JP2011050925A - Hydrogen catalyst member - Google Patents

Hydrogen catalyst member Download PDF

Info

Publication number
JP2011050925A
JP2011050925A JP2009204653A JP2009204653A JP2011050925A JP 2011050925 A JP2011050925 A JP 2011050925A JP 2009204653 A JP2009204653 A JP 2009204653A JP 2009204653 A JP2009204653 A JP 2009204653A JP 2011050925 A JP2011050925 A JP 2011050925A
Authority
JP
Japan
Prior art keywords
hydrogen
oxide film
porous oxide
catalyst member
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009204653A
Other languages
Japanese (ja)
Other versions
JP5620079B2 (en
Inventor
Seiji Yamaguchi
清治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2009204653A priority Critical patent/JP5620079B2/en
Publication of JP2011050925A publication Critical patent/JP2011050925A/en
Application granted granted Critical
Publication of JP5620079B2 publication Critical patent/JP5620079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen catalyst member which can reduce a weight thereof, can be miniaturized, has high design flexibility and is optimally configured in accordance with heat circumstances in a hydrogen supply device, in the hydrogen catalyst member which performs dehydrogenation for taking out hydrogen or performing hydrogen addition for taking in hydrogen by using a medium which repeats chemically hydrogen storage and supply by means of catalyst carrier prepared by carrying a metal catalyst onto a porous oxide made by anodization. <P>SOLUTION: The porous oxide film is formed on the surface of an aluminum foil subjected to rugging process; the metal catalyst is deposited onto the porous oxide film; and thereafter, the foil is laminated or wound to obtain the hydrogen catalyst member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、脱水素及び水素付加を行う水素触媒部材に関し、特に、金属触媒を多孔質酸化膜に担持した触媒担体による水素触媒部材に関する。   The present invention relates to a hydrogen catalyst member that performs dehydrogenation and hydrogen addition, and more particularly to a hydrogen catalyst member that uses a catalyst carrier in which a metal catalyst is supported on a porous oxide film.

近年、安全性、運搬性及び貯蔵能力に優れた水素貯蔵方法として、シクロヘキサンやデカリンのような炭化水素を用いた有機ハイドライドシステムが注目されている。これらの炭化水素は、常温で液体であるため、運搬性に優れている。   In recent years, organic hydride systems using hydrocarbons such as cyclohexane and decalin have attracted attention as hydrogen storage methods that are excellent in safety, transportability and storage capacity. Since these hydrocarbons are liquid at room temperature, they are excellent in transportability.

例えば、ベンゼンとシクロヘキサンは同じ炭素数を有する環状炭化水素であるが、ベンゼンは炭素同士の結合が二重結合である不飽和炭化水素であるのに対し、シクロヘキサンは二重結合を持たない飽和炭化水素である。ベンゼンの水素付加反応によりシクロヘキサンが得られ、シクロヘキサンの脱水素反応によりベンゼンが得られる。すなわち、これらの炭化水素の水素付加と脱水素反応を利用することにより、水素の貯蔵とその供給が可能となる。   For example, benzene and cyclohexane are cyclic hydrocarbons having the same carbon number, but benzene is an unsaturated hydrocarbon in which the bonds between carbons are double bonds, whereas cyclohexane is a saturated hydrocarbon having no double bonds. Hydrogen. Cyclohexane is obtained by the hydrogenation reaction of benzene, and benzene is obtained by the dehydrogenation reaction of cyclohexane. That is, hydrogen can be stored and supplied by utilizing hydrogenation and dehydrogenation of these hydrocarbons.

ところで、特許文献1には、アルミニウム平板表面を陽極酸化して、多孔質酸化膜を設け、その多孔質酸化膜に金属触媒を担持して触媒担体とし、化学的に水素貯蔵・供給を繰り返す媒体を用いて水素を取り出す脱水素触媒部材を得ることが提案されている。また、このアルミニウム平板の脱水素触媒部材を、スペーサを介して積み上げることにより、水素分離の効率を向上させることが提案されている。   By the way, Patent Document 1 discloses a medium in which the surface of an aluminum plate is anodized, a porous oxide film is provided, a metal catalyst is supported on the porous oxide film as a catalyst carrier, and hydrogen storage and supply are chemically repeated. It has been proposed to obtain a dehydrogenation catalyst member for taking out hydrogen by using the above. It has also been proposed to improve the efficiency of hydrogen separation by stacking the aluminum flat plate dehydrogenation catalyst members via spacers.

特開2007−326000公報JP 2007-326000 A

水素を取り出す水素反応システムに合わせて水素反応容器もそれにあった形状にし、その水素反応容器中に入れる水素触媒部材もまたそれに合わせて設計する必要がある。
アルミニウム平板に多孔質酸化皮膜を設けている特許文献1では、熱交換器からの熱拡散をアルミニウム平板の熱伝導性に頼っている。ここで触媒担体の体積率を上げるには多孔質酸化皮膜を厚くする必要があるが、多孔質酸化膜は熱伝導率が悪い為、多孔質酸化膜を厚くし過ぎると逆に水素転化率は低下する。また、多孔質酸化皮膜が厚い場合、多孔質酸化皮膜の細孔が長くなり表面積が増えるものの、脱水素又は水素付加の反応では水素媒体と水素が細孔内で交換される必要があり、長い細孔では交換効率が悪くなる。
即ち高熱伝導であるアルミニウム金属部と低熱伝導である多孔質酸化膜部は、それぞれ薄肉にて緻密に構成される必要があり、かつガス流路など隙間部も構成する必要があるが、平板の積層構造では強度を保つためには薄肉化には限界がある。
以上の通り従来技術では、小形、軽量の水素供給装置を得ることが困難である。
It is necessary to design the hydrogen reaction vessel in accordance with the hydrogen reaction system for taking out hydrogen, and to design the hydrogen catalyst member to be put in the hydrogen reaction vessel accordingly.
In Patent Document 1 in which a porous oxide film is provided on an aluminum flat plate, the thermal diffusion from the heat exchanger relies on the thermal conductivity of the aluminum flat plate. Here, in order to increase the volume ratio of the catalyst carrier, it is necessary to increase the thickness of the porous oxide film. However, since the porous oxide film has poor thermal conductivity, if the porous oxide film is too thick, the hydrogen conversion rate is reversed. descend. In addition, when the porous oxide film is thick, the pores of the porous oxide film become longer and the surface area increases, but in the dehydrogenation or hydrogenation reaction, the hydrogen medium and hydrogen must be exchanged in the pores. In the case of pores, the exchange efficiency deteriorates.
In other words, the aluminum metal part having high thermal conductivity and the porous oxide film part having low thermal conductivity need to be thin and densely configured, and a gap such as a gas flow path must also be configured. In a laminated structure, there is a limit to thinning in order to maintain strength.
As described above, with the conventional technology, it is difficult to obtain a small and lightweight hydrogen supply device.

本発明は、上記の課題を解決する為に、軽量化及び小型化を実現しながら、取り扱いが容易で、設計自由度が高く、水素供給装置内での熱伝導の状況に合わせて最適な水素触媒部材を提供するものである。
In order to solve the above-mentioned problems, the present invention is easy to handle, has a high degree of freedom in design, and is optimally suited to the state of heat conduction in the hydrogen supply device while realizing weight reduction and downsizing. A catalyst member is provided.

本発明は、上記の課題を解決するために、下記の水素触媒部材を提供するものである。
(1)金属触媒を多孔質酸化膜に担持した触媒担体により、化学的に水素貯蔵・供給を繰り返す媒体を用いて、水素を取り出す脱水素または水素を取り込む水素付加を行う水素触媒部材において、凹凸加工したアルミニウム箔の表面に多孔質酸化膜を設け、積層または巻回した水素触媒部材を提供するものである。
(2)上記(1)において、前記アルミニウム箔は、エンボス加工により凹凸加工したことを特徴とする水素触媒部材を提供するものである。
(3)上記(1)または(2)において、前記アルミニウム箔には貫通する孔が含まれることを特徴とした水素触媒部材を提供するものである。
(4)上記(1)、(2)、または(3)において、前記アルミニウム箔には表面をエッチングにより表面からトンネル状に粗面化した穴を設けることを特徴とする水素触媒部材を提供するものである。
In order to solve the above problems, the present invention provides the following hydrogen catalyst member.
(1) In a hydrogen catalyst member that performs dehydrogenation to extract hydrogen or hydrogen addition to take in hydrogen using a catalyst carrier in which a metal catalyst is supported on a porous oxide film, which repeatedly repeats hydrogen storage and supply, The present invention provides a hydrogen catalyst member in which a porous oxide film is provided on the surface of a processed aluminum foil, and is laminated or wound.
(2) In said (1), the said aluminum foil provides the hydrogen catalyst member characterized by carrying out the uneven | corrugated process by embossing.
(3) In the above (1) or (2), the aluminum foil includes a penetrating hole, and provides a hydrogen catalyst member.
(4) In the above (1), (2), or (3), there is provided a hydrogen catalyst member, wherein the aluminum foil is provided with a hole whose surface is roughened in a tunnel shape from the surface by etching. Is.

本発明によれば、凹凸加工したアルミニウム箔の表面に多孔質酸化膜を設け、積層または巻回した水素触媒部材を使用することにより、軽量化及び小型化を実現しながら、取り扱いが容易で、設計自由度が高く、水素供給装置内での熱伝導の状況に合わせて最適な水素触媒部材を提供することができる。   According to the present invention, by providing a porous oxide film on the surface of an unevenly processed aluminum foil and using a hydrogen catalyst member laminated or wound, it is easy to handle while realizing weight reduction and miniaturization, The degree of design freedom is high, and an optimal hydrogen catalyst member can be provided in accordance with the state of heat conduction in the hydrogen supply apparatus.

本発明の実施例1の水素触媒部材であり、箔にエンボス加工し、巻回する場合を示している。It is the hydrogen catalyst member of Example 1 of this invention, and shows the case where embossing is carried out to foil and winding. 本発明の実施例2の水素触媒部材であり、波状の箔に平面箔を積層して巻回する場合を示している。It is the hydrogen catalyst member of Example 2 of this invention, and has shown the case where a flat foil is laminated | stacked and wound on a corrugated foil. 本発明の実施例3の水素触媒部材であり、四角錐のようなもので箔に穴をあけ、箔に穴バリの凸部を設ける場合を示している。It is a hydrogen catalyst member of Example 3 of the present invention, and shows a case where a hole is formed in a foil with a thing like a quadrangular pyramid, and a convex part of a hole burr is provided in the foil. 本発明の水素触媒部材とそれを使用した水素反応ユニットの概略図を示している。The schematic of the hydrogen catalyst member of this invention and the hydrogen reaction unit using the same is shown.

本発明に述べる多孔質酸化膜は、アルミニウムを陽極酸化してできる酸化膜のうち、酸化膜が多孔質の膜からなる。
多孔質酸化膜を形成するための陽極酸化法として、電解液は、例えば燐酸、クロム酸、蓚酸、硫酸、クエン酸、マロン酸、酒石酸水溶液等を使用することができる。
陽極酸化により形成される細孔の径、細孔の間隔、膜厚は、印加電圧、処理温度、処理時間などの条件により、適宜設定することができる。
多孔質酸化膜の細孔径は、1nm以上とし、担持する金属触媒の大きさに合わせて調整する。但し化成条件だけで、細孔径を拡大しようとすると、細孔間隔が広がり最適な触媒担持密度が得られない場合があるので、陽極酸化での細孔径は小さいままとし、後の酸性溶液処理で細孔径を整えるのが良い。
The porous oxide film described in the present invention is composed of a porous oxide film among oxide films formed by anodizing aluminum.
As an anodic oxidation method for forming a porous oxide film, for example, phosphoric acid, chromic acid, oxalic acid, sulfuric acid, citric acid, malonic acid, an aqueous tartaric acid solution, or the like can be used as the electrolytic solution.
The diameter of the pores formed by anodization, the interval between the pores, and the film thickness can be appropriately set according to conditions such as applied voltage, processing temperature, and processing time.
The pore diameter of the porous oxide film is 1 nm or more, and is adjusted according to the size of the supported metal catalyst. However, when trying to enlarge the pore diameter only under chemical conversion conditions, the pore spacing may be widened and the optimum catalyst loading density may not be obtained. Therefore, the pore diameter in anodization remains small, and the subsequent acidic solution treatment is performed. It is good to adjust the pore diameter.

陽極酸化の処理液温度は、0℃から50℃、特に30℃から40℃とすることが好ましい。また、この陽極酸化の処理時間は処理条件や形成したい多孔質酸化膜の膜厚によって異なるが、例えば20℃、4質量%の蓚酸水溶液で15V、40分とした場合には約1.5μmの厚さの陽極酸化層を形成することができる。   The treatment liquid temperature for anodization is preferably 0 ° C. to 50 ° C., particularly 30 ° C. to 40 ° C. Further, the treatment time of this anodic oxidation differs depending on the treatment conditions and the thickness of the porous oxide film to be formed. For example, in the case of 15 V for 40 minutes at 20 ° C. and 4 mass% oxalic acid aqueous solution, it is about 1.5 μm. A thick anodized layer can be formed.

さらに以下に述べる酸(またはアルカリ)性水溶液処理、ベーマイト処理、焼成処理、金属触媒担持処理を行うことが望ましい。
酸(またはアルカリ)水溶液処理は、形成された細孔の径を拡大することが目的であり、例えば燐酸の場合には5質量%から20質量%であることが好ましく、10℃から30℃で10分から2時間、細孔径が適度に拡大されるまで処理する。
ベーマイト処理は、多孔質酸化膜の表面に羽毛状水酸化アルミニウムを形成させることが目的であり、pH6からpH8、好ましくはpH7からpH8の水中で行い、大気圧下であれば90〜100℃で1時間以上、好ましくは5時間以上処理する。また加圧容器を使用し100℃以上とすれば処理時間を短縮できる。
焼成処理は、多孔質酸化膜をγ―アルミナに転化させることが目的であり、水素触媒反応の効率としてγ―アルミナの方が良好なことによる。通常は300℃から550℃で0.1時間から5時間行う。
Further, it is desirable to perform the following acid (or alkali) aqueous solution treatment, boehmite treatment, firing treatment, and metal catalyst supporting treatment.
The acid (or alkali) aqueous solution treatment is intended to enlarge the diameter of the formed pores. For example, in the case of phosphoric acid, it is preferably 5% by mass to 20% by mass, and 10 ° C. to 30 ° C. Treatment is performed for 10 minutes to 2 hours until the pore diameter is appropriately expanded.
The purpose of boehmite treatment is to form feathered aluminum hydroxide on the surface of the porous oxide film, and is performed in water at pH 6 to pH 8, preferably pH 7 to pH 8, and at 90 to 100 ° C. under atmospheric pressure. The treatment is performed for 1 hour or longer, preferably 5 hours or longer. Moreover, if a pressurized container is used and the temperature is 100 ° C. or higher, the processing time can be shortened.
The firing treatment is intended to convert the porous oxide film to γ-alumina, and γ-alumina is better in terms of the efficiency of the hydrogen catalyst reaction. Usually, it is performed at 300 to 550 ° C. for 0.1 to 5 hours.

本発明に述べる金属触媒は、水素触媒用の金属で、ニッケル、パラジウム、白金、ロジウム、イリジウム、レニウム、ルテニウム、モリブデン、タングステン、バナジウム、オスミウム、クロム、コバルト、鉄などの金属及びこれらの合金を用いることができる。
金属触媒を多孔質酸化膜に担持する方法は、触媒金属をコロイド状に分散した液に浸漬したり、金属触媒を無電解めっきしたりして行う。
The metal catalyst described in the present invention is a metal for a hydrogen catalyst, including metals such as nickel, palladium, platinum, rhodium, iridium, rhenium, ruthenium, molybdenum, tungsten, vanadium, osmium, chromium, cobalt, iron, and alloys thereof. Can be used.
The method of supporting the metal catalyst on the porous oxide film is performed by immersing the catalyst metal in a colloidally dispersed liquid or electrolessly plating the metal catalyst.

本発明に述べる水素媒体は、水素を放出し貯蔵する媒体で、それ自体が安定であると共に脱水素されて安定な芳香族類となるものであれば特に制限されるものではないが、好ましくはシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の単環式水素化芳香族類や、テトラリン、デカリン、メチルデカリン等の2環式水素化芳香族類や、テトラデカヒドロアントラセン等の3環式水素化芳香族類等を挙げることができ、より好ましくはシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の単環式水素化芳香族類や、テトラリン、デカリン、メチルデカリン等の2環式水素化芳香族類である。
以下、これら水素媒体は、炭素同士の二重結合に水素が付加することにより、水素を貯蔵する。水素付加後の水素供給体は、水素を放出して元の水素貯蔵体に戻る。本発明は、より低温で水素貯蔵,供給が可能な触媒を用いることが好ましく、システム全体のエネルギー効率を向上することができる。
The hydrogen medium described in the present invention is a medium that releases and stores hydrogen and is not particularly limited as long as it is stable and dehydrogenated to become a stable aromatic. Monocyclic hydrogenated aromatics such as cyclohexane, methylcyclohexane and dimethylcyclohexane, bicyclic hydrogenated aromatics such as tetralin, decalin and methyldecalin, and tricyclic hydrogenated aromatics such as tetradecahydroanthracene More preferred are monocyclic hydrogenated aromatics such as cyclohexane, methylcyclohexane and dimethylcyclohexane, and bicyclic hydrogenated aromatics such as tetralin, decalin and methyldecalin.
Hereinafter, these hydrogen media store hydrogen by adding hydrogen to a double bond between carbon atoms. The hydrogen supply body after hydrogen addition releases hydrogen and returns to the original hydrogen storage body. In the present invention, it is preferable to use a catalyst capable of storing and supplying hydrogen at a lower temperature, and the energy efficiency of the entire system can be improved.

本発明に述べるアルミニウム箔は、変形可能なアルミニウムの箔で、凹凸加工される。その厚さは、ロール状に巻き取れる範囲の厚さのものを使用する。アルミニウム箔は数μmから数100μmで、たとえば、20μmから1500μm程度の工業的に生産されているものを利用できる。
凹凸加工の方法は、たとえばエンボスロールによる型付けのローラーを使用したエンボス加工、シボ加工、サンドブラストによるマット加工など、特に限定なく利用できる。なお、エンボス加工のような部分加工は、金属触媒を多孔質酸化膜に担持した後でも加工ができる。
凹凸加工の高さは、箔間の目的の通気性を得る大きさで、10μm以上の高さものを使用する。
凸部の間隔は、凸部が箔そのものの変形の場合、特に積層同士の凸部が重ならないように設ける。
巻回する方法は、断面が円形、楕円形、長円形に巻回もの、または円形に巻回ものをつぶして長円形にしたもの、場合によってはつづら折りにしたものなど、挿入する反応容器に合わせて行う。
The aluminum foil described in the present invention is a deformable aluminum foil which is processed to be uneven. The thickness of the range of the range which can be wound up in roll shape is used. The aluminum foil is from several μm to several 100 μm, and for example, an industrially produced one of about 20 μm to 1500 μm can be used.
The unevenness processing method can be used without any particular limitation, for example, embossing using a die forming roller with an embossing roll, embossing, mat processing with sandblasting, and the like. The partial processing such as embossing can be performed even after the metal catalyst is supported on the porous oxide film.
The height of the concavo-convex processing is such a size as to obtain the desired air permeability between the foils, and a height of 10 μm or more is used.
When the convex portions are deformations of the foil itself, the intervals between the convex portions are provided so that the convex portions of the stacked layers do not overlap each other.
The method of winding is to match the reaction vessel to be inserted, such as a circular, elliptical, oval cross-section, or a rounded oval shape, or a zigzag folded shape. Do it.

箔の表面形状として箔にエッチングによるミクロンオーダーの穴径の、トンネル状に粗面化した穴(エッチングピット)の構造を設けると、反応表面積が拡大する。また特にエッチングピットを長くし箔を貫通させる場合では水素媒体や水素の移動を改善できる。
アルミニウム箔を上記のエッチングピットに粗面化する方法は、たとえば、アルミニウム箔としては、アルミニウムに微量な鉄などを混入したものを冷間圧延後、部分焼鈍して形成した立方体方位再結晶粒に付加圧延を施してから最終焼鈍を行って強い立方体方位を発達させたものを使用する。
たとえば、従来から中高圧用のアルミニウム電解コンデンサ用の電極として提供されているアルミニウム箔を使用し、エッチングしたものが使用できる。エッチングの穴径は、おおよそ1μmから5μm程度が好ましい。
また、アルミニウム箔にエッチングを採用した場合では、多孔質酸化膜が薄い場合でも、多孔質膜の収納効率が高く、必ずしも厚くする必要がないので、たとえば現在アルミニウム電解コンデンサ用途に展開されている規模の設備で対応可能となる。
なお、アルミニウム電解コンデンサで採用されている上記のエッチングピットの径は、2μm以下であり、既存の設備では多孔質酸化膜の厚さは厚く出来ないが、表面積が拡大されることより多孔質酸化膜の体積収納効率が高く出来る。又多孔質酸化膜の厚さが厚くないことで熱拡散効率が高められることと、陽極酸化工程を短く出来る。陽極酸化にて酸化膜成長速度を増すには、化成電圧を上げ電流密度を上げれば良いが、その場合、細孔数が減少し金属触媒の担持量が減る。従って低電圧,低電流密度での化成が望ましいが、この場合長時間を要し大規模な設備が必要となる。
When the surface shape of the foil is provided with a structure of holes (etching pits) roughened in a tunnel shape having a hole diameter of micron order by etching, the reaction surface area is increased. In particular, when the etching pit is lengthened to penetrate the foil, the movement of the hydrogen medium and hydrogen can be improved.
The method of roughening the aluminum foil into the above-mentioned etching pits is, for example, as an aluminum foil, in which cubic iron recrystallized grains formed by partial annealing after cold rolling of aluminum mixed with a small amount of iron, etc. The one that has been subjected to additional rolling and then subjected to final annealing to develop a strong cubic orientation is used.
For example, an aluminum foil that has been conventionally used as an electrode for an aluminum electrolytic capacitor for medium to high voltage can be used. The etching hole diameter is preferably about 1 μm to 5 μm.
In addition, when etching is used for aluminum foil, even when the porous oxide film is thin, the porous film is stored efficiently and does not necessarily need to be thickened. It becomes possible to cope with the facilities.
The diameter of the above-mentioned etching pit employed in aluminum electrolytic capacitors is 2 μm or less, and the thickness of the porous oxide film cannot be increased with existing equipment, but the porous surface is increased due to the increased surface area. The volume storage efficiency of the membrane can be increased. Further, since the thickness of the porous oxide film is not thick, the thermal diffusion efficiency can be increased and the anodizing process can be shortened. In order to increase the growth rate of the oxide film by anodic oxidation, it is sufficient to increase the formation voltage and increase the current density. Therefore, formation with low voltage and low current density is desirable, but in this case, it takes a long time and a large-scale facility is required.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、水素触媒部材として、アルミニウム箔3にエンボス加工し、巻回する場合を示している。アルミニウム箔3にエンボス加工によりエンボス凹凸部7を設けることにより、巻回にてアルミニウム箔3同士の密着を防止し反応前後の物質(水素媒体や水素)の流れを円滑化している。
アルミニウム箔3をコイル状に巻回すると、容器断面形状が円筒の場合、対応が容易である。特許文献1では厚い板を少数枚積み上げる構造であるのに対し箔を巻回した構造では箔地金と表面の多孔質酸化膜が、交互に巻き取られる微細構造なので、熱分散性に優れ、箔地金厚さを厚くする必要がないことから、多孔質酸化膜の収納効率を高められる。
図2は、水素触媒部材として、波状のアルミニウム箔3に平面のアルミニウム箔3を積層して巻回する場合を示している。波状加工の形状は、波状曲線でも山形直線でもまたその中間でもよい。
図3は、水素触媒部材として、四角錐のようなものでアルミニウム箔3に穴をあけ、アルミニウム箔3に穴バリ(穴をあけた時に形成されるバリをいう。)の凸部8を設ける場合を示している。
この場合、穴バリの凸部8の形成と同時に貫通孔が形成される。また、穴バリの凸部8先端が巻回積層されたときにある程度隣接の箔に突き刺さるかへこませると、巻きが固定しやすくなる。
図4は、水素触媒部材とそれを使用した水素反応ユニットの概略図を示している。
図4(a)では、水素触媒部材とそれを使用した水素反応ユニットの概略図を示している。
図4(b)では、水素触媒部材の一部拡大断面図を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a case where an aluminum foil 3 is embossed and wound as a hydrogen catalyst member. By providing the embossed concavo-convex portion 7 on the aluminum foil 3 by embossing, the aluminum foil 3 is prevented from closely adhering by winding, and the flow of the substance (hydrogen medium and hydrogen) before and after the reaction is smoothed.
When the aluminum foil 3 is wound in a coil shape, it is easy to handle when the container cross-sectional shape is a cylinder. In Patent Document 1, it is a structure in which a small number of thick plates are stacked, whereas in a structure in which a foil is wound, a foil base metal and a porous oxide film on the surface are microscopic structures that are alternately wound, so that heat dispersibility is excellent. Since it is not necessary to increase the thickness of the foil metal, the storage efficiency of the porous oxide film can be increased.
FIG. 2 shows a case where a flat aluminum foil 3 is laminated on a corrugated aluminum foil 3 and wound as a hydrogen catalyst member. The shape of the undulating process may be a undulating curve, a mountain-shaped line, or an intermediate point.
FIG. 3 shows a hydrogen catalyst member having a shape such as a quadrangular pyramid, in which a hole is formed in the aluminum foil 3, and a convex portion 8 of a hole burr (referred to as a burr formed when the hole is formed) is provided in the aluminum foil 3. Shows the case.
In this case, the through-hole is formed simultaneously with the formation of the hole burr protrusion 8. In addition, when the tip of the convex portion 8 of the hole burr is wound and laminated, it is easy to fix the winding if it is pierced or dented to the adjacent foil to some extent.
FIG. 4 shows a schematic view of a hydrogen catalyst member and a hydrogen reaction unit using the hydrogen catalyst member.
FIG. 4A shows a schematic view of a hydrogen catalyst member and a hydrogen reaction unit using the hydrogen catalyst member.
FIG. 4B shows a partially enlarged sectional view of the hydrogen catalyst member.

図4(a)では、水素反応ユニットとして水素反応容器1とそれに連なる気液分離容器2を示していて、原料(反応前の物質である、水素供給体の水素媒体、または水素と水素貯蔵体の水素媒体)が水素反応容器1内で水素反応し、それに連なる気液分離容器2で、気体と液体に分離することを示している。また、水素反応容器1内に水素触媒部材である多孔質酸化膜を設けたアルミニウム箔3を巻回して設けていることを示している。また、水素反応容器1は必要に応じて加熱される。
巻回物は、水素反応容器1内で、形状、構成等を必要に応じて複数変えて設けてもよい。
脱水素反応においては、原料である水素が付加した水素供給体の水素媒体が、水素反応容器1内で脱水素反応が生じ、できた反応物をそれに連なる気液分離容器2によって、気体側には水素と、液体側には水素貯蔵体に分離されることを示している。
水素付加反応においては、原料である水素と水素が付加する前の水素貯蔵体の水素媒体とが、水素反応容器1内で水素付加反応し、それに連なる気液分離容器2によって、気体側には未反応の水素が分離され、液体側には水素付加した水素供給体の水素媒体が製造されることを示している。
FIG. 4A shows a hydrogen reaction vessel 1 and a gas-liquid separation vessel 2 connected to the hydrogen reaction unit 1 as a hydrogen reaction unit. The raw material (a hydrogen medium of a hydrogen supply body or a hydrogen and hydrogen storage body, which is a substance before the reaction). It is shown that the hydrogen medium) in the hydrogen reaction vessel 1 undergoes hydrogen reaction and is separated into gas and liquid in the gas-liquid separation vessel 2 connected thereto. Further, it is shown that an aluminum foil 3 provided with a porous oxide film, which is a hydrogen catalyst member, is wound and provided in the hydrogen reaction vessel 1. Further, the hydrogen reaction vessel 1 is heated as necessary.
A plurality of rolls may be provided in the hydrogen reaction vessel 1 by changing a plurality of shapes, configurations, and the like as necessary.
In the dehydrogenation reaction, the hydrogen medium of the hydrogen supplier to which hydrogen as a raw material has been added undergoes a dehydrogenation reaction in the hydrogen reaction vessel 1, and the resulting reaction product is brought to the gas side by the gas-liquid separation vessel 2 connected thereto. Indicates that hydrogen is separated into a hydrogen reservoir on the liquid side.
In the hydrogen addition reaction, hydrogen as a raw material and the hydrogen medium of the hydrogen storage body before the addition of hydrogen undergo a hydrogen addition reaction in the hydrogen reaction vessel 1, and the gas-liquid separation vessel 2 connected to the hydrogen addition reaction causes It shows that unreacted hydrogen is separated, and a hydrogen medium of a hydrogenated hydrogen supply body is produced on the liquid side.

図4(b)では、アルミニウム箔3の表面にトンネル状に細孔4のある多孔質酸化膜5を形成し、その多孔質酸化膜5の表面に脱水素または水素付加を行う金属触媒6を担持していることを示している。
In FIG. 4B, a porous oxide film 5 having pores 4 in a tunnel shape is formed on the surface of the aluminum foil 3, and a metal catalyst 6 that performs dehydrogenation or hydrogenation is formed on the surface of the porous oxide film 5. It shows that it is supported.

以下、本発明の水素触媒部材の製造方法を実施例に基づいて説明する。   Hereinafter, the method for producing a hydrogen catalyst member of the present invention will be described based on examples.

(実施例1)
まず、150μm程度のアルミニウム箔に、連続的に陽極酸化法により表面にほぼ垂直方向のトンネル状の細孔を有する陽極酸化層を形成し、その後その細孔を拡大した後ベーマイト処理する。
次に、その処理した箔を脱水素用の金属触媒をコロイド状に分散した液に浸漬し、金属触媒を多孔質酸化膜に担持する。
次に、連続的にエンボスロールによる型付けのローラーを使用したエンボス加工を行う。エンボス加工の凹凸加工の高さは、平均で200μm程度の高さとする。
次に、水素反応容器の形状に合わせて、その担持した箔を巻軸に巻回してコイルとし、水素触媒部材を得る。
Example 1
First, an anodized layer having tunnel-shaped pores substantially perpendicular to the surface is continuously formed on an aluminum foil having a thickness of about 150 μm by anodization, and then the pores are enlarged and then boehmite treated.
Next, the treated foil is immersed in a colloidal dispersion of a metal catalyst for dehydrogenation, and the metal catalyst is supported on the porous oxide film.
Next, the embossing which uses the roller of the shaping | molding with an embossing roll is performed continuously. The height of the embossed unevenness is about 200 μm on average.
Next, in accordance with the shape of the hydrogen reaction vessel, the supported foil is wound around a winding shaft to form a coil to obtain a hydrogen catalyst member.

(実施例2)
まず、100μm程度のアルミニウム箔に、連続的に陽極酸化法により表面にほぼ垂直方向のトンネル状の細孔を有する陽極酸化層を形成し、その後その細孔を拡大した後ベーマイト処理する。
次に、その処理した箔を脱水素用の金属触媒をコロイド状に分散した液に浸漬し、金属触媒を多孔質酸化膜に担持する。
次に、上記の箔を二つに分け、一方には連続的に波状加工を行う。波状加工の凹凸の高さは、平均で2mm程度の高さとする。
次に、水素反応容器の形状に合わせて、その担持した波状加工箔ともう一方の平面箔とを重ねて巻回してコイルとし、水素触媒部材を得る。
(Example 2)
First, an anodized layer having tunnel-like pores substantially perpendicular to the surface is continuously formed on an aluminum foil having a thickness of about 100 μm by an anodic oxidation method, and then the pores are enlarged and then subjected to boehmite treatment.
Next, the treated foil is immersed in a colloidal dispersion of a metal catalyst for dehydrogenation, and the metal catalyst is supported on the porous oxide film.
Next, the foil is divided into two, and one of them is continuously waved. The height of the corrugations of the wavy processing is about 2 mm on average.
Next, according to the shape of the hydrogen reaction vessel, the supported corrugated processing foil and the other flat foil are overlapped and wound into a coil to obtain a hydrogen catalyst member.

(実施例3)
まず、150μm程度のアルミニウム箔に、連続的に陽極酸化法により表面にほぼ垂直方向のトンネル状の細孔を有する陽極酸化層を形成し、その後その細孔を拡大した後ベーマイト処理する。
次に、その処理した箔を脱水素用の金属触媒をコロイド状に分散した液に浸漬し、金属触媒を多孔質酸化膜に担持する。
次に、ロールに四角錐状の突起を間欠的に設け、その突起を受けるロール間に上記のアルミニウム箔を連続的に通すことにより穴バリ加工を行う。穴バリ加工の凹凸加工の高さは、平均で200μm程度の高さとする。
次に、水素反応容器の形状に合わせて、その担持した箔を巻軸に巻回してコイルとし、水素触媒部材を得る。
(Example 3)
First, an anodized layer having tunnel-shaped pores substantially perpendicular to the surface is continuously formed on an aluminum foil having a thickness of about 150 μm by anodization, and then the pores are enlarged and then boehmite treated.
Next, the treated foil is immersed in a colloidal dispersion of a metal catalyst for dehydrogenation, and the metal catalyst is supported on the porous oxide film.
Next, hole-burrs are formed by intermittently providing quadrangular pyramidal protrusions on the roll and continuously passing the aluminum foil between the rolls that receive the protrusions. The height of the uneven processing of hole burr processing is about 200 μm on average.
Next, in accordance with the shape of the hydrogen reaction vessel, the supported foil is wound around a winding shaft to form a coil to obtain a hydrogen catalyst member.

1…水素反応容器、2…気液分離容器、3…アルミニウム箔、4…細孔、5…多孔質酸化膜、6…金属触媒、7…エンボス凹凸部、8…穴バリの凸部。 DESCRIPTION OF SYMBOLS 1 ... Hydrogen reaction container, 2 ... Gas-liquid separation container, 3 ... Aluminum foil, 4 ... Fine pore, 5 ... Porous oxide film, 6 ... Metal catalyst, 7 ... Embossing uneven | corrugated | grooved part, 8 ... Convex part of a hole burr | flash.

Claims (4)

金属触媒を多孔質酸化膜に担持した触媒担体により、化学的に水素貯蔵・供給を繰り返す媒体を用いて、水素を取り出す脱水素または水素を取り込む水素付加を行う水素触媒部材において、凹凸加工したアルミニウム箔の表面に多孔質酸化膜を設け、積層または巻回した水素触媒部材。   Using a catalyst carrier with a metal catalyst supported on a porous oxide film, using a medium that repeatedly stores and supplies hydrogen chemically, a hydrogen catalyst member that performs dehydrogenation to extract hydrogen or hydrogen addition to take in hydrogen, uneven aluminum A hydrogen catalyst member in which a porous oxide film is provided on the surface of a foil and laminated or wound. 前記アルミニウム箔は、エンボス加工により凹凸加工したことを特徴とする請求項1に記載の水素触媒部材。   The hydrogen catalyst member according to claim 1, wherein the aluminum foil is processed to be uneven by embossing. 前記アルミニウム箔には貫通する孔が含まれることを特徴とした請求項1または2に記載の水素触媒部材。   The hydrogen catalyst member according to claim 1, wherein the aluminum foil includes a through hole. 前記アルミニウム箔には表面をエッチングにより表面からトンネル状に粗面化した穴を設けることを特徴とする請求1、2、または3に記載の水素触媒部材。   The hydrogen catalyst member according to claim 1, 2, or 3, wherein the aluminum foil is provided with a hole whose surface is roughened in a tunnel shape from the surface by etching.
JP2009204653A 2009-09-04 2009-09-04 Hydrogen catalyst member and manufacturing method thereof Expired - Fee Related JP5620079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204653A JP5620079B2 (en) 2009-09-04 2009-09-04 Hydrogen catalyst member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204653A JP5620079B2 (en) 2009-09-04 2009-09-04 Hydrogen catalyst member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011050925A true JP2011050925A (en) 2011-03-17
JP5620079B2 JP5620079B2 (en) 2014-11-05

Family

ID=43940516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204653A Expired - Fee Related JP5620079B2 (en) 2009-09-04 2009-09-04 Hydrogen catalyst member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5620079B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152527A (en) * 2010-01-28 2011-08-11 Hitachi Aic Inc Hydrogen catalyst member
JP5292502B1 (en) * 2012-09-06 2013-09-18 成康 町田 Electrical device
JP2014030808A (en) * 2012-08-06 2014-02-20 Hitachi Aic Inc Catalyst component
JP2015120627A (en) * 2013-12-25 2015-07-02 日立エーアイシー株式会社 Hydrogen reactor pipe
JP2015120135A (en) * 2013-12-25 2015-07-02 日立エーアイシー株式会社 Hydrogen catalyst member
KR102118135B1 (en) * 2019-07-16 2020-06-02 주식회사 국일인토트 Catalytic reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104810A (en) * 2000-09-28 2002-04-10 Nippon Yakin Kogyo Co Ltd Self-exothemic hydrogen generator
JP2005200247A (en) * 2004-01-14 2005-07-28 Densei:Kk Hydrogen supply and storage apparatus
JP2007245116A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Catalysts support
JP2008239451A (en) * 2007-03-29 2008-10-09 Hitachi Ltd Hydrogen-feeding unit and its manufacture method, and dispersed power source and automobile using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104810A (en) * 2000-09-28 2002-04-10 Nippon Yakin Kogyo Co Ltd Self-exothemic hydrogen generator
JP2005200247A (en) * 2004-01-14 2005-07-28 Densei:Kk Hydrogen supply and storage apparatus
JP2007245116A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Catalysts support
JP2008239451A (en) * 2007-03-29 2008-10-09 Hitachi Ltd Hydrogen-feeding unit and its manufacture method, and dispersed power source and automobile using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152527A (en) * 2010-01-28 2011-08-11 Hitachi Aic Inc Hydrogen catalyst member
JP2014030808A (en) * 2012-08-06 2014-02-20 Hitachi Aic Inc Catalyst component
JP5292502B1 (en) * 2012-09-06 2013-09-18 成康 町田 Electrical device
JP2015120627A (en) * 2013-12-25 2015-07-02 日立エーアイシー株式会社 Hydrogen reactor pipe
JP2015120135A (en) * 2013-12-25 2015-07-02 日立エーアイシー株式会社 Hydrogen catalyst member
KR102118135B1 (en) * 2019-07-16 2020-06-02 주식회사 국일인토트 Catalytic reactor

Also Published As

Publication number Publication date
JP5620079B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5620079B2 (en) Hydrogen catalyst member and manufacturing method thereof
Juarez et al. Nanoporous metals with structural hierarchy: A review
JP5272320B2 (en) HYDROGEN SUPPLY DEVICE, ITS MANUFACTURING METHOD, AND DISTRIBUTED POWER SUPPLY AND AUTOMOBILE
JP5122178B2 (en) Supported catalyst for hydrogenation / dehydrogenation reaction, production method thereof, and hydrogen storage / supply method using the catalyst
US8629189B1 (en) Nanofilaments of catalytic materials for chemical process improvements
WO2016076277A1 (en) Oxygen-generating anode
JP5596360B2 (en) Hydrogen catalyst member and manufacturing method thereof
JP5489508B2 (en) Hydrogen catalyst material
JP2008126151A (en) Catalytic body using anodic aluminum oxide film
JP5726466B2 (en) Catalyst carrier, catalyst body and method for producing them
CN114799206B (en) Preparation method and application of high-entropy alloy material for catalytic electrode multilevel structure
JP5398367B2 (en) Hydrogen generator
JP5506270B2 (en) Method for producing hydrogen catalyst member
JP6334161B2 (en) Hydrogen catalyst material
TW201843359A (en) A method for making a tubular anodic aluminum oxide with nanometer or sub-micron pores
JP2015120627A (en) Hydrogen reactor pipe
JP5489509B2 (en) Hydrogen catalyst material
JP6783292B2 (en) Composite wire type catalyst member and catalyst reactor for hydrogen production using this
JP2002301381A (en) Supported catalyst and reforming apparatus
JP5880909B2 (en) Method for producing metal catalyst carrier and method for producing metal catalyst body
JP5980022B2 (en) Catalyst member
JP5210782B2 (en) Anodized substrate and catalyst body using the same
WO2018150823A1 (en) Method for producing structured catalyst and method for producing hydrogen using structured catalyst
JP2014030788A (en) Catalyst member laminate and catalytic reaction apparatus using the same
CN218203080U (en) Composite electrode for water electrolysis hydrogen production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5620079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees