JP2014030808A - Catalyst component - Google Patents

Catalyst component Download PDF

Info

Publication number
JP2014030808A
JP2014030808A JP2012173656A JP2012173656A JP2014030808A JP 2014030808 A JP2014030808 A JP 2014030808A JP 2012173656 A JP2012173656 A JP 2012173656A JP 2012173656 A JP2012173656 A JP 2012173656A JP 2014030808 A JP2014030808 A JP 2014030808A
Authority
JP
Japan
Prior art keywords
oxide film
pore
catalyst
porous oxide
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012173656A
Other languages
Japanese (ja)
Inventor
Seiji Yamaguchi
清治 山口
katsuhiro Kogure
克洋 小暮
Kazuyuki Iida
和幸 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2012173656A priority Critical patent/JP2014030808A/en
Publication of JP2014030808A publication Critical patent/JP2014030808A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide, for the purpose of solving, in light of the desirability of an oxide film having a nano-sized three-dimensional structure as the supporter of a catalyst carrier supporting a metal catalyst, the problem that, although a three-dimensionally structured oxide film of aluminum can be realized either by a porous film provided by anodic oxidation or by a feathery film provided by boiling, composite effects cannot be realized in a case where both are composited due to the clogging, by the feathery hydroxide formed as a result of boiling, of the porous oxide film obtained as a result of anodic oxidation, a catalyst component capable of increasing the number of pores by adjusting pore intervals to the extent that the feathery structure does not clog pores and of improving the catalyst reaction efficiency based on an enlarged surface area of the porous oxide film.SOLUTION: As a catalyst component having a catalyst function on a metal surface, a catalyst component wherein the metal is aluminum having a porous oxide film and a feathery structure on the surface wherein pore intervals of the porous oxide film range from 300 nm to 1200 nm is used.

Description

本発明は、触媒部材に関し、特に、金属表面に触媒機能を備えた触媒部材に関する。 The present invention relates to a catalyst member, and more particularly to a catalyst member having a catalytic function on a metal surface.

従来、触媒活性は、触媒の表面積の大きさに依存することから、触媒を超微粒子化したり触媒部材の表面積を大きくしたりすることが行われている。そのため、触媒または触媒部材の形状は粉状体またはこれを固めたペレット状となっていた。   Conventionally, since the catalytic activity depends on the size of the surface area of the catalyst, the catalyst is made into ultrafine particles or the surface area of the catalyst member is increased. Therefore, the shape of the catalyst or the catalyst member is a powdery body or a pellet shape obtained by solidifying this.

しかし、粉状体は熱伝導性があまりよくないため、触媒反応における熱伝導を効果的に行うために、特許文献1には、アルミニウム平板表面を陽極酸化して、多孔質酸化膜を設け、その多孔質酸化膜に金属触媒を担持して担持体とし、化学的に水素貯蔵・供給を繰り返す媒体を用いて水素を取り出す脱水素触媒部材を得ることが提案されている。   However, since the powdery body has poor thermal conductivity, in order to effectively conduct heat conduction in the catalytic reaction, Patent Document 1 includes anodizing the aluminum flat plate surface and providing a porous oxide film, It has been proposed to obtain a dehydrogenation catalyst member for taking out hydrogen using a medium in which a metal catalyst is supported on the porous oxide film to form a support, which chemically repeats hydrogen storage and supply.

図1は、水素反応容器および水素反応ユニットの概略図の一例であり、水素エンジンを示している。水素を付加した水素媒体1は、水素媒体タンク2から管により水素反応容器3へ送られる。この水素反応容器3内には白金などの金属触媒を多孔質酸化皮膜に担持した触媒担体が配置され脱水素反応が生じている。ところで、この脱水素反応は吸熱反応であり、熱を必要とするが、この熱をエンジン4からの燃焼排気ガスとの熱交換により得ている。水素反応容器3内に送られた水素を付加した水素媒体1はこの脱水素反応により水素5を放出する。次に、水素反応容器3を出た水素5とそれ以外の物質とは気液分離容器6で分離され、水素を放出した水素媒体及び未反応の水素媒体7は、廃液タンク8に貯蔵される。一方、水素5はエンジン4に送られ燃料となる。   FIG. 1 is an example of a schematic diagram of a hydrogen reaction vessel and a hydrogen reaction unit, and shows a hydrogen engine. The hydrogen medium 1 to which hydrogen is added is sent from the hydrogen medium tank 2 to the hydrogen reaction vessel 3 through a pipe. In this hydrogen reaction vessel 3, a catalyst carrier having a metal catalyst such as platinum supported on a porous oxide film is disposed to cause a dehydrogenation reaction. By the way, this dehydrogenation reaction is an endothermic reaction and requires heat, but this heat is obtained by heat exchange with the combustion exhaust gas from the engine 4. The hydrogen medium 1 added with hydrogen sent into the hydrogen reaction vessel 3 releases hydrogen 5 by this dehydrogenation reaction. Next, hydrogen 5 exiting the hydrogen reaction vessel 3 and other substances are separated in the gas-liquid separation vessel 6, and the hydrogen medium from which hydrogen has been released and the unreacted hydrogen medium 7 are stored in the waste liquid tank 8. . On the other hand, the hydrogen 5 is sent to the engine 4 and becomes fuel.

ここで白金をはじめとした金属触媒は高価であり、低コスト化では反応表面積/体積を高め、使用量を制限する必要がある。表面積/体積を高めるには金属触媒の粒径を小さくする必要がありナノサイズのコロイド溶液が用いられる。しかしこれを担持する担持体が平滑な場合、コロイドが凝縮/合体し肥大化してしまうので担持体はナノサイズの立体構造を持つ必要がある。また触媒は電子のやり取りにて反応するので担持体は絶縁物である必要がある。一方、反応は水素付加にて発熱反応、脱水素にて吸熱反応なので熱伝導が必要であり、担持体の絶縁物は金属を地金として形成されることが望ましい。
これらに合致する担持体の一つにアルミニウムの陽極酸化による多孔質皮膜が上げられる。皮膜の形状は化成液組成などに依存するが、例えばシュウ酸では六角セル構造にて中央にポアと呼ばれる穴形状の多孔質皮膜が形成される。
もう一つの方法は、煮沸処理でありアルミニウムまたは表面を陽極酸化したアルミニウムを純水煮沸することによる羽毛状構造体の形成である。
これらにより、いずれもナノサイズの立体構造を持つ担持体が形成される。
Here, platinum and other metal catalysts are expensive, and in order to reduce costs, it is necessary to increase the reaction surface area / volume and limit the amount used. In order to increase the surface area / volume, it is necessary to reduce the particle size of the metal catalyst, and a nano-sized colloidal solution is used. However, if the carrier carrying this is smooth, the colloid will condense / unify and become enlarged, so the carrier needs to have a nano-sized three-dimensional structure. Further, since the catalyst reacts by exchanging electrons, the support needs to be an insulator. On the other hand, since the reaction is an exothermic reaction by hydrogen addition and an endothermic reaction by dehydrogenation, heat conduction is required, and it is desirable that the insulator of the support is formed of metal as a metal.
A porous film formed by anodic oxidation of aluminum is raised as one of the supports that meet these requirements. Although the shape of the film depends on the chemical composition, etc., for example, oxalic acid forms a hole-shaped porous film called a pore at the center in a hexagonal cell structure.
Another method is the formation of feather-like structures by boiling a pure water of aluminum or anodized aluminum.
As a result, a carrier having a nano-sized three-dimensional structure is formed.

特開2007−326000公報JP 2007-326000 A

陽極酸化による多孔質皮膜により形成される、ポア(細孔)構造の場合、化成条件により深いポアを得ることが可能であり、担持の表面積を広くとることが出来る。しかしポア内に侵入の金属触媒ナノコロイドが凝縮合体することを阻止出来ない。
一方、羽毛状構造体では、複雑な立体構造であり金属触媒ナノコロイドの合体は阻止され易いが、ポアのような深い立体構造ではないため、得られる表面積には限界がある。
以上より、担持体構造は両者を併せ持った構造、すなわち深いポアを持ち、かつポアを含めた表面に羽毛状構造体を持つことが望ましい。具体的には、
(1)陽極酸化処理にてポアの立体構造を持つ多孔質酸化膜を形成する。
(2)酸(アルカリ)に浸漬し溶解にてポアの径を拡大する。
(3)純水煮沸にて多孔質酸化膜表面に羽毛状水酸化アルミニウム膜を形成させる。
(4)加熱処理にて水酸化アルミニウムを酸化アルミニウムに転化させる。
とすれば良い。
In the case of a pore (pore) structure formed by a porous film formed by anodization, deep pores can be obtained depending on the chemical conversion conditions, and the surface area of the support can be increased. However, it cannot prevent the intrusion metal catalyst nanocolloid from condensing into the pores.
On the other hand, a feather-like structure has a complicated three-dimensional structure, and the coalescence of metal catalyst nanocolloids is easily prevented.
From the above, it is desirable that the carrier structure has a structure having both, that is, a deep pore and a feather-like structure on the surface including the pore. In particular,
(1) A porous oxide film having a three-dimensional pore structure is formed by anodization.
(2) It is immersed in an acid (alkali) and the pore diameter is expanded by dissolution.
(3) A feather-like aluminum hydroxide film is formed on the surface of the porous oxide film by boiling with pure water.
(4) Aluminum hydroxide is converted to aluminum oxide by heat treatment.
What should I do?

煮沸で得られる皮膜は、表層の羽毛状の水酸化物と地金側の緻密な水酸化物で構成される。(以下、これを羽毛状構造体と呼ぶ)羽毛状構造体の厚さは、概ね煮沸時間の平方根に比例するが、厚すぎるとポアを塞いでしまう。厚い羽毛状構造体を収納するには、ポア径を広げる必要が有るがポア間隔が狭い場合、ポアを広げるとポアが合体するので、必要なポア径に応じてポア間隔を広げる。ポア間隔は概ね、陽極酸化の化成電圧に比例するので、条件に応じて化成電圧を調整する。ここでポア間隔が狭くポア径が細い場合、ポア数が多いので多孔質酸化膜の表面積を大きく出来るが、羽毛状構造体を厚く出来ないので羽毛状構造体の表面積は小さい。逆にポア間隔が広い場合、ポア径を大きくでき、羽毛状構造体を厚くでき、羽毛状構造体の表面積は大きいが、ポア数が少なく、多孔質酸化膜の表面積は小さい。   The film obtained by boiling is composed of feather-like hydroxide on the surface layer and dense hydroxide on the bare metal side. The thickness of the feather-like structure (hereinafter referred to as the feather-like structure) is approximately proportional to the square root of the boiling time, but if it is too thick, the pores are blocked. In order to store a thick feather-like structure, it is necessary to widen the pore diameter, but when the pore interval is narrow, the pores merge when the pores are widened. Therefore, the pore interval is increased according to the required pore diameter. Since the pore interval is generally proportional to the formation voltage of anodic oxidation, the formation voltage is adjusted according to the conditions. Here, when the pore interval is narrow and the pore diameter is small, the surface area of the porous oxide film can be increased because the number of pores is large, but since the feather-like structure cannot be thickened, the surface area of the feather-like structure is small. Conversely, when the pore interval is wide, the pore diameter can be increased, the feather-like structure can be thickened, and the surface area of the feather-like structure is large, but the number of pores is small, and the surface area of the porous oxide film is small.

本発明は、鋭意検討の結果、触媒反応に最適なポア間隔を見出したものであり、アルミニウムの表面に多孔質酸化皮膜とその表面に羽毛状構造体を有する優れた触媒部材を提供するものである。   As a result of intensive studies, the present invention has found an optimal pore interval for catalytic reaction, and provides an excellent catalyst member having a porous oxide film on the surface of aluminum and a feather-like structure on the surface. is there.

本発明は、上記の課題を解決するために、金属表面に触媒機能を備えた触媒部材において、前記金属が多孔質酸化皮膜とその表面に羽毛状構造体を有するアルミニウムで、前記多孔質酸化皮膜のポア間隔が、300nmから1500nmである触媒部材を提供するものである。   In order to solve the above problems, the present invention provides a catalyst member having a catalytic function on a metal surface, wherein the metal is a porous oxide film and aluminum having a feather-like structure on the surface, and the porous oxide film The catalyst member has a pore interval of 300 nm to 1500 nm.

羽毛状構造体を収納するポア径に最適なポア間隔であり、触媒反応表面積が最適化されることで触媒反応効率を向上することが出来る。   The pore spacing is optimal for the pore diameter that accommodates the feather-like structure, and the catalytic reaction efficiency can be improved by optimizing the catalytic reaction surface area.

水素反応容器および水素反応ユニットの概略図の一例を示している。An example of the schematic diagram of a hydrogen reaction vessel and a hydrogen reaction unit is shown. 陽極酸化による多孔質膜のモデル図を示す。The model figure of the porous membrane by anodization is shown. 多孔質酸化皮膜のポア間隔により、羽毛状構造体のポアの塞ぎ具合を概略的に示している。The pore closing state of the feather-like structure is schematically shown by the pore interval of the porous oxide film. 本願発明の陽極酸化工程後の走査型電子顕微鏡の画像を示している。The image of the scanning electron microscope after the anodic oxidation process of this invention is shown. 本願発明の陽極酸化、アルカリ水溶液浸漬工程後の走査型電子顕微鏡の画像を示している。The image of the scanning electron microscope after the anodization of this invention and the alkaline aqueous solution immersion process is shown. 本願発明の陽極酸化、アルカリ水溶液浸漬、純水煮沸、加熱処理工程後の走査型電子顕微鏡の画像を示している。The image of the scanning electron microscope after the anodic oxidation of this invention, alkaline aqueous solution immersion, a pure water boiling, and a heat processing process is shown. KOH浸漬時間とポア径の関係を示す。The relationship between KOH immersion time and a pore diameter is shown. 純水煮沸時間と羽毛状構造体厚さの関係を示す。The relationship between boiling time of pure water and the thickness of a feather-like structure is shown.

本発明に述べるアルミニウムは、アルミニウム単体またはアルミニウムにパラジウム、ニオブ、タンタル、ジルコニウム、バナジウムなどを添加したものが含まれる。形状としては、箔、繊維、紛体などが使用できる。   The aluminum described in the present invention includes aluminum alone or aluminum added with palladium, niobium, tantalum, zirconium, vanadium, or the like. As the shape, foil, fiber, powder or the like can be used.

本発明に述べる多孔質酸化皮膜は、アルミニウムを陽極酸化してできる酸化皮膜のうち酸化皮膜が多孔質のものである。アルミニウムの陽極酸化で得られる皮膜は、必ずしも多孔質ではないが、化成液組成などの化成条件を調整することで多孔質酸化皮膜が得られる。化成液は水溶液であり、主溶質としては、例えば蓚酸、硫酸、燐酸、クロム酸、クエン酸水溶液等を使用することができる。   The porous oxide film described in the present invention is a porous oxide film among oxide films formed by anodizing aluminum. The film obtained by anodic oxidation of aluminum is not necessarily porous, but a porous oxide film can be obtained by adjusting chemical conversion conditions such as a chemical conversion liquid composition. The chemical conversion solution is an aqueous solution, and as the main solute, for example, oxalic acid, sulfuric acid, phosphoric acid, chromic acid, citric acid aqueous solution and the like can be used.

本発明に述べる多孔質酸化皮膜のポア間隔は、アルミニウムを陽極酸化してできる多孔質酸化皮膜のポアの中心から近接した別のポアの中心間の距離で、ポア間隔は、300nmから1500nmが好ましく、400nmから900nmがより好ましい。これ以下だと、ポア径が拡大できず羽毛状構造体がポアを塞ぐのを防止しすることができない。これ以上だと、ポア径を拡大でき羽毛状構造体でポアが塞がれることは防止できるが、ポア数が少なく多孔質酸化皮膜自体の表面積が減少する。
また、ポア間隔は化成電圧に依存し1200nm以上とする場合の化成電圧は、例えば800V程度となり、これを達成する化成液は、その火花電圧より主溶質濃度が薄く多孔質の皮膜構造が得られ難い。
ポア間距離は、化成電圧に依存し、高電圧とすることで、長く出来る。ただし高電圧化するに当り
化成液の調整が必要である。単純に化成電圧を上げると火花が発生すると共に、化成電力が大きく
化成液温度の制御が困難となる。
主溶媒濃度調整および、ポリビニルアルコールなどの水溶性ポリマー添加などにて火花電圧を化成電圧以上に高めると共に、反応性を抑えることで化成電力を抑え、化成液温度をコントロールし易くする。
化成の液温度は、高いと皮膜に焼けと呼ばれる形状異常が発生する。一方、低くする場合では冷却費より非経済的である。0℃から50℃、特に20℃から30℃とすることが好ましい。
また、この陽極酸化の処理時間は、処理条件や形成したい膜厚によって異なるが、例えば40℃、0.1MPa、クエン酸0.35wt%、エチレングリコール70wt%の水溶液で550V、10分とした場合には約6μmの陽極酸化層を形成できる。
The pore interval of the porous oxide film described in the present invention is the distance between the centers of other pores close to the center of the pore of the porous oxide film formed by anodizing aluminum, and the pore interval is preferably 300 nm to 1500 nm. 400 nm to 900 nm is more preferable. If it is less than this, the pore diameter cannot be increased, and the feather-like structure cannot be prevented from blocking the pore. If it is more than this, the pore diameter can be increased and the pores can be prevented from being clogged with pores, but the number of pores is small and the surface area of the porous oxide film itself is reduced.
In addition, the pore interval depends on the formation voltage, and the formation voltage when it is 1200 nm or more is, for example, about 800 V, and the formation solution that achieves this has a porous film structure whose main solute concentration is thinner than the spark voltage. hard.
The distance between the pores depends on the formation voltage and can be increased by using a high voltage. However, it is necessary to adjust the chemical conversion liquid to increase the voltage. If the chemical conversion voltage is simply increased, sparks are generated and the chemical conversion power becomes large, making it difficult to control the chemical conversion liquid temperature.
By adjusting the main solvent concentration and adding a water-soluble polymer such as polyvinyl alcohol, the spark voltage is increased to a value higher than the chemical voltage, and the chemical power is suppressed by controlling the reactivity, making it easy to control the chemical liquid temperature.
If the temperature of the chemical conversion liquid is high, a shape abnormality called burning is generated in the film. On the other hand, lowering is less economical than cooling costs. It is preferable that the temperature is 0 ° C to 50 ° C, particularly 20 ° C to 30 ° C.
Further, the treatment time of this anodization varies depending on the treatment conditions and the film thickness to be formed. An anodized layer of about 6 μm can be formed.

ポア径は、本化成条件によっても調整できるが、化成条件はポア径だけでなく、ポア間隔、皮膜厚などにも影響を与え最適形状が得られない場合があるのでポア径は細いままとし、後の酸またはアルカリ水溶液浸漬工程によってポア径を整えるのが良い。
使用する酸、アルカリ水溶液は特に限定しないが、燐酸、苛性ソーダ、水酸化カリウムなどが使用できる。濃度、温度、時間は所定の細孔径となる条件を選ぶ。最適なポア径は、後の煮沸処理工程で成長させる羽毛状皮膜でポアが塞がれない径であり、煮沸の条件により最適値が異なる。煮沸は純水にて90℃〜98℃が好適であるが、処理の気圧を上げる場合では、更に高温とし処理時間を短縮することも可能である。
The pore diameter can also be adjusted according to the chemical conversion conditions, but the chemical formation conditions affect not only the pore diameter, but also the pore spacing, film thickness, etc., so the optimal shape may not be obtained. The pore diameter is preferably adjusted by a subsequent acid or alkaline aqueous solution immersion step.
The acid and aqueous alkali solution used are not particularly limited, but phosphoric acid, caustic soda, potassium hydroxide and the like can be used. Concentration, temperature, and time are selected so as to achieve a predetermined pore size. The optimum pore diameter is a diameter at which the pore is not blocked by a feather-like film grown in the subsequent boiling treatment step, and the optimum value varies depending on the boiling conditions. The boiling is preferably 90 ° C. to 98 ° C. with pure water. However, when the pressure of the treatment is increased, the treatment time can be shortened by further increasing the temperature.

本発明に述べる羽毛状構造体は、アルミニウムを陽極酸化して得られた多孔質酸化皮膜を、純水煮沸にて酸化膜表面に形成させた羽毛状の水酸化アルミニウム膜、または、羽毛状の水酸化アルミニウム膜を加熱処理して酸化アルミニウムに転化したものが含まれる。   The feather-like structure described in the present invention is a feather-like aluminum hydroxide film in which a porous oxide film obtained by anodizing aluminum is formed on the oxide film surface by boiling with pure water, or a feather-like structure. The aluminum hydroxide film is converted into aluminum oxide by heat treatment.

本発明に述べる触媒部材は、アルミニウムの表面に多孔質酸化膜を設け、その表面に羽毛状構造体を設けたものであるが、アルミニウムは、多孔質酸化膜形成前にエッチングで粗面化しても良い。
また、酸化アルミニウム自体触媒機能を備えているが、場合によってはその表面に金属触媒を担持したほうが良い場合がある。
金属触媒としては、ニッケル、パラジウム、白金、ロジウム、イリジウム、レニウム、ルテニウム、モリブデン、タングステン、バナジウム、オスミウム、クロム、コバルト、鉄などの金属及びこれらの合金触媒を用いることができる。金属触媒を多孔質酸化皮膜に担持する方法は、触媒金属をコロイド状に分散した液に浸漬することによる。
The catalyst member described in the present invention has a porous oxide film provided on the surface of aluminum and a feather-like structure provided on the surface, but the aluminum is roughened by etching before forming the porous oxide film. Also good.
Further, although aluminum oxide itself has a catalytic function, in some cases, it may be better to carry a metal catalyst on the surface.
As the metal catalyst, metals such as nickel, palladium, platinum, rhodium, iridium, rhenium, ruthenium, molybdenum, tungsten, vanadium, osmium, chromium, cobalt, iron, and alloys thereof can be used. The method for supporting the metal catalyst on the porous oxide film is by immersing the catalyst metal in a colloidally dispersed liquid.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、陽極酸化による多孔質膜のモデル図を示している。図2(a)は、多孔質酸化膜皮膜を設けたアルミニウム箔の斜視断面図を示している。図2(b)は、多孔質酸化膜皮膜の拡大斜視断面図を示している。アルミニウム地金9に設けた多孔質酸化膜皮膜10は、概ね六角柱にて中心にポア(細孔)11を有する形状の六角セル12の集合体である。ここでポア径(φp)は主に化成液組成、温度に、皮膜厚(t)は主に化成電気量、壁厚(d)は主に化成電圧に依存する。従ってポア間隔(P)は概ね、化成電圧に依存する。   FIG. 2 shows a model diagram of a porous film formed by anodization. FIG. 2A shows a perspective sectional view of an aluminum foil provided with a porous oxide film. FIG. 2B shows an enlarged perspective sectional view of the porous oxide film. A porous oxide film 10 provided on the aluminum base metal 9 is an aggregate of hexagonal cells 12 having a hexagonal column shape and a pore (pore) 11 at the center. Here, the pore diameter (φp) mainly depends on the chemical composition and temperature, the film thickness (t) mainly depends on the amount of chemical conversion, and the wall thickness (d) mainly depends on the chemical voltage. Therefore, the pore interval (P) generally depends on the formation voltage.

図3は、多孔質酸化皮膜のポア間隔により、羽毛状構造体のポアの塞ぎ具合を概略的に示している。
図3(a)は、ポア11間隔が狭く、それによってその表面に設ける羽毛状構造体13がポア11を塞いでいる状態を示している。
図3(b)は、ポア間隔がちょうどよく、それによってその表面に設ける羽毛状構造体13がポア11を塞いでいない状態を示している。
図3(c)は、ポア間隔が広く、羽毛状構造体13がポア11を塞いでいないが、それによって全体の多孔質酸化皮膜10の表面積が減少した状態を示している。
FIG. 3 schematically shows how the pores of the feather-like structure are blocked by the pore interval of the porous oxide film.
FIG. 3A shows a state in which the pores 11 are narrow and the feather-like structures 13 provided on the surfaces thereof block the pores 11.
FIG. 3B shows a state where the pore interval is just right, and the feather-like structure 13 provided on the surface thereof does not block the pore 11.
FIG. 3C shows a state where the pore interval is wide and the feather-like structure 13 does not block the pore 11, but the surface area of the entire porous oxide film 10 is thereby reduced.

以下に、本発明を実施例によりさらに具体的に説明するが、本発明は、これらの実施例
によってなんら限定されるものではない。
EXAMPLES The present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
まず、陽極酸化により多孔質酸化皮膜を形成する工程として、厚さ100μm、純度99.99%のアルミニウム箔を、クエン酸0.35wt%、エチレングリコール70wt%を、30℃の水溶液に吊るし、500VDCを15分間印加した。(図4に、この工程後の走査型電子顕微鏡SEM画像を示す。)
次に、酸またはアルカリ水溶液に浸漬する工程として、2g/l、30℃のKOH水溶液、26分とした。(図5に、この工程後のSEM画像を示す。)
次に、煮沸による羽毛状の水酸化アルミニウムを形成する工程として、98℃の純水にて2分、煮沸した。次に、加熱処理にて水酸化アルミニウムを酸化アルミニウムに転化させた。(図6に、この工程後のSEMの画像を示す。ポア間隔は約800nmである。)
次に、白金コロイド水溶液液(粒径2nm、4重量%,保護剤)に3分浸漬後、0.5mms-1で引き上げ、200℃、10分間加熱した。これを巾50×100mmに裁断後、丸めて内径φ10mmのステンレス管に収納し、水素発生の反応容器とした。
反応容器を400℃に加熱した状態で管の一方からメチルシクロヘキサンを一定速度で挿入し、反対の一方から出るガスを気液分離後、水素量を測定した。本試験を30分行い、水素発生速度を計算した。
Example 1
First, as a step of forming a porous oxide film by anodic oxidation, an aluminum foil having a thickness of 100 μm and a purity of 99.99% is suspended in an aqueous solution of 30 ° C. with 0.35 wt% citric acid and 70 wt% ethylene glycol, and 500 VDC Was applied for 15 minutes. (The scanning electron microscope SEM image after this process is shown in FIG. 4.)
Next, the step of immersing in an aqueous acid or alkali solution was 2 g / l, 30 ° C. aqueous KOH solution, 26 minutes. (The SEM image after this process is shown in FIG. 5.)
Next, as a step of forming feather-like aluminum hydroxide by boiling, it was boiled with pure water at 98 ° C. for 2 minutes. Next, the aluminum hydroxide was converted into aluminum oxide by heat treatment. (FIG. 6 shows an SEM image after this step. The pore interval is about 800 nm.)
Next, after being immersed in a platinum colloid aqueous solution (particle diameter 2 nm, 4 wt%, protective agent) for 3 minutes, it was pulled up at 0.5 mms −1 and heated at 200 ° C. for 10 minutes. This was cut into a width of 50 × 100 mm, rolled up and stored in a stainless steel tube having an inner diameter of φ10 mm to obtain a hydrogen generation reaction vessel.
While the reaction vessel was heated to 400 ° C., methylcyclohexane was inserted from one side of the tube at a constant rate, and the gas exiting from the other side was gas-liquid separated and the amount of hydrogen was measured. This test was performed for 30 minutes and the hydrogen generation rate was calculated.

実施例1のうち、化成電圧、KOH浸漬時間、純水煮沸時間を変えた場合を表1に示す。KOH浸漬時間はポアが合体しないことを配慮して選定した。
図7に、KOH浸漬時間とポア径の関係を示す。KOH浸漬時間は、ポア径=0.75×ポア間隔となるように調整した。また、純水煮沸時間は羽毛状構造体がポアを塞がないことを配慮して選定した。
図8に、純水煮沸時間と羽毛状構造体厚さの関係を示す。純水煮沸時間は30秒を下限として、羽毛状構造体厚さ=0.4×ポア径となるように選定した。
ただし化成電圧1000V以上では火花電圧の都合よりクエン酸0.2wt%、エチレングリコール85wt%とした。
これらを実施例1と同様に水素発生量を調査し、表1に示す。
Table 1 shows a case where the chemical conversion voltage, the KOH immersion time, and the pure water boiling time were changed. The KOH immersion time was selected considering that the pores do not coalesce.
FIG. 7 shows the relationship between the KOH immersion time and the pore diameter. The KOH immersion time was adjusted so that pore diameter = 0.75 × pore interval. The pure water boiling time was selected considering that the feather-like structure does not block the pores.
FIG. 8 shows the relationship between the boiling time of pure water and the thickness of the feather-like structure. The boiling time of pure water was selected so that the thickness of the feather-like structure = 0.4 × pore diameter with 30 seconds as the lower limit.
However, at a conversion voltage of 1000 V or more, citric acid was 0.2 wt% and ethylene glycol was 85 wt% for convenience of spark voltage.
These were examined for hydrogen generation in the same manner as in Example 1, and are shown in Table 1.

Figure 2014030808
Figure 2014030808

試験結果、水素発生は、ポア間隔300nmから増加し1000nm程度で最大となる。ポア間隔1200nm以上でも水素発生量は、少なくはないが、1000nm以上では下降傾向であること、および化成電圧が高いと化成電力費が高価であること,および化成電力より化成液温度コントロールが困難となる。以上よりポア間隔300〜1200nmが良好となり、更に400〜900nmにて良好な触媒部材が得られる。   As a result of the test, hydrogen generation increases from a pore interval of 300 nm and becomes maximum at about 1000 nm. Even if the pore spacing is 1200 nm or more, the hydrogen generation amount is not small, but if it is 1000 nm or more, it tends to decrease, and if the formation voltage is high, the formation power cost is expensive, and the formation liquid temperature control is more difficult than the formation power. Become. As described above, the pore interval of 300 to 1200 nm is good, and a good catalyst member is obtained at 400 to 900 nm.

1…水素を付加した水素媒体、2…水素媒体タンク、3…水素反応容器、4…エンジン、5…水素、6…気液分離容器、7…水素を放出した水素媒体及び未反応の水素媒体、8…廃液タンク、9…アルミニウム地金、10…多孔質酸化皮膜、11…ポア、12…六角セル、13…羽毛状構造体   DESCRIPTION OF SYMBOLS 1 ... Hydrogen medium which added hydrogen, 2 ... Hydrogen medium tank, 3 ... Hydrogen reaction container, 4 ... Engine, 5 ... Hydrogen, 6 ... Gas-liquid separation container, 7 ... Hydrogen medium which discharge | released hydrogen, and unreacted hydrogen medium , 8 ... Waste liquid tank, 9 ... Aluminum ingot, 10 ... Porous oxide film, 11 ... Pore, 12 ... Hex cell, 13 ... Feather-like structure

Claims (1)

金属表面に触媒機能を備えた触媒部材において、前記金属が多孔質酸化皮膜とその表面に羽毛状構造体を有するアルミニウムで、前記多孔質酸化皮膜のポア間隔が、300nmから1200nmである触媒部材。   A catalyst member having a catalytic function on a metal surface, wherein the metal is aluminum having a porous oxide film and a feather-like structure on the surface, and a pore interval of the porous oxide film is 300 nm to 1200 nm.
JP2012173656A 2012-08-06 2012-08-06 Catalyst component Pending JP2014030808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012173656A JP2014030808A (en) 2012-08-06 2012-08-06 Catalyst component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012173656A JP2014030808A (en) 2012-08-06 2012-08-06 Catalyst component

Publications (1)

Publication Number Publication Date
JP2014030808A true JP2014030808A (en) 2014-02-20

Family

ID=50281056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012173656A Pending JP2014030808A (en) 2012-08-06 2012-08-06 Catalyst component

Country Status (1)

Country Link
JP (1) JP2014030808A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119856A (en) * 2000-10-13 2002-04-23 Hideo Kameyama Anodized aluminum catalyst carrier having increased bet specific surface area and its manufacturing method
JP2004130171A (en) * 2002-10-09 2004-04-30 National Institute For Materials Science Nano-structure consisting of titania-based crystal formed on substrate, and its manufacturing method
JP2007098563A (en) * 2005-09-07 2007-04-19 Central Res Inst Of Electric Power Ind Nanostructure and method for producing nanostructure
JP2007326000A (en) * 2006-06-06 2007-12-20 Petroleum Energy Center Dehydrogenation catalyst and hydrogen supply device using the same
JP2011016122A (en) * 2009-06-11 2011-01-27 Hitachi Aic Inc Hydrogen catalyst material
JP2011050925A (en) * 2009-09-04 2011-03-17 Hitachi Aic Inc Hydrogen catalyst member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119856A (en) * 2000-10-13 2002-04-23 Hideo Kameyama Anodized aluminum catalyst carrier having increased bet specific surface area and its manufacturing method
JP2004130171A (en) * 2002-10-09 2004-04-30 National Institute For Materials Science Nano-structure consisting of titania-based crystal formed on substrate, and its manufacturing method
JP2007098563A (en) * 2005-09-07 2007-04-19 Central Res Inst Of Electric Power Ind Nanostructure and method for producing nanostructure
JP2007326000A (en) * 2006-06-06 2007-12-20 Petroleum Energy Center Dehydrogenation catalyst and hydrogen supply device using the same
JP2011016122A (en) * 2009-06-11 2011-01-27 Hitachi Aic Inc Hydrogen catalyst material
JP2011050925A (en) * 2009-09-04 2011-03-17 Hitachi Aic Inc Hydrogen catalyst member

Similar Documents

Publication Publication Date Title
US20200392631A1 (en) Materials and methods for the electrochemical reduction of carbon dioxide
JP5009556B2 (en) Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same
Wei et al. Photoelectrocatalytic reduction of CO 2 to syngas over Ag nanoparticle modified p-Si nanowire arrays
Peng et al. PdAg alloy nanotubes with porous walls for enhanced electrocatalytic activity towards ethanol electrooxidation in alkaline media
Hosseini et al. Methanol electro-oxidation on a porous nanostructured Ni/Pd-Ni electrode in alkaline media
Martin-Yerga et al. Insights on the ethanol oxidation reaction at electrodeposited PdNi catalysts under conditions of increased mass transport
Ren et al. Strained lattice platinum–palladium alloy nanowires for efficient electrocatalysis
Ye et al. The optimal design of Co catalyst morphology on a three-dimensional carbon sponge with low cost, inducing better sodium borohydride electrooxidation activity
CN103406129B (en) Preparation method of wire mesh monolithic catalyst based on surface porous structure
Okejiri et al. Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids
Li et al. Platinum-tellurium alloy metallene toward formic acid oxidation reaction
Shen et al. Promotion mechanisms of Au supported on TiO2 in thermal-and photocatalytic glycerol conversion
JP5620077B2 (en) Hydrogen catalyst material
Zhang et al. One-pot synthesis of 3D surface-wrinkled PdAu nanospheres for robust alcohols electrocatalysis
JP2011050925A (en) Hydrogen catalyst member
JP5900015B2 (en) Fuel cell
JP5596360B2 (en) Hydrogen catalyst member and manufacturing method thereof
JP2014030808A (en) Catalyst component
JP5489508B2 (en) Hydrogen catalyst material
JP3524478B2 (en) High heat transfer catalyst and method for producing the same
JP2015146226A (en) Porous metal, manufacturing method thereof, and electrode for batteries
JP5506270B2 (en) Method for producing hydrogen catalyst member
JP2012055855A (en) Catalyst carrier, catalyst body, and method for manufacturing the same
Ghanem et al. Synthesis and Electrochemical Properties of Pure Pt, Au, and Pt–Au Alloy Catalysts on Titanium Oxide Nanotubes (TONs)
JP5980029B2 (en) Catalyst member

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161208