JP5009556B2 - Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same - Google Patents

Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same Download PDF

Info

Publication number
JP5009556B2
JP5009556B2 JP2006157733A JP2006157733A JP5009556B2 JP 5009556 B2 JP5009556 B2 JP 5009556B2 JP 2006157733 A JP2006157733 A JP 2006157733A JP 2006157733 A JP2006157733 A JP 2006157733A JP 5009556 B2 JP5009556 B2 JP 5009556B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
dehydrogenation
oxide film
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006157733A
Other languages
Japanese (ja)
Other versions
JP2007326000A (en
Inventor
広斌 周
兼元  大
敬郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Original Assignee
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Energy Center JPEC filed Critical Japan Petroleum Energy Center JPEC
Priority to JP2006157733A priority Critical patent/JP5009556B2/en
Publication of JP2007326000A publication Critical patent/JP2007326000A/en
Application granted granted Critical
Publication of JP5009556B2 publication Critical patent/JP5009556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、水素を利用する自動車または分散電源などのエンジンや燃料電池に水素を供給する供給装置用脱水素・水素付加触媒及びそれを用いた水素供給装置に関する。 The present invention relates to a dehydrogenation / hydrogen addition catalyst for a supply device for supplying hydrogen to an engine or fuel cell such as an automobile or a distributed power source using hydrogen, and a hydrogen supply device using the same.

二酸化炭素などによる地球温暖化が深刻になる中で、化石燃料に代わって次世代を担うエネルギー源として水素が注目されている。また、エネルギーを有効活用してCO2排出を削減する省エネルギー化を推進するため、発電設備のコージェネ化が注目されている。水素を利用し発電を行う燃料電池発電システムは、近年、自動車、家庭用発電設備、自動販売機、携帯機器など多様な用途の電源として技術開発が急速に進んでいる。燃料電池は、水素と酸素を反応させ水になる際に電気を発生し、同時に発生する熱エネルギーを利用して給湯及び空調を行うことができるため、家庭用分散電源に適用されている。燃料電池の他、マイクロタービンやマイクロエンジンといった内燃機関の開発も進んでいる。   As global warming due to carbon dioxide and the like becomes serious, hydrogen is attracting attention as an energy source for the next generation instead of fossil fuels. In addition, cogeneration of power generation facilities has attracted attention in order to promote energy saving by effectively using energy and reducing CO2 emissions. In recent years, fuel cell power generation systems that generate power using hydrogen have been rapidly developed as a power source for various uses such as automobiles, household power generation facilities, vending machines, and portable devices. A fuel cell generates electricity when hydrogen and oxygen are reacted to form water, and can be used for hot water supply and air conditioning using thermal energy generated at the same time. In addition to fuel cells, internal combustion engines such as microturbines and microengines are also being developed.

一方、水素を燃料として用いるために不可欠な水素の輸送、貯蔵、供給システムが大きな課題となっている。水素は常温で気体であるため、液体や固体に比べて、貯蔵や輸送が難しい。しかも、水素は可燃性物質であり、空気と所定の混合比になると、爆発の危険性がある。   On the other hand, a hydrogen transportation, storage, and supply system that is indispensable for using hydrogen as a fuel has become a major issue. Since hydrogen is a gas at room temperature, it is difficult to store and transport compared to liquids and solids. Moreover, hydrogen is a flammable substance, and there is a risk of explosion when it is mixed with air at a predetermined mixing ratio.

このような問題を解決する技術に、特許文献1に開示されるように、炭化水素燃料に水蒸気を加えて水素を発生させ、この水素を水素吸蔵合金に貯蔵し、起動時に放出させて炭化水素燃料に添加して水添脱硫して燃料電池に供給する発電システムがある。   As disclosed in Patent Document 1, hydrogen is generated by adding water vapor to a hydrocarbon fuel, and this hydrogen is stored in a hydrogen storage alloy and released at start-up, as disclosed in Patent Document 1. There is a power generation system that is added to fuel, hydrodesulfurized, and supplied to a fuel cell.

また、近年、安全性、運搬性及び貯蔵能力に優れた水素貯蔵方法として、シクロヘキサンやデカリンのような炭化水素を用いた有機ハイドライドシステムが注目されている。これらの炭化水素は、常温で液体であるため、運搬性に優れている。   In recent years, organic hydride systems using hydrocarbons such as cyclohexane and decalin have attracted attention as a hydrogen storage method that is excellent in safety, transportability, and storage capacity. Since these hydrocarbons are liquid at room temperature, they are excellent in transportability.

例えば、ベンゼンとシクロヘキサンは同じ炭素数を有する環状炭化水素であるが、ベンゼンは炭素同士の結合が二重結合である不飽和炭化水素であるのに対し、シクロヘキサンは二重結合を持たない飽和炭化水素である。ベンゼンの水素付加反応によりシクロヘキサンが得られ、シクロヘキサンの脱水素反応によりベンゼンが得られる。すなわち、これらの炭化水素の水素付加と脱水素反応を利用することにより、水素の貯蔵とその供給が可能となる。   For example, benzene and cyclohexane are cyclic hydrocarbons having the same carbon number, but benzene is an unsaturated hydrocarbon in which the bonds between carbons are double bonds, whereas cyclohexane is a saturated hydrocarbon having no double bonds. Hydrogen. Cyclohexane is obtained by the hydrogenation reaction of benzene, and benzene is obtained by the dehydrogenation reaction of cyclohexane. That is, hydrogen can be stored and supplied by utilizing hydrogenation and dehydrogenation of these hydrocarbons.

特許文献2、3、4に開示されるように、噴霧器により高温の触媒層にシクロヘキサンを吹き付けて脱水素反応を行い、冷却器で生成物である水素とベンゼンを気体と液体に分離させる方法が知られている。   As disclosed in Patent Documents 2, 3, and 4, there is a method in which cyclohexane is sprayed onto a high-temperature catalyst layer by a sprayer to perform a dehydrogenation reaction, and a product hydrogen and benzene are separated into a gas and a liquid by a cooler. Are known.

また、非特許文献1では、アルマイト触媒体を用いて揮発性有機排ガス(VOC)の燃焼処理を行い、触媒体微細孔径と触媒活性の関係について開示している。アルマイト触媒体の作製方法は、陽極酸化法によって触媒層の厚みを制御し、陽極酸化後の試料を水和・焼成することによって微細孔を制御する方法である。複雑に成形できるアルミニウム構造体の特徴を生かしたセレート型アルマイト触媒を使用し、細孔径を制御すると、9万h−1という高い空間速度(SV)でも90%以上の燃焼率が得られることが報告されている。   Further, Non-Patent Document 1 discloses a relationship between catalyst body micropore diameter and catalyst activity by performing combustion treatment of volatile organic exhaust gas (VOC) using an alumite catalyst body. The method for producing an alumite catalyst body is a method in which the fine pores are controlled by controlling the thickness of the catalyst layer by an anodic oxidation method and hydrating and firing the sample after the anodic oxidation. Using a serrated alumite catalyst that takes advantage of the complex structure of an aluminum structure and controlling the pore diameter, a combustion rate of 90% or more can be obtained even at a high space velocity (SV) of 90,000 h-1. It has been reported.

特開平7−192746号公報JP 7-192746 A 特開2002−274801号公報JP 2002-274801 A 特開2002−184436号公報JP 2002-184436 A 特開2005−126315号公報JP 2005-126315 A “表面技術”,48,994−997(1997)"Surface technology", 48, 994-997 (1997)

しかし、ベンゼンとシクロヘキサンとの反応に代表される脱水素反応を利用して水素の供給を行う場合、本反応は、吸熱反応であるため、熱の供給方法に課題がある。脱水素反応は温度が高いほど触媒の活性が高くなり、反応が速く進行するため、高温側において反応速度が速く、低温側において反応速度が遅い。しかし、脱水素反応は、吸熱量が大きいので、高温側において反応が速くなるにつれて、反応による吸熱量が多くなり、供給熱が足りなくなり、反応速度が低下する。現象として、ある温度(以下、偏曲点温度という)以上になると反応速度が低下する。いかに触媒に熱を速く供給し、反応温度を保持させるかが重要となる。   However, when hydrogen is supplied using a dehydrogenation reaction typified by the reaction between benzene and cyclohexane, this reaction is an endothermic reaction, and thus there is a problem in the heat supply method. In the dehydrogenation reaction, the higher the temperature, the higher the activity of the catalyst, and the faster the reaction proceeds, the faster the reaction rate on the high temperature side and the slower the reaction rate on the low temperature side. However, since the dehydrogenation reaction has a large endothermic amount, as the reaction becomes faster on the high temperature side, the endothermic amount due to the reaction increases, the supply heat becomes insufficient, and the reaction rate decreases. As a phenomenon, the reaction rate decreases at a certain temperature (hereinafter referred to as the inflection point temperature) or higher. How to quickly supply heat to the catalyst and maintain the reaction temperature is important.

そこで、本発明の目的は、熱効率を改善し、高速・高効率な水素供給触媒及び水素供給装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a hydrogen supply catalyst and a hydrogen supply device that improve thermal efficiency and are fast and highly efficient.

本発明は、前記の課題を解決するために、多孔質酸化膜の構造、触媒の粒径、触媒の熱伝導の設計を行い、反応転化率の高い脱水素・水素付加触媒と小型で効率の良い水素供給装置を提供する。 In order to solve the above-mentioned problems, the present invention designs the structure of the porous oxide film, the particle size of the catalyst, and the heat conduction of the catalyst, and is small and efficient with a dehydrogenation / hydrogenation catalyst having a high reaction conversion rate. Provide a good hydrogen supply device.

具体的には、金属触媒を多孔質酸化膜よりなる触媒担体に担持したものからなり、化学的に水素貯蔵・供給を繰り返す媒体を用いて水素を取り出す脱水素・水素付加触媒において、前記多孔質酸化膜の吸水率/膜厚が0.030〜0.065(mg/(cm・μm))であることを特徴とする脱水素触媒を提供する。 Specifically, in the dehydrogenation / hydrogenation catalyst comprising a metal catalyst supported on a catalyst carrier made of a porous oxide film and taking out hydrogen using a medium that repeatedly stores and supplies hydrogen chemically, Provided is a dehydrogenation catalyst characterized in that the water absorption / film thickness of an oxide film is 0.030 to 0.065 (mg / (cm 2 · μm)).

また、前記多孔質酸化膜の吸水率/膜厚が0.030〜0.065(mg/(cm・μm))であることを特徴とする脱水素・水素付加触媒を提供する。 Further, the present invention provides a dehydrogenation / hydrogen addition catalyst, wherein the porous oxide film has a water absorption rate / film thickness of 0.030 to 0.065 (mg / (cm 2 · μm)).

また、前記金属触媒がPtであって、Pt触媒粒径が1〜4nmであることを特徴とする脱水素・水素付加触媒を提供する。 The present invention also provides a dehydrogenation / hydrogenation catalyst, wherein the metal catalyst is Pt, and the Pt catalyst particle size is 1 to 4 nm.

また、前記多孔質酸化膜が45〜100nmの細孔を有していることを特徴とする脱水素・水素付加触媒を提供する。 The present invention also provides a dehydrogenation / hydrogenation catalyst, wherein the porous oxide film has pores of 45 to 100 nm.

また、前記多孔質酸化膜の熱拡散率/膜厚が1×10−6〜1×10−5(m/(s・μm))であることを特徴とする脱水素・水素付加触媒を提供する。 A dehydrogenation / hydrogen addition catalyst characterized in that the porous oxide film has a thermal diffusivity / film thickness of 1 × 10 −6 to 1 × 10 −5 (m 2 / (s · μm)). provide.

また、多孔質酸化膜の吸水率/膜厚が0.030〜0.065(mg/(cm・μm))、Pt触媒粒径が1〜4nm、多孔質酸化膜の細孔径が45〜100nm、多孔質酸化膜の熱拡散率/膜厚が1×10−6〜1×10−5(m/(s・μm))の構造を有する脱水素・水素付加触媒を用いた水素供給装置を提供する。 Further, the water absorption / film thickness of the porous oxide film is 0.030 to 0.065 (mg / (cm 2 · μm)), the Pt catalyst particle diameter is 1 to 4 nm, and the pore diameter of the porous oxide film is 45 to 45 nm. Hydrogen supply using a dehydrogenation / hydrogenation catalyst having a structure of 100 nm, porous oxide film having thermal diffusivity / film thickness of 1 × 10 −6 to 1 × 10 −5 (m 2 / (s · μm)) Providing equipment.

また、本発明の脱水素・水素付加触媒を用いてアルミニウム基板を積層し、水素流路に水素分離膜、積層間に多数の水素拡散貫通口を有する水素供給装置を提供する。 Also provided is a hydrogen supply apparatus in which an aluminum substrate is laminated using the dehydrogenation / hydrogen addition catalyst of the present invention, a hydrogen separation membrane is provided in a hydrogen flow path, and a number of hydrogen diffusion through holes are provided between the laminations.

多孔質酸化膜の構造、触媒粒径を最適化したことで、熱効率が改善され、高速・高効率な水素供給触媒及び水素供給装置が提供できた。   By optimizing the structure of the porous oxide film and the catalyst particle size, the thermal efficiency was improved, and a high-speed and high-efficiency hydrogen supply catalyst and hydrogen supply device could be provided.

以下、本発明を実施するための最良の形態を具体的な実施例によって詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail by way of specific examples, but the present invention is not limited to the following examples.

本発明の脱水素・水素付加触媒の模式図を図1に示す。脱水素・水素付加触媒は、Al基板1からなる高熱伝導基板に形成された多孔質酸化物の触媒担体2上に触媒粒子5が担持された構成である。触媒担体2と触媒粒子5によって触媒層20が構成される。多孔質酸化物の触媒担体2は、図1に示すようにマクロ細孔4とマクロ細孔を構成する壁の中に存在するミクロ細孔を有する。触媒粒子5を触媒担体2に担持し、反応サイトを構築する。 A schematic diagram of the dehydrogenation / hydrogenation catalyst of the present invention is shown in FIG. The dehydrogenation / hydrogen addition catalyst has a configuration in which catalyst particles 5 are supported on a porous oxide catalyst carrier 2 formed on a high thermal conductive substrate made of an Al substrate 1. A catalyst layer 20 is constituted by the catalyst carrier 2 and the catalyst particles 5. As shown in FIG. 1, the porous oxide catalyst support 2 has macropores 4 and micropores existing in the walls constituting the macropores. The catalyst particles 5 are supported on the catalyst carrier 2 to construct a reaction site.

この触媒担体は、高熱伝導性を有するアルミニウムの表面に陽極酸化により多孔質酸化物を直接作製することが可能である。陽極酸化により形成した触媒担体は、高熱伝導基板との密着性及び熱伝導性が良好である。アルミニウム表面を陽極酸化し、次いで陽極酸化によって生成したマクロ細孔を拡大処理した後、ベーマイト処理、焼成した多孔質酸化物を担体として用いた場合、陽極酸化をしただけの場合に比べてマクロ孔壁に含まれるミクロ細孔が増える。これによって担体表面積が増大し、触媒担持量を増大させることができるため、さらに好ましい形態である。   This catalyst support can directly produce a porous oxide by anodic oxidation on the surface of aluminum having high thermal conductivity. The catalyst carrier formed by anodic oxidation has good adhesion to the high thermal conductive substrate and good thermal conductivity. The macropores produced by anodizing the aluminum surface and then anodizing the macropores are then expanded, followed by boehmite treatment and calcined porous oxide as the support. The number of micropores contained in the wall increases. This increases the surface area of the support and can increase the amount of catalyst supported, which is a more preferable form.

陽極酸化法としては、電解液として例えば燐酸、クロム酸、シュウ酸、硫酸水溶液等を使用することができるが、触媒被毒を避けるためには、燐酸、クロム酸、シュウ酸水溶液が好ましい。陽極酸化により形成される多孔層の細孔径と膜厚は、印加電圧、処理温度、処理時間などの条件により、適宜設定することができる。一般に、マクロ細孔径は10nm〜300nm、膜厚は5〜300μmまで製造することができる。   In the anodic oxidation method, for example, phosphoric acid, chromic acid, oxalic acid, sulfuric acid aqueous solution or the like can be used as the electrolytic solution, but phosphoric acid, chromic acid, or oxalic acid aqueous solution is preferable in order to avoid catalyst poisoning. The pore diameter and film thickness of the porous layer formed by anodization can be appropriately set according to conditions such as applied voltage, processing temperature, and processing time. In general, the macropore diameter can be produced from 10 nm to 300 nm and the film thickness from 5 to 300 μm.

また、この陽極酸化の処理時間は処理条件や形成したい膜厚によって異なるが、例えば4重量%のシュウ酸水溶液を電解液とし、処理浴温度を50℃、印加電圧を40Vとした場合には、1〜5時間処理することで高熱伝導性を有する陽極酸化層を形成できる。細孔径が45〜100nm、吸水率/膜厚が0.030〜0.065(mg/(cm・μm))であり、この条件に入る触媒であれば、反応速度を向上することができる。 Further, the treatment time of this anodic oxidation varies depending on the treatment conditions and the film thickness to be formed. For example, when a 4 wt% oxalic acid aqueous solution is used as the electrolyte, the treatment bath temperature is 50 ° C., and the applied voltage is 40 V, By treating for 1 to 5 hours, an anodized layer having high thermal conductivity can be formed. If the catalyst has a pore diameter of 45 to 100 nm and a water absorption / film thickness of 0.030 to 0.065 (mg / (cm 2 · μm)) and falls under these conditions, the reaction rate can be improved. .

反応効率を高くするためには、反応サイトを多くすることが有効であり、触媒となるPtの表面積を大きくすることが重要となる。Pt表面積を大きくするには、Pt径を小さくする必要があり、鋭意実験の結果、4nm以下が好ましいことがわかった。しかし、現実的に1nm以下のPtを作ることは難しいので、その範囲は1nm〜4nmとする。   In order to increase the reaction efficiency, it is effective to increase the number of reaction sites, and it is important to increase the surface area of Pt serving as a catalyst. In order to increase the Pt surface area, it is necessary to decrease the Pt diameter. As a result of intensive experiments, it was found that 4 nm or less is preferable. However, since it is difficult to actually make Pt of 1 nm or less, the range is set to 1 nm to 4 nm.

1nm〜4nmのPtを微粒子の形態で保持するには、Pt粒子の凝集を抑制できる担体が望ましい。Ptの凝集を抑制するには、多孔質酸化物担体の細孔構造が重要となる。一般に、細孔容積が大きく、高表面積を有する担体を用いると、Pt粒子を分散することができるため、Pt粒子の凝集を抑制することができる。   In order to hold 1 nm to 4 nm of Pt in the form of fine particles, a carrier capable of suppressing aggregation of Pt particles is desirable. In order to suppress the aggregation of Pt, the pore structure of the porous oxide support is important. In general, when a carrier having a large pore volume and a high surface area is used, Pt particles can be dispersed, and thus aggregation of Pt particles can be suppressed.

多孔質酸化物の細孔構造は、多孔質酸化膜の吸水率/膜厚の測定により評価することができる。吸水率は、単位面積あたりの吸水量によって評価できる。吸水量は、膜厚あたりに規格化することで単位体積あたりの細孔容積と関係づけることができる。すなわち、多孔質酸化物の吸水率/膜厚の値で細孔容積に関する知見を得ることができ、吸水率/膜厚が小さいほど緻密な膜であり、吸水率/膜厚が大きいほど多孔質で、表面積の大きな膜と言える。   The pore structure of the porous oxide can be evaluated by measuring the water absorption / film thickness of the porous oxide film. The water absorption rate can be evaluated by the amount of water absorption per unit area. The amount of water absorption can be related to the pore volume per unit volume by normalizing per film thickness. That is, knowledge about the pore volume can be obtained from the value of the water absorption rate / film thickness of the porous oxide. The smaller the water absorption rate / film thickness, the denser the film, and the larger the water absorption rate / film thickness, the more porous It can be said that the film has a large surface area.

さらに、本方法は、膜の毛管力を利用したものであるため、膜中の特にミクロ孔の構造を評価したものであり、細孔径とも関係づけることができる。細孔径が小さいほど毛管力が大きくなるので、非常に大きな吸水率を有する膜の細孔径は小さくなる。   Furthermore, since the present method utilizes the capillary force of the membrane, it evaluates the structure of the micropores in the membrane, and can also be related to the pore diameter. Since the capillary force increases as the pore diameter decreases, the pore diameter of the membrane having a very large water absorption rate decreases.

一方、多孔質膜に担持されたPtの粒子は、多孔質膜の表面積の大きさで分散性が異なる。表面積が大きい多孔質膜上のPtは分散性がよく、初期の粒子径を維持できる。しかし、低表面積上のPtは、分散性が悪く、凝集しやすく粒子成長し、大きな粒子径となってしまう。従って、吸水率/膜厚が小の場合では、多孔質膜の表面積が小さいので、Pt粒子が凝集し大きな粒子になる。表面積が大きいとPt粒子が凝集しにくく、Pt粒子が微粒子となり、反応サイトが多く、反応速度の大きな触媒を得ることができる。しかし、吸水率/膜厚が大きすぎると、細孔径が小さくなりPt粒子がミクロ孔内部に入りにくく、結果としてPtが表面で凝集してしまう。従って、本発明では、触媒担体の多孔質酸化物の吸水率/膜厚を最適化した条件を見出した。鋭意実験の結果、その吸水率/膜厚の値は、0.030〜0.065(mg/(cm・μm))とした。この条件を満たす担体を用いることによって、Pt触媒粒径を1〜4nmにすることが可能となる。 On the other hand, the Pt particles supported on the porous film have different dispersibility depending on the surface area of the porous film. Pt on a porous film having a large surface area has good dispersibility and can maintain the initial particle diameter. However, Pt on a low surface area has poor dispersibility, tends to aggregate and grow particles, resulting in a large particle size. Therefore, when the water absorption rate / film thickness is small, the surface area of the porous film is small, so that the Pt particles are aggregated into large particles. When the surface area is large, the Pt particles are difficult to aggregate, the Pt particles become fine particles, and there are many reaction sites and a catalyst having a high reaction rate can be obtained. However, if the water absorption rate / film thickness is too large, the pore diameter becomes small and the Pt particles hardly enter the micropores, and as a result, Pt aggregates on the surface. Therefore, in the present invention, the conditions for optimizing the water absorption / film thickness of the porous oxide of the catalyst support have been found. As a result of intensive experiments, the value of water absorption / film thickness was 0.030 to 0.065 (mg / (cm 2 · μm)). By using a carrier that satisfies this condition, the Pt catalyst particle size can be reduced to 1 to 4 nm.

脱水素反応では、高温になるほど反応速度が大きくなり、高速水素供給が可能となるが、脱水素反応は大きな吸熱を伴うため、高速水素発生には熱供給も高速で行わなければならない。高温側において反応が速くなるにつれて、吸熱反応なので供給熱が足りなくなると、温度が下がり反応速度が低下する。そこで、触媒層に効率よく熱を供給するために、熱伝導率の大きい水素供給装置が必要となる。水素供給装置は、触媒プレート、触媒担体などから構成されており、これらの熱伝導を高めることによって、より速く触媒に熱を供給でき、反応速度を向上させることができる。   In the dehydrogenation reaction, the higher the temperature, the higher the reaction rate and the faster hydrogen supply becomes possible. However, since the dehydrogenation reaction involves a large endotherm, heat supply must also be performed at a high speed. As the reaction becomes faster on the high temperature side, if the supply heat becomes insufficient because of the endothermic reaction, the temperature decreases and the reaction rate decreases. Therefore, in order to efficiently supply heat to the catalyst layer, a hydrogen supply device having a high thermal conductivity is required. The hydrogen supply device is composed of a catalyst plate, a catalyst carrier, and the like. By increasing the heat conduction of these, heat can be supplied to the catalyst faster, and the reaction rate can be improved.

アルミニウム陽極酸化による触媒担体作製は、高熱伝導のアルミニウム基板上に触媒担体となるアルミナが直接接合した構造を作ることができる。従って、触媒へアルミニウムから熱を直接効率よく供給することができる。しかし、担体となるアルミナは、アルミニウムより熱伝導率が小さく、熱供給時の律速となる。このため、アルミナ担体においても、高熱伝導性を有することが望ましい。そこで、鋭意実験の結果、陽極酸化処理条件によって、アルミナの熱拡散率が変化することを見出した。   Fabrication of a catalyst carrier by aluminum anodization can produce a structure in which alumina serving as a catalyst carrier is directly bonded on a high thermal conductivity aluminum substrate. Therefore, it is possible to efficiently supply heat directly from aluminum to the catalyst. However, alumina serving as a carrier has a lower thermal conductivity than aluminum and is rate-limiting when supplying heat. For this reason, it is desirable that the alumina carrier also has high thermal conductivity. As a result of intensive experiments, it was found that the thermal diffusivity of alumina changes depending on the anodizing conditions.

陽極酸化による多孔質酸化物の作製においては、処理温度の影響が大きい。処理温度が高くなると、酸化膜の溶解速度が速くなり、マクロ細孔径の大きい、緻密な膜ができる。緻密な酸化物の密度が大きくなるため、熱伝導が高くなる。より高い陽極酸化処理温度で、触媒担体の多孔質酸化物の細孔を大きくするのは有効な手段である。本発明では、触媒担体の多孔質酸化物の細孔を45〜100nmとし、多孔質酸化物の熱拡散率/膜厚の値を1×10−6〜1×10−5(m/(s・μm))とすることで、高温においても反応速度の低下を抑制できる触媒を作ることができる。 In the production of the porous oxide by anodic oxidation, the influence of the processing temperature is large. When the treatment temperature is increased, the dissolution rate of the oxide film is increased, and a dense film having a large macropore diameter can be formed. Since the density of the dense oxide is increased, heat conduction is increased. Enlarging the pores of the porous oxide of the catalyst support at a higher anodizing temperature is an effective means. In the present invention, the pores of the porous oxide of the catalyst support are set to 45 to 100 nm, and the thermal diffusivity / film thickness of the porous oxide is set to 1 × 10 −6 to 1 × 10 −5 (m 2 / ( s · μm)) makes it possible to produce a catalyst that can suppress a decrease in reaction rate even at high temperatures.

次に、本発明の脱水素・水素付加触媒を触媒層として用いた水素供給システム構成を図2に示す。図2は、燃料タンク部6、燃料供給部7、水素供給装置(リアクタ)8、熱交換器9、冷却器12、水素排出口13及び廃液タンク部14から構成される。以下、構成部品について説明する。燃料タンク部6は、燃料を貯蔵する部品である。燃料供給部7は、タンクから水素供給装置8に燃料供給する部品である。水素供給装置8は、燃料を脱水素反応させ、水素を発生する装置である。熱交換器9は、エンジンや燃料電池より排出される熱を高温ガス入口10、高温ガス出口11を通し利用する部品である。冷却器12は、水素供給装置8から出る混合ガスを冷却させ、気液分離を行う部品である。廃液タンク部14は、冷却器12による気液分離後の有機溶媒を貯める部品である。 Next, FIG. 2 shows a hydrogen supply system configuration using the dehydrogenation / hydrogenation catalyst of the present invention as a catalyst layer. FIG. 2 includes a fuel tank unit 6, a fuel supply unit 7, a hydrogen supply device (reactor) 8, a heat exchanger 9, a cooler 12, a hydrogen discharge port 13, and a waste liquid tank unit 14. Hereinafter, the components will be described. The fuel tank unit 6 is a component that stores fuel. The fuel supply unit 7 is a component that supplies fuel from the tank to the hydrogen supply device 8. The hydrogen supply device 8 is a device that generates hydrogen by dehydrogenating the fuel. The heat exchanger 9 is a component that uses heat discharged from the engine or fuel cell through the hot gas inlet 10 and the hot gas outlet 11. The cooler 12 is a component that cools the mixed gas exiting from the hydrogen supply device 8 and performs gas-liquid separation. The waste liquid tank unit 14 is a component that stores the organic solvent after gas-liquid separation by the cooler 12.

次に、図3に示した水素供給装置について説明する。図3(a)は水素分離膜なしの水素供給装置の断面図を示し、図3(b)は水素分離膜ありの水素供給装置の断面図を示す。図3(a)の水素供給装置では、高熱伝導のAl基板1上に燃料流路として種々のパターンを形成した。その上部に本発明の熱伝導に優れた高活性の触媒層20、ガス流路3、上蓋15を一体化する。触媒が高熱伝導のアルミニウム基板上に直接接合した形態になっており、触媒への熱供給効率が高く、さらに、高活性触媒を用いることで、高速水素供給が可能なリアクタである。図3(b)の水素供給装置は、図3(a)の構造の上で、水素分離膜16、スペーサ17、水素流路18を一体化するリアクタとする構成となる。水素分離膜を用いた水素分離は、水素供給装置内部で気体の水素と媒体を分離し、平衡状態を脱水素化方向へ移動し、低温で水素生成を可能にする。水素透過側の圧力を反応側の圧力より低圧条件にすれば、水素透過速度を増大することができる。   Next, the hydrogen supply apparatus shown in FIG. 3 will be described. 3A shows a cross-sectional view of a hydrogen supply device without a hydrogen separation membrane, and FIG. 3B shows a cross-sectional view of the hydrogen supply device with a hydrogen separation membrane. In the hydrogen supply device of FIG. 3A, various patterns were formed as fuel flow paths on the Al substrate 1 having high thermal conductivity. The highly active catalyst layer 20 excellent in heat conduction of the present invention, the gas flow path 3 and the upper lid 15 are integrated on the upper part. The catalyst is directly joined on a highly heat-conductive aluminum substrate, has high heat supply efficiency to the catalyst, and is a reactor capable of high-speed hydrogen supply by using a highly active catalyst. The hydrogen supply device of FIG. 3B has a configuration in which the hydrogen separation membrane 16, the spacer 17, and the hydrogen flow path 18 are integrated on the structure of FIG. Hydrogen separation using a hydrogen separation membrane separates gaseous hydrogen and medium inside the hydrogen supply device, moves the equilibrium state in the dehydrogenation direction, and enables hydrogen generation at a low temperature. If the pressure on the hydrogen permeation side is set to a lower pressure than the pressure on the reaction side, the hydrogen permeation rate can be increased.

水素分離膜は、多孔質ポリイミドなどの耐熱性高分子、ゼオライトなどのアルミナシリケートやシリカ、ジルコニア、アルミナなどの酸化物、及びPd、Pd−Ag、V系、Nb系、Zr系、Ta系、Ni−Zr系などの水素吸蔵金属の膜を用いることができる。また、多孔質ポリイミド片表面にPd−Ag膜を形成するなど、上記した材料を組み合わせて用いることもできる。金属膜として、好ましくはV系金属膜を用いる。V金属にMo、Co、Niなどを合金化した膜は250℃以下の低温下でも水素透過性能に優れている。   Hydrogen separation membranes include heat-resistant polymers such as porous polyimide, alumina silicates such as zeolite, oxides such as silica, zirconia, and alumina, and Pd, Pd-Ag, V-based, Nb-based, Zr-based, Ta-based, A film of a hydrogen storage metal such as a Ni—Zr system can be used. Further, the above materials can be used in combination, such as forming a Pd—Ag film on the surface of the porous polyimide piece. A V-based metal film is preferably used as the metal film. A film obtained by alloying Mo, Co, Ni or the like with V metal is excellent in hydrogen permeation performance even at a low temperature of 250 ° C. or lower.

スペーサは、水素分離膜の上部に装着され、生成水素の流路となる。スペーサの構造は、面内に溝を切ったもの、または基板の垂直方向に貫通孔を形成したもので、その片面側に水素分離膜が設けられる。
[参考例1]
The spacer is mounted on the upper part of the hydrogen separation membrane and serves as a flow path for product hydrogen. The spacer has a structure in which a groove is cut in a plane or a through-hole is formed in a direction perpendicular to the substrate, and a hydrogen separation membrane is provided on one side of the spacer.
[Reference Example 1]

多孔質酸化物の構造と触媒性能の関係を調べるために、以下の操作で試験を行った。触媒作製プロセスについて、以下に記す。
(パターニング形成)
アルミニウム表面上へのパターニング形成は以下の手順で行った。アルミニウム基板を4wt%NaOH水溶液に浸漬し自然酸化層を除去した後、レジストを塗布した。次に、パターンを有するフォトマスクを用いて露光した後、現像した。引き続き、FeCl/HCl水溶液でエッチングし、最後に、NaOH水溶液、10wt%HNOを用いて後処理した。
(陽極酸化)
陽極酸化電解液として0.3mol/Lのシュウ酸(C)を使用し、陽極には表面を洗浄したAl板、陰極には白金−チタン(Pt−Ti)板を用い、浴温30℃で40V直流定電圧電解を行って多孔質酸化物膜(アルミナ)を形成した。
(ポアワイド)
前記多孔質酸化膜の微細孔を拡大するために、多孔質酸化膜を浴温30℃、5%のHPOで、30min処理する。
(ベーマイト)
陽極酸化によって生じたアルミナ多孔質酸化膜を純水、90℃〜100℃、120分処理することによって、皮膜を水和させる。
(焼成)
焼成はγ−アルミナを形成させるものであり、550℃、90分間行う。
(Pt触媒担持)
多孔質酸化膜をPtコロイド溶液に含浸して、450℃で20分焼成し、触媒を作製した。
In order to investigate the relationship between the structure of the porous oxide and the catalyst performance, a test was conducted by the following operation. The catalyst preparation process is described below.
(Patterning formation)
Patterning formation on the aluminum surface was performed by the following procedure. The aluminum substrate was immersed in a 4 wt% NaOH aqueous solution to remove the natural oxide layer, and then a resist was applied. Next, it developed after exposing using the photomask which has a pattern. Subsequently, etching was performed with an FeCl 3 / HCl aqueous solution, and finally, post-treatment was performed using an aqueous NaOH solution and 10 wt% HNO 3 .
(anodization)
Using 0.3 mol / L oxalic acid (C 2 O 4 H 2 ) as the anodic oxidation electrolyte, using an Al plate with a cleaned surface as the anode, and a platinum-titanium (Pt—Ti) plate as the cathode, A porous oxide film (alumina) was formed by performing 40 V direct current constant voltage electrolysis at a bath temperature of 30 ° C.
(Pore wide)
In order to enlarge the micropores of the porous oxide film, the porous oxide film is treated with H 3 PO 4 at a bath temperature of 30 ° C. and 5% for 30 minutes.
(Boehmite)
The alumina porous oxide film produced by anodic oxidation is treated with pure water at 90 ° C. to 100 ° C. for 120 minutes to hydrate the film.
(Baking)
Firing is for forming γ-alumina and is performed at 550 ° C. for 90 minutes.
(Pt catalyst support)
A porous oxide film was impregnated with a Pt colloid solution and baked at 450 ° C. for 20 minutes to prepare a catalyst.

作製した触媒は、吸水率、微細孔径、Pt粒子径を測定し、脱水素反応試験との関係を調べた。なお、各種測定法を以下に示す。
(吸水率/膜厚)
吸水率測定は、多孔質酸化膜の多孔質構造を評価するために、試料を水に浸し、単位面積当たりの吸水量を測定する方法である。吸水量は、試料を160℃、15分乾燥し、5分冷却後に試料の重さを量り、試料を水に5分浸し、周りを拭き1分立ち、試料の重さを量り(秤に載せて1分後の値を記録)、試料吸水前後の重さの差によって測定する。膜厚測定は、試料の断面写真から多孔質酸化膜の厚さを測定する方法である。吸水率と膜厚により、吸水率/膜厚を算出した。この吸水率/膜厚は、細孔構造と関係があり、特にミクロ孔に関する知見を得ることができる。すなわち、吸水率/膜厚が大ならミクロ孔が多い、吸水率/膜厚が小ならミクロ孔が少ないと言える。
(微細孔径)
多孔質酸化膜の断面のSEM写真を撮り、画像処理によってマクロ孔の直径を測定した。
(Pt粒子径)
X−ray分析によって、多孔質酸化膜触媒担持体に担持したPt粒子の直径を測定した。
(脱水素反応)
前記の触媒を反応管に充填し、加熱しながら、燃料ポンプによって燃料としたメチロシクロヘキサン(C14)を流し反応させ、生成した水素を測定し、反応の転化率を算出した。さらに、参考例1の反応転化率を基準とし、反応の転化率比を算出した。
(偏曲点)
反応転化率と1/空間速度の関係により、反応速度定数kを求めることができる。さらに、反応速度定数kの対数と1/反応温度Tをプロットした結果から、二本直線の交差点にある温度点を偏曲点温度と呼ぶ。この点は、偏曲点である。
(熱拡散率)
熱拡散率は、試料の温度を一定にし、試料表面に与える交流温度波の周波数を変え、それぞれの周波数について、試料裏面での位相差を測定し、この位相差を周波数の平方根に対してプロットしたとき、得られた直線の傾きから求めることができる。単位膜厚の触媒層の熱拡散率は、熱拡散率/触媒層の膜厚によって評価した。
The prepared catalyst was measured for water absorption, fine pore diameter, and Pt particle diameter, and investigated the relationship with the dehydrogenation reaction test. Various measurement methods are shown below.
(Water absorption rate / film thickness)
The water absorption measurement is a method of measuring the water absorption per unit area by immersing a sample in water in order to evaluate the porous structure of the porous oxide film. The sample is dried at 160 ° C. for 15 minutes, weighed the sample after cooling for 5 minutes, soaked the sample in water for 5 minutes, wiped around for 1 minute, weighed the sample (on a scale) Record the value after 1 minute) and measure the difference in weight before and after water absorption. Film thickness measurement is a method of measuring the thickness of a porous oxide film from a cross-sectional photograph of a sample. The water absorption / film thickness was calculated from the water absorption and the film thickness. This water absorption / film thickness is related to the pore structure, and in particular, knowledge about micropores can be obtained. That is, it can be said that there are many micropores if the water absorption / film thickness is large, and there are few micropores if the water absorption / film thickness is small.
(Micropore diameter)
An SEM photograph of the cross section of the porous oxide film was taken, and the diameter of the macropores was measured by image processing.
(Pt particle size)
The diameter of the Pt particles supported on the porous oxide film catalyst support was measured by X-ray analysis.
(Dehydrogenation reaction)
While the catalyst was filled in the reaction tube and heated, methylocyclohexane (C 7 H 14 ) as a fuel was allowed to flow through the fuel pump and reacted, and the produced hydrogen was measured to calculate the conversion rate of the reaction. Furthermore, the conversion ratio of the reaction was calculated based on the reaction conversion ratio of Reference Example 1.
(Bending point)
The reaction rate constant k can be obtained from the relationship between the reaction conversion rate and 1 / space velocity. Furthermore, from the result of plotting the logarithm of the reaction rate constant k and 1 / reaction temperature T, the temperature point at the intersection of the two straight lines is called the inflection point temperature. This point is an inflection point.
(Thermal diffusivity)
For the thermal diffusivity, the temperature of the sample is kept constant, the frequency of the AC temperature wave applied to the sample surface is changed, the phase difference at the back of the sample is measured for each frequency, and this phase difference is plotted against the square root of the frequency. Then, it can be obtained from the slope of the obtained straight line. The thermal diffusivity of the catalyst layer of unit thickness was evaluated by the thermal diffusivity / the thickness of the catalyst layer.

本実施例では、陽極酸化電解液として0.3mol/Lのシュウ酸(C)を使用し、陽極には表面を洗浄したAl板、陰極には白金−チタン(Pt−Ti)板を用い、浴温30℃で40V直流定電圧電解を1時間行って多孔質酸化物膜を形成した。さらに、前記のプロセスによって、触媒を作製した。 In this example, 0.3 mol / L oxalic acid (C 2 O 4 H 2 ) was used as the anodic oxidation electrolyte, the surface was washed with an Al plate, and the cathode was platinum-titanium (Pt—Ti). ) Using a plate, 40 V direct current constant voltage electrolysis was performed for 1 hour at a bath temperature of 30 ° C. to form a porous oxide film. Further, a catalyst was prepared by the above process.

実施例では、参考例1記載のように、浴温30℃で、5時間多孔質酸化物膜を形成し、触媒を作製した。 In Example 1 , as described in Reference Example 1 , a porous oxide film was formed at a bath temperature of 30 ° C. for 5 hours to prepare a catalyst.

実施例では、参考例1記載のように、浴温50℃で、1時間多孔質酸化物膜を形成し、触媒を作製した。 In Example 2 , as described in Reference Example 1, a porous oxide film was formed at a bath temperature of 50 ° C. for 1 hour to prepare a catalyst.

実施例では、参考例1記載のように、浴温50℃で、5時間多孔質酸化物膜を形成し、触媒を作製した。 In Example 3 , as described in Reference Example 1, a porous oxide film was formed at a bath temperature of 50 ° C. for 5 hours to prepare a catalyst.

実施例では、参考例1記載のように、浴温40℃で、5時間多孔質酸化物膜を形成し、触媒を作製した。
[参考例2]
In Example 4 , as described in Reference Example 1, a porous oxide film was formed at a bath temperature of 40 ° C. for 5 hours to prepare a catalyst.
[Reference Example 2]

参考では、参考例1記載のように、浴温30℃で、10時間多孔質酸化物膜を形成し、触媒を作製した。 In Reference Example 2 , as described in Reference Example 1, a porous oxide film was formed at a bath temperature of 30 ° C. for 10 hours to prepare a catalyst.

参考例1、2および実施例1〜で作製した触媒の評価結果を表1に示した。 The evaluation results of the catalysts prepared in Reference Examples 1 and 2 and Examples 1 to 4 are shown in Table 1.

Figure 0005009556
Figure 0005009556

参考例1、2および実施例1〜で作製した触媒の評価結果を図6〜図11に示した。 The evaluation results of the catalysts prepared in Reference Examples 1 and 2 and Examples 1 to 4 are shown in FIGS.

脱水素転化率比の吸水率/膜厚依存性を図6に示し、偏曲点温度の吸水率/膜厚依存性を図7に示す。吸水率/膜厚が0.030〜0.065(mg/(cm・μm))の範囲内であれば、実施例2、3の結果のように、触媒の反応転化率比が大きく、反応速度の偏曲点も高温側にあることが分かった。 FIG. 6 shows the water absorption / film thickness dependence of the dehydrogenation conversion ratio, and FIG. 7 shows the water absorption / film thickness dependence of the inflection point temperature. If the water absorption ratio / film thickness is in the range of 0.030 to 0.065 (mg / (cm 2 · μm)), as in the results of Examples 2 and 3 , the reaction conversion ratio ratio of the catalyst is large, The inflection point of the reaction rate was found to be on the high temperature side.

既に述べたように、反応効率を高くするためには、反応サイトを多くすることが有効であり、触媒となるPtの表面積を大きくすることが重要となる。担持したPt触媒の粒径は小さければ、小さいほど、化学反応の表面積が増えるので、反応効率が高くなる。Ptを微粒子の形態で保持するには、Pt粒子の凝集を抑制する担体が望ましい。Ptの凝集を抑制する担体は、多孔質酸化物の細孔構造が重要になる。多孔質酸化物の細孔構造は、多孔質酸化膜の吸水率/膜厚の測定により評価することができる。吸水率/膜厚が小さいほど緻密な膜であり、吸水率/膜厚が大きいほど多孔質膜となる。吸水率/膜厚が小の場合では、多孔質膜の表面積が小さいので、Pt粒子が凝集し大きな粒子になる。一方、吸水率/膜厚が大きすぎると、Pt粒子がミクロ孔内部に入りにくく、結果としてPtが表面で凝集してしまう。従って、図6、7より、触媒担体の多孔質酸化物の吸水率/膜厚を最適化した条件を見出した。その吸水率/膜厚の値は、0.030〜0.065(mg/(cm・μm))とする。この条件を満たす担体を用いることによって、Pt触媒粒径を1〜4nmにすることが可能となる。 As described above, in order to increase the reaction efficiency, it is effective to increase the number of reaction sites, and it is important to increase the surface area of Pt serving as a catalyst. The smaller the particle size of the supported Pt catalyst, the higher the reaction efficiency because the surface area of the chemical reaction increases. In order to hold Pt in the form of fine particles, a carrier that suppresses aggregation of Pt particles is desirable. For the carrier that suppresses the aggregation of Pt, the pore structure of the porous oxide becomes important. The pore structure of the porous oxide can be evaluated by measuring the water absorption / film thickness of the porous oxide film. The smaller the water absorption / film thickness, the denser the film, and the larger the water absorption / film thickness, the more porous the film. When the water absorption / film thickness is small, the surface area of the porous film is small, so that the Pt particles are aggregated into large particles. On the other hand, if the water absorption / film thickness is too large, the Pt particles hardly enter the micropores, and as a result, Pt aggregates on the surface. Accordingly, the conditions for optimizing the water absorption / film thickness of the porous oxide of the catalyst carrier were found from FIGS. The value of the water absorption rate / film thickness is 0.030 to 0.065 (mg / (cm 2 · μm)). By using a carrier that satisfies this condition, the Pt catalyst particle size can be reduced to 1 to 4 nm.

脱水素転化率比の微細孔径依存性を図8に示し、偏曲点温度の微細孔径依存性を図9に示す。触媒担体の多孔質酸化物の細孔を45〜100nmとすれば、実施例2、3に示すように、触媒の反応転化率比が大きく、反応速度の偏曲点も高温側にあることが分かった。触媒層に効率よく熱を供給するために、熱伝導率の大きい水素供給装置が必要となる。陽極酸化処理条件によって、アルミナの熱拡散率が変化することを見出した。陽極酸化による多孔質酸化物の作製においては、処理温度の影響が大きい。処理温度が高くなると、酸化膜の溶解速度が速くなり、マクロ細孔径の大きい、緻密な膜ができる。緻密な酸化物の密度が大きくなるため、熱伝導が高くなる。より高い陽極酸化処理温度で、触媒担体の多孔質酸化物の細孔を大きくするのは有効な手段であり、図8、9より、触媒担体の多孔質酸化物の細孔を45〜100nmとする。 FIG. 8 shows the micropore diameter dependence of the dehydrogenation conversion ratio, and FIG. 9 shows the micropore diameter dependence of the inflection point temperature. If the pore size of the porous oxide of the catalyst carrier is 45 to 100 nm, as shown in Examples 2 and 3 , the reaction conversion ratio of the catalyst is large, and the deflection point of the reaction rate is on the high temperature side. I understood. In order to efficiently supply heat to the catalyst layer, a hydrogen supply device having a high thermal conductivity is required. It has been found that the thermal diffusivity of alumina varies depending on the anodizing conditions. In the production of the porous oxide by anodic oxidation, the influence of the processing temperature is large. When the treatment temperature is increased, the dissolution rate of the oxide film is increased, and a dense film having a large macropore diameter can be formed. Since the density of the dense oxide is increased, heat conduction is increased. Enlarging the pores of the porous oxide of the catalyst carrier at a higher anodizing temperature is an effective means. From FIGS. 8 and 9, the pores of the porous oxide of the catalyst carrier are 45 to 100 nm. To do.

脱水素転化率比の熱拡散率/膜厚依存性を図10に示し、偏曲点温度の熱拡散率/膜厚依存性を図11に示す。図10、11より、触媒の熱拡散率/膜厚が1×10−6(m/(s・μm))より大きくなると(緻密アルミナの熱拡散率/膜厚:1×10−5(m/(s・μm)))、偏曲点が高温側に移動し、脱水素転化率も高くなった。脱水素反応は、高温になるほど反応速度が大きくなり、高速水素供給が可能となるが、脱水素反応には大きな吸熱を伴うため高速水素発生には熱供給も高速で行わなければならない。触媒層に効率よく熱を供給するために、熱伝導率の大きい水素供給装置が必要となる。水素供給装置は、触媒プレート、触媒担体などから構成されており、これらの熱伝導を高めることによって、より速く触媒に熱を供給でき、反応速度を向上させることができる。しかし、担体となるアルミナは、アルミニウムより熱伝導率が小さく、熱供給時の律速となる。このため、アルミナ担体においても、高熱伝導性を有することが望ましい。図10、11より、多孔質酸化物の熱拡散率/膜厚を1×10−6〜1×10−5(m/(s・μm))とする。 FIG. 10 shows the thermal diffusivity / film thickness dependence of the dehydrogenation conversion ratio, and FIG. 11 shows the thermal diffusivity / film thickness dependence of the inflection point temperature. 10 and 11, when the thermal diffusivity / film thickness of the catalyst is larger than 1 × 10 −6 (m 2 / (s · μm)) (thermal diffusivity / film thickness of dense alumina: 1 × 10 −5 ( m 2 / (s · μm))), the inflection point moved to the high temperature side, and the dehydrogenation conversion rate also increased. The higher the temperature, the higher the reaction rate of the dehydrogenation reaction and the high-speed hydrogen supply becomes possible. However, since the dehydrogenation reaction involves a large endotherm, the heat supply must be performed at a high speed for the generation of high-speed hydrogen. In order to efficiently supply heat to the catalyst layer, a hydrogen supply device having a high thermal conductivity is required. The hydrogen supply device is composed of a catalyst plate, a catalyst carrier, and the like. By increasing the heat conduction of these, heat can be supplied to the catalyst faster, and the reaction rate can be improved. However, alumina serving as a carrier has a lower thermal conductivity than aluminum and is rate-limiting when supplying heat. For this reason, it is desirable that the alumina carrier also has high thermal conductivity. 10 and 11, the thermal diffusivity / film thickness of the porous oxide is set to 1 × 10 −6 to 1 × 10 −5 (m 2 / (s · μm)).

従って、触媒の構成としては、吸水率/膜厚が0.030〜0.065(mg/(cm・μm))、Pt触媒粒径が1〜4nm、多孔質酸化物の微細孔径が45〜100nm、多孔質酸化物の熱拡散率/膜厚が1×10−6〜1×10−5(m/(s・μm))であれば、高性能な触媒となることが分かった。 Therefore, the catalyst is composed of a water absorption / film thickness of 0.030 to 0.065 (mg / (cm 2 · μm)), a Pt catalyst particle diameter of 1 to 4 nm, and a fine pore diameter of the porous oxide of 45. It was found that if the thermal diffusivity / film thickness of the porous oxide is 1 × 10 −6 to 1 × 10 −5 (m 2 / (s · μm)), it becomes a high-performance catalyst. .

以上の実施例は、触媒作製時の陽極酸化の電圧は40Vで実施したが、印加電圧を変えても、上記の吸水率/膜厚、Pt触媒粒径、微細孔、多孔質酸化物の熱拡散率/膜厚の値が設定範囲に入れば、高性能の触媒となることを確認している。   In the above examples, the anodic oxidation voltage at the time of catalyst preparation was 40 V. However, even if the applied voltage was changed, the above water absorption / film thickness, Pt catalyst particle size, fine pores, heat of porous oxide It has been confirmed that if the value of diffusivity / film thickness falls within the set range, it becomes a high-performance catalyst.

本実施例は、図4に示したように、実施例で作製した高活性触媒を用いて前記アルミニウム基板を4枚積層し、積層型水素供給装置を作製した例である。積層することによって、高熱伝導を持つアルミニウムの表面に陽極酸化により熱伝導が優れた多孔質酸化物を直接作製することができ、高熱伝導基板と触媒担体の密着性及び熱伝導性が良い水素供給装置とすることができる。 In this example, as shown in FIG. 4, four aluminum substrates were laminated using the highly active catalyst produced in Example 2 , and a laminated hydrogen supply apparatus was produced. By laminating, it is possible to directly produce a porous oxide with excellent thermal conductivity by anodizing on the surface of aluminum with high thermal conductivity, and hydrogen supply with high adhesion and thermal conductivity between the high thermal conductivity substrate and the catalyst carrier It can be a device.

媒体としての有機ハイドライドは、凹部の燃料ガス流路を通り、パターン表面上に形成された触媒層と接触しながら脱水素反応が進行し水素が生成する。生成した水素は冷却器により燃料及び生成した芳香族炭化水素と分離され、水素流路を通り、外部のエンジンや燃料電池等へ供給される。   The organic hydride as a medium passes through the fuel gas flow path in the concave portion, and a dehydrogenation reaction proceeds while contacting with the catalyst layer formed on the pattern surface to generate hydrogen. The produced hydrogen is separated from the fuel and the produced aromatic hydrocarbon by a cooler, passes through a hydrogen flow path, and is supplied to an external engine, a fuel cell, or the like.

本実施例の水素供給装置は、図5に示すように、実施例に準拠して作製した水素供給装置であり、水素流路に水素分離膜、積層間に多数の貫通口19を設けることが特徴である。水素供給装置内部で気体の水素と媒体を分離し、平衡状態を脱水素化方向へ移動する。それらの膜は、膜厚が大きくなるほど水素透過速度が減少するため50μm以下のできるだけ薄い膜とすることが好ましい。より厚い膜を用いる場合は、水素透過側の圧力を反応側の圧力より低圧条件にすれば、水素透過速度を増大することができる。本実施例の水素供給装置は、実施例の構成において更に水素分離膜を設けることによって、より低温化できる反応器となる。さらに、アルミニウム積層体に貫通口19を設けて、水素分離膜を有効に使い、熱効率を維持したまま、水素分離効率を向上させることができる。 The hydrogen supply device of this example is a hydrogen supply device manufactured according to Example 5 as shown in FIG. 5, and is provided with a hydrogen separation membrane in the hydrogen flow path and a large number of through-holes 19 between the layers. Is a feature. Gaseous hydrogen and medium are separated inside the hydrogen supply device, and the equilibrium state is moved in the dehydrogenation direction. These films are preferably as thin as possible with a thickness of 50 μm or less because the hydrogen permeation rate decreases as the film thickness increases. In the case of using a thicker membrane, the hydrogen permeation rate can be increased by setting the pressure on the hydrogen permeation side to be lower than the pressure on the reaction side. The hydrogen supply apparatus of this example is a reactor that can be further cooled by providing a hydrogen separation membrane in the configuration of Example 5 . Furthermore, by providing the through hole 19 in the aluminum laminate, the hydrogen separation membrane can be effectively used, and the hydrogen separation efficiency can be improved while maintaining the thermal efficiency.

脱水素・水素付加触媒の模式図である。It is a schematic diagram of a dehydrogenation and hydrogenation catalyst. 水素供給システムの外観図である。It is an external view of a hydrogen supply system. (a)は水素分離膜なし、(b)は水素分離膜ありの場合の水素供給装置の断面図である。(A) is a hydrogen separation membrane, (b) is sectional drawing of a hydrogen supply apparatus in case of a hydrogen separation membrane. 積層型水素供給装置(水素分離膜なし)の断面図である。It is sectional drawing of a laminated | stacked hydrogen supply apparatus (without a hydrogen separation membrane). 積層型水素供給装置(水素分離膜あり)の断面図である。It is sectional drawing of a laminated | stacked hydrogen supply apparatus (with a hydrogen separation membrane). 脱水素転化率比の吸水率/膜厚依存性を示す特性図である。It is a characteristic figure which shows the water absorption rate / film thickness dependence of dehydrogenation conversion ratio. 偏曲点温度の吸水率/膜厚依存性を示す特性図である。It is a characteristic view which shows the water absorption rate / film thickness dependence of an inflection point temperature. 脱水素転化率比の微細孔径依存性を示す特性図である。It is a characteristic view which shows the micropore diameter dependence of dehydrogenation conversion ratio. 偏曲点温度の微細孔径依存性を示す特性図である。It is a characteristic view which shows the micropore diameter dependence of an inflection point temperature. 脱水素転化率比の熱拡散率/膜厚依存性を示す特性図である。It is a characteristic view which shows the thermal diffusivity / film thickness dependence of dehydrogenation conversion ratio. 偏曲点温度の熱拡散率/膜厚依存性を示す特性図である。It is a characteristic view which shows the thermal diffusivity / film thickness dependence of an inflection point temperature.

1…Al基板、2…触媒担体、3…ガス流路、4…マクロ細孔、5…触媒粒子、6…燃料タンク部、7…燃料供給部、8…水素供給装置(リアクタ)、9…熱交換器、10…高温ガス入口、11…高温ガス出口、12…冷却器、13…水素排出口、14…廃液タンク部、15…上蓋、16…水素分離膜、17…スペーサ、18…水素流路、19…貫通口、20…触媒層。 DESCRIPTION OF SYMBOLS 1 ... Al substrate, 2 ... Catalyst support, 3 ... Gas flow path, 4 ... Macro pore, 5 ... Catalyst particle, 6 ... Fuel tank part, 7 ... Fuel supply part, 8 ... Hydrogen supply apparatus (reactor), 9 ... Heat exchanger, 10 ... hot gas inlet, 11 ... hot gas outlet, 12 ... cooler, 13 ... hydrogen discharge port, 14 ... waste liquid tank, 15 ... upper lid, 16 ... hydrogen separation membrane, 17 ... spacer, 18 ... hydrogen A flow path, 19 ... through-hole, 20 ... catalyst layer.

Claims (6)

金属触媒を多孔質酸化膜よりなる触媒担体に担持したものからなり、化学的に水素貯蔵・供給を繰り返す媒体を用いて水素を取り出す触媒において、前記触媒担体は、アルミニウム基板の表面を陽極酸化・焼成して作製された多孔質アルミニウム酸化膜であり、前記多孔質アルミニウム酸化膜の吸水率/膜厚が0.030〜0.065(mg/(cm・μm))であることを特徴とする脱水素・水素付加触媒。 Made from those supported on the catalyst carrier made of a porous oxide film of the metal catalyst, in catalyze to eject the hydrogen using the medium to repeat the chemical hydrogen storage and supply, the catalyst support, the surface of the aluminum substrate It is a porous aluminum oxide film produced by anodizing and firing, and the water absorption / film thickness of the porous aluminum oxide film is 0.030 to 0.065 (mg / (cm 2 · μm)). Dehydrogenation / hydrogenation catalyst characterized by 前記金属触媒がPtであって、Pt触媒粒径が1〜4nmであることを特徴とする請求項1記載の脱水素・水素付加触媒。 The dehydrogenation / hydrogenation catalyst according to claim 1, wherein the metal catalyst is Pt, and the Pt catalyst particle size is 1 to 4 nm. 前記多孔質酸化膜が45〜100nmの細孔を有していることを特徴とする請求項1記載の脱水素・水素付加触媒。 The dehydrogenation / hydrogenation catalyst according to claim 1, wherein the porous oxide film has pores of 45 to 100 nm. 前記多孔質酸化膜の熱拡散率/膜厚が1×10−6〜1×10−5(m/(s・μm))であることを特徴とする請求項1記載の脱水素・水素付加触媒。 2. The dehydrogenation / hydrogen of claim 1, wherein the porous oxide film has a thermal diffusivity / film thickness of 1 × 10 −6 to 1 × 10 −5 (m 2 / (s · μm)). Addition catalyst. 脱水素・水素付加触媒を備えた水素供給装置において、前記触媒が多孔質酸化膜よりなる触媒担体にPt触媒粒子を担持したものからなり、前記触媒担体は、アルミニウム基板の表面を陽極酸化・焼成して作製された多孔質アルミニウム酸化膜であり、前記アルミニウム多孔質酸化膜の吸水率/膜厚が0.030〜0.065(mg/(cm・μm))であることを特徴とする水素供給装置。 In the hydrogen supply apparatus having a dehydrogenation-hydrogenation catalyst, before Kisawa medium is from those carrying a catalyst carrier Pt catalyst particles consisting of a porous oxide layer, and the catalyst support, the surface of the aluminum substrate anodized A porous aluminum oxide film produced by firing, wherein the aluminum porous oxide film has a water absorption rate / film thickness of 0.030 to 0.065 (mg / (cm 2 · μm) ). Hydrogen supply device. 多孔質酸化膜よりなる触媒担体にPt触媒粒子を担持したものからなり、前記触媒担体は、アルミニウム基板の表面を陽極酸化・焼成して作製された多孔質アルミニウム酸化膜であり、前記多孔質アルミニウム酸化膜の吸水率/膜厚が0.030〜0.065(mg/(cm・μm))である脱水素・水素付加触媒を具備したアルミニウム基板を積層し、水素流路に水素分離膜、積層間に複数の水素拡散貫通口を備えたことを特徴とする水素供給装置。 A catalyst carrier comprising a porous oxide film carries Pt catalyst particles, and the catalyst carrier is a porous aluminum oxide film produced by anodizing and firing the surface of an aluminum substrate, and the porous aluminum An aluminum substrate provided with a dehydrogenation / hydrogenation catalyst having a water absorption rate / film thickness of 0.030 to 0.065 (mg / (cm 2 · μm)) of the oxide film is laminated, and a hydrogen separation membrane is formed in the hydrogen channel. A hydrogen supply apparatus comprising a plurality of hydrogen diffusion through holes between the stacked layers.
JP2006157733A 2006-06-06 2006-06-06 Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same Expired - Fee Related JP5009556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157733A JP5009556B2 (en) 2006-06-06 2006-06-06 Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157733A JP5009556B2 (en) 2006-06-06 2006-06-06 Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same

Publications (2)

Publication Number Publication Date
JP2007326000A JP2007326000A (en) 2007-12-20
JP5009556B2 true JP5009556B2 (en) 2012-08-22

Family

ID=38926862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157733A Expired - Fee Related JP5009556B2 (en) 2006-06-06 2006-06-06 Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same

Country Status (1)

Country Link
JP (1) JP5009556B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986240B2 (en) * 2007-12-25 2012-07-25 ニチコン株式会社 Catalytic reactor and catalytic reaction apparatus using the same
JP5210782B2 (en) * 2008-09-30 2013-06-12 株式会社日立製作所 Anodized substrate and catalyst body using the same
JP5489508B2 (en) * 2009-03-31 2014-05-14 日立エーアイシー株式会社 Hydrogen catalyst material
JP5489509B2 (en) * 2009-03-31 2014-05-14 日立エーアイシー株式会社 Hydrogen catalyst material
JP2010279876A (en) * 2009-06-03 2010-12-16 Jx Nippon Oil & Energy Corp System for dehydrogenating organic hydride
JP5398367B2 (en) * 2009-06-11 2014-01-29 日立エーアイシー株式会社 Hydrogen generator
JP5596360B2 (en) * 2010-01-28 2014-09-24 日立エーアイシー株式会社 Hydrogen catalyst member and manufacturing method thereof
JP5369126B2 (en) * 2010-04-28 2013-12-18 日本精線株式会社 Wire catalyst molded products for hydrogenation / dehydrogenation reactions
JP5602698B2 (en) * 2011-09-22 2014-10-08 株式会社日立製作所 Power conversion system
JP2014030808A (en) * 2012-08-06 2014-02-20 Hitachi Aic Inc Catalyst component
JP5871773B2 (en) * 2012-10-30 2016-03-01 Jx日鉱日石エネルギー株式会社 Dehydrogenation catalyst and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8427943D0 (en) * 1984-11-05 1984-12-12 Alcan Int Ltd Anodic aluminium oxide film
JP2001338653A (en) * 2000-05-30 2001-12-07 Riken Corp Separator for fuel cell
JP3524478B2 (en) * 2000-08-31 2004-05-10 川崎重工業株式会社 High heat transfer catalyst and method for producing the same
JP3820134B2 (en) * 2001-10-29 2006-09-13 富士写真フイルム株式会社 Lithographic printing plate support and planographic printing plate precursor
JP4056940B2 (en) * 2003-06-11 2008-03-05 田中貴金属工業株式会社 Metal colloid, method for producing the metal colloid, and thin film produced by the metal colloid
JP4431338B2 (en) * 2003-07-28 2010-03-10 新日本石油株式会社 Method for producing hydrogen using thermally conductive catalyst body
JP4578867B2 (en) * 2003-09-30 2010-11-10 株式会社日立製作所 Hydrogen storage / supply device and system thereof, distributed power source using the same, and automobile
JPWO2005099900A1 (en) * 2004-04-01 2008-03-06 国立大学法人東京農工大学 Method for producing alumite catalyst body

Also Published As

Publication number Publication date
JP2007326000A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5009556B2 (en) Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same
JP4578867B2 (en) Hydrogen storage / supply device and system thereof, distributed power source using the same, and automobile
Kang et al. Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production
JP5272320B2 (en) HYDROGEN SUPPLY DEVICE, ITS MANUFACTURING METHOD, AND DISTRIBUTED POWER SUPPLY AND AUTOMOBILE
Ke et al. Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production
US20060210846A1 (en) Carbon monoxide removing method, carbon monoxide removing apparatus, method for producing same, hydrogen generating apparatus using same, and fuel cell system using same
JP2007091513A (en) Hydrogen generator and fuel cell system
JP2019220463A (en) Electrolyte for electrochemical cell and electrochemical cell
JP5174602B2 (en) Hydrogen storage system
JP2010163358A (en) Hydrogen supply apparatus and method for supplying hydrogen
Liu et al. Performance optimization of an HT-PEMFC and PSA integrated system with impure hydrogen containing CO2
JP5871773B2 (en) Dehydrogenation catalyst and method for producing the same
JP5297251B2 (en) Hydrogen supply method and hydrogen supply apparatus
CN101537374B (en) Method for protecting reforming catalyst of molten carbonate fuel cell and applications thereof
JP5489508B2 (en) Hydrogen catalyst material
TW201940233A (en) Production method for structured catalyst and hydrogen production method using structured catalyst
Wei et al. Improvement of the critical current density of alkaline water electrolysis based on the hydrodynamic similarity between boiling and water electrolysis
Grinberg et al. Microfuel cells: Modern state and future development
JP6741830B2 (en) Power generation system
JP2006290732A (en) Method for removing co, apparatus for removing co and its manufacturing method, hydrogen generator using the same and fuel cell system using the same
KR101199775B1 (en) Catalytic Activated Plate for Micro-Channel Reactor for Partial Oxidation Reforming of DME, Micro-Channel Reactor thereof and Method of Hydrogen Generation thereby
JP2002301381A (en) Supported catalyst and reforming apparatus
JP2019220455A (en) Electrolyte for electrochemical cell and electrochemical cell
JP5210782B2 (en) Anodized substrate and catalyst body using the same
CN103949244A (en) Preparation method of platinum catalyst by taking porous foaming aluminum as carrier for methyl alcohol reformer combustion chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Ref document number: 5009556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees