JP2004051855A - Porous inorganic particle for gasification of organic matter and gasification method using the same - Google Patents

Porous inorganic particle for gasification of organic matter and gasification method using the same Download PDF

Info

Publication number
JP2004051855A
JP2004051855A JP2002213253A JP2002213253A JP2004051855A JP 2004051855 A JP2004051855 A JP 2004051855A JP 2002213253 A JP2002213253 A JP 2002213253A JP 2002213253 A JP2002213253 A JP 2002213253A JP 2004051855 A JP2004051855 A JP 2004051855A
Authority
JP
Japan
Prior art keywords
gasification
porous inorganic
inorganic particles
tar
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002213253A
Other languages
Japanese (ja)
Other versions
JP4041880B2 (en
Inventor
Hiroyuki Hatano
幡野 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002213253A priority Critical patent/JP4041880B2/en
Publication of JP2004051855A publication Critical patent/JP2004051855A/en
Application granted granted Critical
Publication of JP4041880B2 publication Critical patent/JP4041880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of gasification of organic matters in which troubles in the gasification system of organic matters are easily removed; a long stable operation is possible without troubles in repeatedly usable porous inorganic particles and in a reaction furnace for subjecting organic matters to pyrolysis gasification or steam gasification at a low temperature using the particles; and heat energy from the operation can be efficiently used. <P>SOLUTION: The porous inorganic particles for gasification are porous inorganic particles used in a gasification reaction system of organic matters, which support fine particles of transition metal oxides on the surface or in the pores thereof. The method of gasification of organic matters comprises gasifying the organic matters in a low-temperature reaction furnace for performing pyrolysis gasification or steam gasification in the presence of porous inorganic particles supporting the fine particles, transporting the porous inorganic particles which have adsorbed produced tar and char and support reduced metal oxides to a combustion furnace, introducing a combustion exhaust into the combustion furnace to fire therein the tar and char adsorbed in the porous inorganic particles, transporting metal oxide-supporting porous inorganic particles obtained to the reaction furnace and reusing them for adsorbing the produced tar and char. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、石炭、重質炭化水素、生活ゴミ、プラスチックス、バイオマス(木質系、草木系、汚泥等)、産業廃棄物などの有機廃棄物のガス化により燃料ガスを製造するガス化反応に用いられる多孔質無機物粒子及びそれを用いる有機物のガス化方法に関するものである。
【0002】
【従来の技術】
一般に、バイオマスやプラスチック類などの有機廃棄物のガス化などの有機物を原料とする熱分解ガス化反応においては、反応過程で発生するタール分、チャーなどの可燃性固体有機物が反応工程内の各部に徐々に蓄積されて円滑な運転を阻害する要因になることが知られている。なかでも、有機物を低温でガス化する場合には、通常タールなどの発生が著しく、そのタールの発生に伴う運転トラブルはより一層増大する。
【0003】
従来、有機物の低温ガス化では、分解ガス化する反応速度が遅いためカルシウムなどの金属を含む触媒を大量に投入されているが、この方法には多量のタールが生成し、これが反応工程内を詰らせたり触媒を不活性にするなどの不具合が生じ操業が困難になるというトラブルが多く発生した。この問題に対処するには、ゼオライトなどの無機多孔質体を用いて発生するタール分を吸着させることが考えられるが、タールに起因するトラブルは回避できたとしても、多孔質体単独では、タールを吸着できるに過ぎず、低温におけるガス化反応を十分に進行させることはできない。また、燃焼排ガスは、高温度であるものの酸素濃度が低いために燃焼などには十分に使用されておらず、排ガスの熱エネルギーは有効に利用されていない。
【0004】
【発明が解決しようとする課題】
本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、有機物のガス化システムにおけるトラブルを簡易に除去でき、かつ繰り返し使用できる多孔質無機粒子を提供することにある。
また、本発明の他の目的は、有機物を低温でガス化させるガス化反応炉のトラブルを回避し長期に亘り安定して運転できるとともに、その運転操業の熱エネルギーを有効に利用できる有機物のガス化方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の有機物のガス化用多孔質無機物粒子は、有機物の熱分解ガス化反応系または水蒸気ガス化反応系に用いるものであって、その多孔質体の表面及び内孔に遷移金属酸化物の微粒子を担持したことを特徴とするものである。
また、本発明の有機物の熱分解ガス化方法または水蒸気ガス化方法は、表面及び内孔に遷移金属酸化物の微粒子を担持した多孔質無機物粒子の存在下に、有機物を低温のガス化反応炉でガス化し、水蒸気の共存下では生成した一酸化炭素とシフト反応を生じさせて水素を製造すると共に、還元された金属あるいは金属炭化物による水の分解反応によっても水素が得られることから多量の水素を製造し、さらに反応過程で生成したタール及びチャーを吸着させるとともに、還元された金属微粒子を担持した多孔質無機粒子を燃焼炉に移送し、次に、燃焼排ガスを導入して多孔質無機物粒子に吸着されたタール及びチャーを燃焼炉で燃焼させ、得られた金属酸化物を担持した多孔質無機粒子を前記反応炉に移送し、再び生成したタール及びチャーの吸着に用いることを特徴とするものである。
【0006】
【発明の実施の形態】
本発明は、廃棄物処理施設や工場などから排出される有機廃棄物及び廃プラスチック類などの有機物を加熱分解または水蒸気と反応させて得られるガス状物を燃料ガスとして再利用するガス化プロセスにおいて、無機系多孔質体に担持された金属の酸化還元と多孔質体の吸着能を利用して、熱分解ガス炉または水蒸気ガス化炉の運転時に生成するタールなどの発生によるガス化炉の操業トラブルを効率的に回避すると同時に、廃熱エネルギーを有効に利用して省エネルギー化を図るものである。
【0007】
本発明において、多孔質無機物としては、シリカ、シリカーアルミナ、チタニア、ジルコニア、アルミナなどからなり、空孔率の多い平均粒径50〜400μmの多孔質粒子が用いられる。また、その多孔質無機物粒子に担持する遷移金属酸化物としては、酸化還元される金属の酸化物であって、600℃以下に加熱される有機物の存在下において還元されて金属原子になり、また、酸化剤の存在下に酸化されて金属酸化物になる金属元素であれば使用可能であって、例えば、ニッケル、鉄、銅、カルシウムなどが挙げられる。その金属または金属酸化物は、平均粒径0.05〜0.5μmの超微粒子として用いることが好ましい。
【0008】
本発明の熱分解ガス化法では、ガス化炉において上述した金属酸化物を担持した多孔質無機物粒子の存在下に、都市ゴミ、産業廃棄物などの有機物原料、空気などの酸化剤、水蒸気、必要に応じて希釈剤などを導入し、600℃以下、好ましくは400〜600℃、より好ましくは450〜550℃の比較的低温条件下で、有機物を熱分解させてガス化させる。このガス化反応では、水素、一酸化炭素、二酸化炭素などのガス状物質、タール分及びチャーなどが生成し、その生成するタール分は多孔質無機物粒子の表面及び孔内に吸着される。その際、多孔質無機物粒子に担持された金属酸化物は、ガス化反応炉内の炭素留分により還元されて金属原子となって分解ガス化を促進させることができる。
また、水蒸気ガス化法では、得られた一酸化炭素はさらに水蒸気と反応して、二酸化炭素と水素を生成することから、炭素転換率は、全体として熱分解の3倍以上に増加することになる。
【0009】
次に、タール分を十分に吸着し金属を担持した多孔質無機物粒子を燃焼炉に送り込む。この燃焼炉には、タービン排気などから排出される排ガス、空気などを導入し、700℃以上の温度で燃焼させることによりタール分を燃焼させると同時に、多孔質無機物粒子に担持された金属は酸化されて金属酸化物となる。この燃焼は、ガス中の酸素濃度が5〜12%程度の低濃度酸素ガスで完全燃焼されるから、燃焼後の排ガスを再び利用することができる。このことは、燃焼排ガスは酸素濃度が低いものの温度が高く、直接燃焼に再利用できることになり、燃焼の酸化剤として用いる空気量を削減できるから、予熱による熱損失を防止でき、省エネルギー化が可能であることを示すものである。
【0010】
次に、燃焼炉で得られた金属酸化物担持多孔質無機物粒子をガス化反応炉に送り込むことにより、再びタール分の吸着及び金属酸化物の還元による熱分解ガス化の促進に用いることができる。この操作は、繰り返し行うことができる。
その際、金属酸化物担持多孔質無機物粒子を過熱状態で反応炉に導入することにより金属酸化物による濃縮された酸素原子と多孔質無機物粒子による顕熱輸送が可能であるから、エネルギーを有効に利用することができる。
【0011】
さらに、図面を参照して本発明についてさらに説明する。
図1は、本発明の熱分解ガス化システムにおける要部を説明するための概念図である。図1において、1は燃焼炉、2は固気分離器、3はガス化炉、4は高温燃焼排ガスまたは空気など、5は燃焼炉からの排ガス、6は有機物原料、7は水蒸気または不活性ガス、8はガス化反応の生成ガス(CO、CO、H、CHなど)、9は酸化金属粒子(MO)、10は金属粒子(M)である。11は金属炭化物(MC)であって、金属酸化物が金属に還元された後、炭素と結合したものである。また、12は金属や担体上に吸着(析出)している炭化物である。このシステムにおいては、ガス化炉3内では、MOはMやMCになり、他方、燃焼炉内では、金属は金属酸化物になっている。
【0012】
図2及び図3は、本発明のガス化用多孔質無機物粒子の一例の断面構造を示すものであって、図2は、多孔質無機物粒子(担体)の表面及び孔内に金属酸化物が担持されているガス化用多孔質無機物粒子の概略構造図であり、図3は、その粒子のガス化炉内における状態を示す概略構造図である。図2及び図3において、Aは多孔質粒子、Bは金属微粒子、Cは酸化金属微粒子、Dは金属炭化物、Eは析出炭素である。
図4は、ガス化反応炉温度500℃において、ポリエチレン(PE)の熱分解時に観察される各種ガス成分の生成量とガス化時間との関係を表すグラフである。反応器温度は470℃であるにもかかわらず、水素と二酸化炭素が生成していることが分かる。
【0013】
図5は、PEの熱分解によって担体に析出した析出炭素を、ガス化温度470℃付近から700℃まで昇温しながら酸素濃度5%、窒素濃度95%のガスを流した時の二酸化炭素と一酸化炭素の生成曲線と温度変化を示している。酸素は昇温を始めた瞬間に供給を開始しているため、470〜480℃でも二酸化炭素が生成を始めており、燃焼反応が生じていることが分かる。昇温中500℃付近で一旦二酸化炭素生成速度が減少するが、500℃を越えると再び生成速度が増加し始める。その後、急速に二酸化炭素生成速度が減少するが、これは表面付近の炭素が全て無くなり、細孔内の炭素が燃焼を始めているためであると考えられる。いずれにしても、700℃の温度でなくても殆どの炭化物はNiの酸化反応による発熱の影響もあって低酸素濃度でも順調に燃焼し、他の機器から排出される燃焼排ガスをそのまま本プロセスの燃焼に使用できることが分かった。
図6は、本発明の金属酸化物担持担体を、570℃の温度で、ポリエチレン(PE)7.5gを15回に分けて投入し、熱分解反応に用いた場合の生成ガス組成の経時変化を示すグラフであり、PEが持つ水素原子は、ほぼ100%発生していることが分かる。
【0014】
図7は、本発明の金属酸化物担持担体を、570℃の温度で、ポリエチレン(PE)2.5gを5回に分けて投入し、さらに水蒸気ガス化に用いた場合の生成ガス組成の経時変化を示すグラフであり、PEが持つ水素に加えて、水性ガス化反応とシフト化反応が進行したと仮定した場合に発生する水素も、ほぼ100%発生していることが分かる。しかし、一般に、水性ガス化反応は、この温度条件下では起こらないため、金属酸化物からCOが生成し、シフト反応により水素が生成するケースとCO生成と同時に生じる金属炭化物或いは還元された金属による水分解により水素が発生しているものと推察される。
【0015】
図8は、累積生成ガス量と組成の時間による変化を示している。3本の棒グラフのうち左側は実測値を、中央はポリエチレンの持つ水素は全て水素に転換、改質反応によりCOが1モル生成すると水素が1モル、COが1モル生成により水素2モル生成すると仮定したときの水素の生成源構成を示している。一番右側の棒グラフはNiOによる部分酸化でCOが生成すると仮定した場合でCOが1モル生成すると水素は1モル生成するという関係になる。この図8からは、CO,COを基準にしたのみの水素生成量以上の水素が生成していることが分かり、未検出の炭素数の多い酸化物が生じているもの、あるいは金属の酸化時に中心部分が金属として残っていた部分と水蒸気との反応によって生成した水素と推察される。
【0016】
図9は、最初の試料投入後16分から32分、32分から45分、45から60分の間で生成したガス組成を調べたものである。時間が経つにつれてCO,COから生成するとした水素量が減少し、炭素数の大きな酸化物からの水素が増加していると考えられる。特に45から60分では、この水素が非常に大きくなっており、粒子中心部付近で酸化されずに残っていた金属部分と水蒸気との反応による水素が生成した可能性も高いと言える。
【0017】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
平均粒径約300μmの多孔質シリカゲル(商品名:MS−GEL)100gを硝酸ニッケル水溶液に浸漬し、乾燥させたものを大気中で焼成することにより、平均粒径300nmの酸化ニッケル超微粒子が表面と内孔に付着した多孔質シリカゲル(Ni/SiO比=31重量%)を得た。
次に、得られた多孔質シリカゲル12gをガラス製の小型反応器に導入し、反応器内を窒素ガスで置換して窒素雰囲気とした後、窒素を0.5l/分で投入し、
約570℃でポリエチレン及びポリプロピレン(PP)を主成分とするプラスチック類0.5gを投入し、0.1時間の反応を行ったところ、一酸化炭素、水素及び二酸化炭素を主成分とする燃料・合成用ガスが発生し、また、反応器内に生成したタール状物の0.3gが多孔質シリカゲルに吸着された。
また、その窒素に代えて水蒸気を導入した場合には、より水素濃度の高い燃料・合成用ガスが発生し、プラスチック類が持ち込んだ水素に加えて、水性ガス化反応とシフト化反応による水素の発生が確認された。
このことは、金属酸化物による選択的な部分酸化がシフト反応を促進させると同時に、金属ニッケル或いは炭化ニッケルによる水の分解が進行していることを示すものである。その際、多孔質シリカゲルに担持されている酸化ニッケルは、還元されて金属ニッケルになっている。
次に、得られた多孔質シリカゲルを燃焼炉に送り込んだ後、その燃焼炉にタービンから排気される高温状態(約600℃)で低酸素濃度(約5〜12%)の排ガスを導入し、約600℃で0.1時間の燃焼反応を行ったところ、多孔質シリカゲルに吸着されていたタール状物は完全に燃焼し、主に一酸化炭素と二酸化炭素が生成していた。この燃焼炉内の多孔質シリカゲルに付着していた金属ニッケルは、酸化ニッケルに酸化されている。
次に、この酸化ニッケルの付着した多孔質シリカゲルを、再び小型反応器に導入して、繰り返しプラスチック類のガス化反応に用いた。
【0018】
【発明の効果】
本発明の多孔質無機物粒子は、金属または金属酸化物微粒子を多孔質担体の表面と孔内に担持しているから、有機物の熱分解ガス化に繰り返し使用しても酸化・還元の繰り返しによる金属の損失が防止され、活性が維持されることから、長期に亘って利用できる。
本発明によれば、有機系廃棄物の低温ガス化により発生するガス化炉内のタール分を効率的に除去できるから、熱分解ガス化システムのタールトラブルを削減できる。このことは、有機系廃棄物のガス化を中温廃熱を利用し500℃以下の低温で行うことが可能であることを意味するものであり、これにより中温廃熱を有用な燃料に転換しておくことにより、需要に応じて発電などに用いることができ、需要の変動などに容易に対応できるようになる。また、従来殆ど利用されていなかった中温廃熱をガス化及び燃焼に利用できるから、省エネルギ化に寄与するものである。
【図面の簡単な説明】
【図1】本発明の熱分解ガス化システムにおける要部を説明するための概念図である。
【図2】本発明に用いる金属または金属酸化物微粒子を担持した担体の概略構造図である。
【図3】本発明に用いる金属または金属酸化物微粒子を担持した担体のガス化炉内における状態を示す概略構造図である。
【図4】本発明の熱分解ガス化炉を用いて、ガスを生成したときの水素や二酸化炭素濃度の時間変化を表すグラフである。
【図5】ポリエチレンを低濃度酸素含有ガスにより低温で燃焼させた場合の生成物と燃焼時間との関係を示すグラフである。
【図6】本発明の金属酸化物担持担体を用いるポリエチレンの熱分解ガス化反応により発生する水素の経時変化を示すグラフである。
【図7】本発明の金属酸化物担持担体を用いるポリエチレンの水蒸気ガス化反応により発生する水素の経時変化を示すグラフである。
【図8】本発明の金属酸化物担持担体を用いるポリエチレンの水蒸気ガス化反応により発生する水素の生成原因を推定するためのグラフである。
【図9】本発明の金属酸化物担持担体を用いるポリエチレンの水蒸気ガス化反応により発生する水素の生成原因を推定するために時間毎にまとめたグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gasification reaction for producing a fuel gas by gasifying organic wastes such as coal, heavy hydrocarbons, household waste, plastics, biomass (wood, vegetation, sludge, etc.) and industrial waste. The present invention relates to a porous inorganic particle used and a method for gasifying an organic substance using the same.
[0002]
[Prior art]
In general, in a pyrolysis gasification reaction using organic matter as a raw material such as gasification of organic waste such as biomass and plastics, combustible solid organic matter such as tar components and char generated in the reaction process are generated in various parts of the reaction process. It is known that they are gradually accumulated in the vehicle and become a factor that hinders smooth driving. Above all, when organic matter is gasified at a low temperature, tar and the like are usually significantly generated, and operation troubles accompanying the generation of the tar are further increased.
[0003]
Conventionally, in the case of low-temperature gasification of organic substances, a large amount of a catalyst containing a metal such as calcium is introduced due to the slow reaction rate of decomposition gasification.However, a large amount of tar is generated in this method, and this causes a reaction in the reaction process. Troubles such as clogging and inactivation of the catalyst, which made operation difficult, often occurred. To cope with this problem, it is conceivable to adsorb the tar component generated using an inorganic porous material such as zeolite.However, even if the trouble caused by tar can be avoided, the porous material alone cannot Can only be adsorbed, and the gasification reaction at a low temperature cannot be sufficiently advanced. Further, although the combustion exhaust gas has a high temperature but a low oxygen concentration, it is not sufficiently used for combustion or the like, and the thermal energy of the exhaust gas is not effectively used.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation in the related art. That is, an object of the present invention is to provide porous inorganic particles that can easily remove troubles in an organic gasification system and that can be repeatedly used.
Another object of the present invention is to avoid the trouble of a gasification reactor for gasifying organic matter at a low temperature, to operate stably for a long period of time, and to efficiently use the heat energy of the operating operation. It is to provide an optimization method.
[0005]
[Means for Solving the Problems]
The porous inorganic particles for gasification of an organic substance of the present invention are used for a thermal decomposition gasification reaction system or a steam gasification reaction system of an organic substance, and a transition metal oxide on the surface and inner pores of the porous body. It is characterized by carrying fine particles.
In addition, the method for pyrolysis gasification or steam gasification of organic matter according to the present invention is characterized in that the organic matter is cooled to a low temperature in a gasification reaction furnace in the presence of porous inorganic particles carrying fine particles of transition metal oxide on the surface and inner hole. In the presence of water vapor, a hydrogen gas is produced by causing a shift reaction with the generated carbon monoxide, and hydrogen is obtained by a decomposition reaction of water with a reduced metal or metal carbide. And further adsorb the tar and char generated in the reaction process, transfer the porous inorganic particles carrying the reduced metal fine particles to a combustion furnace, and then introduce the combustion exhaust gas to form the porous inorganic particles. The tar and char adsorbed on the surface are burned in a combustion furnace, and the obtained porous inorganic particles supporting the metal oxide are transferred to the reaction furnace, and the generated tar and char are regenerated. And it is characterized in that used for adsorption.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a gasification process for reusing gaseous substances obtained by thermally decomposing or reacting organic substances such as organic wastes and waste plastics discharged from waste treatment facilities and factories with steam as fuel gas. The operation of a gasification furnace by generating tar and the like generated during the operation of a pyrolysis gas furnace or a steam gasification furnace, utilizing the oxidation-reduction of the metal supported on the inorganic porous body and the adsorption capacity of the porous body In addition to efficiently avoiding troubles, it is intended to save energy by effectively using waste heat energy.
[0007]
In the present invention, as the porous inorganic material, porous particles having a high porosity and an average particle diameter of 50 to 400 μm, which are made of silica, silica-alumina, titania, zirconia, alumina or the like, are used. Further, the transition metal oxide supported on the porous inorganic particles is an oxide of a metal that is oxidized and reduced, and is reduced to a metal atom in the presence of an organic substance heated to 600 ° C. or lower, and Any metal element that can be oxidized into a metal oxide in the presence of an oxidizing agent can be used, and examples thereof include nickel, iron, copper, and calcium. The metal or metal oxide is preferably used as ultrafine particles having an average particle size of 0.05 to 0.5 μm.
[0008]
In the pyrolysis gasification method of the present invention, in the gasification furnace, in the presence of the porous inorganic particles supporting the metal oxide described above, municipal waste, organic raw materials such as industrial waste, oxidizing agents such as air, steam, A diluent or the like is introduced as necessary, and organic substances are thermally decomposed and gasified under a relatively low temperature condition of 600 ° C. or lower, preferably 400 to 600 ° C., more preferably 450 to 550 ° C. In this gasification reaction, gaseous substances such as hydrogen, carbon monoxide, and carbon dioxide, tar and char are generated, and the generated tar is adsorbed on the surfaces and pores of the porous inorganic particles. At that time, the metal oxide supported on the porous inorganic particles can be reduced by the carbon fraction in the gasification reaction furnace to become metal atoms, thereby promoting decomposition gasification.
Moreover, in the steam gasification method, the obtained carbon monoxide further reacts with steam to generate carbon dioxide and hydrogen, so that the carbon conversion rate as a whole is more than three times that of pyrolysis. Become.
[0009]
Next, the porous inorganic particles that sufficiently adsorb the tar component and carry the metal are sent to the combustion furnace. In this combustion furnace, exhaust gas, air and the like discharged from a turbine exhaust gas and the like are introduced, and the tar component is burned by burning at a temperature of 700 ° C. or more, and at the same time, the metal supported on the porous inorganic particles is oxidized. To form a metal oxide. In this combustion, since the gas is completely burned with a low-concentration oxygen gas having an oxygen concentration of about 5 to 12%, the exhaust gas after the combustion can be reused. This means that the flue gas has a low oxygen concentration but a high temperature and can be reused directly for combustion, reducing the amount of air used as an oxidizing agent for combustion, preventing heat loss due to preheating and conserving energy. It is shown that it is.
[0010]
Next, by feeding the metal oxide-supported porous inorganic particles obtained in the combustion furnace to the gasification reaction furnace, it can be used again to promote the thermal decomposition gasification by adsorbing the tar component and reducing the metal oxide. . This operation can be performed repeatedly.
At that time, by introducing the metal oxide-supporting porous inorganic particles into the reaction furnace in an overheated state, the oxygen atoms concentrated by the metal oxide and the sensible heat transport by the porous inorganic particles are possible, so that energy can be effectively used. Can be used.
[0011]
Further, the present invention will be further described with reference to the drawings.
FIG. 1 is a conceptual diagram for explaining a main part of the pyrolysis gasification system of the present invention. In FIG. 1, 1 is a combustion furnace, 2 is a solid-gas separator, 3 is a gasification furnace, 4 is a high temperature combustion exhaust gas or air, etc., 5 is an exhaust gas from the combustion furnace, 6 is an organic material, 7 is steam or an inert gas. A gas, 8 is a gas generated by the gasification reaction (CO, CO 2 , H 2 , CH 4, etc.), 9 is metal oxide particles (MO), and 10 is metal particles (M). Reference numeral 11 denotes a metal carbide (MC), which is obtained by reducing a metal oxide to a metal and then bonding to carbon. Reference numeral 12 denotes a carbide adsorbed (precipitated) on a metal or a carrier. In this system, MO becomes M or MC in the gasification furnace 3, while metal becomes metal oxide in the combustion furnace.
[0012]
2 and 3 show a cross-sectional structure of an example of the porous inorganic particles for gasification of the present invention. FIG. 2 shows that the metal oxide is present on the surface and in the pores of the porous inorganic particles (carrier). FIG. 3 is a schematic structural view of the supported porous inorganic particles for gasification, and FIG. 3 is a schematic structural view showing a state of the particles in a gasification furnace. 2 and 3, A is porous particles, B is metal fine particles, C is metal oxide fine particles, D is metal carbide, and E is precipitated carbon.
FIG. 4 is a graph showing the relationship between the production amounts of various gas components and the gasification time observed during pyrolysis of polyethylene (PE) at a gasification reactor temperature of 500 ° C. It can be seen that despite the reactor temperature of 470 ° C., hydrogen and carbon dioxide are being produced.
[0013]
FIG. 5 shows that carbon deposited when a gas having an oxygen concentration of 5% and a nitrogen concentration of 95% was flowed while heating the deposited carbon deposited on the carrier by the thermal decomposition of PE from around 470 ° C. to 700 ° C. 2 shows a production curve of carbon monoxide and a change in temperature. Since the supply of oxygen is started at the moment when the temperature is increased, carbon dioxide starts to be generated even at 470 to 480 ° C., and it can be seen that the combustion reaction is occurring. During the temperature rise, the carbon dioxide generation rate once decreases at around 500 ° C., but once it exceeds 500 ° C., the generation rate starts to increase again. Thereafter, the rate of carbon dioxide generation decreases rapidly, which is considered to be because all carbon near the surface has disappeared and carbon in the pores has begun to burn. In any case, even if the temperature is not 700 ° C, most of the carbides burn smoothly even at a low oxygen concentration due to the heat generated by the oxidation reaction of Ni, and the combustion exhaust gas discharged from other equipment is directly used in this process. It was found that it could be used for combustion of coal.
FIG. 6 shows the change over time of the composition of the product gas when 7.5 g of polyethylene (PE) was charged into the metal oxide-supported carrier of the present invention at a temperature of 570 ° C. in 15 divided portions and used for the thermal decomposition reaction. It can be seen that almost 100% of the hydrogen atoms of PE are generated.
[0014]
FIG. 7 shows the time course of the product gas composition when 2.5 g of polyethylene (PE) was charged into the metal oxide-carrying support of the present invention at 570 ° C. at 2.5 g in five batches and further used for steam gasification. It is a graph showing a change, and it can be seen that almost 100% of hydrogen is generated when it is assumed that the water gasification reaction and the shift reaction have progressed in addition to the hydrogen of PE. However, in general, the water gasification reaction does not occur under this temperature condition, so that CO is generated from the metal oxide and hydrogen is generated by the shift reaction, and the case of metal carbide or reduced metal generated simultaneously with CO generation. It is presumed that hydrogen was generated by water splitting.
[0015]
FIG. 8 shows changes in the accumulated product gas amount and the composition with time. Of the three bar graphs, the measured values are on the left, and all hydrogen in polyethylene is converted to hydrogen in the center, and 1 mole of hydrogen is generated when 1 mole of CO is generated by the reforming reaction and 2 moles of hydrogen is generated when 1 mole of CO 2 is generated. This shows the configuration of the hydrogen source when it is assumed. The rightmost bar graph assumes that CO is generated by partial oxidation with NiO, and the relationship is such that if one mole of CO 2 is generated, one mole of hydrogen is generated. From FIG. 8, it can be seen that hydrogen is generated in an amount equal to or greater than the amount of hydrogen generated only on the basis of CO and CO 2. It is guessed that sometimes the central part is hydrogen generated by the reaction of the part remaining as metal with water vapor.
[0016]
FIG. 9 shows the composition of the gas generated between 16 minutes and 32 minutes, 32 minutes and 45 minutes, and 45 and 60 minutes after the first sample was charged. It is considered that the amount of hydrogen generated from CO and CO 2 decreases with time, and the amount of hydrogen from an oxide having a large number of carbon atoms increases. In particular, in the period of 45 to 60 minutes, this hydrogen is very large, and it can be said that there is a high possibility that hydrogen is generated by the reaction between the metal portion remaining unoxidized near the particle center and water vapor.
[0017]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
100 g of porous silica gel (trade name: MS-GEL) having an average particle size of about 300 μm is immersed in an aqueous solution of nickel nitrate, and the dried product is baked in the air to produce nickel oxide ultrafine particles having an average particle size of 300 nm on the surface. And porous silica gel (Ni / SiO 2 ratio = 31% by weight) attached to the inner hole.
Next, 12 g of the obtained porous silica gel was introduced into a small glass reactor, and the inside of the reactor was replaced with nitrogen gas to form a nitrogen atmosphere. Then, nitrogen was charged at 0.5 l / min.
At about 570 ° C., 0.5 g of plastics containing polyethylene and polypropylene (PP) as main components were added and reacted for 0.1 hour. As a result, a fuel containing carbon monoxide, hydrogen and carbon dioxide as main components was obtained. A gas for synthesis was generated, and 0.3 g of the tar-like substance generated in the reactor was adsorbed on the porous silica gel.
If steam is introduced instead of nitrogen, a fuel / synthesis gas with a higher hydrogen concentration will be generated, and in addition to the hydrogen brought in by the plastics, hydrogen generated by the water gasification reaction and the shift reaction will be generated. Occurrence was confirmed.
This indicates that the selective partial oxidation by the metal oxide accelerates the shift reaction, and at the same time, the decomposition of water by the metallic nickel or nickel carbide is progressing. At this time, the nickel oxide supported on the porous silica gel is reduced to metallic nickel.
Next, after sending the obtained porous silica gel to a combustion furnace, exhaust gas having a low oxygen concentration (about 5 to 12%) in a high temperature state (about 600 ° C.) exhausted from a turbine is introduced into the combustion furnace, When a combustion reaction was performed at about 600 ° C. for 0.1 hour, the tar-like substance adsorbed on the porous silica gel was completely burned, and mainly carbon monoxide and carbon dioxide were generated. The nickel metal adhered to the porous silica gel in the combustion furnace has been oxidized to nickel oxide.
Next, the porous silica gel to which the nickel oxide was attached was again introduced into a small-sized reactor, and was repeatedly used for a gasification reaction of plastics.
[0018]
【The invention's effect】
Since the porous inorganic particles of the present invention carry the metal or metal oxide fine particles on the surface and in the pores of the porous carrier, even if they are repeatedly used for pyrolysis gasification of organic substances, the metal due to repeated oxidation and reduction can be obtained. It can be used for a long period of time because loss of the compound is prevented and activity is maintained.
ADVANTAGE OF THE INVENTION According to this invention, since the tar component in the gasification furnace generate | occur | produced by low-temperature gasification of organic waste can be efficiently removed, the tar trouble of a pyrolysis gasification system can be reduced. This means that the gasification of organic waste can be performed at a low temperature of 500 ° C. or less using medium-temperature waste heat, thereby converting medium-temperature waste heat to useful fuel. By doing so, it can be used for power generation or the like according to demand, and can easily respond to fluctuations in demand. In addition, since intermediate-temperature waste heat, which has hardly been used in the past, can be used for gasification and combustion, it contributes to energy saving.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for explaining a main part in a pyrolysis gasification system of the present invention.
FIG. 2 is a schematic structural diagram of a carrier supporting metal or metal oxide fine particles used in the present invention.
FIG. 3 is a schematic structural diagram showing a state in a gasification furnace of a carrier supporting fine particles of metal or metal oxide used in the present invention.
FIG. 4 is a graph showing a temporal change of hydrogen and carbon dioxide concentrations when a gas is generated using the pyrolysis gasification furnace of the present invention.
FIG. 5 is a graph showing the relationship between products and combustion time when polyethylene is burned at a low temperature with a low-concentration oxygen-containing gas.
FIG. 6 is a graph showing a change over time of hydrogen generated by a pyrolysis gasification reaction of polyethylene using the metal oxide-supported carrier of the present invention.
FIG. 7 is a graph showing a change over time of hydrogen generated by a steam gasification reaction of polyethylene using the metal oxide-supported carrier of the present invention.
FIG. 8 is a graph for estimating the cause of the generation of hydrogen generated by the steam gasification reaction of polyethylene using the metal oxide-supported support of the present invention.
FIG. 9 is a graph summarized with time for estimating the cause of the generation of hydrogen generated by the steam gasification reaction of polyethylene using the metal oxide-supported carrier of the present invention.

Claims (3)

有機物のガス化反応系に用いる多孔質無機物粒子であって、その多孔質無機物粒子の表面及び内孔に、遷移金属酸化物の微粒子を担持したことを特徴とする有機物のガス化用多孔質無機物粒子。Porous inorganic particles for use in a gasification reaction system for organic substances, characterized in that fine particles of a transition metal oxide are supported on the surface and inner pores of the porous inorganic particles. particle. 表面及び内孔に遷移金属酸化物の微粒子を担持した多孔質無機物粒子の存在下に、有機物を低温の熱分解ガス化反応炉でガス化し、生成したタール及びチャーを吸着するとともに、還元された金属微粒子を担持した多孔質無機物粒子を燃焼炉に移送し、次に、燃焼排ガスを導入して多孔質無機物粒子に吸着されたタール及びチャーを燃焼炉で燃焼させ、得られた金属酸化物を担持した多孔質無機物粒子を前記反応炉に移送し、再び生成したタール及びチャーの吸着に用いることを特徴とする有機物の熱分解ガス化方法。Organic substances were gasified in a low-temperature pyrolysis gasification reactor in the presence of porous inorganic particles carrying fine particles of transition metal oxide on the surface and inner pores, and the generated tar and char were adsorbed and reduced. The porous inorganic particles carrying the metal fine particles are transferred to a combustion furnace, and then, the combustion exhaust gas is introduced, and tar and char adsorbed on the porous inorganic particles are burned in the combustion furnace, and the obtained metal oxide is removed. A method for thermally decomposing and gasifying an organic substance, wherein the supported porous inorganic substance particles are transferred to the reaction furnace, and are used again for adsorbing the generated tar and char. 表面及び内孔に遷移金属酸化物の微粒子を担持した多孔質無機物粒子の存在下に、有機物を低温の水蒸気ガス化反応炉でガス化し、生成したタール及びチャーを吸着するとともに、還元された金属微粒子を担持した多孔質無機物粒子を燃焼炉に移送し、次に、燃焼排ガスを導入して多孔質無機物粒子に吸着されたタール及びチャーを燃焼炉で燃焼させ、得られた金属酸化物を担持した多孔質無機物粒子を前記反応炉に移送し、再び生成したタール及びチャーの吸着に用いることを特徴とする有機物の水蒸気ガス化方法。Organic substances are gasified in a low-temperature steam gasification reactor in the presence of porous inorganic particles carrying fine particles of transition metal oxides on the surface and inner pores, adsorb the generated tar and char, and reduce the reduced metal. The porous inorganic particles carrying the fine particles are transferred to a combustion furnace, and then, the combustion exhaust gas is introduced, and tar and char adsorbed on the porous inorganic particles are burned in the combustion furnace, and the obtained metal oxide is carried. A method for gasifying an organic matter by steam, wherein the porous inorganic matter particles are transferred to the reaction furnace and used for adsorbing tar and char generated again.
JP2002213253A 2002-07-23 2002-07-23 Method for gasifying organic matter using porous inorganic particles Expired - Lifetime JP4041880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213253A JP4041880B2 (en) 2002-07-23 2002-07-23 Method for gasifying organic matter using porous inorganic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213253A JP4041880B2 (en) 2002-07-23 2002-07-23 Method for gasifying organic matter using porous inorganic particles

Publications (2)

Publication Number Publication Date
JP2004051855A true JP2004051855A (en) 2004-02-19
JP4041880B2 JP4041880B2 (en) 2008-02-06

Family

ID=31935895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213253A Expired - Lifetime JP4041880B2 (en) 2002-07-23 2002-07-23 Method for gasifying organic matter using porous inorganic particles

Country Status (1)

Country Link
JP (1) JP4041880B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093014A1 (en) * 2004-03-26 2005-10-06 Idemitsu Kosan Co., Ltd. Method for removing tar in fluidized layer furnace
JP2006122841A (en) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology Biomass gasification catalyst and hydrogen production method from biomass using the catalyst
JP2006328168A (en) * 2005-05-25 2006-12-07 Gunma Univ Biomass gasification method and system using metal-supporting carrier, and method and system for recovering metal particle from metal-supporting carrier
JP2007152341A (en) * 2005-12-06 2007-06-21 Kobun Lee Vaporization type garbage processing apparatus
JP2010248376A (en) * 2009-04-16 2010-11-04 Ihi Corp Method and device for recovering carbon dioxide from gasification equipment
JP2017114754A (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Hydrogen manufacturing apparatus and hydrogen manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396887B (en) * 2020-03-11 2021-04-02 武汉理工大学 Porous combustion regenerative cycle type biomass pyrolysis reaction system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093014A1 (en) * 2004-03-26 2005-10-06 Idemitsu Kosan Co., Ltd. Method for removing tar in fluidized layer furnace
JP2006122841A (en) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology Biomass gasification catalyst and hydrogen production method from biomass using the catalyst
JP4528945B2 (en) * 2004-10-29 2010-08-25 独立行政法人産業技術総合研究所 Biomass gasification catalyst and method for producing hydrogen from biomass using this catalyst
JP2006328168A (en) * 2005-05-25 2006-12-07 Gunma Univ Biomass gasification method and system using metal-supporting carrier, and method and system for recovering metal particle from metal-supporting carrier
JP2007152341A (en) * 2005-12-06 2007-06-21 Kobun Lee Vaporization type garbage processing apparatus
JP4505826B2 (en) * 2005-12-06 2010-07-21 庚文 李 Vaporized garbage processing equipment
JP2010248376A (en) * 2009-04-16 2010-11-04 Ihi Corp Method and device for recovering carbon dioxide from gasification equipment
JP2017114754A (en) * 2015-12-25 2017-06-29 新日鐵住金株式会社 Hydrogen manufacturing apparatus and hydrogen manufacturing method

Also Published As

Publication number Publication date
JP4041880B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP4259777B2 (en) Biomass gasification method
Shen et al. Advances in in situ and ex situ tar reforming with biochar catalysts for clean energy production
US6670058B2 (en) Thermocatalytic process for CO2-free production of hydrogen and carbon from hydrocarbons
JP4584145B2 (en) Method for converting hydrocarbons
JP2007229548A (en) Reforming catalyst acted in biomass pyrolysis gasification process, its manufacturing method and modification process using the reforming catalyst, biomass pyrolytic gasifying device, and method for regenerating catalyst
WO2007004342A1 (en) Method of solid fuel gasification including gas purification and gasifier employing the method
KR20020020931A (en) Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
JP5030320B2 (en) Biomass methanol synthesis system
JP2007525555A (en) Co-production of hydrogen and electricity by biomass gasification
JP4041880B2 (en) Method for gasifying organic matter using porous inorganic particles
JP2009298967A (en) Gasification process and gasification apparatus
JP4549918B2 (en) Biomass gasification method
US10442689B2 (en) Microwave reforming apparatus for gas reforming
CN106833759B (en) Device and method for removing biomass gasification tar based on chemical chain reforming
JP2012017376A (en) Organic waste gasification system and organic waste gasification method
JP3776692B2 (en) Waste gasification treatment facility and gasification power generation facility using the same
CN113060704B (en) Organic solid clean high-efficiency hydrogen production device and method
JP2009067979A (en) Gasification reactor for forming combustible gas
WO2004087839A1 (en) Fluidized bed gasifier, gas fuel producing method, and gas power generation system
JP2022006350A (en) Method for producing organic substance and apparatus for producing organic substance
JP2003160789A (en) Method and apparatus for producing fuel gas
CN216711600U (en) Containing H2S synthetic gas low-temperature chemical-looping desulfurization and sulfuric acid co-production system
JP4868730B2 (en) Biomass gas purification method and apparatus
JP2005230644A (en) Aromatization catalyst regeneration method and system therefor
WO2023243547A1 (en) Liquid hydrocarbon production method and liquid hydrocarbon production device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Ref document number: 4041880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term