 1 is of a single-row deep groove type, and has a plurality of balls 4, 4 installed between an outer ring 2 and an inner ring 3 arranged concentrically with each other. Of these, a deep groove type outer ring raceway 5 is formed on the axially intermediate portion of the inner peripheral surface of the outer ring 2, and a deep groove type inner ring raceway 6 is formed on the entire outer periphery of the inner ring 3. is doing. The balls 4 and 4 are arranged so as to be able to roll between the outer ring raceway 5 and the inner ring raceway 6 while being held by a cage 7. With this configuration, the outer ring 2 and the inner ring 3 can freely rotate relative to each other. In the example shown in FIG. 6, a metal corrugated cage is used as the cage 7, but a synthetic resin crown-shaped cage is often used. Further, the outer peripheral edge of each sealing plate (including a contact-type seal plate and a non-contact-type shield plate; the same applies throughout the present specification) is engaged with the engaging grooves formed on the inner peripheral surfaces of both ends of the outer ring 2. In many cases, a structure that stops is used. In this case, the inner peripheral edges of the both sealing plates are slidably contacted or closely opposed to the outer peripheral surfaces of both end portions of the inner ring 3 over the entire periphery.

上述の様なラジアル玉軸受1を構成する、上記外輪2や上記内輪3等の軌道輪を造るのに従来一般的には、先ず、鍛造加工と切削加工とにより完成品に近い形状及び寸法を有する中間素材を得ていた。そして、この中間素材に、表面を硬化させる為の熱処理を施してから、上記外輪軌道5や上記内輪軌道6等の軌道面を含む表面に、寸法及び表面粗さを所定のものにする為の研磨を施して、上記軌道輪としていた。この様な軌道輪の製造方法は、材料の歩留が悪くなる他、面倒で、コストが嵩む。   Conventionally, in order to construct the races such as the outer ring 2 and the inner ring 3 constituting the radial ball bearing 1 as described above, generally, first, the shape and dimensions close to the finished product are obtained by forging and cutting. Had an intermediate material to have. The intermediate material is subjected to a heat treatment for curing the surface, and then the surface and the surface including the raceway surface such as the outer ring raceway 5 and the inner ring raceway 6 are made to have predetermined dimensions and surface roughness. Polishing was performed to obtain the above-described race. Such a manufacturing method of the raceway is not only troublesome in material yield but also cumbersome and costly.

又、特許文献1、2には、ラジアル玉軸受の軌道輪を、鍛造加工を中心として造る方法が記載されている。
先ず、特許文献1に記載された発明の場合には、外輪を造る為の中間素材と内輪を造る為の中間素材とを一体とした複合中間素材を鍛造により造った後、この複合中間素材を外輪を造る為の外輪用中間素材と内輪を造る為の内輪用中間素材とに分割する発明が記載されている。又、この特許文献1に記載された発明の場合には、内輪を造る為の内輪用中間素材の一部の直径を押し拡げる事で、外周面に深溝型の内輪軌道を有する内輪を得る様にしている。
次に、特許文献2には、熱間押し出しにより造った鋼管を切断して成る素材を、縦型プレスにより冷間で軸方向に圧縮(据え込み加工)して、内周面に深溝型の外輪軌道を有する外輪を造る方法に関する発明が記載されている。
Patent Documents 1 and 2 describe a method of making a raceway ring of a radial ball bearing centering on forging.
First, in the case of the invention described in Patent Document 1, a composite intermediate material in which an intermediate material for making an outer ring and an intermediate material for making an inner ring are integrated by forging, then the composite intermediate material is An invention is described in which an outer ring intermediate material for making an outer ring and an inner ring intermediate material for making an inner ring are divided. In the case of the invention described in Patent Document 1, an inner ring having a deep groove type inner ring raceway on the outer peripheral surface is obtained by expanding the diameter of a part of the intermediate material for the inner ring for making the inner ring. I have to.
Next, in Patent Document 2, a material formed by cutting a steel pipe made by hot extrusion is axially compressed (upsetting) with a vertical press, and a deep groove type is formed on the inner peripheral surface. An invention relating to a method for producing an outer ring having an outer ring raceway is described.

上述の様な特許文献1、2に記載されている発明のうち、特許文献1に記載されている発明の場合には、加工の初期段階で素材の外径寄り部分に円すい筒状部分を有する複合中間素材を形成する。この為、比較的容積が大きく、しかもこの円すい筒状部分を含む、複雑な形状を有する複合中間素材を造る際の加工荷重及び鍛造装置のパンチや受型等を含む金型に加わる応力が高くなり、この金型を含む鍛造装置各部の弾性変形量が大きくなる。この結果、得られた複合中間素材並びにこの複合中間素材から造られる外輪及び内輪を造る為の中間素材、更にはこれら外輪及び内輪の、寸法精度及び形状精度を十分に良好にする事が難しい。特に、上記複合中間素材を造る加工を冷間鍛造により行なうと、上記金型等に加わる負荷が過大になり、この金型等の耐久性を確保する事が難しくなる。従って、上記複合中間素材の加工は、熱間鍛造或は温間鍛造で造る事になるが、熱間鍛造或は温間鍛造の場合には、温度膨張量の差に拘らず金型同士の嵌合を確実に行なわせるべく、嵌合部の隙間を冷間鍛造の場合に比べて大きめに設定しなければならない。この為、得られた複合中間素材の内外径の寸法並びに内外両周面同士の、同心度を中心とする形状・寸法精度を十分に確保する事が難しくなる。この結果、得られた外輪及び内輪の内外径の寸法精度及び振れ精度を、前述した様な、あまり高度の回転精度を要求しない用途に使用するにしても、十分に確保する事が難しくなる。   Among the inventions described in Patent Documents 1 and 2 as described above, in the case of the invention described in Patent Document 1, a conical cylindrical portion is provided in the portion near the outer diameter of the material at the initial stage of processing. Form a composite intermediate material. For this reason, the processing load and the stress applied to the die including the punch and receiving die of the forging device are high when the composite intermediate material having a complicated shape including the conical cylindrical portion is comparatively large. Thus, the amount of elastic deformation of each part of the forging device including this mold is increased. As a result, it is difficult to sufficiently improve the dimensional accuracy and shape accuracy of the obtained composite intermediate material, the intermediate material for manufacturing the outer ring and the inner ring made from the composite intermediate material, and further the outer ring and the inner ring. In particular, when the process for producing the composite intermediate material is performed by cold forging, the load applied to the mold or the like becomes excessive, and it becomes difficult to ensure the durability of the mold or the like. Therefore, the processing of the composite intermediate material is made by hot forging or warm forging. In the case of hot forging or warm forging, the molds can be connected to each other regardless of the difference in temperature expansion. In order to ensure the fitting, the gap between the fitting portions must be set larger than in the case of cold forging. For this reason, it becomes difficult to sufficiently secure the shape and dimensional accuracy centered on the concentricity between the inner and outer diameters of the obtained composite intermediate material and the inner and outer peripheral surfaces. As a result, it is difficult to sufficiently secure the dimensional accuracy and run-out accuracy of the inner and outer diameters of the outer ring and inner ring obtained in the above-described applications that do not require a high degree of rotational accuracy.

又、特許文献2に記載された発明の場合には、リング状の素材を、熱間押し出しにより造った鋼管を切断する事により得ている為、この素材の内外径の寸法並びに内外両周面同士の同心度を中心とする形状・寸法精度を高度に確保する事が難しい。この結果、得られた外輪及び内輪の内外径の寸法精度及び振れ精度を高度に確保する事が難しくなる。又、鋼管を切断して素材とする作業は面倒で、生産性が悪く、コスト上昇の原因となる。更には、上記素材に、脱炭による切削を施す必要もあり、この面からもコストが高くなる。   Moreover, in the case of the invention described in Patent Document 2, since the ring-shaped material is obtained by cutting a steel pipe made by hot extrusion, the inner and outer diameter dimensions and both inner and outer peripheral surfaces of this material are obtained. It is difficult to ensure a high degree of shape and dimensional accuracy centering on the concentricity between each other. As a result, it becomes difficult to ensure high dimensional accuracy and runout accuracy of the inner and outer diameters of the outer ring and inner ring obtained. Also, the work of cutting the steel pipe to make the material is troublesome, the productivity is poor, and the cost increases. Furthermore, it is necessary to perform cutting by decarburization on the material, and this also increases the cost.

又、特許文献3には、円柱状の素材に冷間加工を施す事でリング状部品とする発明が記載されている。但し、上記特許文献3に記載された発明の場合には、単一のリング状部品を造るだけであって、冷間加工の際に軸方向寸法の規制を行なっておらず、得られたリング状部品の軸方向長さの精度、延ては体積の精度を確保できない。この為、このリング状部品に塑性変形を施すだけで、実用的な軌道輪を造る事は難しい。   Patent Document 3 describes an invention in which a ring-shaped part is formed by cold-working a cylindrical material. However, in the case of the invention described in the above-mentioned Patent Document 3, only a single ring-shaped part is manufactured, and the axial dimension is not regulated during cold working, and the obtained ring The accuracy of the axial length of the shaped parts, and hence the accuracy of the volume, cannot be ensured. For this reason, it is difficult to make a practical race by simply plastically deforming the ring-shaped part.

更に、特許文献4には、素材に鍛造加工を施して断面クランク形で円環状の中間素材を造り、この中間素材の径方向中間部で切断分離して、それぞれ転がり軸受用の内輪及び外輪を造る為の1対のリング状素材とする方法が記載されている。この様な特許文献4に記載された方法の場合、これら両リング状素材を作る過程で、中間素材の中央部を打ち抜いて当該部分をスクラップとする他、この中間素材の径方向中間部で上記両リング状素材の間部分も打ち抜いてスクラップとする。この為、上記素材のうちでスクラップとなる部分が多くなり、材料の歩留が悪くなる。   Furthermore, in Patent Document 4, a forging process is performed on the material to form an annular intermediate material with a crank-shaped cross section, and the intermediate material is cut and separated at the intermediate portion in the radial direction of the intermediate material. A method of making a pair of ring-shaped materials for making is described. In the case of such a method described in Patent Document 4, in the process of making both of these ring-shaped materials, the center portion of the intermediate material is punched out and the portion is scrapped. The part between the two ring-shaped materials is also punched into scrap. For this reason, the part which becomes a scrap increases among the said raw materials, and the yield of material worsens.

一方、本発明者等は、例えば、前述した様な用途に使用される、あまり高度の回転精度を要求されないラジアル玉軸受を構成する軌道輪を、実用上十分な精度を確保しつつ低コストで得る方法を考えた(特願2004−289566号)。この先発明に係る方法では、この軌道輪を、冷間加工により造られて完成品の容積と実質的に同じ容積を有する円筒状の高精度リングに、更に冷間加工を施す事により造る。即ち、この高精度リングを冷間加工により更に塑性変形させて、軌道面を含む表面形状を、実質的に完成品と同じ形状に加工する。   On the other hand, the inventors of the present invention, for example, used a bearing that is used in the above-described applications and does not require a high degree of rotational accuracy, and that is configured with a radial ring bearing at a low cost while ensuring sufficient practical accuracy. The method of obtaining was considered (Japanese Patent Application No. 2004-289566). In the method according to the present invention, the race is produced by further cold-working a cylindrical high-precision ring made by cold working and having a volume substantially the same as the volume of the finished product. That is, the high-accuracy ring is further plastically deformed by cold working to process the surface shape including the raceway surface into substantially the same shape as the finished product.

図7は、高精度リング8aに冷間加工を施す事により、内輪3aを造る工程を示している。
この場合には、先ず、図7の(A)に示した上記高精度リング8aの軸方向両端面の径方向外半部にパンチを押し付ける事により、(B)に示した第一中間素材9を得る。
次いで、この第一中間素材9に、径方向の一部(図7の上端部)の外径を、上記内輪3aの中間部外周面に形成した内輪軌道6{図7の(F)及び図6参照}の溝底径(深溝型の内輪軌道6の幅方向中央部で最も外径が小さくなった部分の外径)にまで縮める縮管加工を施す事により、(C)に示した第二中間素材10を得る。
次いで、この第二中間素材10に、この第二中間素材10のうちで上記内輪軌道6の軸方向他半部(図7の下半部)に対応する部分の径方向に関する肉厚の軸方向に関する分布を、造るべき上記内輪3aの該当部分の分布に一致させる為の内径押出加工を施して、(D)に示した第三中間素材11を得る。
次いで、この第三中間素材11に、この第三中間素材11の軸方向他端寄り(図7の下端寄り)部分の内径を拡げて、内径を(両端縁部の面取り部を除いて)軸方向全長に亙って均一にすると共に、外周面に上記内輪軌道6を形成する、内輪軌道形成加工を行なって、(E)に示した第四中間素材12を得る。
そして最後に、この第四中間素材12に、外周面の形状及び性状を整える為のローリング加工等の仕上加工を施して、(F)に示した内輪3aとする。
FIG. 7 shows a process of making the inner ring 3a by cold working the high precision ring 8a.
In this case, first, the first intermediate material 9 shown in (B) is pressed by pressing a punch against the radially outer half of both axial end faces of the high-precision ring 8a shown in FIG. Get.
Next, an inner ring raceway 6 formed on the first intermediate material 9 with an outer diameter of a part in the radial direction (upper end portion in FIG. 7) formed on the outer peripheral surface of the intermediate portion of the inner ring 3a {FIG. 7F and FIG. No. 6} is applied to the groove bottom diameter (the outer diameter of the portion having the smallest outer diameter at the center in the width direction of the deep groove type inner ring raceway 6). A second intermediate material 10 is obtained.
Next, in the second intermediate material 10, the axial direction of the wall thickness in the radial direction of the portion corresponding to the other half part in the axial direction of the inner ring raceway 6 (the lower half part in FIG. 7) of the second intermediate material 10. The third intermediate material 11 shown in (D) is obtained by applying an inner diameter extrusion process for matching the distribution of the inner ring 3a to the distribution of the corresponding portion of the inner ring 3a to be manufactured.
Next, the inner diameter of the third intermediate material 11 is increased by extending the inner diameter of the third intermediate material 11 near the other end in the axial direction (near the lower end in FIG. 7). A fourth intermediate material 12 shown in (E) is obtained by making the inner ring raceway 6 uniform on the outer peripheral surface and making the inner ring raceway uniform.
Finally, the fourth intermediate material 12 is subjected to a finishing process such as a rolling process for adjusting the shape and properties of the outer peripheral surface to obtain an inner ring 3a shown in FIG.

又、図8は、高精度リング8bに冷間加工を施す事により、外輪2aを造る工程を示している。
この場合には、先ず、図8の(A)に示した上記高精度リング8bの軸方向両端面の径方向内半部にパンチを押し付ける事により、(B)に示した第一中間素材9aを得る。
次いで、この第一中間素材9aに、径方向の一部(図8の上端部を除く部分)の外径を、上記外輪2aの外径にまで縮める縮管加工を施す事により、(C)に示した第二中間素材10aを得る。
次いで、この第二中間素材10aに、この第二中間素材10aのうちで外輪軌道5の軸方向片半部(図8の下半部)を形成すると共に、この外輪軌道5の軸方向他半部(図8の上半部)に対応する部分の径方向に関する肉厚の軸方向に関する分布を、造るべき上記外輪2aの該当部分の分布に一致させる為の内径押出加工を施して、(D)に示した第三中間素材11aを得る。
次いで、この第三中間素材11aに、この第三中間素材11aの軸方向他端寄り(図8の上端寄り)部分の外径を縮めて、この外径を(両端縁部の面取り部を除いて)軸方向全長に亙って均一にすると共に、内周面に上記外輪軌道5を形成する、外輪軌道形成加工を行なって、(E)に示した第四中間素材12aを得る。
そして最後に、この第四中間素材12aに、内周面の形状及び性状を整える為のローリング加工等の仕上加工を施して、(F)に示した外輪2aとする。
FIG. 8 shows a process for manufacturing the outer ring 2a by cold-working the high-precision ring 8b.
In this case, first, a first intermediate material 9a shown in (B) is pressed by pressing a punch against the radially inner half of both axial end faces of the high-precision ring 8b shown in FIG. Get.
Next, the first intermediate material 9a is subjected to contraction processing for reducing the outer diameter of a part of the radial direction (the part excluding the upper end portion in FIG. 8) to the outer diameter of the outer ring 2a. The second intermediate material 10a shown in FIG.
Next, the second intermediate material 10a is formed with one half of the axial direction of the outer ring raceway 5 (the lower half of FIG. 8) of the second intermediate material 10a and the other half of the axial direction of the outer ring raceway 5 is formed. An inner diameter extrusion process is performed to match the distribution in the axial direction of the wall thickness in the radial direction of the portion corresponding to the portion (the upper half portion in FIG. 8) with the distribution of the corresponding portion of the outer ring 2a to be made (D The third intermediate material 11a shown in FIG.
Next, the outer diameter of the third intermediate material 11a near the other end in the axial direction of the third intermediate material 11a (near the upper end in FIG. 8) is reduced, and this outer diameter is removed (excluding the chamfered portions at both ends). The outer ring raceway 5 is formed on the inner peripheral surface, and the outer ring raceway forming process is performed to obtain the fourth intermediate material 12a shown in (E).
Finally, the fourth intermediate material 12a is subjected to a finishing process such as a rolling process for adjusting the shape and properties of the inner peripheral surface to obtain the outer ring 2a shown in FIG.

上述の様にして、ラジアル玉軸受1の外輪2a或いは内輪3aを造れば、あまり高度の回転精度を要求されない部分に使用するこれら外輪2a或いは内輪3aを、実用的な精度を確保しつつ、低コストで造れる。但し、この場合でも、これら外輪2a或いは内輪3aの材料となるべき高精度リング8b、8aの形状精度及び容積精度を含む寸法精度が十分に確保されている事が、最終的に得られるラジアル玉軸受の実用的な精度を確保する面から重要である。又、より一層の低コスト化を図る為には、上記内輪3aを造る為の高精度リング8aと、上記外輪2aを造る為の高精度リング8bとを、単一の素材から造り出す事が好ましい。   As described above, if the outer ring 2a or the inner ring 3a of the radial ball bearing 1 is manufactured, the outer ring 2a or the inner ring 3a used in a portion where a high degree of rotational accuracy is not required can be achieved while ensuring practical accuracy. Can be built at a low cost. However, even in this case, the radial ball finally obtained that the dimensional accuracy including the shape accuracy and volume accuracy of the high-precision rings 8b and 8a to be the material of the outer ring 2a or the inner ring 3a is sufficiently secured. This is important in terms of ensuring the practical accuracy of the bearing. In order to further reduce the cost, it is preferable that the high-accuracy ring 8a for producing the inner ring 3a and the high-accuracy ring 8b for producing the outer ring 2a are produced from a single material. .

これに対して、前記特許文献2、3に記載された従来方法の場合には、各軌道輪(内輪3a或いは外輪2a)を造る為の高精度リングを互いに独立して造る為、これら各軌道輪用の高精度リングを効率良く造って低コスト化を図る面からは好ましくない。尚、特許文献5には、金属板を打ち抜いて造った円輪状の素材の断面形状を90度変換する反転加工によりリング状部品を造る方法が記載されているが、この様な特許文献5に記載された方法にしても、高精度リングを効率良く造って低コスト化を図る事はできない。   On the other hand, in the case of the conventional methods described in Patent Documents 2 and 3, high-accuracy rings for making the respective race rings (inner ring 3a or outer ring 2a) are made independently of each other. This is not preferable from the viewpoint of reducing the cost by efficiently producing a high-precision ring for a wheel. In addition, Patent Document 5 describes a method of manufacturing a ring-shaped part by reversal processing that converts the cross-sectional shape of an annular material formed by punching a metal plate by 90 degrees. Even with the described method, it is impossible to efficiently produce a high-precision ring and reduce the cost.

一方、前記特許文献1に記載された従来方法の場合には、各軌道輪を構成する高精度リングの製造作業の能率化と材料の歩留向上とを図る面からは良いが、前述した様に、加工装置の耐久性確保と寸法精度の確保の面からは問題がある。更に、前記特許文献4に記載された従来方法の場合には、各軌道輪を構成する高精度リングの製造作業の能率化を図る面からは良いが、前述した様に、材料の歩留確保の面からは問題がある。   On the other hand, in the case of the conventional method described in Patent Document 1, it is good from the viewpoint of improving the efficiency of manufacturing work of the high-accuracy ring constituting each track ring and improving the yield of the material. However, there are problems in terms of ensuring the durability of the processing apparatus and ensuring the dimensional accuracy. Furthermore, in the case of the conventional method described in Patent Document 4, it is good from the viewpoint of improving the efficiency of the manufacturing work of the high-accuracy ring constituting each race, but as described above, securing the yield of the material. There is a problem from the aspect.

特開平5−277615号公報Japanese Patent Laid-Open No. 5-277615 特開2001−150082号公報Japanese Patent Laid-Open No. 2001-150082 特開2000−94080号公報JP 2000-94080 A 特開2000−71046号公報JP 2000-71046 A 特開平10−146642号公報Japanese Patent Laid-Open No. 10-146642

本発明は、上述の様な事情に鑑みて、ラジアル玉軸受を構成する内輪或いは外輪を冷間加工で造る為の素材となり、最終的に得られるラジアル玉軸受の実用的な精度を十分に確保できる高精度リングを、容易に、且つ低コストで造れる製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is a material for producing an inner ring or an outer ring constituting a radial ball bearing by cold working, and sufficiently secures the practical accuracy of the finally obtained radial ball bearing. The present invention has been invented to realize a manufacturing method capable of easily and inexpensively manufacturing a high-accuracy ring that can be produced.

本発明の高精度リングの製造方法は、少なくとも次の(a) 〜(c) に示した工程を有する。
(a) 金属製で、造るべき高精度リングの容積よりも大きな容積を有するビレット状の素材を軸方向に圧縮すると共に、径方向中央部に円孔を形成して、中央部に所定の厚さ寸法及び所定の軸方向寸法を有する円筒部を、この円筒部の周囲部分に外向フランジ状の鍔状部を、それぞれ備えた第一中間素材とする工程。
(b) この第一中間素材を、この第一中間素材の径方向中間部で上記円筒部の外周面と上記鍔状部の内周縁との境界部分で切断し、このうちの円筒部から得られる部分を、円筒状の第一高精度リングとし、上記鍔状部から得られる部分を、円輪状の第二中間素材とする工程。
(c) 上記第二中間素材の断面の方向を90度変更する反転加工によりこの第二中間素材を、内径、外径、軸方向長さを規制値とした円筒状の第二高精度リングとする工程。
The method for producing a high-accuracy ring of the present invention includes at least the following steps (a) to (c).
(a) A billet-like material made of metal and having a volume larger than the volume of the high-precision ring to be manufactured is compressed in the axial direction, and a circular hole is formed in the central portion in the radial direction so that a predetermined thickness is formed in the central portion. A step of using a cylindrical portion having a vertical dimension and a predetermined axial dimension as a first intermediate material provided with an outward flange-like flange-like portion around the cylindrical portion.
(b) The first intermediate material is cut at the radial intermediate portion of the first intermediate material at the boundary between the outer peripheral surface of the cylindrical portion and the inner peripheral edge of the bowl-shaped portion, and obtained from the cylindrical portion. A portion to be obtained is a cylindrical first high-accuracy ring, and a portion obtained from the bowl-shaped portion is a ring-shaped second intermediate material.
(c) A cylindrical second high-accuracy ring whose inner diameter, outer diameter, and axial length are regulated values by reversal processing that changes the cross-sectional direction of the second intermediate material by 90 degrees; Process.

上述の様に構成する本発明の高精度リングの製造方法によれば、内径、外径、軸方向寸法を適正値に規制し、且つ、内周面の中心軸と外周面の中心軸同士を厳密に一致させた高精度リングを、材料の歩留を良好にし、しかも容易に、且つ、能率良く造れる。この結果、この高精度リングを加工して造られる、ラジアル玉軸受を構成する外輪や内輪の加工コストを、実用上十分な性能を確保しつつ、低減できる。
尚、加工精度を向上させる事で、前述した様な用途に比べて高精度を要求される玉軸受用の軌道輪の製造に使用する高精度リングに対する本発明の適用が可能である事は当然である。
According to the manufacturing method of the high-accuracy ring of the present invention configured as described above, the inner diameter, the outer diameter, and the axial dimension are restricted to appropriate values, and the central axis of the inner peripheral surface and the central axes of the outer peripheral surface are connected to each other. A high-accuracy ring closely matched can be manufactured easily and efficiently with good material yield. As a result, it is possible to reduce the processing cost of the outer ring and inner ring constituting the radial ball bearing, which is manufactured by processing this high-accuracy ring, while ensuring practically sufficient performance.
Of course, by improving the machining accuracy, the present invention can be applied to a high-accuracy ring used for manufacturing a bearing ring for a ball bearing that requires a higher accuracy than the above-described applications. It is.

本発明を実施する場合に好ましくは、例えば請求項2に記載した様に、(a) の工程で、素材の軸方向両端部を互いに近づく方向に圧縮する事により、径方向中央部に軸方向に関する厚さ寸法が径方向外寄り部分よりも大きくなったボス部を、このボス部の周囲部分に鍔状部を、それぞれ形成する。そして、このうちのボス部の中央部を軸方向に押し潰してこの中央部の軸方向に関する厚さを低減すると共に、このボス部の外径寄り部分の軸方向に関する厚さを増大させる。次いで、上記中央部の厚さを低減した部分を打ち抜いて円孔を形成する。
この様な構成を採用すれば、上記円孔の打ち抜き加工作業を容易に行なえる様にすると共に、この打ち抜き加工に伴ってスクラップとなる部分の容積を低減して、材料の歩留をより一層向上させる事ができる。
In the case of carrying out the present invention, preferably, as described in claim 2, for example, in the step (a), the axially opposite ends of the material are compressed in a direction approaching each other so A boss portion having a thickness dimension larger than that of the radially outward portion is formed, and a hook-like portion is formed around the boss portion. Then, the central portion of the boss portion is crushed in the axial direction to reduce the thickness of the central portion in the axial direction, and the thickness in the axial direction of the portion near the outer diameter of the boss portion is increased. Next, a circular hole is formed by punching out the portion where the thickness of the central portion is reduced.
By adopting such a configuration, it is possible to easily perform the punching work of the circular hole, and to reduce the volume of the portion to be scraped by the punching process, thereby further increasing the material yield. Can be improved.

又、本発明を実施する場合に好ましくは、例えば請求項3に記載した様に、(a) の工程で、素材の軸方向両端面中央部を互いに近づく方向に圧縮してこの中央部の軸方向に関する厚さを低減する事により、鍔状部の軸方向両側面から軸方向(互いに反対方向)に突出する(互いに同心の1対の)素円筒部を形成する。そして、上記中央部の厚さを低減した部分を打ち抜いて円孔を形成する。
この様な構成を採用する事によっても、上記円孔の打ち抜き加工作業を容易に行なえる様にすると共に、この打ち抜き加工に伴ってスクラップとなる部分の容積を低減して、材料の歩留をより一層向上させる事ができる。
Preferably, when the present invention is carried out, as described in claim 3, for example, in the step (a), the central portions of both end surfaces in the axial direction of the material are compressed in a direction approaching each other, and the shaft of the central portion is compressed. By reducing the thickness with respect to the direction, a pair of elementary cylindrical portions projecting in the axial direction (directions opposite to each other) from both side surfaces in the axial direction of the bowl-shaped portion are formed. And the part which reduced the thickness of the said center part is punched out, and a circular hole is formed.
By adopting such a configuration, it is possible to easily perform the punching work of the circular hole, and reduce the volume of the portion to be scraped by the punching process, thereby increasing the material yield. It can be further improved.

又、本発明を実施する場合に好ましくは、請求項4に記載した様に、(b) の工程と(c) の工程との間に、第二中間素材の外周縁部をこの第二中間素材の外径が拡がらない様に拘束した状態で、この第二中間素材を軸方向に、所定厚さ迄圧縮する据え込み加工を行なう。そして、この第二中間素材の余肉分を内周縁部に流動させた後、この内周縁部をピアス加工により除去してこの余肉分を除去する事により、上記第二中間素材の体積を所望値にする。
この様な構成を採用すれば、上記第二中間素材の体積を、より厳密に規制できる。
Further, when the present invention is carried out, preferably, the outer peripheral edge of the second intermediate material is placed between the second intermediate material between the step (b) and the step (c). In a state where the outer diameter of the material is restricted so as not to expand, an upsetting process is performed in which the second intermediate material is compressed to a predetermined thickness in the axial direction. Then, after the surplus portion of the second intermediate material is flowed to the inner peripheral edge, the inner peripheral portion is removed by piercing to remove the surplus portion, thereby reducing the volume of the second intermediate material. Set to desired value.
By adopting such a configuration, the volume of the second intermediate material can be more strictly regulated.

又、本発明を実施する場合に好ましくは、請求項5に記載した様に、(a) の工程で形成する鍔状部の軸方向に関する厚さ寸法を、径方向中央部寄り(例えばボス部寄り)で大きく外周縁部に向かう程小さくする。そして、(c) の工程で、第二中間素材の外径寄り部分を径方向内方に縮め、同じく内径寄り部分を径方向外方に拡げる方向に反転加工を施す。 この様に構成すれば、上記第二中間素材の各部に加わる応力を低く抑えつつ、この第二中間素材から得られる円筒状の第二高精度リングの径方向に関する厚さ寸法を、軸方向に関して均一にできる。   When the present invention is implemented, preferably, the thickness dimension in the axial direction of the hook-shaped portion formed in the step (a) is set closer to the radial center portion (for example, the boss portion). The smaller it is, the smaller it is toward the outer periphery. Then, in the step (c), the outer intermediate portion of the second intermediate material is contracted radially inward, and the reverse processing is performed in the same direction in which the inner peripheral portion is expanded radially outward. If comprised in this way, the thickness dimension regarding the radial direction of the cylindrical 2nd high precision ring obtained from this 2nd intermediate material is restrained about an axial direction, keeping the stress applied to each part of the above-mentioned 2nd intermediate material low. Can be uniform.

図1〜4は、請求項1、2、4、5に対応する、本発明の実施例1を示している。尚、冷間鍛造加工を含めた塑性加工や、打ち抜き加工等の、プレス加工の分野では、加工前の形状と加工後の形状とが分かれば、塑性加工に使用する金型の形状・構造を理解する事は容易(自明)である場合が多い。従って、一部の金型の形状・構造に就いては図示を省略し、以下、各工程での被加工物の形状を中心に説明する。又、図1は、加工の進捗状況を分かり易くする為、各被加工物の姿勢を一致させて描いている為、各工程での被加工物の上下方向は、図面と実際とで必ずしも一致しない。プレス加工の分野で周知の様に、押型を上方に、被加工物を介してこの押型の力を受ける受型を下方に、それぞれ配置する事は当然である。   1 to 4 show a first embodiment of the present invention corresponding to claims 1, 2, 4, and 5. In the field of press working such as plastic working including cold forging and punching, if the shape before processing and the shape after processing are known, the shape and structure of the mold used for plastic processing can be determined. It is often easy (understood) to understand. Accordingly, illustrations of the shapes and structures of some of the molds are omitted, and the following description will focus on the shape of the workpiece in each process. In addition, since FIG. 1 is drawn with the postures of the workpieces matched to make it easy to understand the progress of the machining, the vertical direction of the workpieces in each process is not necessarily the same as the drawings. do not do. As is well known in the field of press working, it is natural to place the pressing die upward and the receiving die receiving the pressing force via the workpiece below.

本実施例では、先ず、長尺な線材を所定長さに切断して、図1の(A)に示す様なビレット(円柱状素材)13を得る。このビレット13は、ドラムに巻回した上記長尺な線材をアンコイラから引き出しつつ、得るべき第一、第二の高精度リング14、15の容積の合計よりも少し大きな容積となるだけの長さ寸法(上記所定長さ)に切断する事により得る。   In the present embodiment, first, a long wire is cut into a predetermined length to obtain a billet (columnar material) 13 as shown in FIG. The billet 13 has a length that is slightly larger than the total volume of the first and second high-precision rings 14 and 15 to be obtained while pulling out the long wire wound around the drum from the uncoiler. It is obtained by cutting into dimensions (the above-mentioned predetermined length).

この様にして得たビレット13は、冷間で軸方向に圧縮する据え込み加工を施す事により軸方向両端面を矯正して、図1の(B)に示す様な、ビヤ樽型の(第一)予備中間素材16とする。その後、更にこの予備中間素材16に、軸方向に圧縮する据え込み加工を施す事により、図1の(C)に示す様な、円板状の第二予備中間素材17を得る。この第二予備中間素材17は、径方向中央部に軸方向に関する厚さ寸法が径方向外寄り部分よりも大きくなったボス部18を、このボス部18の周囲部分に外向フランジ状の鍔状部19を、互いに同心に形成して成るものである。   The billet 13 thus obtained has a beer barrel-shaped (first) as shown in FIG. 1B by correcting both axial end surfaces by applying cold upsetting. 1) Preliminary intermediate material 16 is used. Thereafter, the preliminary intermediate material 16 is further subjected to an upsetting process that compresses in the axial direction, thereby obtaining a disk-shaped second preliminary intermediate material 17 as shown in FIG. The second preliminary intermediate material 17 has a boss portion 18 having a thickness dimension in the axial direction larger than that of a radially outer portion at the radial center portion, and an outward flange-like flange shape around the boss portion 18. The portions 19 are formed concentrically with each other.

上記第二予備中間素材17は、軸方向に関する厚さ寸法に関して、中央のボス部18の厚さ寸法T18が最も大きく、上記鍔状部19の厚さ寸法t1 、t2 は、このボス部18の厚さ寸法T18よりも小さく(T18>t1 >t2 )なっている。更に、上記鍔状部19の断面形状はくさび形で、この鍔状部19の厚さ寸法t1 、t2 は、径方向に関し漸次変化している。即ち、この鍔状部19の厚さ寸法t1 、t2 は、内周縁部の厚さ寸法t1 が大きく、外周縁部の厚さ寸法t2 が小さくなっている。上記鍔状部19は、上記第一、第二両高精度リング14、15のうち、外輪3a{図8の(F)参照}を造る為の第二高精度リング15となるべき部分であるが、造るべきこの第二高精度リング15の厚さ寸法T15{図2(C)参照}は、上記鍔状部19の内外両周縁部の厚さ寸法t1 、t2 の中間(t1 >T15>t2 )である。 In the second preliminary intermediate material 17, the thickness dimension T 18 of the central boss portion 18 is the largest with respect to the thickness dimension in the axial direction, and the thickness dimensions t 1 and t 2 of the bowl-shaped portion 19 are is smaller (T 18> t 1> t 2) than the thickness T 18 parts 18. Furthermore, the cross-sectional shape of the hook-shaped portion 19 is a wedge shape, and the thickness dimensions t 1 and t 2 of the hook-shaped portion 19 gradually change in the radial direction. That is, the thickness dimension t 1, t 2 of the flange portion 19, the thickness t 1 of the inner peripheral edge portion is large, the thickness t 2 of the outer peripheral edge portion is smaller. The said hook-shaped part 19 is a part which should become the 2nd high precision ring 15 for making the outer ring | wheel 3a {refer (F) of FIG. 8} among said 1st and 2nd high precision rings 14 and 15. but the thickness T 15 of the second high-precision ring 15 to produce {see FIG. 2 (C)}, the thickness dimension t 1 of the inner and outer periphery of the flange portion 19, t 2 of the intermediate (t 1 > T 15 > t 2 ).

上述の様な第二予備中間素材17を形成する据え込み加工を行なう際には、上記予備中間素材16を、この第二予備中間素材17の外面形状に合致する内面形状を有する1対の金型同士の間で、軸方向に圧縮する。即ち、上記予備中間素材16を、上記第二予備中間素材17の外径D17と同じ内径を有し、底面の形状をこの第二予備中間素材17の軸方向片側面{図1の(C)の下面}の形状に合致する形状とした、有底の円孔を備えた受型内に、上記予備中間素材16の中心軸と円孔の中心軸とを一致させた状態でセットし、上記円孔の底面と押型の先端面(本実施例の場合には平坦面)との間で上記予備中間素材16を軸方向に圧縮する。これら底面と先端面との形状は、上記第二予備中間素材17の軸方向両側面に見合う(凹凸方向が逆になった)形状とされているので、上記底面と先端面とを強く押し付け合う事で、上記第二予備中間素材17を得られる。 When performing the upsetting process to form the second preliminary intermediate material 17 as described above, the preliminary intermediate material 16 is a pair of gold having an inner surface shape that matches the outer surface shape of the second preliminary intermediate material 17. Compress between the molds in the axial direction. That is, the preliminary intermediate material 16 has the same inner diameter as the outer diameter D 17 of the second preliminary intermediate material 17, and the shape of the bottom surface is one side surface of the second preliminary intermediate material 17 in the axial direction {FIG. ) In a shape matching the shape of the bottom surface} with a bottomed circular hole, with the central axis of the preliminary intermediate material 16 and the central axis of the circular hole being matched, The preliminary intermediate material 16 is compressed in the axial direction between the bottom surface of the circular hole and the front end surface of the pressing die (a flat surface in this embodiment). Since the shape of the bottom surface and the front end surface is a shape that matches both axial side surfaces of the second preliminary intermediate material 17 (the concave and convex directions are reversed), the bottom surface and the front end surface are strongly pressed against each other. Thus, the second preliminary intermediate material 17 can be obtained.

この第二予備中間素材17には、前記ボス部18の中央部を軸方向に押し潰す、第二の据え込み加工を施す事により、図1の(D)に示す様な、第三予備中間素材20とする。この為に上記第二予備中間素材17のボス部18の中央部を、このボス部18の外径が拡がらない様に抑えつつ、先端面{図1の(C)(D)の下面}側から軸方向に押圧する。この際、上記第二予備中間素材17の鍔状部19を、受型と抑え型との間で挟持して、この鍔状部19が変形する事を防止する。このうちの受型は、上記第二予備中間素材17(及び上記第三予備中間素材20)の外径D17と同じ内径を有する有底の円孔を備え、抑え型は、この受型の円孔の内側に隙間なく挿入可能な外径と、上記ボス部18を内側に隙間なく内嵌可能な内径とを有する円筒状である。又、この抑え型の内側にパンチユニットを、軸方向の変位を可能に設置している。このパンチユニットは、上記ボス部18の外径と一致する外径を有する円筒状の抑え筒(リングパンチ)の内側に、このボス部18の外径よりも小さな外径を有する円柱状の押圧杆(パンチ)を、軸方向の変位を可能に内嵌して成る。そして、上記抑え筒の先端面を、円輪状の抑え面としている。被加工物に対する受型の位置関係は、上記第二予備中間素材17を造る場合とは、軸方向に関して逆になる。 The second preliminary intermediate material 17 is subjected to a second upsetting process by crushing the central portion of the boss portion 18 in the axial direction, so that the third preliminary intermediate material as shown in FIG. The material 20 is used. For this purpose, the center surface of the boss portion 18 of the second preliminary intermediate material 17 is restrained so that the outer diameter of the boss portion 18 does not expand, while the front end surface {the lower surface of FIGS. 1C and 1D}. Press in the axial direction from the side. At this time, the hook-shaped portion 19 of the second preliminary intermediate material 17 is sandwiched between the receiving mold and the holding mold to prevent the hook-shaped portion 19 from being deformed. Of these, the receiving mold includes a bottomed circular hole having the same inner diameter as the outer diameter D 17 of the second preliminary intermediate material 17 (and the third preliminary intermediate material 20). It has a cylindrical shape having an outer diameter that can be inserted inside the circular hole without a gap and an inner diameter that can fit the boss portion 18 inside without a gap. In addition, a punch unit is installed inside the holding die so as to be capable of axial displacement. This punch unit has a cylindrical press having an outer diameter smaller than the outer diameter of the boss 18 inside a cylindrical holding cylinder (ring punch) having an outer diameter that matches the outer diameter of the boss 18. A punch (punch) is fitted inside so as to be axially displaceable. And the front end surface of the said control cylinder is used as the annular | circular shaped control surface. The positional relationship of the receiving mold with respect to the workpiece is opposite to that in the case of producing the second preliminary intermediate material 17 with respect to the axial direction.

上記第二予備中間素材17を上記第三予備中間素材20とする場合には、この第二予備中間素材17の鍔状部19を上記受型と抑え型との間で挟持すると共に、上記パンチユニットの抑え筒の先端面を適正位置に固定した状態で、このパンチユニットの押圧杆を上記ボス部18の先端部に押し付ける。この押し付け作業は、上記ボス部18の一部が上記抑え筒の先端面に達して金属材料がそれ以上フローする空間がなくなり、上記押圧杆をそれ以上変位させられなくなるまで行なう。この結果、上記ボス部18の中央部の軸方向に関する厚さを低減すると共に、このボス部18の外径寄り部分の軸方向に関する厚さが増大して、この外径寄り部分に、軸方向寸法が所望値に規制された円筒状部分21が形成される。この様にして得られる上記第三予備中間素材20に関して、この第三予備中間素材20の基端面{図1の(D)の上面}から上記円筒状部分21の先端面迄の長さL21は、規定通りの値になる。又、上記円筒状部分21の径方向に関する厚さT21は、上記抑え型の内径と上記パンチユニットの押圧杆の外径との差の1/2に、厳密に規制される。要するに、上記第二予備中間素材17に存在する体積誤差は、上記ボス部18中央部に残留する底板部の厚さを異ならせる事により補償する(体積誤差をスクラップとなる部分に集める)。 When the second preliminary intermediate material 17 is used as the third preliminary intermediate material 20, the hook-shaped portion 19 of the second preliminary intermediate material 17 is sandwiched between the receiving mold and the holding mold, and the punch With the front end surface of the holding cylinder of the unit being fixed at an appropriate position, the pressing rod of the punch unit is pressed against the front end portion of the boss portion 18. This pressing operation is performed until a part of the boss portion 18 reaches the distal end surface of the holding cylinder, there is no more space for the metal material to flow, and the pressing rod can no longer be displaced. As a result, the thickness in the axial direction of the central portion of the boss portion 18 is reduced, and the thickness in the axial direction of the portion near the outer diameter of the boss portion 18 is increased. A cylindrical portion 21 whose size is regulated to a desired value is formed. Regarding the third preliminary intermediate material 20 obtained in this way, the length L 21 from the base end surface of the third preliminary intermediate material 20 (upper surface in FIG. 1D) to the distal end surface of the cylindrical portion 21. Is as specified. Further, the thickness T 21 in the radial direction of the cylindrical portion 21 is strictly regulated to ½ of the difference between the inner diameter of the holding die and the outer diameter of the pressing rod of the punch unit. In short, the volume error existing in the second preliminary intermediate material 17 is compensated by changing the thickness of the bottom plate portion remaining in the central portion of the boss portion 18 (collecting the volume error in a scrap portion).

上述の様にして、上記第三予備中間素材20を形成したならば、図1の(E)に示す様に、この第三予備中間素材20の中央部で上記円筒状部分21に囲まれた部分に円孔22を、プレスによる打ち抜き加工により形成して、中央部に円筒部24を有する第一中間素材23を得る。この打ち抜き加工は、上記第三予備中間素材20を、中央部に打ち抜き孔を設けた受型に載置した状態で、上記円筒状部分21の内径側に挿入した打ち抜きパンチによりこの円筒状部分21に囲まれた部分を、円板状のスクラップ25として打ち抜く事で行なう。上記打ち抜きパンチの外径及び上記打ち抜き孔の内径は、上記円孔22の内径と上記円筒状部分21の内径とが一致する様に規制している。従って、上記打ち抜き加工の結果得られた、上記第一中間素材23の円筒部24の内周面は、単一円筒面となる。   When the third preliminary intermediate material 20 is formed as described above, it is surrounded by the cylindrical portion 21 at the center of the third preliminary intermediate material 20 as shown in FIG. A circular hole 22 is formed in the portion by punching with a press to obtain a first intermediate material 23 having a cylindrical portion 24 in the center. In this punching process, the cylindrical portion 21 is inserted by a punching punch inserted on the inner diameter side of the cylindrical portion 21 in a state where the third preliminary intermediate material 20 is placed on a receiving die having a punched hole in the center. The portion surrounded by is punched as a disc-like scrap 25. The outer diameter of the punching punch and the inner diameter of the punching hole are regulated so that the inner diameter of the circular hole 22 matches the inner diameter of the cylindrical portion 21. Therefore, the inner peripheral surface of the cylindrical portion 24 of the first intermediate material 23 obtained as a result of the punching process is a single cylindrical surface.

この様にして得られた、上記第一中間素材23は、図1の(F)に示す様に、径方向中間部で上記円筒部24の外周面と前記鍔状部19の内周縁との境界部分で切断して、第一高精度リング14と第二中間素材27とを得る。この切断作業は、上記鍔状部19の軸方向片面{図1の(F)の下面}を、環状の受型の上面で支承した状態で、上記第一中間素材23の中央部軸方向他面{図1の(F)の上面}を、打ち抜きパンチにより上記受型に向けて強く押圧する事により行なう。この様な、打ち抜き加工による切断作業の結果、上記円筒部24から得られる部分が、円筒状の上記第一高精度リング14となり、上記鍔状部19から得られる部分が、円輪状の第二中間素材27となる。   The first intermediate material 23 obtained in this way is, as shown in FIG. 1 (F), a radial intermediate portion between the outer peripheral surface of the cylindrical portion 24 and the inner peripheral edge of the bowl-shaped portion 19. The first high precision ring 14 and the second intermediate material 27 are obtained by cutting at the boundary portion. This cutting operation is performed in such a manner that one axial surface {the lower surface of FIG. The surface {the upper surface of Fig. 1 (F)} is pressed by a punching punch toward the receiving mold. As a result of such cutting work by punching, the portion obtained from the cylindrical portion 24 becomes the cylindrical first high-accuracy ring 14, and the portion obtained from the bowl-shaped portion 19 is an annular second shape. It becomes the intermediate material 27.

この様にして得られた、これら第一高精度リング14と第二中間素材27とのうち、第一高精度リング14は、例えば前述した図7に示す様な工程により(この第一高精度リング14を図7に示した高精度リング8aとして利用する事により)、内輪3aを造る。これに対して、上記第二中間素材27は、図2〜4に示す様な工程により第二高精度リング15としてから、やはり前述した図8に示す様な工程により(この第二高精度リング15を図8に示した高精度リング8bとして利用する事により)、外輪2aを造る。   Of the first high-accuracy ring 14 and the second intermediate material 27 obtained in this way, the first high-accuracy ring 14 is obtained by, for example, the process shown in FIG. By using the ring 14 as the high-precision ring 8a shown in FIG. 7), the inner ring 3a is made. On the other hand, the second intermediate material 27 is formed into the second high-accuracy ring 15 by the processes as shown in FIGS. 15 is used as the high-precision ring 8b shown in FIG. 8), and the outer ring 2a is made.

上記第二中間素材27を上記第二高精度リング15とする工程では、先ず、図2の(A)及び図3に示す様に、この第二中間素材27を、ダイ29の円孔30に密に内嵌した状態で、1対のパンチ31、31の先端面同士の間で強く押圧する、所謂サイジング加工を施す。これら両パンチ31、31の先端面は、それぞれ上記第二中間素材27の軸方向両側面に密接する様な円すい凹面状である。それぞれの先端面をこの様な形状とした上記両パンチ31、31は、上記第二中間素材27を軸方向に圧縮しつつ、それぞれの先端面同士の距離を適正距離にまで縮め、この第二中間素材27の厚さを適正値にする。この際、上記第二中間素材27の厚さを適正値にする事に伴ってフローした余剰肉分は、この第二中間素材27の内周縁部に集まる。従って、上記サイジング加工を施したこの第二中間素材27の中央部に、図2の(B)に示す様に打ち抜き加工(ピアス加工)による円孔32を形成すれば、造るべき上記第二高精度リング28の容積と同じ容積を有する、第四予備中間素材33を得られる。   In the step of using the second intermediate material 27 as the second high-accuracy ring 15, first, the second intermediate material 27 is placed in the circular hole 30 of the die 29 as shown in FIG. A so-called sizing process is performed in which the tip ends of the pair of punches 31 and 31 are strongly pressed in a tightly fitted state. The front end surfaces of both punches 31 and 31 are conical concave surfaces that are in close contact with both axial side surfaces of the second intermediate material 27. The punches 31, 31 having the respective tip surfaces in such a shape reduce the distance between the tip surfaces to an appropriate distance while compressing the second intermediate material 27 in the axial direction. The thickness of the intermediate material 27 is set to an appropriate value. At this time, the surplus meat that has flowed as the thickness of the second intermediate material 27 is set to an appropriate value is collected at the inner peripheral edge of the second intermediate material 27. Accordingly, if the circular hole 32 is formed by punching (piercing) as shown in FIG. 2B in the center of the second intermediate material 27 subjected to the sizing, the second high material to be produced is formed. A fourth preliminary intermediate material 33 having the same volume as that of the precision ring 28 is obtained.

この様な第四予備中間素材33を形成とした後、図2の(B)に示した状態から(C)に示した状態にまで、この第四予備中間素材33の外径寄り部分を径方向内方に縮め、同じく内径寄り部分を径方向外方に拡げる方向に断面の方向を90度変更する、反転加工を施す。この反転加工は、図4に示す様に、円筒状のダイ34内に上記第四予備中間素材33を、パンチ35で押し込む事により行なう。このダイ34は、開口部側に設けられた大径部36と、奥側に設けられた、この大径部36と同心の小径部37とを、湾曲面38により連続させた中心孔を有する。このうちの小径部37の内径R37は、上記第四予備中間素材33の外径よりも小さく、内径よりも大きい。又、上記パンチ35は、先端部を先細のテーパ部としている。上記反転加工を行なう際には、先ず、図4の(A)に示す様に、上記第四予備中間素材33を上記大径部36の内側に係止(セット)する。次いで、図4の(B)(C)に示す様に、上記パンチ35により上記第四予備中間素材33を上記小径部37の内側にまで押し込む。この結果、この第四予備中間素材33の断面が90度反転し、図2の(C)に示す様な、円筒状の上記第二高精度リング15を得られる。 After the fourth preliminary intermediate material 33 is formed, the outer diameter portion of the fourth preliminary intermediate material 33 is changed from the state shown in FIG. 2B to the state shown in FIG. Reversing is performed by shrinking inward in the direction and changing the direction of the cross section by 90 degrees in the same manner as expanding the portion closer to the inner diameter outward in the radial direction. As shown in FIG. 4, the reversal process is performed by pushing the fourth preliminary intermediate material 33 into the cylindrical die 34 with a punch 35. The die 34 has a central hole in which a large-diameter portion 36 provided on the opening side and a small-diameter portion 37 concentric with the large-diameter portion 36 provided on the back side are continuous by a curved surface 38. . Among these, the inner diameter R 37 of the small diameter portion 37 is smaller than the outer diameter of the fourth preliminary intermediate material 33 and larger than the inner diameter. The punch 35 has a tapered portion at the tip. When performing the reversing process, first, as shown in FIG. 4A, the fourth preliminary intermediate material 33 is locked (set) inside the large-diameter portion 36. Next, as shown in FIGS. 4B and 4C, the fourth preliminary intermediate material 33 is pushed into the small diameter portion 37 by the punch 35. As a result, the cross-section of the fourth preliminary intermediate material 33 is inverted by 90 degrees, and the cylindrical second high-accuracy ring 15 as shown in FIG.

上述の様にして行なう反転加工に伴って、上記第四予備中間素材33の内径寄り部分が引き伸ばされて上記厚さ寸法が小さくなり、同じく外径寄り部分が圧縮されてこの厚さ寸法が大きくなる。これに対して本実施例の場合には、上記第四予備中間素材33の軸方向に関する厚さ寸法が、内径寄り部分で大きく、外径寄り部分で小さい為、上記反転加工が終了した状態で得られる上記第二高精度リング15の径方向に関する厚さ寸法は、軸方向に関して(両端縁部の面取り部を除き)均一になる。即ち、上記反転加工が終了した状態で上記第四予備中間素材33が、内径、外径、軸方向長さを規制値とされた、円筒状の上記第二高精度リング15となる。この為に、上記小径部37の内径R37と上記パンチ35の先半部の外径D35との差は、造るべき第二高精度リング15の厚さT15{図2の(C)参照}の2倍(R37−D35=2T15)としている。上述の様な第二高精度リング15には、例えば前述の図8に示す様な冷間加工を加えて外輪2aとする。 Along with the reversing process performed as described above, the portion closer to the inner diameter of the fourth preliminary intermediate material 33 is stretched to reduce the thickness dimension, and the portion closer to the outer diameter is also compressed to increase the thickness dimension. Become. On the other hand, in the case of the present embodiment, since the thickness dimension in the axial direction of the fourth preliminary intermediate material 33 is large at the inner diameter portion and small at the outer diameter portion, the reversing process is completed. The thickness of the second high-accuracy ring 15 obtained in the radial direction is uniform in the axial direction (except for the chamfered portions at both end edges). That is, the fourth preliminary intermediate material 33 becomes the cylindrical second high-accuracy ring 15 in which the inner diameter, the outer diameter, and the axial length are set as the regulation values after the reversing process is completed. For this reason, the difference between the inner diameter R 37 and the outer diameter D 35 of the previous half of the punch 35 of the small-diameter portion 37, the second high-precision ring 15 to make the thickness T 15 {shown in FIG. 2 (C) 2} (R 37 −D 35 = 2T 15 ). The second high precision ring 15 as described above is subjected to cold working as shown in FIG.

図5は、請求項1、3〜5に対応する、本発明の実施例2を示している。本実施例の場合には、上述した実施例1の場合と同様にして造った(第一)予備中間素材16{図5の(B)参照}に、外周面及び軸方向両端部の形状を整える為の塑性加工を施す事により、図5の(C)に示す様な、第二予備中間素材39を得る。この第二予備中間素材39は、軸方向両端面中央部に、互いに同径且つ同心の円形凹孔40a、40bを形成すると共に、軸方向一端側{図5の(C)の上端側}の外径を他の部分よりも小さくして成る。   FIG. 5 shows Embodiment 2 of the present invention corresponding to claims 1 and 3 to 5. In the case of the present embodiment, the shape of the outer peripheral surface and both ends in the axial direction is formed on the (first) preliminary intermediate material 16 {see FIG. 5B) manufactured in the same manner as in the case of the first embodiment described above. By performing plastic working for trimming, a second preliminary intermediate material 39 as shown in FIG. 5C is obtained. The second preliminary intermediate material 39 is formed with circular concave holes 40a and 40b having the same diameter and concentric with each other in the center portion of both axial end surfaces, and at one axial end {upper end in FIG. 5C}. The outer diameter is made smaller than other parts.

本実施例の場合、この様な第二予備中間素材39に、軸方向に圧縮する据え込み加工を施す事により、図5の(D)に示す様な、円板状の第三予備中間素材41を得る。この第三予備中間素材41は、ボス部42と鍔状部19とを備える。このうち、径方向中央部に設けられたボス部42は、仕切板部43により、軸方向中間部を塞がれた円筒状で、軸方向に関する厚さ寸法が径方向外寄り部分よりも大きくなっている。又、上記鍔状部19は、上記ボス部42の周囲部分に、このボス部42と同心に形成されている。この鍔状部19の厚さ寸法に関しては、前述した実施例1の場合と同様に規制する。   In the case of the present embodiment, a disk-shaped third preliminary intermediate material as shown in FIG. 5D is obtained by subjecting such a second preliminary intermediate material 39 to an upsetting process that compresses in the axial direction. 41 is obtained. The third preliminary intermediate material 41 includes a boss portion 42 and a bowl-shaped portion 19. Among these, the boss portion 42 provided in the central portion in the radial direction has a cylindrical shape in which the intermediate portion in the axial direction is blocked by the partition plate portion 43, and the thickness dimension in the axial direction is larger than that in the radially outward portion. It has become. Further, the hook-shaped portion 19 is formed concentrically with the boss portion 42 around the boss portion 42. The thickness dimension of the bowl-shaped portion 19 is regulated in the same manner as in the case of the first embodiment.

上述の様な第三予備中間素材41を形成する据え込み加工も、基本的には前述した実施例1の場合と同様に、上記第二予備中間素材39を、上記第三予備中間素材41の外面形状に合致する内面形状を有する1対の金型同士の間で、軸方向に圧縮する事により行なう。特に、本実施例の場合には、これら両金型同士の間隔が所定値になるまで、これら両金型を近づけた状態で、何れか又は双方の金型の中心部に、当該金型に対する軸方向の移動を可能に設けたパンチを、被加工物である上記第三予備中間素材41の中央部に強く押し付けて、この中央部の厚さ寸法を小さくする。そして、上記ボス部42の中央部の軸方向に関する厚さを低減すると共に、この中央部から金属材料をフローさせて、金属材料を上記両金型同士の間に、完全に充満させる。この結果、上記ボス部42の軸方向長さL42及び上記鍔状部19の軸方向に関する厚さ寸法が、規定通りの値になる。この理由は、上記両金型を、これら両金型同士の距離が所定値になった状態で停止する為である。又、上記ボス部42の各部の径方向に関する厚さは、上記両金型の内径と、上記パンチ(又は金型の一部)の外径との差の1/2に、厳密に規制される。要するに、上記第二予備中間素材39の体積誤差は、上記ボス部42の軸方向中間部の仕切板部43の厚さを異ならせる事により補償する。 In the upsetting process for forming the third preliminary intermediate material 41 as described above, the second preliminary intermediate material 39 is basically replaced with the third preliminary intermediate material 41 in the same manner as in the first embodiment. It is performed by compressing in the axial direction between a pair of molds having an inner surface shape that matches the outer surface shape. In particular, in the case of the present embodiment, in the state where these two molds are brought close to each other until the distance between the two molds reaches a predetermined value, the center of one or both molds is attached to the mold. A punch provided with axial movement is strongly pressed against the central portion of the third preliminary intermediate material 41, which is the workpiece, to reduce the thickness of the central portion. And while reducing the thickness regarding the axial direction of the center part of the said boss | hub part 42, a metal material is made to flow from this center part, and a metal material is completely filled between the said both metal mold | dies. As a result, the axial length L 42 of the boss portion 42 and the thickness dimension of the flange-shaped portion 19 in the axial direction become the prescribed values. This is because the two molds are stopped in a state in which the distance between the two molds becomes a predetermined value. Further, the thickness of each part of the boss portion 42 in the radial direction is strictly regulated to ½ of the difference between the inner diameters of the two molds and the outer diameter of the punch (or part of the mold). The In short, the volume error of the second preliminary intermediate material 39 is compensated by making the thickness of the partition plate portion 43 at the intermediate portion in the axial direction of the boss portion 42 different.

上述の様にして、上記第三予備中間素材41を形成したならば、図5の(E)に示す様に、この第三予備中間素材41の中央部で上記ボス部42の軸方向中間部の仕切り板部43をプレスによる打ち抜き加工により除去して円孔44を形成し、中央部に円筒部45を有する第一中間素材46を得る。この打ち抜き加工は、上記第三予備中間素材41を、この第三予備中間素材41の軸方向片側面に合致する表面形状を有し、中央部に打ち抜き孔を設けた受型に載置した状態で、上記ボス部42の内径側に挿入した打ち抜きパンチにより上記仕切板部43を、円板状のスクラップ25として打ち抜く事により行なう。上記打ち抜きパンチの外径は上記ボス部42の内径と一致させて、上記打ち抜き加工の結果得られた、上記第一中間素材46の内周面を単一円筒面としている。   If the third preliminary intermediate material 41 is formed as described above, as shown in FIG. 5E, the axial intermediate portion of the boss portion 42 is formed at the center of the third preliminary intermediate material 41. The partition plate portion 43 is removed by punching with a press to form a circular hole 44, and a first intermediate material 46 having a cylindrical portion 45 at the center is obtained. In this punching process, the third preliminary intermediate material 41 is placed on a receiving die having a surface shape that matches one axial side surface of the third preliminary intermediate material 41 and having a punched hole in the center. Then, the partition plate portion 43 is punched out as a disc-shaped scrap 25 by a punching punch inserted on the inner diameter side of the boss portion 42. The outer diameter of the punching punch is matched with the inner diameter of the boss portion 42, and the inner peripheral surface of the first intermediate material 46 obtained as a result of the punching process is a single cylindrical surface.

この様にして得られた、上記第一中間素材46は、図5の(F)に示す様に、径方向中間部で上記円筒部45の外周面と前記鍔状部19の内周縁との境界部分で切断して、第一高精度リング47と第二中間素材27とを得る。この切断作業は、上記鍔状部19の軸方向片面{図5の(F)の下面}を、環状の受型の上面で支承した状態で、上記第一中間素材46の中央部軸方向他面{図5の(F)の上面}を、先端面をこの中央部他面に合致した形状を有する打ち抜きパンチにより、上記受型に向けて強く押圧する事により行なう。この様な、打ち抜き加工による切断作業の結果、上記円筒部45から得られる部分が、円筒状で両端部外周面に段差部48、48を有する上記第一高精度リング47となり、上記鍔状部19から得られる部分が、円輪状の第二中間素材27となる。   The first intermediate material 46 obtained in this way is, as shown in FIG. 5F, a radial intermediate portion between the outer peripheral surface of the cylindrical portion 45 and the inner peripheral edge of the bowl-shaped portion 19. The first high precision ring 47 and the second intermediate material 27 are obtained by cutting at the boundary portion. This cutting operation is performed in such a manner that one axial surface (the lower surface in FIG. 5F) of the bowl-shaped portion 19 is supported by the upper surface of the annular receiving die, and the axial direction in the central portion of the first intermediate material 46 and the like. The surface {the upper surface in FIG. 5F} is formed by strongly pressing the front end surface toward the receiving die with a punching punch having a shape matching the other surface of the central portion. As a result of such cutting work by punching, the portion obtained from the cylindrical portion 45 becomes the first high-accuracy ring 47 having a cylindrical shape and stepped portions 48, 48 on the outer peripheral surfaces of both ends. The part obtained from 19 becomes the annular second intermediate material 27.

この様にして得られた、これら第一高精度リング47と第二中間素材27とのうち、第一高精度リング47は、例えば前述した図7に示す様な工程により(この第一高精度リング47を図7に示した第一中間素材9として利用する事により)、内輪3aを造る。これに対して、上記第二中間素材27は、前述した実施例1の場合と同様に、図2〜4に示す様な工程により第二高精度リング15としてから、やはり前述した図8に示す様な工程により(この第二高精度リング15を図8に示した高精度リング8bとして利用する事により)、外輪2aを造る。   Of the first high-accuracy ring 47 and the second intermediate material 27 obtained in this way, the first high-accuracy ring 47 is obtained by, for example, the process shown in FIG. By using the ring 47 as the first intermediate material 9 shown in FIG. 7, the inner ring 3a is made. On the other hand, the second intermediate material 27 is formed as the second high-accuracy ring 15 by the processes as shown in FIGS. 2 to 4 as shown in FIG. The outer ring 2a is manufactured by such a process (by using the second high precision ring 15 as the high precision ring 8b shown in FIG. 8).

尚、本発明の特徴は、例えば内輪と外輪とを造る為の1対の高精度リングを効率良く造る点にある。得られた高精度リングを内輪或いは外輪に加工する方法に就いては、特に限定するものではない。   The feature of the present invention is that, for example, a pair of high-precision rings for producing an inner ring and an outer ring can be efficiently produced. The method for processing the obtained high-accuracy ring into an inner ring or an outer ring is not particularly limited.

本発明の実施例1の加工工程の前段を示す断面図。Sectional drawing which shows the front | former stage of the manufacturing process of Example 1 of this invention. 同じく後段を示す断面図。Sectional drawing which similarly shows a back | latter stage. サイジング工程の具体的実施状況を示す断面図。Sectional drawing which shows the specific implementation condition of a sizing process. 同じく反転加工の実施状況を示す断面図。Sectional drawing which similarly shows the implementation condition of inversion processing. 本発明の実施例2の加工工程を示す断面図。Sectional drawing which shows the manufacturing process of Example 2 of this invention. 本発明の対象となる高精度リングにより造られる内輪及び外輪を組み込んだラジアル玉軸受の1例を示す部分切断斜視図。The partial cutaway perspective view which shows an example of the radial ball bearing which incorporated the inner ring | wheel and outer ring | wheel produced with the high precision ring used as the object of this invention. 内輪加工工程の1例を示す断面図。Sectional drawing which shows an example of an inner ring process. 外輪加工工程の1例を示す断面図。Sectional drawing which shows an example of an outer ring process.

符号の説明Explanation of symbols

1 ラジアル玉軸受
2、2a 外輪
3、3a 内輪
4 玉
5 外輪軌道
6 内輪軌道
7 保持器
8、8a、8b 高精度リング
9、9a 第一中間素材
10、10a 第二中間素材
11、11a 第三中間素材
12、12a 第四中間素材
13 ビレット
14 第一高精度リング
15 第二高精度リング
16 予備中間素材
17 第二予備中間素材
18 ボス部
19 鍔状部
20 第三予備中間素材
21 円筒状部分
22 円孔
23 第一中間素材
24 円筒部
25 スクラップ
27 第二中間素材
29 ダイ
30 円孔
31 パンチ
32 円孔
33 第四予備中間素材
34 ダイ
35 パンチ
36 大径部
37 小径部
38 湾曲部
39 第二予備中間素材
40a、40b 円形凹孔
41 第三予備中間素材
42 ボス部
43 仕切板部
44 円孔
45 円筒部
46 第一中間素材
47 第一高精度リング
48 段差部
DESCRIPTION OF SYMBOLS 1 Radial ball bearing 2, 2a Outer ring 3, 3a Inner ring 4 Ball 5 Outer ring raceway 6 Inner ring raceway 7 Cage 8, 8a, 8b High precision ring 9, 9a First intermediate material 10, 10a Second intermediate material 11, 11a Third Intermediate material 12, 12a Fourth intermediate material 13 Billet 14 First high-accuracy ring 15 Second high-accuracy ring 16 Preliminary intermediate material 17 Second preliminary intermediate material 18 Boss portion 19 Hook-shaped portion 20 Third preliminary intermediate material 21 Cylindrical portion 22 circular hole 23 first intermediate material 24 cylindrical portion 25 scrap 27 second intermediate material 29 die 30 circular hole 31 punch 32 circular hole 33 fourth preliminary intermediate material 34 die 35 punch 36 large diameter portion 37 small diameter portion 38 curved portion 39 first Two preliminary intermediate materials 40a, 40b Circular concave holes 41 Third preliminary intermediate material 42 Boss portion 43 Partition plate portion 44 Circular hole 45 Cylindrical portion 46 First During material 47 first precision ring 48 stepped portion

Claims (5)

少なくとも次の(a) 〜(c) に示した工程を有する、高精度リングの製造方法。
(a) 金属製で、造るべき高精度リングの容積よりも大きな容積を有するビレット状の素材を軸方向に圧縮すると共に、径方向中央部に円孔を形成して、中央部に所定の厚さ寸法及び所定の軸方向寸法を有する円筒部を、この円筒部の周囲部分に外向フランジ状の鍔状部を、それぞれ備えた第一中間素材とする工程。
(b) この第一中間素材を、この第一中間素材の径方向中間部で上記円筒部の外周面と上記鍔状部の内周縁との境界部分で切断し、このうちの円筒部から得られる部分を、円筒状の第一高精度リングとし、上記鍔状部から得られる部分を、円輪状の第二中間素材とする工程。
(c) 上記第二中間素材の断面の方向を90度変更する反転加工によりこの第二中間素材を、内径、外径、軸方向長さを規制値とした円筒状の第二高精度リングとする工程。
A method for manufacturing a high-accuracy ring, comprising at least the following steps (a) to (c):
(a) A billet-like material made of metal and having a volume larger than the volume of the high-precision ring to be manufactured is compressed in the axial direction, and a circular hole is formed in the central portion in the radial direction so that a predetermined thickness is formed in the central portion. A step of using a cylindrical portion having a vertical dimension and a predetermined axial dimension as a first intermediate material provided with an outward flange-like flange-like portion around the cylindrical portion.
(b) The first intermediate material is cut at the radial intermediate portion of the first intermediate material at the boundary between the outer peripheral surface of the cylindrical portion and the inner peripheral edge of the bowl-shaped portion, and obtained from the cylindrical portion. A portion to be obtained is a cylindrical first high-accuracy ring, and a portion obtained from the bowl-shaped portion is a ring-shaped second intermediate material.
(c) A cylindrical second high-accuracy ring whose inner diameter, outer diameter, and axial length are regulated values by reversal processing that changes the cross-sectional direction of the second intermediate material by 90 degrees; Process.
(a) の工程で、素材の軸方向両端部を互いに近づく方向に圧縮する事により、径方向中央部に軸方向に関する厚さ寸法が径方向外寄り部分よりも大きくなったボス部を、このボス部の周囲部分に鍔状部を、それぞれ形成し、このうちのボス部の中央部を軸方向に押し潰してこの中央部の軸方向に関する厚さを低減すると共に、このボス部の外径寄り部分の軸方向に関する厚さを増大させてから、上記中央部の厚さを低減した部分を打ち抜いて円孔を形成する、請求項1に記載した高精度リングの製造方法。   In the step (a), by compressing both end portions in the axial direction of the material in a direction approaching each other, a boss portion having a thickness dimension in the axial direction larger than that in the radially outer portion is formed in the central portion in the radial direction. A hook-shaped part is formed in the peripheral part of the boss part, and the central part of the boss part is crushed in the axial direction to reduce the thickness of the central part in the axial direction and the outer diameter of the boss part. 2. The method for manufacturing a high-accuracy ring according to claim 1, wherein a circular hole is formed by punching out the portion where the thickness of the central portion is reduced after increasing the thickness of the offset portion in the axial direction. (a) の工程で、素材の軸方向両端面中央部を互いに近づく方向に圧縮してこの中央部の軸方向に関する厚さを低減する事により、鍔状部の軸方向両側面から軸方向に突出する素円筒部を形成してから、上記中央部の厚さを低減した部分を打ち抜いて円孔を形成する、請求項1に記載した高精度リングの製造方法。   In the step (a), by compressing the central portions of both end surfaces in the axial direction of the material in a direction approaching each other to reduce the thickness of the central portion in the axial direction, the axial portions are axially moved from both axial sides of the bowl-shaped portion. The method for manufacturing a high-accuracy ring according to claim 1, wherein after forming the protruding cylindrical portion, a circular hole is formed by punching out the portion where the thickness of the central portion is reduced. (b) の工程と(c) の工程との間に、第二中間素材の外周縁部をこの第二中間素材の外径が広がらない様に拘束した状態で、この第二中間素材を軸方向に、所定厚さ迄圧縮する据え込み加工を行なって、この第二中間素材の余肉分を内周縁部に流動させた後、この内周縁部をピアス加工により除去してこの余肉分を除去する事により、上記第二中間素材の体積を所望値にする工程を備える、請求項1〜3のうちの何れか1項に記載した高精度リングの製造方法。   Between the step (b) and the step (c), the outer periphery of the second intermediate material is constrained so that the outer diameter of the second intermediate material does not increase. In the direction, the upsetting process is performed to compress to the predetermined thickness, and after the surplus part of the second intermediate material flows to the inner peripheral part, the inner peripheral part is removed by piercing to remove the surplus part. The manufacturing method of the high precision ring described in any one of Claims 1-3 provided with the process of making the volume of said 2nd intermediate material into a desired value by removing. (a) の工程で形成する鍔状部の軸方向に関する厚さ寸法を、径方向中央部寄りで大きく外周縁部に向かう程小さくし、(c) の工程で、第二中間素材の外径寄り部分を径方向内方に縮め、同じく内径寄り部分を径方向外方に拡げる方向に反転加工を施す、請求項1〜4のうちの何れか1項に記載した高精度リングの製造方法。
The thickness dimension in the axial direction of the bowl-shaped portion formed in the step (a) is reduced toward the outer peripheral edge greatly toward the central portion in the radial direction, and the outer diameter of the second intermediate material is reduced in the step (c). 5. The method for manufacturing a high-accuracy ring according to claim 1, wherein the shift portion is contracted radially inward and the reversal process is performed in a direction in which the radially close portion is expanded radially outward.
JP2005166450A 2004-09-22 2005-06-07 High-precision ring manufacturing method Pending JP2006341255A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005166450A JP2006341255A (en) 2005-06-07 2005-06-07 High-precision ring manufacturing method
PCT/JP2005/017297 WO2006033327A1 (en) 2004-09-22 2005-09-20 Raceway ring for radial ball bearing, method of producing the raceway ring, and method and device for producing high precision ring
US11/663,473 US20080089631A1 (en) 2004-09-22 2005-09-20 Raceway Ring for Radial Ball Bearing and Manufacturing Method Thereof, and Manufacturing Method of High Accurate Ring and Manufacturing Apparatus Thereof
EP05785450A EP1792672A4 (en) 2004-09-22 2005-09-20 Raceway ring for radial ball bearing, method of producing the raceway ring, and method and device for producing high precision ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166450A JP2006341255A (en) 2005-06-07 2005-06-07 High-precision ring manufacturing method

Publications (1)

Publication Number Publication Date
JP2006341255A true JP2006341255A (en) 2006-12-21

Family

ID=37638607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166450A Pending JP2006341255A (en) 2004-09-22 2005-06-07 High-precision ring manufacturing method

Country Status (1)

Country Link
JP (1) JP2006341255A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094016A (en) * 2011-12-28 2014-10-08 罗伯特·博世有限公司 Divided, blanking member for the purpose of blanking transverse elements for use in a drive belt for a continuously variable transmission
WO2023095702A1 (en) 2021-11-24 2023-06-01 日本精工株式会社 Method for manufacturing bearing ring member
WO2023095701A1 (en) 2021-11-24 2023-06-01 日本精工株式会社 Method for manufacturing ring member for bearing, and mold for inversion working

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1263710A (en) * 1967-11-14 1972-02-16 Verson Allsteel Press Co Improvements in or relating to roller bearing races and the manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1263710A (en) * 1967-11-14 1972-02-16 Verson Allsteel Press Co Improvements in or relating to roller bearing races and the manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094016A (en) * 2011-12-28 2014-10-08 罗伯特·博世有限公司 Divided, blanking member for the purpose of blanking transverse elements for use in a drive belt for a continuously variable transmission
WO2023095702A1 (en) 2021-11-24 2023-06-01 日本精工株式会社 Method for manufacturing bearing ring member
WO2023095701A1 (en) 2021-11-24 2023-06-01 日本精工株式会社 Method for manufacturing ring member for bearing, and mold for inversion working

Similar Documents

Publication Publication Date Title
EP2602501B1 (en) Manufacturing method for bearing outer ring
US20080089631A1 (en) Raceway Ring for Radial Ball Bearing and Manufacturing Method Thereof, and Manufacturing Method of High Accurate Ring and Manufacturing Apparatus Thereof
US9056375B2 (en) Manufacturing method for bearing outer ring
JP5966726B2 (en) Method for manufacturing bearing ring member
JP5737371B2 (en) Manufacturing method of outer ring of rolling bearing unit for wheel support
JP5083032B2 (en) Method for manufacturing cylindrical ring member
JP2006123003A (en) Method and apparatus for producing high precision ring
JP2014024091A5 (en)
JP2006090407A (en) Bearing ring for radial ball bearing and its manufacturing method
JP4572644B2 (en) Manufacturing method of high precision ring
JP5034684B2 (en) Method for manufacturing rolling ring bearing ring
JP2006181638A (en) Raceway ring for radial ball bearing and its manufacturing method
JP2006341255A (en) High-precision ring manufacturing method
JP5556297B2 (en) Manufacturing method of bearing ring member of rolling bearing unit for supporting wheel
US20130205593A1 (en) Manufacturing method for bearing outer ring
JP5446920B2 (en) Manufacturing method of metal member with outward flange
JP4978552B2 (en) Method for manufacturing ring-shaped raceway material
JPWO2015079684A1 (en) Manufacturing method of annular member
JP5834592B2 (en) Manufacturing method of metal member with outward flange
JP5919746B2 (en) Manufacturing method of bearing race
JP6458847B2 (en) Manufacturing apparatus and manufacturing method for ring-shaped member, manufacturing method and manufacturing apparatus for radial rolling bearing, and manufacturing method for rotating device
JP6252179B2 (en) Manufacturing method of bearing outer ring
JP2016043381A5 (en)
JP2007170586A (en) Manufacturing method for bearing ring for rolling bearing
JP2016043381A (en) Manufacturing method and manufacturing apparatus for ring-like member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920