JP5007791B2 - Wafer polishing method - Google Patents

Wafer polishing method Download PDF

Info

Publication number
JP5007791B2
JP5007791B2 JP2006227502A JP2006227502A JP5007791B2 JP 5007791 B2 JP5007791 B2 JP 5007791B2 JP 2006227502 A JP2006227502 A JP 2006227502A JP 2006227502 A JP2006227502 A JP 2006227502A JP 5007791 B2 JP5007791 B2 JP 5007791B2
Authority
JP
Japan
Prior art keywords
polishing
wafer
surface plate
rotating surface
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006227502A
Other languages
Japanese (ja)
Other versions
JP2008049430A (en
Inventor
実行 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006227502A priority Critical patent/JP5007791B2/en
Publication of JP2008049430A publication Critical patent/JP2008049430A/en
Application granted granted Critical
Publication of JP5007791B2 publication Critical patent/JP5007791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、窒化物半導体発光素子の製造に用いられるサファイア基板等ウエハーの研磨方法に係り、特に、同心円状の凹凸を発生させることなく多数のウエハーを同時に研磨できる研磨方法の改良に関するものである。   The present invention relates to a method for polishing a wafer such as a sapphire substrate used for manufacturing a nitride semiconductor light emitting device, and more particularly to an improvement in a polishing method capable of simultaneously polishing a number of wafers without generating concentric irregularities. .

発光デバイスとして使用される窒化物半導体発光素子を製造する場合、高品質なエピタキシャル膜を成長させることが重要であり、エピタキシャル膜の成長に用いられるサファイア基板等ウエハーについても、加工歪の残留が無く、清浄で欠陥の無い平滑な表面が要求される。   When manufacturing a nitride semiconductor light emitting device used as a light emitting device, it is important to grow a high-quality epitaxial film, and there is no residual processing strain even on wafers such as sapphire substrates used for epitaxial film growth. A smooth surface free of defects is required.

上記窒化物半導体発光素子用サファイア基板等のウエハーは、従来、サファイア等の結晶をワイヤーソー等により特定の結晶方位が表面に露出したウエハー状に加工し、遊離砥粒によるメカニカル研磨およびコロイダルシリカによるメカノケミカル研磨によって片面鏡面研磨を行った後、エピタキシャル膜を成長させる基板として用いられている。   Wafers such as sapphire substrates for nitride semiconductor light emitting devices are conventionally processed into wafers with a specific crystal orientation exposed on the surface with a wire saw or the like, and mechanical polishing with loose abrasive grains and colloidal silica. It is used as a substrate on which an epitaxial film is grown after performing single-side mirror polishing by mechanochemical polishing.

そして、サファイア基板等ウエハーの片面鏡面研磨方法は、通常、図3に示すように複数枚のウエハーWをセラミック等の円形ブロック30にワックス等で固定し、この円形ブロック30を図2に示すようにポリッシングヘッド部10の下面に保持させると共に、研磨布21が装着された回転定盤20に上記ポリッシュヘッド部10を押し付け、かつ、回転定盤20の研磨布21にコロイダルシリカ40を供給しながらウエハーWが固定された上記円形ブロック30を回転させて行っている。 In a single-side mirror polishing method for a wafer such as a sapphire substrate, normally, as shown in FIG. 3, a plurality of wafers W are fixed to a circular block 30 such as ceramic with wax or the like, and the circular block 30 is shown in FIG. The polishing head unit 10 is held on the lower surface of the polishing head unit 10, the polishing head unit 10 is pressed against the rotating surface plate 20 on which the polishing cloth 21 is mounted, and the colloidal silica 40 is supplied to the polishing cloth 21 of the rotating surface plate 20. The circular block 30 on which the wafer W is fixed is rotated.

このような片面鏡面研磨を行うと、ポリッシュヘッド部10の回転中心および回転定盤20の回転中心が常に一定であるため、研磨布21におけるウエハーWの接触軌跡がウエハーWに転写され、図4に示すような同心円状の凹凸50がウエハーWの研磨面に生じてウエハーW表面に加工歪が残留してしまうことがあった。 When such single-sided mirror polishing is performed, the center of rotation of the polishing head unit 10 and the center of rotation of the rotating surface plate 20 are always constant, so that the contact locus of the wafer W on the polishing pad 21 is transferred to the wafer W, and FIG. The concentric irregularities 50 as shown in FIG. 1 may occur on the polished surface of the wafer W, and processing strain may remain on the surface of the wafer W.

しかし、ウエハーW表面に同心円状の凹凸50が発生しても、従来、これを検出する手段が無かったため、同心円状の凹凸50が形成されているにも拘らずそのままエピタキシャル膜成長用の基板として利用されていたが、近年、光学的表面検査装置の発達により同心円状の凹凸とエピタキシャル膜の欠陥との対応が明確となり、同心円状の凹凸の無いウエハーが望まれている。   However, even if concentric irregularities 50 are generated on the surface of the wafer W, there has conventionally been no means for detecting them, so that the concentric irregularities 50 are formed as they are as substrates for epitaxial film growth. In recent years, the development of optical surface inspection devices has clarified the correspondence between concentric irregularities and defects in epitaxial films, and a wafer without concentric irregularities is desired.

このため、片面鏡面研磨後のウエハーを検査し、同心円状の凹凸が発生した場合には研磨布を貼り換えて凹凸が発生したウエハーを再度片面鏡面研磨する必要があり、検査や再研磨によるコスト高を招いていた。   For this reason, the wafer after single-sided mirror polishing is inspected, and if concentric irregularities occur, it is necessary to replace the polishing cloth and re-polished the wafer with irregularities once again, which is the cost of inspection and re-polishing. Invited high.

尚、研磨部材(上記ポリッシュヘッド部に対応する)の中心における定盤の運動方向と垂直方向に定盤を往復運動させてウエハーを均一に研磨する方法(特開平4−210369号公報参照)、あるいは、ヘッド部と回転定盤を互いに直交する方向に同時に揺動させてウエハーを研磨する方法(特開平6−170724号公報参照)等が開発されている。   Incidentally, a method of uniformly polishing the wafer by reciprocating the surface plate in the direction perpendicular to the direction of movement of the surface plate at the center of the polishing member (corresponding to the polish head portion) (see Japanese Patent Laid-Open No. 4-210369), Alternatively, a method of polishing the wafer by simultaneously swinging the head portion and the rotating surface plate in directions orthogonal to each other (see JP-A-6-170724) has been developed.

しかし、いずれの方法も1枚のウエハーが研磨部材(ヘッド部)に貼り付けられる研磨手法に過ぎず、しかも、定盤と研磨部材(ヘッド部)との上記各条件を具備させるには1つの定盤に最大2組の研磨部材(ヘッド部)しか組み込むことができないため、多量のウエハーを同時に研磨できる方法ではなかった。
特開平4−210369号公報 特開平6−170724号公報
However, any of these methods is merely a polishing method in which a single wafer is attached to a polishing member (head portion). Moreover, in order to satisfy the above conditions for the surface plate and the polishing member (head portion), one method is required. Since only a maximum of two sets of polishing members (head portions) can be incorporated in the surface plate, it was not a method capable of polishing a large number of wafers simultaneously.
JP-A-4-210369 JP-A-6-170724

本発明はこのような問題に着目してなされたもので、その課題とするところは、同心円状の凹凸を発生させることなく多数のウエハーを同時に研磨できるウエハーの研磨方法を提供し、もって高品質な窒化物半導体発光素子の製造を可能とする低コストのサファイア基板(ウエハー)等を提供することにある。   The present invention has been made paying attention to such a problem, and the object of the present invention is to provide a wafer polishing method capable of simultaneously polishing a large number of wafers without generating concentric concavities and convexities. Another object of the present invention is to provide a low-cost sapphire substrate (wafer) and the like that enable manufacture of a simple nitride semiconductor light emitting device.

そこで、上記課題を解決するため本発明者が鋭意研究を行った結果、ウエハーが固定されるポリッシングヘッド部の中心部における回転定盤の回転方向と略45度の角度をなす方向へ回転定盤を往復運動させた場合、1つの回転定盤に最大4組のポリッシングヘッド部を組み込むことが可能となり、これにより同心円状の凹凸を発生させることなく多量のウエハーを同時に研磨することができることを見出すに至った。本発明はこのような発見に基づき完成されている。   Accordingly, as a result of intensive studies by the inventor in order to solve the above-mentioned problems, the rotating surface plate is rotated in a direction that forms an angle of about 45 degrees with the rotation direction of the rotating surface plate at the center of the polishing head portion to which the wafer is fixed. When reciprocating, a maximum of four sets of polishing heads can be incorporated in one rotating surface plate, and it is found that a large number of wafers can be polished at the same time without generating concentric irregularities. It came to. The present invention has been completed based on such findings.

すなわち、請求項1に係る発明は、
ポリッシングヘッド部にウエハーを固定し、研磨布が装着された回転定盤にポリッシングヘッド部を押し付けてウエハーを研磨するウエハーの研磨方法を前提とし、
上記ポリッシングヘッド部の中心部における回転定盤の回転方向と略45度の角度をなす方向へ上記回転定盤を往復運動させると共に、回転定盤に対し相互に対称性を有する4個のポリッシングヘッド部を上記回転定盤に押し付けることを特徴とするものである。
That is, the invention according to claim 1
On the premise of a wafer polishing method in which a wafer is fixed to a polishing head part, and the polishing head part is pressed against a rotating surface plate equipped with a polishing cloth to polish the wafer.
Four polishing heads that reciprocate the rotary platen in a direction that forms an angle of approximately 45 degrees with the rotation direction of the rotary platen at the center of the polishing head unit, and that are symmetrical with respect to the rotary platen. The portion is pressed against the rotating surface plate .

次に、請求項に係る発明は、
請求項1に記載の発明に係るウエハーの研磨方法を前提とし、
上記ポリッシングヘッド部に複数枚のウエハーが固定されていることを特徴とし、
請求項に係る発明は、
請求項1または2に記載の発明に係るウエハーの研磨方法を前提とし、
上記回転定盤の往復運動距離が±1mm以上であることを特徴とするものである。
Next, the invention according to claim 2
Based on the wafer polishing method according to the invention of claim 1 ,
A plurality of wafers are fixed to the polishing head part,
The invention according to claim 3
On the premise of the wafer polishing method according to the invention of claim 1 or 2 ,
The reciprocating distance of the rotating surface plate is ± 1 mm or more.

本発明に係るウエハーの研磨方法によれば、
ポリッシングヘッド部の中心部における回転定盤の回転方向と略45度の角度をなす方向へ回転定盤を往復運動させるため同心円状の凹凸を発生させることなくウエハーを研磨することが可能となり、しかも、上記回転定盤に最大4組のポリッシングヘッド部を組み込むことができるため多数のウエハーを同時に研磨することが可能となる。
According to the wafer polishing method of the present invention,
Since the rotary platen is reciprocated in a direction that forms an angle of approximately 45 degrees with the rotation direction of the rotary platen at the center of the polishing head, it becomes possible to polish the wafer without generating concentric concavities and convexities. Since a maximum of four polishing head portions can be incorporated into the rotating surface plate, a large number of wafers can be polished simultaneously.

従って、高品質な窒化物半導体発光素子の製造を可能とするサファイア基板(ウエハー)等を低コストで提供できる効果を有している。   Therefore, it has the effect of providing a sapphire substrate (wafer) or the like that enables the manufacture of a high-quality nitride semiconductor light-emitting element at a low cost.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明に係るウエハーの研磨方法は、図1に示すように、ポリッシングヘッド部10にウエハー(図示せず)を固定し、かつ、研磨布(図示せず)が装着された回転定盤20にポリッシングヘッド部10を押し付けてウエハーを研磨する方法であって、上記ポリッシングヘッド部10の中心部Aにおける回転定盤20の矢印Bで示す回転方向とθ=略45度の角度をなす矢印Cで示す方向へ上記回転定盤20を往復運動させることを特徴とするものである。   First, as shown in FIG. 1, the wafer polishing method according to the present invention fixes a wafer (not shown) to the polishing head unit 10 and is mounted with a polishing cloth (not shown). 20 is a method of polishing the wafer by pressing the polishing head portion 10 against an arrow that forms an angle of θ = approximately 45 degrees with the rotation direction indicated by the arrow B of the rotating surface plate 20 at the center A of the polishing head portion 10. The rotary surface plate 20 is reciprocated in the direction indicated by C.

ここで、各ポリッシングヘッド部10に固定された各ウエハー(図示せず)の揺動条件が同じでかつ同時に複数枚のウエハーを研磨加工(鏡面加工)するためには、図1に示すように回転定盤20に対しポリッシングヘッド部10を4個とし、ポリッシングヘッド部10の中心部Aにおける回転定盤20の矢印Bで示す回転方向と略45度の角度をなす矢印Cで示す方向へ上記回転定盤20を往復運動(揺動)することが最も効率的であることが確認される。但し、4個のポリッシングヘッド部10がそれぞれ回転定盤20に対し相互に対称性を有するように配置されることが必要である。すなわち、従来技術のように各ポリッシングヘッド部10の中心部Aにおける回転定盤20の矢印Bで示す回転方向と0度若しくは90度の角度をなす方向へ回転定盤20を往復運動(揺動)させた場合、各ポリッシングヘッド部10に固定された各ウエハーの揺動条件が同一となるためのポリッシングヘッド部10の個数は、図1から理解されるように最大2個となり、本発明に係る研磨方法と比較しその研磨処理効率に劣ることが確認される。 Here, in order to polish (mirror finish) a plurality of wafers at the same time, each wafer (not shown) fixed to each polishing head unit 10 has the same swinging condition, as shown in FIG. The number of polishing head portions 10 is four with respect to the rotating surface plate 20, and the above-described direction is indicated by an arrow C that forms an angle of about 45 degrees with the rotation direction indicated by the arrow B of the rotating surface plate 20 at the center A of the polishing head portion 10. It is confirmed that it is most efficient to reciprocate (swing) the rotating surface plate 20. However, it is necessary that the four polishing head portions 10 be arranged so as to be symmetrical with respect to the rotating surface plate 20. That is, as in the prior art, the rotary platen 20 is reciprocated (oscillated) in a direction that forms an angle of 0 degrees or 90 degrees with the rotation direction indicated by the arrow B of the rotary platen 20 at the center A of each polishing head unit 10. ), The number of polishing head portions 10 for the same rocking condition of each wafer fixed to each polishing head portion 10 becomes two as understood from FIG. It is confirmed that the polishing process efficiency is inferior to the polishing method.

次に、回転定盤の往復運動距離については任意に設定されるが、同心円状の凹凸の発生を抑制する観点から±1mm以上に設定することが好ましい。   Next, the reciprocating distance of the rotating surface plate is arbitrarily set, but is preferably set to ± 1 mm or more from the viewpoint of suppressing the occurrence of concentric irregularities.

また、各ポリッシュヘッド部に固定するサファイア基板等半導体ウエハーの枚数についても原則任意であるが、高品質な窒化物半導体発光素子の製造を可能とするサファイア基板等半導体ウエハーを低コストで提供する観点から円形ブロックの外周付近に可能な限り複数枚固定して鏡面研磨することが望ましい。また、上記ポリッシュヘッド部は一般的に回転定盤の回転に伴い受動的に回転し、ポリッシュヘッド部の回転速度は時間と共に変化するが、サファイア基板等半導体ウエハー表面の加工条件を安定化させるためにはポリッシュヘッド部を回転定盤の回転数に近い回転数で強制的に回転させることが好ましい。   In addition, the number of semiconductor wafers such as sapphire substrates to be fixed to each polish head is in principle arbitrary, but the viewpoint of providing semiconductor wafers such as sapphire substrates that can manufacture high-quality nitride semiconductor light-emitting elements at low cost Therefore, it is desirable to mirror-polish by fixing as many as possible near the outer periphery of the circular block. In addition, the polishing head part generally rotates passively with the rotation of the rotating platen, and the rotational speed of the polishing head part changes with time, but in order to stabilize the processing conditions of the surface of a semiconductor wafer such as a sapphire substrate. In this case, it is preferable to forcibly rotate the polish head portion at a rotational speed close to the rotational speed of the rotating platen.

次に、回転定盤における往復運動速度(揺動速度)の上限については特に規定されないが、極端に高速にすると研磨布の磨耗が激しくなりまたウエハーの平坦度が悪化するため、ポリッシュヘッド部の中心部における回転定盤の回転速度の1/10以下程度で十分である。また、回転定盤における往復運動速度(揺動速度)の下限についても特に規定されないが、研磨速度以上であれば同心円状の凹凸の発生が見られなくなり、また高価な研磨装置による基板コスト上昇を避ける観点から数mm/min程度以上が好ましい。   Next, the upper limit of the reciprocating speed (swinging speed) in the rotating platen is not particularly specified. However, if the speed is extremely high, the polishing cloth will be worn more seriously and the flatness of the wafer will be deteriorated. About 1/10 or less of the rotational speed of the rotating surface plate at the center is sufficient. In addition, the lower limit of the reciprocating motion speed (swinging speed) on the rotating platen is not particularly specified, but if the polishing speed is exceeded, concentric irregularities will not be observed, and the cost of the substrate will increase due to expensive polishing equipment. From the viewpoint of avoidance, it is preferably about several mm / min or more.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

直径300mmのセラミック製円形ブロック(図3参照)4枚に、直径3インチのサファイア基板6枚を各々ワックスにて固定し、かつ、4個のポリッシュヘッド部下面に上記セラミック製円形ブロックをそれぞれ保持させた。尚、4個のポリッシュヘッド部は、図1に示すように回転定盤に対し相互に対称性を具備するように配置されている。   6 pieces of 3 inch diameter sapphire substrates are fixed to 4 pieces of 300 mm diameter ceramic circular blocks (see FIG. 3), respectively, and the above ceramic circular blocks are respectively held on the bottom surface of the 4 polish heads. I let you. The four polish head portions are arranged so as to have symmetry with respect to the rotating surface plate as shown in FIG.

次に、直径800mm、回転数が60rpmに設定された回転定盤に対し上記4個のポリッシュヘッド部を押し付け、かつ、コロイダルシリカを供給しながら1時間片面鏡面研磨を行った。尚、ポリッシュヘッド部の回転数は58rpm、サファイア基板の単位荷重は350g/cm2、回転定盤の往復運動速度(揺動速度)は200mm/min、回転定盤の往復運動距離は±20mmにそれぞれ設定されている。 Next, the four polishing heads were pressed against a rotating platen having a diameter of 800 mm and a rotation speed set to 60 rpm, and one-side mirror polishing was performed for 1 hour while supplying colloidal silica. Incidentally, the rotational speed of the polish head is 58 rpm, the unit load of the sapphire substrate is 350 g / cm 2 , the reciprocating speed (rocking speed) of the rotating surface plate is 200 mm / min, and the reciprocating distance of the rotating surface plate is ± 20 mm. Each is set.

そして、上記片面鏡面研磨を行った後、各セラミック製円形ブロックからサファイア基板を剥離しかつ洗浄を行ってから光学的表面検査装置(Candela社製 OSA-C1)にて検査を行ったところ、処理されたサファイア基板24枚中1枚も同心円状の凹凸が確認されなかった。更に、回転定盤の研磨布を貼り替えることなく同一の条件で9回、合計枚数216枚のサファイア基板について同様の片面鏡面研磨を行ったが、同心円状の凹凸は1枚も見られなかった。   Then, after performing the above-mentioned single-side mirror polishing, the sapphire substrate was peeled off from each ceramic circular block and cleaned, and then inspected with an optical surface inspection device (OSA-C1 manufactured by Candela). Concentric unevenness was not confirmed in one of the 24 sapphire substrates. Further, the same single-side mirror polishing was performed on the 216 sapphire substrates in total under the same conditions without changing the polishing cloth of the rotating surface plate, but no concentric irregularities were found. .

尚、この時の研磨速度は平均3.0μm/hrで、回転定盤の揺動速度(200mm/min)が上記研磨速度(平均3.0μm/hr)に対し十分速いことを確認している。   The polishing rate at this time is 3.0 μm / hr on average, and it has been confirmed that the rocking speed (200 mm / min) of the rotating platen is sufficiently faster than the polishing rate (average 3.0 μm / hr). .

直径300mmのセラミック製円形ブロック4枚に、直径3インチのサファイア基板6枚を各々ワックスにて固定し、かつ、4個のポリッシュヘッド部下面に上記セラミック製円形ブロックをそれぞれ保持させた。尚、4個のポリッシュヘッド部は、図1に示すように回転定盤に対し相互に対称性を具備するように配置されている。   Six sapphire substrates each having a diameter of 3 inches were fixed to four ceramic circular blocks having a diameter of 300 mm with wax, and the ceramic circular blocks were respectively held on the lower surfaces of the four polish head portions. The four polish head portions are arranged so as to have symmetry with respect to the rotating surface plate as shown in FIG.

次に、直径800mm、回転数が60rpmに設定された回転定盤に対し上記4個のポリッシュヘッド部を押し付け、かつ、コロイダルシリカを供給しながら1時間片面鏡面研磨を行った。尚、ポリッシュヘッド部の回転数は58rpm、サファイア基板の単位荷重は350g/cm2、回転定盤の往復運動速度(揺動速度)は200mm/min、回転定盤の往復運動距離は±1mmにそれぞれ設定されている。 Next, the four polishing heads were pressed against a rotating platen having a diameter of 800 mm and a rotation speed set to 60 rpm, and one-side mirror polishing was performed for 1 hour while supplying colloidal silica. The rotational speed of the polishing head is 58 rpm, the unit load of the sapphire substrate is 350 g / cm 2 , the reciprocating speed (rocking speed) of the rotating surface plate is 200 mm / min, and the reciprocating distance of the rotating surface plate is ± 1 mm. Each is set.

そして、上記片面鏡面研磨を行った後、各セラミック製円形ブロックからサファイア基板を剥離しかつ洗浄を行ってから光学的表面検査装置(Candela社製 OSA-C1)にて検査を行ったところ、処理されたサファイア基板24枚中1枚も同心円状の凹凸が確認されなかった。更に、回転定盤の研磨布を貼り替えることなく同一の条件で9回、合計枚数216枚のサファイア基板について同様の片面鏡面研磨を行ったが、同心円状の凹凸は1枚も見られなかった。   Then, after performing the above-mentioned single-side mirror polishing, the sapphire substrate was peeled off from each ceramic circular block and cleaned, and then inspected with an optical surface inspection device (OSA-C1 manufactured by Candela). Concentric unevenness was not confirmed in one of the 24 sapphire substrates. Further, the same single-side mirror polishing was performed on the 216 sapphire substrates in total under the same conditions without changing the polishing cloth of the rotating surface plate, but no concentric irregularities were found. .

尚、この時の研磨速度は平均2.8μm/hrで、回転定盤の揺動速度(200mm/min)が上記研磨速度(平均2.8μm/hr)に対し十分速いことを確認している。   The polishing rate at this time is 2.8 μm / hr on average, and it has been confirmed that the rocking speed (200 mm / min) of the rotating surface plate is sufficiently faster than the polishing rate (average 2.8 μm / hr). .

直径300mmのセラミック製円形ブロック4枚に、直径3インチのサファイア基板6枚を各々ワックスにて固定し、かつ、4個のポリッシュヘッド部下面に上記セラミック製円形ブロックをそれぞれ保持させた。尚、4個のポリッシュヘッド部は、図1に示すように回転定盤に対し相互に対称性を具備するように配置されている。   Six sapphire substrates each having a diameter of 3 inches were fixed to four ceramic circular blocks having a diameter of 300 mm with wax, and the ceramic circular blocks were respectively held on the lower surfaces of the four polish head portions. The four polish head portions are arranged so as to have symmetry with respect to the rotating surface plate as shown in FIG.

次に、直径800mm、回転数が60rpmに設定された回転定盤に対し上記4個のポリッシュヘッド部を押し付け、かつ、コロイダルシリカを供給しながら1時間片面鏡面研磨を行った。尚、ポリッシュヘッド部の回転数は58rpm、サファイア基板の単位荷重は350g/cm2、回転定盤の往復運動速度(揺動速度)は1mm/min、回転定盤の往復運動距離は±1mmにそれぞれ設定されている。 Next, the four polishing heads were pressed against a rotating platen having a diameter of 800 mm and a rotation speed set to 60 rpm, and one-side mirror polishing was performed for 1 hour while supplying colloidal silica. Incidentally, the rotational speed of the polish head is 58 rpm, the unit load of the sapphire substrate is 350 g / cm 2 , the reciprocating speed (swinging speed) of the rotating surface plate is 1 mm / min, and the reciprocating distance of the rotating surface plate is ± 1 mm. Each is set.

そして、上記片面鏡面研磨を行った後、各セラミック製円形ブロックからサファイア基板を剥離しかつ洗浄を行ってから光学的表面検査装置(Candela社製 OSA-C1)にて検査を行ったところ、処理されたサファイア基板24枚中1枚も同心円状の凹凸が確認されなかった。更に、回転定盤の研磨布を貼り替えることなく同一の条件で9回、合計枚数216枚のサファイア基板について同様の片面鏡面研磨を行ったが、同心円状の凹凸は1枚も見られなかった。   Then, after performing the above-mentioned single-side mirror polishing, the sapphire substrate was peeled off from each ceramic circular block and cleaned, and then inspected with an optical surface inspection device (OSA-C1 manufactured by Candela). Concentric unevenness was not confirmed in one of the 24 sapphire substrates. Further, the same single-side mirror polishing was performed on the 216 sapphire substrates in total under the same conditions without changing the polishing cloth of the rotating surface plate, but no concentric irregularities were found. .

尚、この時の研磨速度は平均2.9μm/hrで、回転定盤の揺動速度(1mm/min)が上記研磨速度(平均2.9μm/hr)に対し十分速いことを確認している。
[比較例1]
上記回転定盤を往復運動(揺動)させない点を除き、実施例1、2、3と同一の条件で24枚のサファイア基板について1時間の片面鏡面研磨を行った後、各セラミック製円形ブロックからサファイア基板を剥離しかつ洗浄を行ってから光学的表面検査装置(Candela社製 OSA-C1)にて検査を行ったところ、処理されたサファイア基板24枚中6枚に同心円状の凹凸が確認された。
The polishing rate at this time is 2.9 μm / hr on average, and it has been confirmed that the rocking speed (1 mm / min) of the rotating platen is sufficiently faster than the polishing rate (average 2.9 μm / hr). .
[Comparative Example 1]
Except that the rotary platen is not reciprocated (oscillated), 24 round sapphire substrates were subjected to one-side mirror polishing under the same conditions as in Examples 1, 2, and 3, and then each ceramic circular block After removing the sapphire substrate from the substrate and cleaning it, it was inspected with an optical surface inspection device (OSA-C1 manufactured by Candela). As a result, 6 out of 24 processed sapphire substrates were found to have concentric irregularities. It was done.

更に、回転定盤の研磨布を貼り替えることなく同一の条件で9回、合計枚数216枚のサファイア基板について同様の片面鏡面研磨を行ったところ、2回目では24枚中12枚に、3回目では24枚中15枚に、4回目以降は24枚全てに同心円状の凹凸が見られた。   Furthermore, the same single-side mirror polishing was performed on the total number of 216 sapphire substrates 9 times under the same conditions without changing the polishing cloth of the rotating platen. In 15 out of 24 sheets, concentric irregularities were observed in all 24 sheets after the fourth time.

この結果、比較例1に較べて実施例1〜3に係る研磨方法の優位性が確認された。   As a result, the superiority of the polishing method according to Examples 1 to 3 as compared with Comparative Example 1 was confirmed.

本発明に係るウエハーの研磨方法によれば、同心円状の凹凸を発生させることなく多数のサファイア基板等ウエハーを同時に研磨することが可能となる。   According to the wafer polishing method of the present invention, a large number of wafers such as sapphire substrates can be simultaneously polished without generating concentric concavities and convexities.

従って、窒化物半導体発光素子製造用の安価なサファイア基板等を提供するための研磨方法として適用される産業上の利用可能性を有している。   Therefore, it has industrial applicability applied as a polishing method for providing an inexpensive sapphire substrate or the like for manufacturing a nitride semiconductor light emitting device.

本発明に係るウエハーの研磨方法を示す概略平面図。1 is a schematic plan view showing a wafer polishing method according to the present invention. ウエハーの研磨方法を示す説明図。Explanatory drawing which shows the grinding | polishing method of a wafer. ウエハーが固定された円形ブロックの概略平面図。The schematic plan view of the circular block to which the wafer was fixed. 従来の研磨方法によりウエハーに形成された同心円状の凹凸を示す概略平面図。The schematic plan view which shows the concentric unevenness | corrugation formed in the wafer with the conventional grinding | polishing method.

符号の説明Explanation of symbols

10 ポリッシュヘッド部
20 回転定盤
A ポリッシュヘッド部の中心部
B 回転定盤の回転方向を示す矢印
C 回転定盤の往復運動(揺動)方向を示す矢印
DESCRIPTION OF SYMBOLS 10 Polish head part 20 Rotating surface plate A Center part of polish head part B Arrow which shows the rotation direction of a rotating surface plate C Arrow which shows the reciprocating motion (oscillation) direction of a rotating surface plate

Claims (3)

ポリッシングヘッド部にウエハーを固定し、研磨布が装着された回転定盤にポリッシングヘッド部を押し付けてウエハーを研磨するウエハーの研磨方法において、
上記ポリッシングヘッド部の中心部における回転定盤の回転方向と略45度の角度をなす方向へ上記回転定盤を往復運動させると共に、回転定盤に対し相互に対称性を有する4個のポリッシングヘッド部を上記回転定盤に押し付けることを特徴とするウエハーの研磨方法。
In the wafer polishing method, the wafer is fixed to the polishing head part, and the polishing head part is pressed against a rotating surface plate equipped with a polishing cloth to polish the wafer.
Four polishing heads that reciprocate the rotary platen in a direction that forms an angle of approximately 45 degrees with the rotation direction of the rotary platen at the center of the polishing head unit, and that are symmetrical with respect to the rotary platen. A method for polishing a wafer , comprising pressing a portion against the rotating surface plate .
上記ポリッシングヘッド部に複数枚のウエハーが固定されていることを特徴とする請求項1に記載のウエハーの研磨方法。 2. The wafer polishing method according to claim 1 , wherein a plurality of wafers are fixed to the polishing head portion. 上記回転定盤の往復運動距離が±1mm以上であることを特徴とする請求項1または2に記載のウエハーの研磨方法。 3. The wafer polishing method according to claim 1, wherein a reciprocating distance of the rotating surface plate is ± 1 mm or more.
JP2006227502A 2006-08-24 2006-08-24 Wafer polishing method Active JP5007791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227502A JP5007791B2 (en) 2006-08-24 2006-08-24 Wafer polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227502A JP5007791B2 (en) 2006-08-24 2006-08-24 Wafer polishing method

Publications (2)

Publication Number Publication Date
JP2008049430A JP2008049430A (en) 2008-03-06
JP5007791B2 true JP5007791B2 (en) 2012-08-22

Family

ID=39233945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227502A Active JP5007791B2 (en) 2006-08-24 2006-08-24 Wafer polishing method

Country Status (1)

Country Link
JP (1) JP5007791B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102152228A (en) * 2011-01-05 2011-08-17 苏州辰轩光电科技有限公司 Grinding method of sapphire slices
DE112015002319T5 (en) 2014-12-31 2017-02-09 Osaka University Planarization processing method and planarization processing apparatus
JP6187948B1 (en) 2016-03-11 2017-08-30 東邦エンジニアリング株式会社 Flat processing apparatus, operation method thereof, and manufacturing method of workpiece

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547484B2 (en) * 1991-04-16 1996-10-23 不二越機械工業株式会社 Polishing equipment
JPH10249715A (en) * 1997-03-05 1998-09-22 Nikon Corp Polishing device
JPH11291167A (en) * 1998-04-07 1999-10-26 Nikon Corp Polishing device and polishing method
JP2000015557A (en) * 1998-04-27 2000-01-18 Ebara Corp Polishing device
JP2000135669A (en) * 1998-10-30 2000-05-16 Shin Etsu Handotai Co Ltd Wafer polishing device and method thereof

Also Published As

Publication number Publication date
JP2008049430A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4835069B2 (en) Silicon wafer manufacturing method
JP2007204286A (en) Method for manufacturing epitaxial wafer
JP5331844B2 (en) Method for double-side polishing of semiconductor wafers
KR101610438B1 (en) Polishing pad dresser and manufacturing method thereof, polishing pad dressing devcie and polishing system
JPH0997775A (en) Manufacture of mirror-surface semiconductor wafer
JP2013258226A (en) Semiconductor wafer manufacturing method
KR101605384B1 (en) Double-head grinding apparatus and wafer manufacturing method
JP2006100799A (en) Method of manufacturing silicon wafer
WO2015037188A1 (en) Production method for mirror polished wafers
JP5007791B2 (en) Wafer polishing method
JP2013258227A (en) Semiconductor wafer manufacturing method
JP6610587B2 (en) Wafer manufacturing method
JPH10256203A (en) Manufacturing method of mirror-finished thin sheet-like wafer
KR101328775B1 (en) Method for producing silicon epitaxial wafer
JP4103808B2 (en) Wafer grinding method and wafer
JP2013129023A (en) Method for manufacturing sapphire substrate, and sapphire substrate
JP2004343126A (en) Method for simultaneous polishing of front surface and back surface of semiconductor wafer
JP2010040876A (en) Method of manufacturing semiconductor wafer
JP2014213403A (en) Method for reducing warpage of substrate, method for manufacturing substrate, and sapphire substrate
JP2004006997A (en) Manufacturing method of silicon wafer
JP5287982B2 (en) Manufacturing method of silicon epitaxial wafer
JP2007013012A (en) Beveling method of end face of silicon wafer for solar cell
JP2013131644A (en) Method for manufacturing sapphire substrate and sapphire substrate
JP2011091143A (en) Method of manufacturing silicon epitaxial wafer
JP2014075538A (en) Method for producing sapphire substrate and sapphire substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 5007791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3