JP2010279876A - System for dehydrogenating organic hydride - Google Patents

System for dehydrogenating organic hydride Download PDF

Info

Publication number
JP2010279876A
JP2010279876A JP2009133898A JP2009133898A JP2010279876A JP 2010279876 A JP2010279876 A JP 2010279876A JP 2009133898 A JP2009133898 A JP 2009133898A JP 2009133898 A JP2009133898 A JP 2009133898A JP 2010279876 A JP2010279876 A JP 2010279876A
Authority
JP
Japan
Prior art keywords
dehydrogenation
catalyst
organic hydride
temperature
mch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009133898A
Other languages
Japanese (ja)
Inventor
Atsushi Segawa
敦司 瀬川
Yukio Kobayashi
幸雄 小林
Hirobumi Konno
博文 紺野
Takao Ishikawa
敬郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Petroleum Energy Center PEC
Hitachi Ltd
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Hitachi Ltd, JX Nippon Oil and Energy Corp filed Critical Petroleum Energy Center PEC
Priority to JP2009133898A priority Critical patent/JP2010279876A/en
Publication of JP2010279876A publication Critical patent/JP2010279876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a system for dehydrogenating organic hydride, in which system a special unit is not required but which system has excellent energy efficiency. <P>SOLUTION: The method for dehydrogenating organic hydride to withdraw hydrogen comprises: a dehydrogenation step of performing a dehydrogenation reaction of the organic hydride at predetermined dehydrogenation temperature by using a dehydrogenation catalyst to withdraw hydrogen; and an activation step of bringing air into contact with the used dehydrogenation catalyst to activate the used dehydrogenation catalyst the activity of which is deteriorated owing to the coke stuck thereto. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機ハイドライドの脱水素システムに関する。   The present invention relates to an organic hydride dehydrogenation system.

有機ハイドライドを脱水素することにより、水素を取り出す有機ハイドライドの脱水素システムは、燃料電池などへの水素の供給源として注目を集めている。脱水素反応においては、通常脱水素触媒(以下、単に「触媒」ともいう。)が用いられるが、この触媒を連続して用いると、コークが付着して触媒の活性が低下する。このため、脱水素システムを連続して運転する場合には、触媒を活性化(再生)する必要がある。   An organic hydride dehydrogenation system that extracts hydrogen by dehydrogenating an organic hydride has attracted attention as a hydrogen supply source for fuel cells and the like. In the dehydrogenation reaction, a dehydrogenation catalyst (hereinafter also simply referred to as “catalyst”) is usually used. However, when this catalyst is used continuously, coke adheres and the activity of the catalyst decreases. For this reason, when operating a dehydrogenation system continuously, it is necessary to activate (regenerate) a catalyst.

触媒の活性化方法としては、例えば、触媒を高温で処理する方法(特許文献1参照)や、触媒をプラズマで処理する方法(特許文献2参照)、触媒に光を照射する方法(特許文献3参照)などが知られている。   Examples of the activation method of the catalyst include a method of treating the catalyst at a high temperature (see Patent Document 1), a method of treating the catalyst with plasma (see Patent Document 2), and a method of irradiating the catalyst with light (Patent Document 3). For example).

特表2004−522563号公報JP-T-2004-522563 特開2008−49282号公報JP 2008-49282 A 特開2001−334155号公報JP 2001-334155 A

ところで、最近比較的小型の有機ハイドライド型水素ステーションが注目を集めている。この水素ステーションのような比較的小型の脱水素システムにおいては、特殊な装置を用いず、かつエネルギー効率よく触媒を活性化することが望ましいが、特許文献1〜3に記載の方法では、この要求を満たすことはできない。   By the way, a relatively small organic hydride type hydrogen station has recently attracted attention. In a relatively small dehydrogenation system such as this hydrogen station, it is desirable to activate the catalyst without using a special device and in an energy efficient manner. Cannot be satisfied.

そこで本発明は、特殊な装置を必要とせず、かつエネルギー効率のよい有機ハイドライドの脱水素システムの運転方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for operating an organic hydride dehydrogenation system that does not require a special device and is energy efficient.

本発明は、脱水素触媒を用い、所定の脱水素温度で有機ハイドライドの脱水素反応を行い、水素を取り出す脱水素工程と、脱水素温度以下の温度で空気を脱水素触媒と接触させ、該脱水素触媒を活性化する活性化工程とを有する有機ハイドライドの脱水素システムの運転方法を提供する。かかる運転方法によれば、比較的小型の装置にも適用可能であり、かつエネルギー効率がよい。   The present invention uses a dehydrogenation catalyst to perform a dehydrogenation reaction of an organic hydride at a predetermined dehydrogenation temperature to extract hydrogen, and to bring air into contact with the dehydrogenation catalyst at a temperature equal to or lower than the dehydrogenation temperature. An operation method of an organic hydride dehydrogenation system having an activation step of activating a dehydrogenation catalyst is provided. Such an operation method can be applied to a relatively small apparatus and has high energy efficiency.

上記脱水素温度は350℃以下であり、かつ上記脱水素触媒の活性化に要する時間は1時間以下であることが好ましい。
上記脱水素触媒は、粒径3nm以下の白金を含有する触媒であることが好ましい。
The dehydrogenation temperature is preferably 350 ° C. or less, and the time required for activating the dehydrogenation catalyst is preferably 1 hour or less.
The dehydrogenation catalyst is preferably a catalyst containing platinum having a particle size of 3 nm or less.

上記有機ハイドライドの脱水素システムは有機ハイドライド型水素ステーションであることが好ましい。   The organic hydride dehydrogenation system is preferably an organic hydride hydrogen station.

本発明によれば、特殊な装置を必要とせず、かつエネルギー効率のよい有機ハイドライドの脱水素システムの運転方法を提供することができる。かかる運転方法は、有機ハイドライド型ステーションのような比較的小型の装置に特に好適に適用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the operating method of the dehydration system of an organic hydride which does not require a special apparatus and is energy efficient can be provided. Such an operation method can be particularly suitably applied to a relatively small apparatus such as an organic hydride type station.

有機ハイドライドの脱水素システムの概念図である。It is a conceptual diagram of the dehydrogenation system of an organic hydride. 実施例4におけるMCH転化率と時間との関係を示すグラフである。It is a graph which shows the relationship between the MCH conversion rate in Example 4, and time.

以下、本発明の一実施形態について詳述するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, one embodiment of the present invention will be described in detail, but the present invention is not limited to the following embodiment.

図1は、有機ハイドライドの脱水素システムの概念図である。図1における脱水素反応器は、その内部に脱水素触媒を備えるものである。以下、この図に基づいて、脱水素工程および活性化工程を有する本発明の有機ハイドライドの脱水素システムの運転方法の好適な実施形態について説明する。   FIG. 1 is a conceptual diagram of an organic hydride dehydrogenation system. The dehydrogenation reactor in FIG. 1 has a dehydrogenation catalyst inside. Hereinafter, a preferred embodiment of a method for operating an organic hydride dehydrogenation system of the present invention having a dehydrogenation step and an activation step will be described based on this figure.

上記脱水素工程においては、脱水素反応器に加熱ガスを流し脱水素触媒を加熱しながら、有機ハイドライドを脱水素触媒と接触させることにより、脱水素化反応を行う。脱水素化反応により得られる水素、および脱水素化された有機ハイドライド(脱水素化物)は、脱水素反応器の外へ放出され、この放出された水素を取り出すことができる。   In the dehydrogenation step, the dehydrogenation reaction is performed by bringing the organic hydride into contact with the dehydrogenation catalyst while flowing the heating gas through the dehydrogenation reactor and heating the dehydrogenation catalyst. Hydrogen obtained by the dehydrogenation reaction and the dehydrogenated organic hydride (dehydrogenated product) are discharged out of the dehydrogenation reactor, and the released hydrogen can be taken out.

また、上記活性化工程においては、有機ハイドライドの供給を止めた後に、空気を脱水素反応器に導入し、脱水素反応の際の脱水素反応器の温度(脱水素反応温度)以下の温度で脱水素触媒を焼成し、活性化する。   In the activation step, after the supply of organic hydride is stopped, air is introduced into the dehydrogenation reactor, and the temperature is equal to or lower than the temperature of the dehydrogenation reactor (dehydrogenation reaction temperature) during the dehydrogenation reaction. The dehydrogenation catalyst is calcined and activated.

ここで、活性化工程においては、加熱ガスを流し脱水素反応温度以下の温度を保ってもよいが、脱水素工程における余熱を利用して、すなわち加熱を停止して焼成を行うことがエネルギー効率の観点から好ましい。   Here, in the activation step, a heating gas may be flowed to maintain a temperature equal to or lower than the dehydrogenation reaction temperature, but it is energy efficient to use the residual heat in the dehydrogenation step, that is, to stop the heating and perform the firing. From the viewpoint of

本実施形態の有機ハイドライドの脱水素システムの運転方法においては、上記脱水素工程と活性化工程とを交互に繰り返すことにより、脱水素システムを運転することができる。また、脱水素工程と活性化工程との間に反応器内に窒素などの不活性ガスを流通させ、反応器内の気体を置換する不活性ガス流通工程を有するとより好ましい。   In the operation method of the organic hydride dehydrogenation system of this embodiment, the dehydrogenation system can be operated by alternately repeating the dehydrogenation step and the activation step. Further, it is more preferable to have an inert gas flow step in which an inert gas such as nitrogen is passed through the reactor between the dehydrogenation step and the activation step to replace the gas in the reactor.

上記脱水素工程と活性化工程とは、所望の水素量が得られるように交互に繰り返せばよいが、例えば脱水素工程の時間を170〜720時間とすることできる。   The dehydrogenation step and the activation step may be repeated alternately so as to obtain a desired amount of hydrogen. For example, the time of the dehydrogenation step can be set to 170 to 720 hours.

また、上記活性化工程は、触媒の活性を充分に高めることができる時間行えばよいが、作業効率などの観点から、例えば1時間以下とすることが好ましい。   The activation step may be performed for a time period that can sufficiently increase the activity of the catalyst. However, from the viewpoint of work efficiency, for example, it is preferably set to 1 hour or less.

有機ハイドライドとしては、脱水素が可能なものであればよいが、シクロヘキサン環を有する化合物、例えばシクロヘキサン、メチルシクロヘキサンおよびデカリンなどを好適に用いることができる。これらの有機ハイドライドが脱水素されると、水素が生成するとともに、それぞれベンゼン、トルエンおよびナフタレンが脱水素化物として生成する。   Any organic hydride may be used as long as it can be dehydrogenated, but compounds having a cyclohexane ring, such as cyclohexane, methylcyclohexane, and decalin, can be preferably used. When these organic hydrides are dehydrogenated, hydrogen is produced and benzene, toluene and naphthalene are produced as dehydrogenated products, respectively.

加熱ガスとしては、例えばトルエンなどの有機化合物を触媒燃焼させることにより得られるガスを用いることができる。   As the heating gas, for example, a gas obtained by catalytic combustion of an organic compound such as toluene can be used.

脱水素触媒としては、通常脱水素化反応に用いられる触媒を用いることができ、具体的には白金触媒やパラジウム触媒、ニッケル触媒等を用いることができる。これらの触媒の粒径は3nm以下であることが好ましい。   As the dehydrogenation catalyst, a catalyst usually used in a dehydrogenation reaction can be used. Specifically, a platinum catalyst, a palladium catalyst, a nickel catalyst, or the like can be used. The particle size of these catalysts is preferably 3 nm or less.

また、これらの触媒は、触媒活性の観点から、アルミナやシリカ、チタニア等の担体上に担持されていることが好ましい。   These catalysts are preferably supported on a support such as alumina, silica, titania and the like from the viewpoint of catalytic activity.

さらに、上述のように脱水素工程における余熱を活性化工程において利用する観点から、担体として熱伝導性が良好なもの(例えば、熱容量が0.5MJ/m・K以上であるもの)を用いることが好ましい。このような担体としては、例えばアルミニウムの表面がアルミナ処理されたものが挙げられる。 Furthermore, from the viewpoint of utilizing the residual heat in the dehydrogenation step in the activation step as described above, a carrier having a good thermal conductivity (for example, a heat capacity of 0.5 MJ / m 3 · K or more) is used. It is preferable. As such a carrier, for example, an aluminum surface treated with alumina may be mentioned.

また、脱水素工程における余熱を活性化工程において利用する観点から、反応器を断熱材により覆い、反応器内の温度を保持することが好ましい。また、同様の理由から、反応器は熱容量の大きいものであることが好ましい。なお、断熱材としては、例えばフェルト状無機繊維断熱材を用いることができる。   Further, from the viewpoint of utilizing the residual heat in the dehydrogenation step in the activation step, it is preferable to cover the reactor with a heat insulating material and maintain the temperature in the reactor. For the same reason, it is preferable that the reactor has a large heat capacity. In addition, as a heat insulating material, for example, a felt-like inorganic fiber heat insulating material can be used.

本実施形態において、反応器から取り出される水素の量は特に限定されないが、水素ステーションに用いることを考慮すると、50〜500m/hとすることが好ましい。また、このような量の水素を取り出すためには、例えば有機ハイドライドをの一種であるメチルシクロヘキサンを120〜1200L/hの速度で反応器に供給すればよい。 In the present embodiment, the amount of hydrogen taken out from the reactor is not particularly limited, but it is preferably 50 to 500 m 3 / h in consideration of use in a hydrogen station. In order to take out such an amount of hydrogen, for example, methylcyclohexane, which is a kind of organic hydride, may be supplied to the reactor at a rate of 120 to 1200 L / h.

脱水素反応温度は、脱水素反応を行うことができる温度であればよいが、エネルギー効率や触媒活性などの観点から、350℃以下であると好ましく、150〜350℃であるとより好ましい。   The dehydrogenation reaction temperature may be any temperature at which the dehydrogenation reaction can be performed, but is preferably 350 ° C. or less, and more preferably 150 to 350 ° C. from the viewpoints of energy efficiency and catalytic activity.

活性化工程における反応器内の温度は、脱水素反応温度以下の温度であればよいが、触媒を効率よく焼成する観点から、150℃以上であると好ましい。   The temperature in the reactor in the activation step may be a temperature not higher than the dehydrogenation reaction temperature, but is preferably 150 ° C. or higher from the viewpoint of efficiently firing the catalyst.

以下、本発明を実施例により、さらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.

(参考例1)
6cm角の平板型のアルミナ上に粒径3nm以下の白金を担持した平板型触媒を用いて、300℃で約200時間、メチルシクロヘキサン(以下、「MCH」という。)の脱水素反応を行った(MCH流量は6cm角の触媒に対し、5.4ml/h)。
この脱水素反応により活性劣化した触媒について、透過型電子顕微鏡(TEM)で白金粒子径を観察したところ、白金粒子径は3nm以下で維持されており、白金粒子径は使用前とほとんど変わっていなかった。また、走査型電子顕微鏡(SEM)の特性X線分析(EDX)の結果から、活性劣化した触媒の炭素量を測定したところ、炭素量は10〜24%であった。この結果から、非常に多くのコークが生成し、触媒がコーク劣化していることが示唆される。
(Reference Example 1)
Using a flat plate catalyst in which platinum having a particle size of 3 nm or less was supported on a 6 cm square flat plate type alumina, dehydrogenation reaction of methylcyclohexane (hereinafter referred to as “MCH”) was performed at 300 ° C. for about 200 hours. (MCH flow rate is 5.4 ml / h for a 6 cm square catalyst).
When the platinum particle diameter was observed with a transmission electron microscope (TEM) for the catalyst whose activity was deteriorated by this dehydrogenation reaction, the platinum particle diameter was maintained at 3 nm or less, and the platinum particle diameter was almost the same as before use. It was. Moreover, when the carbon content of the catalyst whose activity deteriorated was measured from the result of the characteristic X-ray analysis (EDX) of the scanning electron microscope (SEM), the carbon content was 10 to 24%. This result suggests that a very large amount of coke is produced and the catalyst is coke deteriorated.

(実施例1)
参考例1の活性劣化した触媒を空気存在下、300℃で1時間焼成し、白金粒子径と炭素量(処理前後の相対値)を測定した。
(実施例2)
参考例1の活性劣化した触媒を空気存在下、350℃で1時間焼成し、白金粒子径と炭素量(処理前後の相対値)を測定した。
(実施例3)
参考例1の活性劣化した触媒を空気存在下、250℃で1時間焼成し、白金粒子径と炭素量(処理前後の相対値)を測定した。
Example 1
The catalytically deteriorated catalyst of Reference Example 1 was calcined at 300 ° C. for 1 hour in the presence of air, and the platinum particle diameter and carbon amount (relative values before and after treatment) were measured.
(Example 2)
The catalytically deteriorated catalyst of Reference Example 1 was calcined at 350 ° C. for 1 hour in the presence of air, and the platinum particle diameter and carbon amount (relative values before and after treatment) were measured.
(Example 3)
The catalytically deteriorated catalyst of Reference Example 1 was calcined at 250 ° C. for 1 hour in the presence of air, and the platinum particle diameter and carbon amount (relative values before and after treatment) were measured.

(比較例1)
参考例1の活性劣化した触媒を空気存在下、400℃で1時間焼成し、白金粒子径と炭素量(処理前後の相対値)を測定した。
(比較例2)
参考例1の活性劣化した触媒を空気存在下、450℃で1時間焼成し、白金粒子径と炭素量(処理前後の相対値)を測定した。
(Comparative Example 1)
The catalytically deteriorated catalyst of Reference Example 1 was calcined at 400 ° C. for 1 hour in the presence of air, and the platinum particle diameter and carbon amount (relative values before and after treatment) were measured.
(Comparative Example 2)
The catalytically deteriorated catalyst of Reference Example 1 was calcined at 450 ° C. for 1 hour in the presence of air, and the platinum particle diameter and carbon amount (relative values before and after treatment) were measured.

さらに実施例1〜3および比較例1〜2の焼成後の触媒について、300℃で100時間、MCHの脱水素反応を継続し(MCH流量は6cm角の触媒に対し、5.4ml/h)、MCH転化率の変化を測定した。その結果を表1に示す。なお、実施例1〜3および比較例1〜2の焼成後の触媒については、焼成後に水素還元などの前処理は実施していない。   Further, for the catalysts after calcining in Examples 1 to 3 and Comparative Examples 1 and 2, MCH dehydrogenation reaction was continued at 300 ° C. for 100 hours (the MCH flow rate was 5.4 ml / h for a 6 cm square catalyst). The change in MCH conversion was measured. The results are shown in Table 1. In addition, about the catalyst after baking of Examples 1-3 and Comparative Examples 1-2, pre-processing, such as hydrogen reduction, is not implemented after baking.

Figure 2010279876
Figure 2010279876

表1から明らかであるように、焼成温度が400℃以上の条件は、白金粒子が凝集し、触媒再生後の劣化速度が大きくなり、再生に適した条件とはいえないことが分かる。一方、焼成温度が350℃以下であれば、白金粒子凝集を抑制しながら、炭素分を除去することが可能となり、触媒再生に適した条件であることが分かる。   As is clear from Table 1, it can be seen that the conditions where the calcination temperature is 400 ° C. or higher are not suitable conditions for regeneration because the platinum particles aggregate and the deterioration rate after regeneration of the catalyst increases. On the other hand, if the calcination temperature is 350 ° C. or lower, it is possible to remove carbon while suppressing aggregation of platinum particles, which indicates that the conditions are suitable for catalyst regeneration.

(実施例4)
触媒焼成による再生条件を300℃×1時間とした場合(実施例1の場合)について、MCH脱水素反応と焼成による再生を繰り返す実験を実施した。図2は、MCH転化率と時間との関係を示すグラフである。なお、MCH脱水素反応の温度は300℃とした。
Example 4
When the regeneration condition by catalyst calcination was 300 ° C. × 1 hour (in the case of Example 1), an experiment in which the MCH dehydrogenation reaction and regeneration by calcination were repeated was performed. FIG. 2 is a graph showing the relationship between MCH conversion rate and time. The temperature of the MCH dehydrogenation reaction was 300 ° C.

約800時間の運転中、4回の触媒再生を行ったところ、触媒再生直後のMCH転化率は常に90%程度まで回復し、その劣化傾向も初期とほとんど変わらず、この再生条件であれば繰り返し再生により、触媒を長時間使用できることが確認できた。   When the catalyst was regenerated four times during the operation for about 800 hours, the MCH conversion immediately after the catalyst regeneration always recovered to about 90%, and its deterioration tendency remained almost unchanged from the initial stage. It was confirmed by regeneration that the catalyst can be used for a long time.

(実施例5)
平板型のアルミナ上に白金を担持した平板型触媒を組み込んだ反応器の触媒面の裏側に加熱用ガス用流路を設けた。この反応器を、トルエンを触媒燃焼させることにより得られた高温ガスにて加熱し、MCHの脱水素実験を行った。
なお、熱が外部に拡散するのを抑制するため、反応器を断熱材で覆った。断熱材は反応器の温度を保持する役割があり、この実験ではニチアス(株)製フェルト状無機繊維断熱材を使用した。またこの反応器筐体はSUS製であり、その熱容量は約4MJ/m・Kである。
触媒部出口温度を300℃とし、1時間、触媒1平方cm当たり0.25mlのMCHを導入したところ、MCH転化率は90%であった。MCH流量を1時間、触媒1平方cm当たり1.0mlとし、約5時間、運転を継続し、MCH流量を1時間、触媒1平方cm当たり0.25mlへ戻し、MCH転化率を測定したところ、75%へと低下した。
ここで原料のMCHの供給を止め、さらに燃料のトルエンおよび高温ガスの供給を停止し、窒素を3分流通させた後、空気を30分流通させ、再び窒素流通に切り替え、装置を停止した。次いで、燃料のトルエンおよび高温ガスの供給を開始し、MCHを供給し、脱水素反応を行い、MCH転化率を測定したところ、90%へと回復しており、余熱だけで触媒を再生できることが明らかとなった。
(Example 5)
A heating gas flow path was provided on the back side of the catalyst surface of a reactor in which a flat catalyst carrying platinum on flat alumina was incorporated. This reactor was heated with a high-temperature gas obtained by catalytic combustion of toluene, and MCH dehydrogenation experiments were conducted.
In addition, in order to suppress that a heat | fever spread | diffuses outside, the reactor was covered with the heat insulating material. The heat insulating material has a role of maintaining the temperature of the reactor. In this experiment, a felt-like inorganic fiber heat insulating material manufactured by Nichias Co., Ltd. was used. The reactor housing is made of SUS, and its heat capacity is about 4 MJ / m 3 · K.
When the catalyst part outlet temperature was set to 300 ° C. and 0.25 ml of MCH was introduced per square centimeter of catalyst for 1 hour, the MCH conversion rate was 90%. When the MCH flow rate was 1.0 ml per square centimeter of catalyst for 1 hour and the operation was continued for about 5 hours, the MCH flow rate was returned to 0.25 ml per square centimeter of catalyst for 1 hour, and the MCH conversion rate was measured. It decreased to 75%.
Here, the supply of raw material MCH was stopped, the supply of fuel toluene and high-temperature gas was stopped, nitrogen was circulated for 3 minutes, air was then circulated for 30 minutes, and again the nitrogen flow was switched to stop the apparatus. Next, supply of toluene and high-temperature gas as fuel was started, MCH was supplied, dehydrogenation reaction was performed, and MCH conversion was measured. As a result, it was recovered to 90%, and the catalyst could be regenerated only with residual heat. It became clear.

(実施例6)
白金を担持したアルミナ担体からなる粒状触媒(熱容量:約0.6MJ/m・K)を二重管式反応器の内管に充填し、外管に加熱用ガス用流路を設けた。この二重管式反応器を、トルエンを触媒燃焼させることにより得られた高温ガスにて加熱し、MCHの脱水素実験を行った。
なお、熱が外部に拡散するのを抑制するため、反応器を断熱材で覆った。断熱材は反応器の温度を保持する役割があり、この実験ではニチアス(株)製フェルト状無機繊維断熱材を使用した。
触媒部出口温度を330℃とし、1時間、触媒1立方cm当たり1mlのMCHを導入したところ、MCH転化率は90%であった。MCH流量を1時間、触媒1立方cm当たり5.0mlとし、約5時間、運転を継続し、MCH流量を1時間、触媒1立方cm当たり1mlへ戻し、MCH転化率を測定したところ、80%へと低下した。
ここで原料のMCHの供給を止め、さらに燃料のトルエンおよび高温ガスの供給を停止し、窒素を3分流通させた後、空気を60分流通させ、再び窒素流通に切り替え、装置を停止した。次いで、燃料のトルエンおよび高温ガスの供給を開始し、MCHを供給し、脱水素反応を行い、MCH転化率を測定したところ、90%へと回復しており、余熱だけで触媒を再生できることが明らかとなった。
(Example 6)
A granular catalyst (heat capacity: about 0.6 MJ / m 3 · K) made of an alumina carrier supporting platinum was filled in the inner tube of the double tube reactor, and a heating gas flow path was provided in the outer tube. This double tube reactor was heated with a high-temperature gas obtained by catalytic combustion of toluene, and an MCH dehydrogenation experiment was conducted.
In addition, in order to suppress that a heat | fever spread | diffuses outside, the reactor was covered with the heat insulating material. The heat insulating material has a role of maintaining the temperature of the reactor. In this experiment, a felt-like inorganic fiber heat insulating material manufactured by Nichias Co., Ltd. was used.
When the catalyst part outlet temperature was set to 330 ° C. and 1 ml of MCH was introduced per cubic centimeter of the catalyst for 1 hour, the MCH conversion rate was 90%. When the MCH flow rate was 5.0 ml per cubic centimeter of catalyst for 1 hour and the operation was continued for about 5 hours, the MCH flow rate was returned to 1 ml per cubic centimeter of catalyst and the MCH conversion was measured. Declined.
Here, the supply of raw material MCH was stopped, the supply of fuel toluene and high-temperature gas was stopped, nitrogen was circulated for 3 minutes, air was then circulated for 60 minutes, switching to nitrogen circulation again, and the apparatus was stopped. Next, supply of toluene and high-temperature gas as fuel was started, MCH was supplied, dehydrogenation reaction was performed, and MCH conversion was measured. As a result, it was recovered to 90%, and the catalyst could be regenerated only with residual heat. It became clear.

Claims (4)

脱水素触媒を用い、所定の脱水素温度で有機ハイドライドの脱水素反応を行い、水素を取り出す脱水素工程と、
前記脱水素温度以下の温度で空気を前記脱水素触媒と接触させ、該脱水素触媒を活性化する活性化工程と、を有する有機ハイドライドの脱水素システムの運転方法。
A dehydrogenation step of dehydrogenating an organic hydride at a predetermined dehydrogenation temperature using a dehydrogenation catalyst to extract hydrogen;
And an activation step of activating the dehydrogenation catalyst by bringing air into contact with the dehydrogenation catalyst at a temperature equal to or lower than the dehydrogenation temperature.
前記脱水素温度が350℃以下であり、かつ前記脱水素触媒の活性化に要する時間が1時間以下である、請求項1に記載の有機ハイドライドの脱水素システムの運転方法。   2. The method for operating an organic hydride dehydrogenation system according to claim 1, wherein the dehydrogenation temperature is 350 ° C. or less and the time required for activating the dehydrogenation catalyst is 1 hour or less. 前記脱水素触媒は、粒径3nm以下の白金を含有する触媒である、請求項1または2に記載の有機ハイドライドの脱水素システムの運転方法。   The method for operating an organic hydride dehydrogenation system according to claim 1, wherein the dehydrogenation catalyst is a catalyst containing platinum having a particle size of 3 nm or less. 前記有機ハイドライドの脱水素システムが有機ハイドライド型水素ステーションである、請求項1〜3のいずれか1項に記載の有機ハイドライドの脱水素システムの運転方法。   The operation method of the organic hydride dehydrogenation system according to any one of claims 1 to 3, wherein the organic hydride dehydrogenation system is an organic hydride hydrogen station.
JP2009133898A 2009-06-03 2009-06-03 System for dehydrogenating organic hydride Pending JP2010279876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133898A JP2010279876A (en) 2009-06-03 2009-06-03 System for dehydrogenating organic hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133898A JP2010279876A (en) 2009-06-03 2009-06-03 System for dehydrogenating organic hydride

Publications (1)

Publication Number Publication Date
JP2010279876A true JP2010279876A (en) 2010-12-16

Family

ID=43537128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133898A Pending JP2010279876A (en) 2009-06-03 2009-06-03 System for dehydrogenating organic hydride

Country Status (1)

Country Link
JP (1) JP2010279876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039385A1 (en) * 2014-09-09 2016-03-17 国立大学法人静岡大学 Organic-hydride dehydrogenation catalyst and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115747A (en) * 1982-12-22 1984-07-04 Osaka Gas Co Ltd Regenerating method of catalyst
JPS61115065A (en) * 1984-11-08 1986-06-02 Mitsui Toatsu Chem Inc Production of indole compound
JPH10366A (en) * 1996-06-13 1998-01-06 Mitsubishi Chem Corp Method for regenerating platinum-tin based catalyst
JP2005035842A (en) * 2003-07-15 2005-02-10 Nippon Oil Corp Hydrogen production system
JP2005138024A (en) * 2003-11-06 2005-06-02 Sekisui Chem Co Ltd Catalyst for dehydrogenation reaction from hydrogenated aromatic compound and hydrogen manufacturing method utilizing the catalyst
JP2007309302A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Hydrogen generating device and internal combustion engine utilizing hydrogen
JP2007326000A (en) * 2006-06-06 2007-12-20 Petroleum Energy Center Dehydrogenation catalyst and hydrogen supply device using the same
JP2008094681A (en) * 2006-10-13 2008-04-24 Idemitsu Kosan Co Ltd Method for producing hydrogen-containing gas
WO2008081792A1 (en) * 2006-12-28 2008-07-10 Mitsubishi Rayon Co., Ltd. Method for regenerating palladium-containing metal loaded catalyst, palladium-containing metal loaded catalyst and method for producing the same
JP2008297160A (en) * 2007-05-31 2008-12-11 Petroleum Energy Center Method for producing hydrogen and reaction tube for hydrogen production

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115747A (en) * 1982-12-22 1984-07-04 Osaka Gas Co Ltd Regenerating method of catalyst
JPS61115065A (en) * 1984-11-08 1986-06-02 Mitsui Toatsu Chem Inc Production of indole compound
JPH10366A (en) * 1996-06-13 1998-01-06 Mitsubishi Chem Corp Method for regenerating platinum-tin based catalyst
JP2005035842A (en) * 2003-07-15 2005-02-10 Nippon Oil Corp Hydrogen production system
JP2005138024A (en) * 2003-11-06 2005-06-02 Sekisui Chem Co Ltd Catalyst for dehydrogenation reaction from hydrogenated aromatic compound and hydrogen manufacturing method utilizing the catalyst
JP2007309302A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Hydrogen generating device and internal combustion engine utilizing hydrogen
JP2007326000A (en) * 2006-06-06 2007-12-20 Petroleum Energy Center Dehydrogenation catalyst and hydrogen supply device using the same
JP2008094681A (en) * 2006-10-13 2008-04-24 Idemitsu Kosan Co Ltd Method for producing hydrogen-containing gas
WO2008081792A1 (en) * 2006-12-28 2008-07-10 Mitsubishi Rayon Co., Ltd. Method for regenerating palladium-containing metal loaded catalyst, palladium-containing metal loaded catalyst and method for producing the same
JP2008297160A (en) * 2007-05-31 2008-12-11 Petroleum Energy Center Method for producing hydrogen and reaction tube for hydrogen production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039385A1 (en) * 2014-09-09 2016-03-17 国立大学法人静岡大学 Organic-hydride dehydrogenation catalyst and method for producing same

Similar Documents

Publication Publication Date Title
JP6056904B2 (en) Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen
JP4684069B2 (en) Production method of high purity hydrogen
JP6200711B2 (en) Hydrogen production apparatus and hydrogen production method
WO2021159951A9 (en) Catalyst and catalytic oxidation-deoxidation method for unsaturated hydrocarbon-containing gas
JP2022537165A (en) Systems and methods for high temperature synthesis of monoatomic and polyatomic dispersions
CN102600866A (en) Atmospheric pressure cold plasma regeneration method for nanogold catalyst
CN104566404A (en) Organic waste gas purification method
JP2019098314A (en) Volatile organic compound processing method and processing device
JP2010279876A (en) System for dehydrogenating organic hydride
RU2333885C2 (en) Method of hydrogen storage by carrying out catalytic reactions of hydration/dehydration of aromatic substrates under action of shf (hf) radiation
TW202112442A (en) Alkane dehydrogenation catalyst, and hydrogen production method using same
JP2004250255A (en) Hydrogen storage and generation system
JP4604476B2 (en) How to store and transport hydrogen
JP4174564B2 (en) Method for producing unsupported hydrocarbon direct cracking catalyst and method for producing hydrogen and carbon by direct hydrocarbon cracking
Ammendola et al. Regeneration of spent catalysts in oxy-combustion atmosphere
JP2004051855A (en) Porous inorganic particle for gasification of organic matter and gasification method using the same
RU2677654C1 (en) Method of mechanic chemical preparation of catalyst of hydrogenation reactions on the basis of nickel
JP2002228099A (en) Hydrogen occlusion and emission device
JP2012000566A (en) Hydrogenation catalyst of aromatic hydrocarbon, and hydrogenation method using the same
CN112538389A (en) Method and device for catalytically reforming biomass tar based on photo-thermal synergistic effect
CN104841468A (en) Carbon-based nonmetal solid alkali nanometer catalyst, and preparation method and application thereof
KR20220040469A (en) method
CN104801352A (en) Method for burning off deposition carbon on catalyst in radial moving bed regeneration unit
JP2007076992A (en) Apparatus for producing hydrogen and fuel cell system using the same
CN111054325A (en) Preparation and use of liquid phase dehydrogenation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909