JP5007019B2 - Thermometer for temperature measurement in chlorination furnace - Google Patents

Thermometer for temperature measurement in chlorination furnace Download PDF

Info

Publication number
JP5007019B2
JP5007019B2 JP2004361153A JP2004361153A JP5007019B2 JP 5007019 B2 JP5007019 B2 JP 5007019B2 JP 2004361153 A JP2004361153 A JP 2004361153A JP 2004361153 A JP2004361153 A JP 2004361153A JP 5007019 B2 JP5007019 B2 JP 5007019B2
Authority
JP
Japan
Prior art keywords
protective tube
thermometer
tube
chlorination furnace
temperature measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004361153A
Other languages
Japanese (ja)
Other versions
JP2006170692A (en
Inventor
山本  仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2004361153A priority Critical patent/JP5007019B2/en
Publication of JP2006170692A publication Critical patent/JP2006170692A/en
Application granted granted Critical
Publication of JP5007019B2 publication Critical patent/JP5007019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、チタン鉱石を塩素化する塩化炉内に用いる温度計に係り、特に、塩化炉内に形成される鉱石とコークスからなる流動層内の温度を安定して正確に測定することができる塩化炉内測温用温度計に関する。   The present invention relates to a thermometer used in a chlorination furnace for chlorinating titanium ore, and in particular, can stably and accurately measure the temperature in a fluidized bed composed of ore and coke formed in the chlorination furnace. It relates to a thermometer for temperature measurement in a chlorination furnace.

四塩化チタンは、スポンジチタン、酸化チタン、あるいは触媒の原料として工業的に幅広く利用されている。四塩化チタン製造用の塩化炉は、高温の塩素ガスに耐えるような耐火物で内側がライニングされた鋼鉄製の容器で構成され、この塩化炉にチタン鉱石およびコークスを充填し、塩素ガスを供給して塩素化を行うようになっている。   Titanium tetrachloride is widely used industrially as a raw material for titanium sponge, titanium oxide, or catalyst. The chlorination furnace for producing titanium tetrachloride consists of a steel vessel lined inside with a refractory material that can withstand high-temperature chlorine gas. The chlorination furnace is filled with titanium ore and coke and supplied with chlorine gas. Then, chlorination is performed.

チタン鉱石およびコークスは、塩化炉の側部に設けられた原料ホッパーから塩化炉内に供給され、一方、塩素ガスは、塩化炉底部から供給される。これら原料は加熱下で流動層を形成しながら反応が進行し、目的の四塩化チタンガスと、副生成物のCOガスおよびCOガスが生成する。 Titanium ore and coke are supplied into the chlorination furnace from a raw material hopper provided on the side of the chlorination furnace, while chlorine gas is supplied from the bottom of the chlorination furnace. These raw materials undergo a reaction while forming a fluidized bed under heating, and target titanium tetrachloride gas and by-products CO 2 gas and CO gas are generated.

流動層内で生成した四塩化チタンガス、COガスおよびCOガスは、塩化炉内を上昇して、塩化炉頂部から排出され、四塩化チタン回収系に移送される。四塩化チタン回収系に回収された四塩化チタンガスは順次冷却を受け、四塩化チタンガス中に含まれる不純物が分離除去される。不純物が分離除去された四塩化チタンガスは更に冷却を受けて、液体の四塩化チタンが回収される。回収された液体の四塩化チタンは、さらに蒸留工程に移送されて、精製四塩化チタンが製造される。 Titanium tetrachloride gas, CO 2 gas and CO gas generated in the fluidized bed rise in the chlorination furnace, are discharged from the top of the chlorination furnace, and are transferred to the titanium tetrachloride recovery system. The titanium tetrachloride gas recovered in the titanium tetrachloride recovery system is sequentially cooled, and impurities contained in the titanium tetrachloride gas are separated and removed. The titanium tetrachloride gas from which impurities have been separated and removed is further cooled to recover liquid titanium tetrachloride. The recovered liquid titanium tetrachloride is further transferred to a distillation process to produce purified titanium tetrachloride.

チタン鉱石中の酸化チタン含有率は、通常92〜96%の範囲にあり、残りは、鉄、アルミニウム、ケイ素、バナジウム等の酸化物から構成された脈石成分から構成されている。この脈石成分もまた、塩素ガスにより塩素化され、塩化鉄、塩化アルミニウム、塩化ケイ素あるいは塩化バナジウムが生成する。これらの塩化物は、冷却工程あるいは蒸留工程にて大部分が除去されるが、塩化ケイ素は、蒸留工程においても分離されにくいので、塩化ケイ素の生成量を抑制するように塩化炉を運転することが好ましい。   The titanium oxide content in the titanium ore is usually in the range of 92 to 96%, and the remainder is composed of a gangue component composed of oxides such as iron, aluminum, silicon, and vanadium. This gangue component is also chlorinated with chlorine gas to produce iron chloride, aluminum chloride, silicon chloride or vanadium chloride. Most of these chlorides are removed in the cooling process or distillation process, but silicon chloride is difficult to separate in the distillation process, so the chlorination furnace should be operated to suppress the production of silicon chloride. Is preferred.

流動層内で生成する塩化ケイ素の生成量は、一般に、流動層内の反応温度に比例することが知られており、特に、流動層内の温度が1100℃を超えないように操業することが好ましいとされている。しかしながら、炉内温度を下げ過ぎると目的のチタンの塩素化反応までもが阻害されてしまう。したがって、チタンの塩素化を妨げずに塩化ケイ素の生成を抑制するような操業を行うには、流動層内の温度をできるだけ正確に把握することが重要となる。   It is known that the amount of silicon chloride produced in the fluidized bed is generally proportional to the reaction temperature in the fluidized bed. In particular, it is possible to operate so that the temperature in the fluidized bed does not exceed 1100 ° C. It is preferred. However, if the furnace temperature is lowered too much, the target chlorination reaction of titanium will be hindered. Therefore, it is important to grasp the temperature in the fluidized bed as accurately as possible in order to perform an operation that suppresses the production of silicon chloride without disturbing the chlorination of titanium.

しかしながら、流動層内では、高温にあるチタン鉱石およびコークスが高速で流動しており、加えて、塩素ガスや四塩化チタンガスといった腐食性の強いガスが充満しているために、流動層内に温度計を配置してもすぐに腐蝕あるいは磨耗されて、温度計を構成する温度検出用の熱電対の素線が断線してしまうという問題があった。   However, in the fluidized bed, high-temperature titanium ore and coke are flowing at high speed, and in addition, a highly corrosive gas such as chlorine gas and titanium tetrachloride gas is filled in the fluidized bed. Even if the thermometer is arranged, it is immediately corroded or worn, and there is a problem that the wire of the thermocouple for temperature detection constituting the thermometer is disconnected.

このため、やむを得ず、流動層から外れた塩化炉内の上方空間部に温度計を配置して、連続的にこの温度をモニターすると共に、試験的に測定された流動層の温度との相関をとって、流動層の温度を推定していた。しかしながら、この方法で推定された温度は、必ずしも流動層温度とは対応しない場合があり、改善が求められていた。   For this reason, it is unavoidable to place a thermometer in the upper space in the chlorination furnace that is out of the fluidized bed to continuously monitor this temperature and to correlate with the temperature of the fluidized bed measured experimentally. The temperature of the fluidized bed was estimated. However, the temperature estimated by this method may not always correspond to the fluidized bed temperature, and improvement has been demanded.

このような状況において、四塩化チタン製造用塩化炉内の流動層温度を直接測定できる温度計の構造が開示されている。そのような温度計として、セラミック製の外管と、熱電対を内包した内管とから構成され、外管と内管との空間部をセラミック粉で充填して一体化、かつセラミック粉の空隙にパージ用ガスを供給する手段を具備した温度計が開示されている(例えば、特許文献1参照)。   Under such circumstances, a thermometer structure capable of directly measuring the fluidized bed temperature in the chlorination furnace for producing titanium tetrachloride is disclosed. As such a thermometer, it is composed of a ceramic outer tube and an inner tube containing a thermocouple, and the space between the outer tube and the inner tube is filled with ceramic powder and integrated, and the void of the ceramic powder Discloses a thermometer equipped with a means for supplying a purge gas (see, for example, Patent Document 1).

しかしながら、この温度計では、外管と内管の空間部にセラミック粉が充填されて一体化されているので、熱電対が断線した場合には、断線部分のみを取り出すことができず、塩化炉を停止して温度計全体を回収して交換しなければならなかった。   However, in this thermometer, the space part of the outer tube and the inner tube is filled with ceramic powder and integrated, so when the thermocouple is disconnected, only the disconnected part cannot be taken out, and the chlorination furnace And the entire thermometer had to be recovered and replaced.

また、セラミック製の多孔質な外管と、熱電対を内包した内管とから構成され、これらの空間に流動層内よりも高い圧力の不活性ガスを供給して、多孔質外管の表面から流動層内に向けて常に不活性ガスを噴出させる温度計が開示されている(例えば、特許文献2参照)。この温度計によれば、多孔質外管の表面から不活性ガスを常に噴出させているので、外管と内管の空間が緩衝領域となり、流動層の運動エネルギーが直接熱電対に影響せず、また、塩素ガスの外管内への浸入を抑制し、チタン鉱石およびコークスの流動層との接触による外管の磨耗を軽減することができ、温度計の長寿命化がある程度実現されている。   Also, it is composed of a porous outer tube made of ceramic and an inner tube containing a thermocouple, and an inert gas having a higher pressure than that in the fluidized bed is supplied to these spaces, and the surface of the porous outer tube Discloses a thermometer that constantly injects an inert gas into the fluidized bed (see, for example, Patent Document 2). According to this thermometer, since the inert gas is constantly ejected from the surface of the porous outer tube, the space between the outer tube and the inner tube becomes a buffer region, and the kinetic energy of the fluidized bed does not directly affect the thermocouple. In addition, the penetration of chlorine gas into the outer pipe can be suppressed, the wear of the outer pipe due to contact with the fluidized bed of titanium ore and coke can be reduced, and the lifetime of the thermometer has been extended to some extent.

実開昭62−123528号公報Japanese Utility Model Publication No. 62-123528 実開昭63−181831号公報Japanese Utility Model Publication No. 63-181831

しかしながら、多孔質外管の周囲を取り囲んでいる流動層を形成するチタン鉱石やコークスの運動エネルギーは、粒子ごとにばらついており、多孔質外管から噴出する不活性ガスのエネルギーに比べて大きい場合もあり、多孔質外管表面へのチタン鉱石やコークスの衝突を完全に抑制することは困難であると推察される。また、多孔質外管の表面から噴出させるために不活性ガスを常時供給しなければならず、操業が長期に亘った場合、コストの点で問題となる。さらに、多孔質外管表面に衝突したチタン鉱石やコークスの粒子は、多孔質外管の細孔に目詰まりを発生させ、不活性ガスの噴出が阻害されることもある。このような状況に陥ると、腐食性を有する塩素ガスや四塩化チタンガスが多孔質外管の内部に浸入して、多孔質外管の内部に保持された内管および熱電対を腐食してこれを断線させてしまうという問題が生じる。さらには、多孔質外管からガスを噴出させている構造をとるため、多孔質外管内に保持された温度計が、流動層の温度を正確に測定していないという問題もある。   However, the kinetic energy of titanium ore and coke that forms the fluidized bed surrounding the porous outer tube varies from particle to particle, and is larger than the energy of the inert gas ejected from the porous outer tube. Therefore, it is estimated that it is difficult to completely suppress the collision of titanium ore and coke with the surface of the porous outer tube. Moreover, in order to inject from the surface of a porous outer tube, you must always supply an inert gas, and when operation is long-term, it will become a problem in terms of cost. Furthermore, titanium ore and coke particles that collide with the surface of the porous outer tube may cause clogging of the pores of the porous outer tube, which may inhibit the ejection of inert gas. In such a situation, corrosive chlorine gas or titanium tetrachloride gas penetrates into the porous outer tube, corroding the inner tube and thermocouple held inside the porous outer tube. There arises a problem that this is disconnected. Furthermore, since the gas is ejected from the porous outer tube, there is a problem that the thermometer held in the porous outer tube does not accurately measure the temperature of the fluidized bed.

本発明は、上記状況に鑑みてなされたものであり、四塩化チタン製造用塩化炉の運転における温度測定を長期に亘って安定してしかも低コストで正確に行なうことができる塩化炉内測温用温度計の提供を目的としている。   The present invention has been made in view of the above situation, and temperature measurement in a chlorination furnace that can stably perform temperature measurement in the operation of a chlorination furnace for producing titanium tetrachloride over a long period of time and accurately at low cost. The purpose is to provide a thermometer.

すなわち、本発明の塩化炉内測温用温度計は、外部保護管と、外部保護管内にスペーサーを介して挿抜自在に保持された内部保護管と、内部保護管内に挿抜自在に保持された絶縁管と、絶縁管内に保持された熱電対と、上記外部保護管を着脱自在に密封する蓋とを備えた塩化炉内測温用温度計であって、熱電対は、蓋を貫通して外部に連通しており、外部保護管および蓋で密封された空間内に、ガスが充填され、さらに、外部保護管の外側に最外保護管が配置され、最外保護管は、塩化炉内の反応成分を外部保護管と最外保護管との間の空間内に流入させ、かつ充填するための貫通孔を有し、最外保護管の開口端が外部保護管と密着配置されていることを特徴としている。 That is, the thermometer for temperature measurement in the chlorinating furnace of the present invention includes an external protective tube, an internal protective tube that is detachably held in the external protective tube via a spacer, and an insulation that is detachably held in the internal protective tube. A thermometer for temperature measurement in a chlorinating furnace comprising a tube, a thermocouple held in an insulating tube, and a lid for detachably sealing the external protective tube, the thermocouple penetrating the lid and externally Gas is filled in a space sealed with an external protective tube and a lid, and an outermost protective tube is disposed outside the outer protective tube, and the outermost protective tube is disposed inside the chlorination furnace. It has a through-hole for allowing the reaction components to flow into and fill the space between the outer protective tube and the outermost protective tube, and the open end of the outermost protective tube is in close contact with the outer protective tube. It is characterized by.

このような塩化炉内測温用温度計によれば、外部保護管内が密閉状態であるので、塩素ガスや四塩化チタンガスといった腐食性ガスの浸入を防止することができ、これにより腐食を抑制し、長期に亘って温度測定を行なうことができる。また、熱電対が断線した際は、蓋を外すことによって、塩化炉の運転を停止せずに内部保護管のみを取り出して熱電対を交換し、塩素化運転を続行することができる。さらに、温度計内部にガスを連続的に供給する必要がなく、加圧充填しておくだけで済み、また加圧充填ガス種も、必ずしも不活性ガスを用いる必要はなく、空気で済むため、コストを削減することができる。さらに、ガスを常時噴出させずに充填しておく構造のため、充填ガスを媒体とした熱伝導によって流動層内の温度が速やかに熱電対に伝わり、正確な温度測定を行なうことが可能である。   According to such a thermometer for temperature measurement in a chlorinating furnace, since the inside of the external protective tube is hermetically sealed, the invasion of corrosive gases such as chlorine gas and titanium tetrachloride gas can be prevented, thereby suppressing corrosion. In addition, temperature measurement can be performed over a long period of time. Further, when the thermocouple is disconnected, by removing the lid, it is possible to continue the chlorination operation by taking out only the internal protection tube without replacing the operation of the chlorination furnace and replacing the thermocouple. Furthermore, there is no need to continuously supply gas into the thermometer, it is only necessary to perform pressure filling, and the pressurized filling gas type does not necessarily need to use an inert gas, and air is sufficient, Cost can be reduced. Furthermore, because the structure is such that gas is always filled without being ejected, the temperature in the fluidized bed is quickly transferred to the thermocouple by heat conduction using the filling gas as a medium, and accurate temperature measurement can be performed. .

本発明においては、外部保護管および蓋で密封された空間内に、ガスが加圧状態で充填されていると好適である。ガスが加圧状態で充填されていると、温度計が塩化炉の流動層から受ける高い圧力に耐えることができる。   In the present invention, it is preferable that the space sealed with the external protective tube and the lid is filled with gas in a pressurized state. If the gas is filled in a pressurized state, the thermometer can withstand the high pressure that it receives from the fluidized bed of the chlorination furnace.

また、本発明においては、外部保護管の外側に、塩化炉内の反応成分が流通可能な貫通孔を有する保護管を配置し、保護管の開口端を外部保護管と密着配置させると好適である。このような構造とすることで、流動層は貫通孔から流入して外部保護管に接触するので、高い運動エネルギーを有する流動層が直接外部保護に衝突することを防止し、温度計の耐久性が向上する。
In the present invention, it is preferable that a protective tube having a through hole through which a reaction component in the chlorination furnace can be circulated outside the external protective tube, and the opening end of the protective tube is disposed in close contact with the external protective tube. is there. With such a structure, the fluidized bed flows from the through hole and comes into contact with the external protective tube. Therefore, the fluidized bed having high kinetic energy is prevented from directly colliding with the external protective tube, and the durability of the thermometer Improves.

外部保護管が窒化ケイ素で構成され、内部保護管がセラミック材料で構成されていると、温度計の耐久性が向上して好適である。
When the outer protective tube is made of silicon nitride and the inner protective tube is made of a ceramic material, it is preferable because durability of the thermometer is improved.

内部保護管を構成するセラミックスの純度が90%以上であると、内部保護管に含まれる不純物と熱電対との反応を抑制することができ、熱電対の長寿命化に寄与して好適である。   When the purity of the ceramic constituting the internal protective tube is 90% or more, the reaction between the impurities contained in the internal protective tube and the thermocouple can be suppressed, which is preferable because it contributes to extending the life of the thermocouple. .

本発明の最良の実施形態について図面を用いて以下に説明する。
図1は、本発明の塩化炉内用温度計1の好ましい態様を表している。
符号2は、温度計1の容器を構成する外部保護管2であり、この外部保護管2の開放端には、蓋3が着脱自在に嵌め込まれ、熱電対圧力シールを兼ねた図示しないグランドパッキンが外部保護管2および蓋3の間に装着されていて、内部を密閉している。外部保護管2の内部には、複数のスペーサー4によって、内部保護管5が挿抜自在に支持されて、内部保護管5の内部には、絶縁管6が挿抜自在に設けられている。絶縁管6の内部には、熱電対が支持されている。ここで、熱電対とは、異なる材料の2本の金属線を接続して1つの回路をつくり、2つの接点に温度差を与えると回路に電圧が発生するというゼーベック効果を利用して温度測定を行なう方法であり、温度差が与えられる2つの接点のうち、高温側に該当するのは、絶縁管6の先端に溶接接合された温度検出端7であり、低温側に該当するのは、蓋3を貫通した外部保護管2の外部に位置する電位検出端8である。また、この温度計1は、ガス導入管9によって外部保護管2の内部にガスを導入することができ、内部の圧力を任意に調節することができる。さらに、ガス導入管9の上流には、図示しない圧力計が取り付けられており、外部保護管2内部の圧力を観測している。
外部保護管2の開口端は、支持管10に挿入され、外部保護管2と支持管10との接合部にセラミックシール11が充填されて気密状態となっている。さらに、支持管10の先端部と外部保護管2との隙間に樹脂を塗り込むことにより、より一層、気密性を高めることもできる。外部保護管2および支持管10の外周には、最外保護管12が設けられており、最外保護管12は、貫通孔13によって塩化炉内の流動層と連通していて流動層が流入するようになっている。
また、支持管10には、塩化炉に温度計1を固定するためのフランジ14が設けられている。フランジ14は、塩化炉に密着配置させられ、図面においてフランジ14の左側が塩化炉内に挿入され、右側は塩化炉外部に保持される。
上記の構成によれば、支持管10および外部保護管2の内部は外部と気密に保持されるため、その内部にガスを加圧状態に保持しておくことにより、外部保護管2の破損状態を迅速に検知することができる。さらに、外部保護管2は、貫通孔13を有する最外保護管12によって覆われているので、貫通孔13から流入してきた流動層成分は、外部保護管2と最外保護管12との間の空隙に充填される。結果として、流動層成分が外部保護管2に直接激しく衝突することが抑制され、比較的流速の穏やかな状態で接するので、温度計の破損が抑制され、好適である。
The best embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a preferred embodiment of a chlorinating furnace thermometer 1 of the present invention.
Reference numeral 2 denotes an external protective tube 2 that constitutes a container of the thermometer 1. A lid 3 is detachably fitted to the open end of the external protective tube 2, and a gland packing (not shown) that also serves as a thermocouple pressure seal. Is mounted between the outer protective tube 2 and the lid 3 to seal the inside. An internal protective tube 5 is detachably supported inside the external protective tube 2 by a plurality of spacers 4, and an insulating tube 6 is detachably provided inside the internal protective tube 5. A thermocouple is supported inside the insulating tube 6. Here, a thermocouple is a temperature measurement that uses the Seebeck effect that two metal wires of different materials are connected to create a circuit, and a voltage is generated in the circuit when a temperature difference is applied to the two contacts. Of the two contact points to which a temperature difference is given, the temperature detection end 7 welded to the tip of the insulating tube 6 corresponds to the high temperature side, and the low temperature side corresponds to the low temperature side. This is a potential detection end 8 located outside the external protective tube 2 penetrating the lid 3. Further, the thermometer 1 can introduce gas into the external protective tube 2 through the gas introduction tube 9 and can arbitrarily adjust the internal pressure. Further, a pressure gauge (not shown) is attached upstream of the gas introduction pipe 9 to observe the pressure inside the external protective pipe 2.
The open end of the external protective tube 2 is inserted into the support tube 10, and a ceramic seal 11 is filled in a joint portion between the external protective tube 2 and the support tube 10 to form an airtight state. Furthermore, the airtightness can be further improved by applying resin to the gap between the tip of the support tube 10 and the external protective tube 2. An outermost protective tube 12 is provided on the outer periphery of the outer protective tube 2 and the support tube 10, and the outermost protective tube 12 communicates with the fluidized bed in the chlorination furnace through the through hole 13 so that the fluidized bed flows in. It is supposed to be.
The support tube 10 is provided with a flange 14 for fixing the thermometer 1 to the chlorination furnace. The flange 14 is placed in close contact with the chlorination furnace. In the drawing, the left side of the flange 14 is inserted into the chlorination furnace, and the right side is held outside the chlorination furnace.
According to the above configuration, the inside of the support tube 10 and the external protective tube 2 is kept airtight with the outside. Therefore, by maintaining the gas in a pressurized state, the external protective tube 2 is damaged. Can be detected quickly. Furthermore, since the outer protective tube 2 is covered by the outermost protective tube 12 having the through hole 13, the fluidized bed component flowing in from the through hole 13 is between the outer protective tube 2 and the outermost protective tube 12. Is filled in the gap. As a result, the fluidized bed component is prevented from colliding violently directly with the outer protective tube 2 and is in contact with a relatively gentle flow rate.

この温度計1を使用する際は、ガス導入管9から不活性ガスを外部保護管2内に導入して所定の圧力に達したところでガス導入管9を密閉し、図3に示す塩化炉15内に温度計1を挿入する。塩化炉15の側部に設けられた原料ホッパー16から原料であるチタン鉱石およびコークスを塩化炉15内に供給し、塩化炉15の底部より塩素ガスを供給し、続いて、塩化炉15を図示しない加熱手段によって加熱し、塩素化反応を開始する。   When the thermometer 1 is used, an inert gas is introduced into the external protective tube 2 from the gas introduction tube 9 and when the predetermined pressure is reached, the gas introduction tube 9 is sealed, and the chlorination furnace 15 shown in FIG. The thermometer 1 is inserted into the inside. Titanium ore and coke as raw materials are supplied from the raw material hopper 16 provided on the side of the chlorination furnace 15 into the chlorination furnace 15, and chlorine gas is supplied from the bottom of the chlorination furnace 15. Heat by the heating means that does not, start the chlorination reaction.

塩化炉15内に充填されたチタン鉱石およびコークスの流動層17の熱によって外部保護管2が加熱され、熱伝導によって熱電対の温度検出端7が加熱される。そして、加熱された温度検出端7と、温度計1の外部にあって例えば室温等の所定の温度に保たれた電位検出端8との温度差によって2本の電位検出端8間に熱起電力が生じ、この熱起電力の大きさによって塩化炉内部の温度を測定することができる。   The outer protective tube 2 is heated by the heat of the fluidized layer 17 of titanium ore and coke filled in the chlorination furnace 15, and the temperature detection end 7 of the thermocouple is heated by heat conduction. Then, heat is generated between the two potential detection terminals 8 due to a temperature difference between the heated temperature detection terminal 7 and the potential detection terminal 8 outside the thermometer 1 and maintained at a predetermined temperature such as room temperature. Electric power is generated, and the temperature inside the chlorination furnace can be measured by the magnitude of the thermoelectromotive force.

上記のような本発明の温度計によれば、管内部から外管の細孔を通じて常時不活性ガスを塩化炉内に噴出させている従来の温度計とは異なり、加圧状態でガスを外部保護管内に密閉しているので、不活性ガス供給のコストが削減される。また、外管の目詰まりによる塩素ガスおよび四塩化チタンガスの管内への浸入を防止することができる。   According to the thermometer of the present invention as described above, unlike a conventional thermometer in which an inert gas is constantly injected into the chlorination furnace from the inside of the pipe through the pores of the outer pipe, the gas is externally supplied in a pressurized state. Since it is sealed in the protective tube, the cost of supplying the inert gas is reduced. Further, it is possible to prevent chlorine gas and titanium tetrachloride gas from entering the pipe due to clogging of the outer pipe.

熱電対の点検や交換が必要な際には、圧力計を調べて、圧力が極端に低下していないことを確認する。圧力計の指示値が極端に低下していないということは、外部保護管2が破損していないことを意味するため、この場合、ガス供給を停止して、蓋3を外すことにより熱電対の点検および交換を円滑に進めることが可能となる。   When the thermocouple needs to be checked or replaced, check the pressure gauge to make sure that the pressure has not dropped drastically. The fact that the indicated value of the pressure gauge is not extremely lowered means that the external protective tube 2 is not damaged. In this case, the gas supply is stopped and the lid 3 is removed to remove the thermocouple. Inspection and replacement can be carried out smoothly.

本発明に用いる外部保護管2は、塩化炉内部に挿入されてチタン鉱石とコークスの流動層と直に接するため、耐熱性に加えて耐摩耗性が要求される。このような特性は、窒化ケイ素を用いることで充足される。本発明に用いる窒化ケイ素は、外部保護管2として用いるために気密性が要求されるので、できるだけ見かけ密度の大きい材料を選択することが好ましい。窒化ケイ素の真密度は3.2g/cm付近にあることが知られており、この数値を基準にすると3.0g/cm以上の見かけ密度を有する窒化ケイ素を用いることが好ましい。 Since the external protective tube 2 used in the present invention is inserted into the chlorination furnace and directly contacts the fluidized bed of titanium ore and coke, wear resistance is required in addition to heat resistance. Such characteristics are satisfied by using silicon nitride. Since silicon nitride used in the present invention is required to be airtight for use as the outer protective tube 2, it is preferable to select a material having an apparent density as large as possible. It is known that the true density of silicon nitride is in the vicinity of 3.2 g / cm 3 , and it is preferable to use silicon nitride having an apparent density of 3.0 g / cm 3 or more based on this value.

白金系の熱電対が外部保護管2と接触すると断線に至る場合があり好ましくない。このため、熱電対と外部保護管2との間に内部保護管5を配置することが好ましい。内部保護管5は、熱電対の温度検出端7に接触するため、絶縁性を有し、また、塩化炉における塩素化反応温度である1000℃近傍の高温に耐える材料で構成することが好ましい。   If a platinum-based thermocouple comes into contact with the external protective tube 2, disconnection may occur, which is not preferable. For this reason, it is preferable to arrange the internal protective tube 5 between the thermocouple and the external protective tube 2. The inner protective tube 5 is preferably made of a material that can withstand the high temperature of about 1000 ° C., which is a chlorination reaction temperature in a chlorination furnace, because it contacts the temperature detection end 7 of the thermocouple.

内部保護管5はセラミック系の材料を用いることが好ましく、セラミックの純度は高いほど好ましく、またこのセラミックは、高純度アルミナで構成することが好ましい。アルミナの純度は、90%以上が好ましく、98%以上がより好ましいとされる。内部保護管5を構成するセラミックの純度が低いと、内部保護管5に内装される熱電対が内部保護管3に含まれる不純物と反応して断線し寿命を縮める恐れがあるからである。   The inner protective tube 5 is preferably made of a ceramic material, and the higher the purity of the ceramic, the more preferable. The ceramic is preferably made of high-purity alumina. The purity of alumina is preferably 90% or more, and more preferably 98% or more. This is because if the purity of the ceramic constituting the internal protective tube 5 is low, the thermocouple built in the internal protective tube 5 may react with impurities contained in the internal protective tube 3 to disconnect and shorten the life.

絶縁管6は、内部保護管5と同様に、熱電対の短絡を防止することができる絶縁性を有し、しかも塩化炉内の温度である1000℃近傍の高温に耐える材料で構成することが好ましい。このような材質としてはアルミナあるいはマグネシアが好ましい。   As with the internal protective tube 5, the insulating tube 6 has an insulating property that can prevent a thermocouple from being short-circuited, and is made of a material that can withstand a high temperature in the vicinity of 1000 ° C. that is the temperature in the chlorination furnace. preferable. As such a material, alumina or magnesia is preferable.

本発明において、外部保護管2内に保持するガスは特に制限がなく、空気あるいは不活性ガスを用いることができる。ただし、ガス中の水分が多いと熱電対の腐蝕を引き起こし断線の原因になりうるため、ガス中の水分は出来る限り低下させておくことが好ましい。前記ガスとして空気を用いる場合には、空気中の水分量が3g/m〜5g/mの範囲にある乾燥空気を用いることが好ましい。ガスの充填圧力は、大気圧に比べて10KPa〜100KPa程度高めに設定しておくことが望ましい。 In the present invention, the gas held in the external protective tube 2 is not particularly limited, and air or inert gas can be used. However, if there is a large amount of moisture in the gas, it may cause corrosion of the thermocouple and cause disconnection. Therefore, it is preferable to reduce the moisture in the gas as much as possible. When air is used as the gas, it is preferable to use dry air whose moisture content in the air is in the range of 3 g / m 3 to 5 g / m 3 . It is desirable that the gas filling pressure be set higher by about 10 KPa to 100 KPa than the atmospheric pressure.

従来の技術では、塩化炉内測温用温度計は使い捨ての状況にあったが、本発明では、外部保護管2が健在である限り塩化炉の運転を中止することなく、熱電対の交換を円滑に進めることができうるという効果を奏する。   In the conventional technique, the thermometer for measuring the temperature in the chlorination furnace was in a disposable state, but in the present invention, as long as the external protective tube 2 is alive, the thermocouple can be replaced without stopping the operation of the chlorination furnace. There is an effect that it can proceed smoothly.

図2に示すように、温度計をチタン鉱石の塩化炉の流動層内に挿入設置して流動層内の温度測定を行った。流動層の生産量は、2800t−TiCl/月であり、この運転を10ヶ月継続したが、温度計の異常は認められなかった。12ヶ月目に入った時点で温度計の指示値が異常を示したので圧力計13の指示値を確認した後、支持管の蓋を開放して熱電対を新品に交換し、18ヶ月が経過したところで塩化炉の寿命に達して運転を終了した。
As shown in FIG. 2 , a thermometer was inserted and installed in the fluidized bed of a titanium ore chlorination furnace to measure the temperature in the fluidized bed. The production volume of the fluidized bed was 2800 t-TiCl 4 / month, and this operation was continued for 10 months, but no abnormality was observed in the thermometer. At the beginning of the 12th month, the indicated value of the thermometer showed an abnormality. After confirming the indicated value of the pressure gauge 13, the cover of the support tube was opened and the thermocouple was replaced with a new one. At that point, the life of the chlorination furnace was reached and the operation was terminated.

比較例Comparative example

上記特許文献に開示された温度計を用いて同様の試験を実施したが、運転から9ヶ月目で断線したが、塩化炉の操業を停止しない限りは熱電対の交換は不能であり、その後の操業では流動層温度の計測をすることができなくなった。   The same test was performed using the thermometer disclosed in the above patent document, but it was disconnected in the ninth month from the operation, but the thermocouple could not be replaced unless the operation of the chlorination furnace was stopped. The fluidized bed temperature can no longer be measured during operation.

本発明は、チタン鉱石の塩素化用塩化炉の流動層温度をより正確に検知することができ、チタン製造効率に寄与することができる。   The present invention can more accurately detect the fluidized bed temperature of a chlorination furnace for chlorination of titanium ore, and can contribute to titanium production efficiency.

本発明の塩化炉内測温用温度計の実施形態を示す模式断面図である。It is a schematic cross section which shows embodiment of the thermometer for temperature measurement in a chlorination furnace of this invention. 本発明の塩化炉内測温用温度計を塩化炉に設置した状態を示す模式断面図である。It is a schematic cross section which shows the state which installed the thermometer for temperature measurement in a chlorination furnace of this invention in the chlorination furnace.

符号の説明Explanation of symbols

温度計
2 外部保護管
3 蓋
4 スペーサー
5 内部保護管
6 絶縁管
7 熱電対(温度検出端)
8 熱電対(電位検出端)
9 ガス導入管
10 支持管
11 セラミックシール
12 最外保護管
13 貫通孔
14 フランジ
15 塩化炉
16 原料ホッパー
17 流動層
1 thermometer
2 External protective tube
3 lid
4 Spacer
5 Internal protective tube
6 Insulation tube
7 Thermocouple (temperature detection end)
8 Thermocouple (potential detection end)
9 Gas introduction pipe
10 Support tube
11 Ceramic seal
12 outermost protective tube
13 Through hole
14 Flange
15 Chlorination furnace
16 Raw material hopper
17 Fluidized bed

Claims (6)

外部保護管と、外部保護管内にスペーサーを介して挿抜自在に保持された内部保護管と、内部保護管内に挿抜自在に保持された絶縁管と、絶縁管内に保持された熱電対と、上記外部保護管を着脱自在に密封する蓋とを備えた塩化炉内測温用温度計であって、
上記熱電対は、上記蓋を貫通して外部に連通しており、
上記外部保護管および上記蓋で密封された空間内に、ガスが充填され、
さらに、上記外部保護管の外側に最外保護管が配置され、
上記最外保護管は、塩化炉内の反応成分を上記外部保護管と上記最外保護管との間の空間内に流入させ、かつ充填するための貫通孔を有し、
上記最外保護管の開口端が上記外部保護管と密着配置されていることを特徴とする塩化炉内測温用温度計。
An external protective tube, an internal protective tube that is detachably held in the external protective tube via a spacer, an insulating tube that is detachably held in the internal protective tube, a thermocouple that is held in the insulating tube, and the external A thermometer for temperature measurement in a chlorinating furnace provided with a lid for detachably sealing the protective tube,
The thermocouple communicates with the outside through the lid,
Gas is filled in the space sealed by the external protective tube and the lid,
Furthermore, an outermost protective tube is disposed outside the external protective tube,
The outermost protective tube has a through-hole for allowing the reaction components in the chlorination furnace to flow into and fill the space between the outer protective tube and the outermost protective tube,
A thermometer for temperature measurement in a chlorination furnace, wherein an open end of the outermost protective tube is arranged in close contact with the outer protective tube.
前記外部保護管と前記蓋との間には支持管が介在し、前記外部保護管の開口部は前記支持管に接続され、さらに、前記貫通を有する前記最外保護管が前記支持管に接続されていることを特徴とする請求項1に記載の塩化炉内測温用温度計。 A support tube is interposed between the external protective tube and the lid, an opening of the external protective tube is connected to the support tube, and the outermost protective tube having the through hole is connected to the support tube. The thermometer for temperature measurement in a chlorination furnace according to claim 1, wherein the thermometer is connected. 前記外部保護管および前記蓋で密封された空間内に、ガスが加圧状態で充填されていることを特徴とする請求項1に記載の塩化炉内測温用温度計。   The thermometer for temperature measurement in a chlorination furnace according to claim 1, wherein a space sealed by the external protective tube and the lid is filled with gas in a pressurized state. 前記外部保護管が、窒化ケイ素で構成され、前記内部保護管が、セラミック材料で構成されていることを特徴とする請求項1〜3のいずれかに記載の塩化炉内測温用温度計。   The thermometer for temperature measurement in a chlorination furnace according to any one of claims 1 to 3, wherein the outer protective tube is made of silicon nitride, and the inner protective tube is made of a ceramic material. 前記内部保護管を構成するセラミック材料が、アルミナであることを特徴とする請求項4に記載の塩化炉内測温用温度計。   The thermometer for temperature measurement in a chlorination furnace according to claim 4, wherein the ceramic material constituting the inner protective tube is alumina. 前記内部保護管を構成するアルミナの純度が90%以上であることを特徴とする請求項5に記載の塩化炉内測温用温度計。   The thermometer for temperature measurement in a chlorinating furnace according to claim 5, wherein the purity of alumina constituting the internal protective tube is 90% or more.
JP2004361153A 2004-12-14 2004-12-14 Thermometer for temperature measurement in chlorination furnace Active JP5007019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361153A JP5007019B2 (en) 2004-12-14 2004-12-14 Thermometer for temperature measurement in chlorination furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361153A JP5007019B2 (en) 2004-12-14 2004-12-14 Thermometer for temperature measurement in chlorination furnace

Publications (2)

Publication Number Publication Date
JP2006170692A JP2006170692A (en) 2006-06-29
JP5007019B2 true JP5007019B2 (en) 2012-08-22

Family

ID=36671620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361153A Active JP5007019B2 (en) 2004-12-14 2004-12-14 Thermometer for temperature measurement in chlorination furnace

Country Status (1)

Country Link
JP (1) JP5007019B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198934B2 (en) 2008-05-09 2013-05-15 日本特殊陶業株式会社 Temperature sensor
JP5797213B2 (en) * 2013-01-09 2015-10-21 三菱重工業株式会社 probe
JP6343942B2 (en) * 2014-01-20 2018-06-20 山里産業株式会社 Temperature sensor protective tube and temperature measuring device
JP6898128B2 (en) * 2017-03-29 2021-07-07 東邦チタニウム株式会社 Titanium tetrachloride manufacturing equipment and method for manufacturing titanium tetrachloride using this
JP7200041B2 (en) * 2019-04-26 2023-01-06 東邦チタニウム株式会社 Distributor, chlorination furnace, and method for producing metal chloride
CN114046894A (en) * 2021-10-21 2022-02-15 四川江油科星仪表厂 Thermocouple for vacuum furnace capable of preventing thermocouple wire from being polluted

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133540Y2 (en) * 1980-02-26 1986-10-01
JPH0429385Y2 (en) * 1985-12-17 1992-07-16
JPS62123528U (en) * 1986-01-28 1987-08-05
JPS63181831U (en) * 1987-05-12 1988-11-24
JPS63187018U (en) * 1987-05-25 1988-11-30
JPS63300924A (en) * 1987-05-30 1988-12-08 Toshiba Corp Thermoelectric thermometer
JPH0463037U (en) * 1990-10-05 1992-05-29
JPH0572050A (en) * 1991-09-17 1993-03-23 Sumitomo Metal Ind Ltd Accuracy controlling method for thermocouple thermometer
JP2503206Y2 (en) * 1992-09-07 1996-06-26 バブコック日立株式会社 Thermocouple protection tube
JP2507822Y2 (en) * 1992-12-24 1996-08-21 株式会社イナックス Thermocouple deterioration prevention structure in molten metal continuous temperature measuring device
JP3350190B2 (en) * 1993-12-21 2002-11-25 株式会社東芝 Thermocouple device
JP3482426B2 (en) * 1994-09-14 2003-12-22 東邦チタニウム株式会社 Method for producing titanium tetrachloride
JP3592629B2 (en) * 2000-12-08 2004-11-24 日本サーモテック株式会社 Temperature measuring probe

Also Published As

Publication number Publication date
JP2006170692A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
KR101824288B1 (en) Method and system for electrolytically reducing a solid feedstock
US8236234B2 (en) Container for molten metal
JP5007019B2 (en) Thermometer for temperature measurement in chlorination furnace
JP4974351B2 (en) Melting equipment
EP0510701A2 (en) Improved heater arrangement for aluminum refining systems
CN103308192A (en) Device for temperature measurement in metal melts
JP4321824B2 (en) Method and apparatus for monitoring the bottom of melting furnace
US10018419B2 (en) Solids injection lance
JP4103054B2 (en) Aluminum flux brazing method
JP4620503B2 (en) Oxygen concentration sensor
US4462888A (en) Electrode for fusion electrolysis and electrode therefor
KR101276453B1 (en) Electric Furnace
CN102159734B (en) Sidewall and bottom electrode arrangement for electrical smelting reactors and method for feeding such electrodes
USRE32426E (en) Electrode for fused melt electrolysis
CN209178453U (en) A kind of Heating Furnace for titanium sponge test
JP2010025464A (en) Unit for measuring molten material surface level in vertical type furnace and measuring method therefor
KR101258767B1 (en) Monitoring apparatus for refractories abrasion of electric furnace
TWI468521B (en) Method for determinig state of a blast furnace bed
KR101837491B1 (en) Apparatus for hermetically sealing gas sensor in molten metal
Sever et al. Evolution of the Magnetherm Magnesium Reduction Process
CN220602196U (en) Feed inlet structure of fused salt chlorination furnace
JP7264746B2 (en) Molten metal container, container, method for detecting leakage of molten metal, and method for producing titanium sponge.
CN221666984U (en) Detection system of pressure sintering furnace
CN106517737A (en) Top-inserted electrode for hot top kiln
KR101731990B1 (en) Direct Current Arc Furnace for producing Metallurgical Grade Silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5007019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250