JPS6133540Y2 - - Google Patents

Info

Publication number
JPS6133540Y2
JPS6133540Y2 JP2312780U JP2312780U JPS6133540Y2 JP S6133540 Y2 JPS6133540 Y2 JP S6133540Y2 JP 2312780 U JP2312780 U JP 2312780U JP 2312780 U JP2312780 U JP 2312780U JP S6133540 Y2 JPS6133540 Y2 JP S6133540Y2
Authority
JP
Japan
Prior art keywords
pressure
tube
quartz tube
tip
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2312780U
Other languages
Japanese (ja)
Other versions
JPS56126538U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2312780U priority Critical patent/JPS6133540Y2/ja
Publication of JPS56126538U publication Critical patent/JPS56126538U/ja
Application granted granted Critical
Publication of JPS6133540Y2 publication Critical patent/JPS6133540Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、熱電対を用いた溶鋼の凝固過程測
温用のセンサーに関する。
[Detailed Description of the Invention] This invention relates to a sensor for measuring temperature in the solidification process of molten steel using a thermocouple.

均熱炉の最適燃焼制御を行う為には、均熱炉に
投入される鋼塊各部の温度を正確に知る必要があ
るが、溶鋼温度測温用の従来のセンサーは、熱電
対素線をアルミナ保護管で保護しただけのもので
溶鋼凝固時の大きな収縮圧力に耐えることが出来
ずその上鋼浴の中心部測温時の強い循環流に耐え
ることができない為、上記鋼塊各部の温度を実測
することは不可能であつた。
In order to perform optimal combustion control in a soaking furnace, it is necessary to accurately know the temperature of each part of the steel ingot that is fed into the soaking furnace. The temperature of each part of the steel ingot mentioned above cannot withstand the large shrinkage pressure when the molten steel solidifies, nor can it withstand the strong circulation flow when measuring the temperature in the center of the steel bath. It was impossible to actually measure it.

この為、これまでは、実験式やコンピユータモ
デルを用いて凝固過程の溶鋼各部の温度を算出す
る方法が採られていたが、各種係数の選定が面倒
であり、未だ所望精度の温度値を得るに充分な技
法となつていないという問題があつた。
For this reason, conventional methods have been used to calculate the temperature of each part of molten steel during the solidification process using experimental formulas or computer models, but selecting various coefficients is troublesome and it is still difficult to obtain temperature values with the desired accuracy. There was a problem that the technique was not sufficiently developed.

この考案は、上記した従来の問題に鑑みてなさ
れたもので、熱電対保護管を石英管内に引き出し
可能に保持してその先端部を保護すると共にこの
石英管の先端部を除くほゞ全長を炭化硅素が主成
分である耐圧筒内に収める構成とすることによ
り、凝固過程にある溶鋼の温度をも直接に実測す
ることができる凝固過程測温用のセンサーを提供
することを目的とする。
This idea was made in view of the above-mentioned conventional problems, and it protects the tip of the thermocouple protection tube by holding it in a quartz tube so that it can be pulled out, and also protects the tip of the quartz tube. It is an object of the present invention to provide a sensor for temperature measurement during the solidification process that can directly measure the temperature of molten steel in the solidification process by having a structure that is housed in a pressure-resistant cylinder whose main component is silicon carbide.

以下、この考案の一実施例を図について説明す
る。
An embodiment of this invention will be described below with reference to the drawings.

図において、1は熱電対の保護管で高純度アル
ミナで作られており、その先端部に白金−白金ロ
ジユームの熱電対素線2が磁器絶縁管3に通して
収められている。保護管1はその先端部が石英管
4の先端部4aにほゞ達するまで石英管4内に挿
入され、石英管4との間にセラミツクフアイバー
3aを充填して図において上方引き出し可能に保
持されている。5は保護管1の保持部材である。
6は耐圧筒で炭化硅素を主たる成分として作られ
ており、石英管4に外挿され両者間にアルミナセ
メント7を充てんして固着されている。但し石英
管4の先端部4aは耐圧筒6より露出している。
耐圧筒6の壁厚は溶鋼8の凝固圧力に耐える厚さ
を持たせてある。9は耐熱材の筒状の取付け体
で、大径側端部9aで耐圧筒6を受けアルミナセ
メント7と固定具10により両者が連結される。
In the figure, reference numeral 1 denotes a thermocouple protection tube made of high-purity alumina, and a thermocouple wire 2 made of platinum-platinum rhodium is passed through a porcelain insulating tube 3 and housed at its tip. The protection tube 1 is inserted into the quartz tube 4 until its tip almost reaches the tip 4a of the quartz tube 4, and a ceramic fiber 3a is filled between the protective tube 1 and the quartz tube 4, and the protective tube 1 is held so that it can be pulled out upwards as shown in the figure. ing. 5 is a holding member for the protective tube 1.
Reference numeral 6 denotes a pressure-resistant cylinder made of silicon carbide as a main component, which is fitted onto the quartz tube 4 and fixed by filling the space between the two with alumina cement 7. However, the tip 4a of the quartz tube 4 is exposed from the pressure cylinder 6.
The wall thickness of the pressure cylinder 6 is set to be thick enough to withstand the solidification pressure of the molten steel 8. Reference numeral 9 denotes a cylindrical attachment body made of heat-resistant material, which receives the pressure-resistant cylinder 6 at its large-diameter end 9 a and is connected to the alumina cement 7 and a fixture 10 .

以上の構成になるセンサーは、図に示す如く取
付け体9を鋳型11にその内壁側から挿入保持さ
せて溶鋼8内に一部が浸漬される。浸漬に際して
は、湯面と大気との境界部に当る所に断熱剤12
は例えば水ガラス13で固着して温度差による内
部応力の発生を防止すると共にスラグ層における
炭化硅素の化学的不安定性を防止する。保護管1
はその胴部が石英管4と耐圧筒6によつて保護さ
れこの耐圧筒は溶鋼8の凝固圧力に耐える壁厚を
有し、一方先端部が石英管4によつておゝわれて
いるだけだから、溶鋼8の凝固過程が進んでも押
しつぶされにくゝ、たとえ耐圧筒6が破損しても
石英管4がある為、凝固中の溶鋼8の温度を実測
することができる。
In the sensor constructed as described above, the mounting body 9 is inserted and held in the mold 11 from the inner wall side thereof, and a portion thereof is immersed in the molten steel 8, as shown in the figure. During immersion, insulating material 12 is placed at the boundary between the hot water surface and the atmosphere.
is fixed with water glass 13, for example, to prevent the generation of internal stress due to temperature differences and to prevent chemical instability of silicon carbide in the slag layer. Protection tube 1
Its body is protected by a quartz tube 4 and a pressure tube 6, and this pressure tube has a wall thickness that can withstand the solidification pressure of the molten steel 8, while its tip is only covered by the quartz tube 4. Therefore, even if the solidification process of the molten steel 8 progresses, it will not be crushed. Even if the pressure cylinder 6 is damaged, since the quartz tube 4 is present, the temperature of the molten steel 8 during solidification can be actually measured.

凝固が進むと凝固圧力の為にセンサー全体を抜
き取ることができなくなるが、保護管1は石英管
4内に引き出し可能に固定されているから、測温
終了後は保護管1は回収して再使用することがで
きる。鋼塊内に残される耐圧筒6等の一部は鋼塊
から見れば微量でありかつ後工程に悪影響を及ぼ
す成分を有していない。
As solidification progresses, the entire sensor cannot be removed due to solidification pressure, but since the protection tube 1 is fixed in the quartz tube 4 so that it can be pulled out, the protection tube 1 can be collected and reused after temperature measurement. can be used. A portion of the pressure tube 6 and the like left in the steel ingot is a small amount when viewed from the steel ingot, and does not contain any components that would adversely affect subsequent processes.

以上の如く、この考案によれば、石英管内に熱
電対の保護管をおさめ、この石英管の先端部を露
出して他部を、炭化硅素が主成分である耐圧筒で
保護し保護管の先端を石英管の先端部で保護した
から、溶鋼のもつ高温に耐え、耐圧筒の壁厚を適
当にすることによつて溶鋼の凝固圧力に充分耐え
る耐圧とすることができ、しかも保護管は引出し
可能であるから、溶鋼の内部温度をその凝固過程
を含めて直接に連続して実測することができ、従
つて均熱炉の最適燃焼制御に必要な正確な温度値
を簡単に得ることができる。
As described above, according to this invention, a thermocouple protection tube is housed in a quartz tube, the tip of the quartz tube is exposed, and the other part is protected with a pressure-resistant cylinder whose main component is silicon carbide. Since the tip is protected by the tip of the quartz tube, it can withstand the high temperatures of molten steel, and by making the wall thickness of the pressure tube appropriate, it can be made pressure resistant enough to withstand the solidification pressure of molten steel. Because it is removable, it is possible to directly and continuously measure the internal temperature of molten steel, including its solidification process, making it easy to obtain accurate temperature values necessary for optimal combustion control in soaking furnaces. can.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この考案による溶鋼の凝固過程測温用セ
ンサーの一実施例を示す縦断面図である。 図において、1……保護管、2……熱電対素
線、4……石英管、6……耐圧筒。
The figure is a longitudinal cross-sectional view showing an embodiment of a sensor for measuring temperature during the solidification process of molten steel according to this invention. In the figure, 1... protection tube, 2... thermocouple wire, 4... quartz tube, 6... pressure cylinder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱電対を収めた保護管が石英管の先端部まで引
出し可能に挿入され、上記石英管が上記先端部を
除いて、炭化硅素を主成分とする所定壁厚の耐圧
筒内に収められていることを特徴とする溶鋼の凝
固過程測温センサー。
A protective tube containing a thermocouple is inserted so as to be able to be pulled out to the tip of the quartz tube, and the quartz tube, except for the tip, is housed in a pressure-resistant cylinder with a predetermined wall thickness and made of silicon carbide as a main component. A sensor for measuring temperature during the solidification process of molten steel.
JP2312780U 1980-02-26 1980-02-26 Expired JPS6133540Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312780U JPS6133540Y2 (en) 1980-02-26 1980-02-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312780U JPS6133540Y2 (en) 1980-02-26 1980-02-26

Publications (2)

Publication Number Publication Date
JPS56126538U JPS56126538U (en) 1981-09-26
JPS6133540Y2 true JPS6133540Y2 (en) 1986-10-01

Family

ID=29619239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312780U Expired JPS6133540Y2 (en) 1980-02-26 1980-02-26

Country Status (1)

Country Link
JP (1) JPS6133540Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007019B2 (en) * 2004-12-14 2012-08-22 東邦チタニウム株式会社 Thermometer for temperature measurement in chlorination furnace

Also Published As

Publication number Publication date
JPS56126538U (en) 1981-09-26

Similar Documents

Publication Publication Date Title
US4377347A (en) Method for measuring temperature of molten metal received in vessel
EP0758445B1 (en) Drop-in immersion probe
US3709040A (en) Lances for taking samples of molten metal
US3267732A (en) Expendable phase change detector device
CA1209367A (en) Immersion measuring probe for use in molten metals
KR100594485B1 (en) A sampling device for thermal analysis
JPS6133540Y2 (en)
JP2000505549A (en) Method and apparatus for measuring temperature of molten metal in molten metal container
US4355907A (en) Apparatus for picking up a molten test sample of metal or metal alloys and measuring the cooling curve of said sample
JP5299032B2 (en) Continuous temperature measurement method for molten steel
JP2974089B2 (en) Ladle for casting
CZ291424B6 (en) Method to measure an electro-chemical activity, measuring cell and a dipping measuring sensor for executing the method
JP2629392B2 (en) Melt temperature measuring device for induction heating furnace
RU162918U1 (en) DEVICE FOR MEASURING PHYSICAL AND CHEMICAL PARAMETERS AND MELT METAL SAMPLING
JPS59147987A (en) Method and device for measuring temperature
JPH0259629A (en) Continuous temperature measuring instrument for molten metal
JPH0740182Y2 (en) Continuous temperature measuring device
US3505125A (en) Reusable molten metal temperature measuring apparatus
JPH0449881B2 (en)
SU956144A1 (en) Pouring apparatus
JPH0321464Y2 (en)
KR890005503Y1 (en) Checking machine of measurement of temprature
JPS5846692B2 (en) Protection tube for continuous temperature measurement
JP2000241254A (en) Molten metal temperature measuring instrument for steel by continuous casting method
RU2280844C1 (en) Method of inspection of liquid metal level