JP2009067979A - Gasification reactor for forming combustible gas - Google Patents

Gasification reactor for forming combustible gas Download PDF

Info

Publication number
JP2009067979A
JP2009067979A JP2008042774A JP2008042774A JP2009067979A JP 2009067979 A JP2009067979 A JP 2009067979A JP 2008042774 A JP2008042774 A JP 2008042774A JP 2008042774 A JP2008042774 A JP 2008042774A JP 2009067979 A JP2009067979 A JP 2009067979A
Authority
JP
Japan
Prior art keywords
furnace
alkali
gasification
char
solid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008042774A
Other languages
Japanese (ja)
Other versions
JP5004093B2 (en
Inventor
Takahiro Murakami
高広 村上
Koichi Matsuoka
浩一 松岡
Koji Kuramoto
浩司 倉本
Zenzo Suzuki
善三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008042774A priority Critical patent/JP5004093B2/en
Publication of JP2009067979A publication Critical patent/JP2009067979A/en
Application granted granted Critical
Publication of JP5004093B2 publication Critical patent/JP5004093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasification reactor for obtaining a combustible gas utilizing organic resources (biomass, refuse, sewage sludge, etc.), coal, etc. as a hydrocarbon-based solid fuel, wherein, an amount of a combustible gas obtainable from a combustion furnace is increased by accelerating gasification of high char-content fuel at low temperature, thus the combustible gas is obtained in a high efficiency. <P>SOLUTION: The reactor for gasifying hydrocarbon-based solid fuels is equipped with, each independently, an alkali-adsorbing furnace, wherein adsorption of alkali and/or alkali earth metals evaporated in a course of thermal cracking of hydrocarbon-based solid fuels such as organic resources, coal, etc. are performed actively, a gasification furnace for gasifying char introduced from the alkali-adsorbing furnace, and a combustion furnace for forming a combustion gas by burning a residual char introduced from the gasification furnace, wherein, absorption efficiency of alkali and/or alkali earth metals by char is made higher by making the alkali-adsorbing furnace a moving bed-type. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、バイオマス、ごみ、下水汚泥などの有機資源、及び石炭等を炭化水素系固体燃料として利用し、可燃ガスとして取り出すためのガス化反応炉に関するものであり、特にガス化炉内でのチャーのガス化を促進し、高効率で可燃ガスを取り出すための高効率ガス化反応炉に関するものである。   The present invention relates to a gasification reactor for using organic resources such as biomass, garbage, sewage sludge, and coal as a hydrocarbon-based solid fuel and taking it out as a flammable gas, particularly in a gasifier. The present invention relates to a high-efficiency gasification reactor for promoting the gasification of char and taking out combustible gas with high efficiency.

従来から、バイオマス、ごみ、下水汚泥などの有機資源等を炭化水素系固体燃料として利用し、生成したガスを、可燃ガス及び熱源として利用することにより、有機資源の有効活用を図る技術が開発されている。
生成したガスを可燃ガスとして取り出すためには、生成ガスに含まれるタールが析出する、或いはチャーが酸素と触れると燃焼する等の問題があるため、一般的には、バイオマス、ごみ、下水汚泥などの有機資源、及び石炭等を炭化水素系固体燃料として利用し、これを、ガス化炉内において可燃ガスにガス化した後、未燃残渣分を燃焼炉に導き、酸素や空気などの酸化剤を用いて燃焼ガスとする方法を採用している。
Conventionally, technologies have been developed to make effective use of organic resources by using organic resources such as biomass, garbage, and sewage sludge as hydrocarbon-based solid fuel, and using the generated gas as a combustible gas and heat source. ing.
In order to take out the generated gas as a combustible gas, there is a problem that tar contained in the generated gas precipitates or burns when the char comes into contact with oxygen. Generally, biomass, garbage, sewage sludge, etc. Organic hydrocarbons, coal, etc. are used as hydrocarbon-based solid fuel, which is gasified into a combustible gas in a gasification furnace, and then the unburned residue is led to the combustion furnace to oxidize oxygen, air, etc. The method of using as a combustion gas is adopted.

従来の有機資源等を炭化水素系固体燃料として利用し、可燃ガスとして取り出す方法及び装置においては(下記特許文献1、2参照)、蒸発したアルカリがチャーへ吸着することもあり得るが、その可能性は極めて低いために、燃焼炉へ導入するチャーの割合が高く、ガス化炉で取り出せる生成ガスが少ない、すなわち、ガス化効率が悪いのが現状であって、低温で高含有チャー燃料のガス化を促進させたいという課題が未だに解決されていないのが現状である。また、高揮発分含有燃料に対しても、より高効率で生成ガスを取り出したいという要望もある。   In the method and apparatus for using conventional organic resources as hydrocarbon solid fuel and taking out as combustible gas (see Patent Documents 1 and 2 below), evaporated alkali may be adsorbed to char, but this is possible. Because of its extremely low efficiency, the ratio of char introduced into the combustion furnace is high, and the amount of product gas that can be taken out by the gasifier is small, that is, the gasification efficiency is low. The current situation is that the problem of promoting the development has not been solved. There is also a demand for taking out the product gas with higher efficiency even for high volatile content fuel.

本発明者らは、こうした問題を解決する技術の1つとして、従来の燃焼炉とガス化炉を分離して、燃焼ガスとガス化ガスをそれぞれ別々に取り出す方法に加え、ガス化炉をさらにアルカリ吸収炉とチャーガス化炉とに分離して、熱分解ガスとガス化ガスをそれぞれ別々に取り出す方法を提案している(下記特許文献3参照)。
本提案のガス化方法及びガス化反応炉によれば、チャーガス化において、熱分解ガス及びタールによる阻害の影響をなくすことができる。さらに、気泡流動層としたアルカリ吸収炉において、アルカリ含有量が高い固体燃料からアルカリを蒸発させ、それをチャーの含有量が高い固体燃料に吸着させて、アルカリをチャーのガス化触媒として利用することで、チャーガス化炉において、チャーのガス化が促進される。
特開2005−68297号公報 特開2005−68373号公報 特願2007−123373号
As one of the techniques for solving these problems, the present inventors have separated a conventional combustion furnace and a gasification furnace, and in addition to a method of separately taking out the combustion gas and the gasification gas, the gasification furnace is further provided. A method has been proposed in which the pyrolysis gas and the gasification gas are separately extracted separately from the alkali absorption furnace and the char gasification furnace (see Patent Document 3 below).
According to the gasification method and the gasification reactor of the present proposal, it is possible to eliminate the influence of inhibition by pyrolysis gas and tar in char gasification. Further, in an alkali absorption furnace having a bubble fluidized bed, alkali is evaporated from a solid fuel having a high alkali content and adsorbed on the solid fuel having a high char content, and the alkali is used as a gasification catalyst for char. Thus, char gasification is promoted in the char gasification furnace.
JP 2005-68297 A JP 2005-68373 A Japanese Patent Application No. 2007-123373

本発明者らがさらに検討を重ねた結果、前記提案における反応炉のように、アルカリ吸収炉が気泡流動層であると、高速流動層に比べてガス、粒子の滞留時間が多くとれるにも関わらず、アルカリとチャーの接触の課題が残ることが判明した。また、アルカリ吸収炉を二段炉にし、下段でアルカリを蒸発させ、上段でチャーにアルカリを吸着させることで、一段の気泡流動層よりも高効率で吸着させることができるものの、反応炉が大きくなる問題があることも分かった。   As a result of further studies by the present inventors, when the alkali absorption furnace is a bubble fluidized bed as in the proposed reactor, the residence time of gas and particles can be increased as compared with the high-speed fluidized bed. However, it became clear that the problem of contact between alkali and char remained. Moreover, although the alkali absorption furnace is made into a two-stage furnace, the alkali is evaporated in the lower stage, and the alkali is adsorbed to the char in the upper stage, it can be adsorbed with higher efficiency than the one-stage bubble fluidized bed, but the reaction furnace is large. I also found that there was a problem.

本発明は、以上のような事情に鑑みてなされたものであって、その目的は、バイオマス、ごみ、下水汚泥などの有機資源、及び石炭等を炭化水素系固体燃料として利用し、可燃ガスとして取り出す方法及び装置において、チャーを多く含む固体燃料のガス化を低温で促進させることにより、ガス化炉で取り出せる生成ガスを多くし、高効率で可燃ガスを取り出せるガス化反応炉を提供することにある。さらに、本発明の別の目的は、より高効率で、かつ、コンパクトな構造で可燃ガスを製造できるガス化炉を提供することにある。   The present invention has been made in view of the circumstances as described above, and its purpose is to use organic resources such as biomass, waste, sewage sludge, and coal as a hydrocarbon-based solid fuel, as a combustible gas. To provide a gasification reactor capable of taking out combustible gas with high efficiency by increasing the amount of product gas that can be taken out in a gasification furnace by promoting gasification of a solid fuel containing a large amount of char at a low temperature. is there. Furthermore, another object of the present invention is to provide a gasification furnace capable of producing a combustible gas with a more efficient and compact structure.

本発明者らは、上記課題を解決すべく検討を行う過程において、前記アルカリ吸収炉を移動層とすることにより、アルカリ及び/又はアルカリ土類金属含有量が高い固体燃料から蒸発したアルカリ及び/又はアルカリ土類金属を、チャーの含有量が高い固体燃料に吸着させる工程において、より高効率でチャーにアルカリ及び/又はアルカリ土類金属を吸着させることができることを見出し、本発明の完成に至ったものである。   In the process of studying to solve the above-mentioned problems, the present inventors have made the alkali absorption furnace a moving bed, thereby allowing alkali and / or evaporated from a solid fuel having a high alkali and / or alkaline earth metal content. Alternatively, in the process of adsorbing alkaline earth metal to a solid fuel having a high char content, it was found that alkali and / or alkaline earth metal can be adsorbed to char with higher efficiency, leading to the completion of the present invention. It is a thing.

すなわち、本発明によれば、以下の発明が提供される。
(1)有機資源及び石炭等の炭化水素系固体燃料の熱分解の際に蒸発したアルカリ及び/又はアルカリ土類金属を積極的にチャーに吸着させるアルカリ吸収炉、前記アルカリ吸収炉から導入されたチャーをガス化するガス化炉、及び前記ガス化炉から導入された残渣チャーを燃焼して燃焼ガスを生成する燃焼炉をそれぞれ独立して設け、それぞれの炉を連通路によりこの順に連結してなる炭化水素系固体燃料のガス化反応炉であって、前記アルカリ吸収炉を移動層とすることにより、アルカリ及び/又はアルカリ土類金属含有量が高い固体燃料から蒸発したアルカリ及び/又はアルカリ土類金属を、チャーの含有量が高い固体燃料に吸着させる工程で、より高効率でチャーにアルカリ及び/又はアルカリ土類金属を吸着させるようにしたことを特徴とする炭化水素系固体燃料のガス化反応炉。
(2)前記移動層としたアルカリ吸収炉に、チャーの含有量が高い固体燃料を供給する手段及びアルカリ及び/又はアルカリ土類金属含有量が高い固体燃料を供給する手段を設け、蒸発したアルカリ及び/又はアルカリ土類金属をさらに高効率でチャーへ吸着させるようにしたことを特徴とする(1)に記載の炭化水素系固体燃料のガス化反応炉。
(3)前記アルカリ吸収炉において熱分解により生成した揮発性の熱分解ガス、前記ガス化炉においてチャーのガス化により生成したガス化ガス、及び前記燃焼炉において生成した燃焼ガスのそれぞれを独立して取り出す手段を設けたことを特徴とする(1)又は(2)に記載の炭化水素系固体燃料のガス化反応炉。
That is, according to the present invention, the following inventions are provided.
(1) An alkali absorption furnace that actively adsorbs alkali and / or alkaline earth metal evaporated during pyrolysis of hydrocarbon solid fuel such as organic resources and coal, introduced from the alkali absorption furnace A gasification furnace for gasifying the char and a combustion furnace for generating combustion gas by burning the residual char introduced from the gasification furnace are provided independently, and the respective furnaces are connected in this order by communication paths. A hydrocarbon-based solid fuel gasification reactor comprising: an alkali and / or alkaline earth evaporated from a solid fuel having a high alkali and / or alkaline earth metal content by using the alkali absorption furnace as a moving bed. In the process of adsorbing an alkali metal to a solid fuel with a high char content, the alkali and / or alkaline earth metal is adsorbed to the char with higher efficiency. Gasification reactor of a hydrocarbon-based solid fuel, characterized.
(2) The alkali absorption furnace as the moving bed is provided with means for supplying a solid fuel with a high char content and a means for supplying a solid fuel with a high alkali and / or alkaline earth metal content, and the evaporated alkali The gasification reactor for hydrocarbon-based solid fuel according to (1), wherein an alkaline earth metal is adsorbed onto the char with higher efficiency.
(3) The volatile pyrolysis gas generated by pyrolysis in the alkali absorption furnace, the gasification gas generated by char gasification in the gasification furnace, and the combustion gas generated in the combustion furnace are each independently provided. The hydrocarbon solid fuel gasification reactor according to (1) or (2), characterized in that a means for taking out is provided.

本発明によれば、アルカリ吸収炉とガス化炉を完全に分離することにより、熱分解ガス及びタールによるチャーのガス化の阻害の影響をなくすことができる。また、本発明によれば、アルカリ吸収炉内で生成する熱分解ガス、ガス化炉内で生成するガス化ガスを別々に取り出すことができる。さらに、本発明においては、バイオマス、ごみ、及び下水汚泥などのアルカリ及び/又はアルカリ土類金属含有量が高い固体燃料から蒸発したアルカリ及び/又はアルカリ土類金属を、石炭等のチャーの含有量が高い固体燃料のチャーに吸着させ、蒸発したアルカリ及び/又はアルカリ土類金属をチャーのガス化触媒として有効に利用できる。   According to the present invention, by completely separating the alkali absorption furnace and the gasification furnace, it is possible to eliminate the influence of the inhibition of char gasification by the pyrolysis gas and tar. Moreover, according to this invention, the pyrolysis gas produced | generated in an alkali absorption furnace and the gasification gas produced | generated in a gasification furnace can be taken out separately. Furthermore, in the present invention, alkali and / or alkaline earth metal evaporated from a solid fuel having a high alkali and / or alkaline earth metal content such as biomass, garbage, and sewage sludge is contained in a char content such as coal. Therefore, it is possible to effectively utilize the evaporated alkali and / or alkaline earth metal as a char gasification catalyst.

本発明の実施の形態について、図を用いて説明する。
(第1の形態)
図1は、本発明に用いる反応炉の第1の形態を示す概要図であって、アルカリ吸収炉、ガス化炉、及び燃焼炉がそれぞれ独立して設けられ、それぞれの炉が連通路によりこの順に連結されている。
図1に図示する反応炉においては、バイオマス、ごみ、下水汚泥などの有機資源、及び石炭等の炭化水素系固体燃料を、アルカリ吸収炉に供給するとともに、生成した燃焼ガスの一部を再循環させたCOガス、あるいはNやArのような不活性ガス、水蒸気等を導入し、熱分解させる。アルカリ吸収炉内で燃料の熱分解時に蒸発したアルカリ及び/又はアルカリ土類金属をチャーへ高効率に吸着させるために、移動層としている。サイクロンによって生成した熱分解ガスと粒子が分離され、チャーと流動媒体は、次のガス化炉へ導入される。
またアルカリ吸収炉の上部には、発生した熱分解ガスを取り出す手段が設けられている。取り出された熱分解ガスは、可燃ガスの一種であって、燃料電池やガスエンジンによる発電、液体燃料などに利用されるが、タールを含んでいるため、流動媒体として多孔質粒子の使用や、炉の後段に改質炉や活性炭によるタール吸収塔などによりタールを分解・除去する必要がある。
Embodiments of the present invention will be described with reference to the drawings.
(First form)
FIG. 1 is a schematic diagram showing a first embodiment of a reaction furnace used in the present invention, in which an alkali absorption furnace, a gasification furnace, and a combustion furnace are provided independently, and each furnace is connected by a communication passage. They are connected in order.
In the reactor shown in FIG. 1, biomass, garbage, organic resources such as sewage sludge, and hydrocarbon-based solid fuel such as coal are supplied to an alkali absorption furnace and a part of the generated combustion gas is recirculated. Introduced CO 2 gas, an inert gas such as N 2 or Ar, water vapor or the like is introduced and thermally decomposed. In order to adsorb the alkali and / or alkaline earth metal evaporated during the thermal decomposition of the fuel in the alkali absorption furnace to the char with high efficiency, the moving bed is used. The pyrolysis gas and particles generated by the cyclone are separated, and the char and the fluidized medium are introduced into the next gasifier.
A means for taking out the generated pyrolysis gas is provided at the upper part of the alkali absorption furnace. The extracted pyrolysis gas is a kind of combustible gas and is used for power generation by a fuel cell or a gas engine, liquid fuel, etc., but since it contains tar, the use of porous particles as a fluid medium, It is necessary to decompose and remove tar by a reforming furnace or a tar absorption tower using activated carbon after the furnace.

ガス化炉は流動層とされており、アルカリ吸収炉から導入された未燃チャーは、下部より導入されたガス化剤とのガス化反応によりガス化される。ガス化剤としては、水蒸気、部分酸化燃焼として酸素あるいは空気などが用いられる。
ガス化炉内で生成したガス化ガスは、ガス化炉上部より取り出す一方、残渣チャーと流動媒体は、次の燃焼炉へ導入される。
取り出されたガス化ガスは可燃ガスであり、燃料電池やガスエンジンによる発電、液体燃料などに利用される。
The gasification furnace is a fluidized bed, and the unburned char introduced from the alkali absorption furnace is gasified by a gasification reaction with a gasifying agent introduced from the lower part. As the gasifying agent, steam, oxygen or air is used as partial oxidation combustion.
The gasification gas generated in the gasification furnace is taken out from the upper part of the gasification furnace, while the residual char and the fluidized medium are introduced into the next combustion furnace.
The extracted gasified gas is a combustible gas, and is used for power generation by a fuel cell or a gas engine, liquid fuel, or the like.

燃焼炉は、流動層とされており、残渣チャーが完全燃焼可能な滞留時間を確保する。該燃焼炉では導入された残渣チャーを、燃焼炉の下部より導入された酸素或いは空気とともに、燃焼させ、サイクロンにより燃焼ガスを取り出す。一方、再加熱された流動媒体は再びアルカリ吸収炉へ戻される。
取り出された燃焼ガスは、熱源として利用されるものであり、前述したとおり、その一部はアルカリ吸収炉に再循環させることも可能である。また、前記ガス化炉又は燃焼炉に導入する空気や蒸気等の予熱としても利用できる。
The combustion furnace is a fluidized bed, and ensures a residence time during which the residual char can be completely combusted. In the combustion furnace, the introduced residual char is burned together with oxygen or air introduced from the lower part of the combustion furnace, and the combustion gas is taken out by a cyclone. On the other hand, the reheated fluid medium is returned again to the alkali absorption furnace.
The extracted combustion gas is used as a heat source, and as described above, a part of the combustion gas can be recycled to the alkali absorption furnace. Moreover, it can utilize also as preheating of the air, steam, etc. which are introduce | transduced into the said gasification furnace or a combustion furnace.

図2及び図3は、図1に図示した反応炉において、アルカリ吸収炉とガス化炉の間の連通路の構造を変更しただけのものであり、これらの図2ないし図3に示す反応炉においては、固体燃料及び流動媒体の流れは、いずれも同じであり、アルカリ吸収炉→連通路→ガス化炉→連通路→燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→アルカリ吸収炉となる。   2 and 3 are the reactors shown in FIG. 1 in which the structure of the communication path between the alkali absorption furnace and the gasification furnace is changed, and the reactors shown in FIGS. , The flow of the solid fuel and the fluid medium are the same, and the alkali absorption furnace → communication path → gasification furnace → communication path → combustion furnace → cyclone (not shown) → downcommer (not shown) → It becomes an alkali absorption furnace.

(第2の形態)
本発明に用いる反応炉の第2の形態は、前記移動層としたアルカリ吸収炉に、石炭などのチャーの含有量が高い固体燃料を供給する手段、及びバイオマス、ごみ、及び下水汚泥等のアルカリ及び/又はアルカリ土類金属含有量が高い固体燃料を供給する手段を設けるものである。
図4は、本発明の第2の形態の1例を示すものであって、図1に示した反応炉において、アルカリ吸収炉の上部より、石炭等のチャーの含有量が高い固体燃料(高含有チャー燃料)を、側部より、バイオマス、ごみ、及び下水汚泥等のアルカリ及び/又はアルカリ土類金属の含有量が高い固体燃料(高含有アルカリ燃料)を供給し、これらの炭化水素系固体燃料を熱分解させる。
図4に示す反応炉においては、アルカリ及び/又はアルカリ土類金属含有量が高い固体燃料から生成した熱分解ガスと蒸発したアルカリ及び/又はアルカリ土類金属を、上部のチャーの含有量が高い固体燃料へ、より高効率で吸着させることが可能となる。
(Second form)
A second form of the reactor used in the present invention is a means for supplying a solid fuel having a high char content such as coal to the alkali absorption furnace as the moving bed, and an alkali such as biomass, garbage, and sewage sludge. And / or means for supplying a solid fuel having a high alkaline earth metal content.
FIG. 4 shows an example of the second embodiment of the present invention. In the reactor shown in FIG. 1, solid fuel (a high content of char such as coal is higher than the upper part of the alkali absorption furnace). Contained char fuel) from the side is supplied with solid fuels with high alkali and / or alkaline earth metal content such as biomass, garbage, and sewage sludge (highly contained alkaline fuel), and these hydrocarbon solids Thermally decompose the fuel.
In the reactor shown in FIG. 4, the pyrolysis gas generated from the solid fuel having a high alkali and / or alkaline earth metal content and the evaporated alkali and / or alkaline earth metal have a high content of the upper char. It becomes possible to adsorb to the solid fuel with higher efficiency.

図4では、チャーの含有量が高い固体燃料を供給する手段及びアルカリ及び/又はアルカリ土類金属含有量が高い固体燃料を供給する手段を、それぞれアルカリ吸収炉の上部及び側部に設けた例を記載したが、本発明においては前記アルカリ吸収炉を移動層としているので、両手段が設けられていればよく、異なる場所に設けられていても、或いは同じ場所に設けられていてもよく、それらの場所は何ら限定されるものではない。
例えば、図5は、図1に示した反応炉において、アルカリ吸収炉の上部より、石炭等の高含有チャー燃料と、バイオマス、ごみ、及び下水汚泥等の高含有アルカリ燃料の両者を供給し、熱分解させるものである。
また、図2、及び図3においても燃料供給方法を、図4、5等の第2の形態と同様にすれば、同様の効果が得られる。
FIG. 4 shows an example in which means for supplying a solid fuel having a high char content and means for supplying a solid fuel having a high alkali and / or alkaline earth metal content are provided at the upper and side portions of an alkaline absorption furnace, respectively. However, in the present invention, since the alkali absorption furnace is a moving bed, it is sufficient if both means are provided, may be provided in different places, or may be provided in the same place, Those places are not limited at all.
For example, FIG. 5 shows that the reactor shown in FIG. 1 is supplied with both high-content char fuel such as coal and high-content alkali fuel such as biomass, garbage, and sewage sludge from the upper part of the alkali absorption furnace. It is to be pyrolyzed.
Also in FIGS. 2 and 3, the same effect can be obtained if the fuel supply method is the same as in the second embodiment of FIGS.

本発明によれば、アルカリ吸収炉とガス化炉を完全に分離することにより、熱分解ガス及びタールによるチャーのガス化の阻害の影響をなくすことができ、高効率でガス化することが可能であるため、バイオマス、ごみ、下水汚泥などの未利用炭化水素資源への有効な利用が見込まれる。また、本発明によれば、アルカリ吸収炉を移動層とすることで、熱分解によって蒸発したアルカリ及び/又はアルカリ土類金属をチャーに高効率で吸着させ易い。したがって、固体燃料のハイブリッドガス化(共ガス化)、特に、バイオマス、ごみ、下水汚泥などの有機廃棄物燃料と、石炭とのハイブリッドガス化が可能となるため、より多くの未利用固体燃料の有効利用が期待される。さらに、本発明により得られる可燃ガス、すなわち、アルカリ吸収炉から得られた熱分解ガス及びガス化炉から得られたガス化ガスは、それぞれ燃料電池やガスエンジンによる発電、液体燃料等に有効に利用される。   According to the present invention, by completely separating the alkali absorption furnace and the gasification furnace, it is possible to eliminate the influence of the gasification of char due to pyrolysis gas and tar, and it is possible to gasify with high efficiency. Therefore, effective use for unused hydrocarbon resources such as biomass, garbage, and sewage sludge is expected. Further, according to the present invention, by using the alkali absorption furnace as the moving bed, it is easy to adsorb the alkali and / or alkaline earth metal evaporated by pyrolysis to the char with high efficiency. Therefore, hybrid gasification of solid fuel (co-gasification), in particular, hybrid gasification of organic waste fuel such as biomass, waste, sewage sludge, etc. with coal becomes possible. Effective use is expected. Furthermore, the combustible gas obtained by the present invention, that is, the pyrolysis gas obtained from the alkali absorption furnace and the gasification gas obtained from the gasification furnace are effective for power generation by a fuel cell or gas engine, liquid fuel, etc., respectively. Used.

本発明の反応炉の第1の形態を示す概要図Schematic diagram showing the first embodiment of the reactor of the present invention 図1の反応炉において、アルカリ吸収炉とガス化炉の間の連通路を変更した1例を示す概要図FIG. 1 is a schematic diagram showing an example in which the communication path between an alkali absorption furnace and a gasification furnace is changed in the reaction furnace of FIG. 図1の反応炉において、アルカリ吸収炉とガス化炉の間の連通路を変更した他の1例を示す概要図連通路の変更例を示す概要図FIG. 1 is a schematic diagram showing another example in which the communication path between the alkali absorption furnace and the gasification furnace is changed in the reaction furnace of FIG. 本発明の反応炉の第2の形態の1例を示す概要図Schematic diagram showing an example of the second embodiment of the reactor of the present invention 本発明の反応炉の第2の形態の他の例を示す概要図Schematic diagram showing another example of the second embodiment of the reactor of the present invention

Claims (3)

有機資源及び石炭等の炭化水素系固体燃料の熱分解の際に蒸発したアルカリ及び/又はアルカリ土類金属を積極的にチャーに吸着させるアルカリ吸収炉、前記アルカリ吸収炉から導入されたチャーをガス化するガス化炉、及び前記ガス化炉から導入された残渣チャーを燃焼して燃焼ガスを生成する燃焼炉をそれぞれ独立して設け、それぞれの炉を連通路によりこの順に連結してなる炭化水素系固体燃料のガス化反応炉であって、前記アルカリ吸収炉を移動層とすることにより、アルカリ及び/又はアルカリ土類金属含有量が高い固体燃料から蒸発したアルカリ及び/又はアルカリ土類金属を、チャーの含有量が高い固体燃料に吸着させる工程で、より高効率でチャーにアルカリ及び/又はアルカリ土類金属を吸着させるようにしたことを特徴とする炭化水素系固体燃料のガス化反応炉。   An alkali absorption furnace that actively adsorbs alkali and / or alkaline earth metal evaporated during pyrolysis of hydrocarbon-based solid fuels such as organic resources and coal, and char introduced from the alkali absorption furnace as a gas A hydrocarbon comprising: a gasification furnace to be converted; and a combustion furnace for independently burning the residual char introduced from the gasification furnace to generate combustion gas; A solidification fuel gasification reactor, wherein the alkali absorption furnace is used as a moving bed, so that alkali and / or alkaline earth metal evaporated from a solid fuel having a high alkali and / or alkaline earth metal content can be obtained. In the process of adsorbing to a solid fuel with a high char content, the char is adsorbed with alkali and / or alkaline earth metal with higher efficiency. Gasification reactor of a hydrocarbon-based solid fuel. 前記移動層としたアルカリ吸収炉に、チャーの含有量が高い固体燃料を供給する手段及びアルカリ及び/又はアルカリ土類金属含有量が高い固体燃料を供給する手段を設け、蒸発したアルカリ及び/又はアルカリ土類金属をさらに高効率でチャーへ吸着させるようにしたことを特徴とする請求項1に記載の炭化水素系固体燃料のガス化反応炉。   A means for supplying a solid fuel with a high char content and a means for supplying a solid fuel with a high alkali and / or alkaline earth metal content are provided in the alkali absorption furnace as the moving bed, and the evaporated alkali and / or 2. The hydrocarbon solid fuel gasification reactor according to claim 1, wherein the alkaline earth metal is adsorbed onto the char with higher efficiency. 前記アルカリ吸収炉において熱分解により生成した揮発性の熱分解ガス、前記ガス化炉においてチャーのガス化により生成したガス化ガス、及び前記燃焼炉において生成した燃焼ガスのそれぞれを独立して取り出す手段を設けたことを特徴とする請求項1又は2に記載の炭化水素系固体燃料のガス化反応炉。   Means for independently taking out volatile pyrolysis gas generated by pyrolysis in the alkali absorption furnace, gasification gas generated by char gasification in the gasification furnace, and combustion gas generated in the combustion furnace The gasification reaction furnace for hydrocarbon-based solid fuel according to claim 1 or 2, wherein
JP2008042774A 2007-08-23 2008-02-25 Gasification reactor for generating combustible gas Expired - Fee Related JP5004093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042774A JP5004093B2 (en) 2007-08-23 2008-02-25 Gasification reactor for generating combustible gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007216817 2007-08-23
JP2007216817 2007-08-23
JP2008042774A JP5004093B2 (en) 2007-08-23 2008-02-25 Gasification reactor for generating combustible gas

Publications (2)

Publication Number Publication Date
JP2009067979A true JP2009067979A (en) 2009-04-02
JP5004093B2 JP5004093B2 (en) 2012-08-22

Family

ID=40604573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042774A Expired - Fee Related JP5004093B2 (en) 2007-08-23 2008-02-25 Gasification reactor for generating combustible gas

Country Status (1)

Country Link
JP (1) JP5004093B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026491A (en) * 2009-07-28 2011-02-10 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification furnace structure
JP2011037933A (en) * 2009-08-07 2011-02-24 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification reaction furnace
WO2020131427A1 (en) * 2018-12-18 2020-06-25 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391204B (en) * 2020-11-24 2022-03-04 新奥科技发展有限公司 Method and system for oxygen-free catalytic gasification of coal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036901A (en) * 2004-07-27 2006-02-09 Matsushita Electric Ind Co Ltd Method for gasifying organic material
JP2008156552A (en) * 2006-12-26 2008-07-10 Ihi Corp Fluidized bed gasification method and apparatus
JP2008303377A (en) * 2007-05-08 2008-12-18 National Institute Of Advanced Industrial & Technology Method for generating combustible gas and gasification reaction furnace therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036901A (en) * 2004-07-27 2006-02-09 Matsushita Electric Ind Co Ltd Method for gasifying organic material
JP2008156552A (en) * 2006-12-26 2008-07-10 Ihi Corp Fluidized bed gasification method and apparatus
JP2008303377A (en) * 2007-05-08 2008-12-18 National Institute Of Advanced Industrial & Technology Method for generating combustible gas and gasification reaction furnace therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026491A (en) * 2009-07-28 2011-02-10 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification furnace structure
JP2011037933A (en) * 2009-08-07 2011-02-24 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification reaction furnace
WO2020131427A1 (en) * 2018-12-18 2020-06-25 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation

Also Published As

Publication number Publication date
JP5004093B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5057466B2 (en) Method for generating combustible gas and gasification reactor therefor
JP5532207B2 (en) Circulating fluidized bed gasification reactor
JP5114412B2 (en) Separation type fluidized bed gasification method and gasification apparatus for solid fuel
KR100887137B1 (en) Method and apparatus of gasification under integrated pyrolysis-reformer system(iprs)
Belgiorno et al. Energy from gasification of solid wastes
JP4314488B2 (en) Gasification method for solid fuel and gasification apparatus using the method
JP5483058B2 (en) Circulating fluidized bed gasifier structure
ES2670801T3 (en) Two stage gas generator to generate synthesis gas
JP5630626B2 (en) Organic raw material gasification apparatus and method
KR102256515B1 (en) Gasification system of bio crude oil containing tar-reducing reformer
JP2007525555A (en) Co-production of hydrogen and electricity by biomass gasification
JP2007528974A (en) Gasification system
JP5004093B2 (en) Gasification reactor for generating combustible gas
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
JP2005207643A (en) Circulating fluidized-bed furnace and its operation method
JP5403574B2 (en) Gasification system using activated carbon extracted from a tar absorption tower.
JP2009235335A (en) System of reforming woody biomass gas
JP2011026489A (en) Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace
JP2008069017A (en) Method for producing hydrogen
JP2011042697A (en) Circulating fluidized bed type gasification method and apparatus
JP5344447B2 (en) Gasification system that reuses alkali evaporated in gasification furnace
JP2011105890A (en) Circulating fluidized bed gasification reactor
JP5483060B2 (en) Circulating fluidized bed gasification reactor
JP2009096888A (en) Gasification system effectively utilizing steam produced during drying of high-water content fuel
JP2011026490A (en) Method of supplying catalyst to gasification furnace in gasification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees