JP5299032B2 - Continuous temperature measurement method for molten steel - Google Patents

Continuous temperature measurement method for molten steel Download PDF

Info

Publication number
JP5299032B2
JP5299032B2 JP2009088784A JP2009088784A JP5299032B2 JP 5299032 B2 JP5299032 B2 JP 5299032B2 JP 2009088784 A JP2009088784 A JP 2009088784A JP 2009088784 A JP2009088784 A JP 2009088784A JP 5299032 B2 JP5299032 B2 JP 5299032B2
Authority
JP
Japan
Prior art keywords
temperature
molten steel
temperature measuring
refining
protective tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009088784A
Other languages
Japanese (ja)
Other versions
JP2010243171A (en
Inventor
典生 大村
意智 國武
崇宏 柄戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009088784A priority Critical patent/JP5299032B2/en
Publication of JP2010243171A publication Critical patent/JP2010243171A/en
Application granted granted Critical
Publication of JP5299032B2 publication Critical patent/JP5299032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuous measurement of temperature which makes accurate measurement of temperature compatible with suppression of shortening of the lifetime of a temperature sensing element owing to erosion, breakage, etc. of the element, in regard to a method for continuously measuring the temperature of molten steel in a treatment container. <P>SOLUTION: In the method, continuous measurement of the temperature of the molten steel 6 is performed by the temperature sensing element 11 having a thermocouple 12 covered with a protective tube 13. The material of the protective tube 13 is cermet, and the continuous measurement of the temperature is performed by inserting the temperature sensing element 11 into the molten steel 6 through the side wall 5 of a refining container 2 holding the molten steel 6. The outer diameter &phiv; of the temperature sensing element 11 is made 10-50 mm and the projection length L of the element 11 from the inner surface 2a of the refining container 2 is made 50-300 mm. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、溶鋼を収容して精錬等の処理を行う精錬容器内における溶鋼の温度を連続的に測温する方法に関するものである。   The present invention relates to a method for continuously measuring the temperature of molten steel in a refining vessel in which molten steel is accommodated and processing such as refining is performed.

精錬工程での溶鋼の温度制御が不十分な場合、連続鋳造時の鋳造速度が低下することがある。これを回避して生産性向上を図るとともに、精錬工程での過剰な昇熱を回避し無駄なコストを削減するために、精錬工程において、溶鋼の温度制御の精度を向上させることが重要である。   If the temperature control of the molten steel in the refining process is insufficient, the casting speed during continuous casting may decrease. It is important to improve the accuracy of temperature control of molten steel in the refining process in order to avoid this and improve productivity and avoid excessive heating in the refining process and reduce unnecessary costs. .

従来、精錬の最終工程である二次精錬においては、精錬処理中に、溶鋼鍋の内部に、熱電対を備えたプローブを浸漬して測温を行っている。ところが、高温の溶鋼に浸漬されるプローブの浸食が激しく、従来は、測温を間欠的に行い、その測温結果から温度推移を予測して温度調整を行っていた。そのため、データが不連続であり、実際の処理中に、例えば合金添加時や熱の損失などによる温度変化を正確に把握することが困難であり、二次精錬処理後の温度にばらつきが生じる要因となっていた。そのため、温度が管理基準下限値を下回ることによる操業トラブルを起こさないように、過剰な昇熱を行うという無駄が生じていた。   Conventionally, in secondary refining, which is the final step of refining, a probe equipped with a thermocouple is immersed in the molten steel pan during refining processing to measure temperature. However, erosion of the probe immersed in high-temperature molten steel is severe, and conventionally, temperature measurement is intermittently performed, and temperature transition is predicted from the temperature measurement result to adjust the temperature. For this reason, the data is discontinuous, and it is difficult to accurately grasp temperature changes due to, for example, alloy addition or heat loss during actual processing, which causes variations in temperature after secondary refining processing. It was. For this reason, there has been a waste of excessive heating so as not to cause operational troubles due to the temperature falling below the management reference lower limit.

そこで、近年は、耐熱性及び熱伝導性に優れた保護管で熱電対を覆った測温体を溶鋼に浸漬させることによる連続的な溶鋼の測温が行われている。例えば特許文献1に開示されているように、一般には、溶鋼の上方から測温体を浸漬させる方法が知られており、特許文献1には、精錬炉に測定孔を設け、測定孔に測温体を挿入して、精錬炉内の溶鋼を測温する方法が記載されている。   Therefore, in recent years, continuous temperature measurement of molten steel has been performed by immersing a temperature measuring body covering a thermocouple with a protective tube having excellent heat resistance and thermal conductivity in the molten steel. For example, as disclosed in Patent Document 1, a method of immersing a temperature measuring body from above the molten steel is generally known. In Patent Document 1, a measurement hole is provided in a refining furnace, and the measurement hole is measured. A method for measuring the temperature of molten steel in a refining furnace by inserting a warm body is described.

また、特許文献2には、先端をセラミックス製キャップで覆った測温体を炉壁に埋め込み、測温体に急激な溶湯流が当たらないように保護するための堰を設けたものが開示されている。   Patent Document 2 discloses that a temperature measuring body whose tip is covered with a ceramic cap is embedded in a furnace wall, and a weir is provided to protect the temperature measuring body from a sudden molten metal flow. ing.

特開平5−39516号公報JP-A-5-39516 特開平1−167592号公報Japanese Laid-Open Patent Publication No. 1-167592

しかしながら、前記特許文献1では、測定孔が溶湯面よりも上方に設置されているため、測温体を上方から溶湯内に浸漬する際に、溶湯の表面に存在する充填物やスラグによって測温体の表面が被覆され、測温精度が低下する。   However, in Patent Document 1, since the measurement hole is installed above the surface of the molten metal, when the temperature measuring body is immersed in the molten metal from above, the temperature is measured by the filler or slag present on the surface of the molten metal. The body surface is covered, and the temperature measurement accuracy decreases.

また、前記特許文献2は、堰で囲まれた部分を測温するため、高精度な測温結果が得られないという問題がある。   Moreover, since the said patent document 2 measures the temperature enclosed in the weir, there is a problem that a highly accurate temperature measurement result cannot be obtained.

本発明の目的は、処理容器内の溶鋼を連続測温する方法において、高精度な測温と、測温体の浸食および折損等による測温体寿命低下を抑えることとを両立する連続測温方法を提供することにある。   An object of the present invention is a continuous temperature measurement in which a method for continuously measuring the temperature of molten steel in a processing vessel achieves both highly accurate temperature measurement and suppression of a decrease in the life of the temperature measuring element due to erosion or breakage of the temperature measuring element. It is to provide a method.

上記問題を解決するため、本発明は、熱電対を保護管で覆った測温体によりRH真空脱ガス槽である精錬容器内の溶鋼の連続測温を行う方法であって、 前記保護管の材質がサーメットであり、前記測温体を、前記精錬容器の側壁を貫通して前記溶鋼内に挿入し、連続測温を行い、前記測温体の、前記精錬容器の内面からの突出長さが50〜300mmであり、前記測温体先端が前記精錬容器の下部に設けられた浸漬管の上開口部よりも外側に位置することを特徴とする、溶鋼の連続測温方法を提供する。保護管の材質を、熱伝導率が高く耐ヒートショック性が高いサーメットとすることにより、溶鋼内に挿入し続けて連続測温することが可能になる。さらに、精錬容器の側壁から溶鋼内に測温体を挿入することにより、溶湯の表面に存在する充填物やスラグの影響を受けることなく、高精度な測定が行える。また、精錬容器に挿入する測温体が溶損あるいは折損などにより測温不能となった場合等、必要に応じて容易に取り替えることができる構造を有している。
In order to solve the above-mentioned problem, the present invention is a method for continuously measuring the temperature of molten steel in a refining vessel which is an RH vacuum degassing tank by a temperature measuring body in which a thermocouple is covered with a protection tube, material is cermet, said temperature sensing element, wherein through the side wall of the smelting vessel is inserted into the molten steel, have rows continuous temperature measurement, the temperature sensing element, the protruding length from the inner surface of the refining vessel The temperature measuring body tip is located outside the upper opening of a dip tube provided at the lower part of the smelting vessel, and the temperature measuring body tip is located outside the upper opening of the smelting vessel. . By using a cermet with a high thermal conductivity and a high heat shock resistance as the material of the protective tube, it is possible to continuously measure the temperature continuously inserted in the molten steel. Furthermore, by inserting a temperature measuring element into the molten steel from the side wall of the refining vessel, high-precision measurement can be performed without being affected by the filler and slag existing on the surface of the molten metal. In addition, it has a structure that can be easily replaced as necessary when the temperature measuring body inserted into the refining vessel becomes impossible to measure temperature due to melting or breakage.

前記測温体の外径は、10mm〜50mmであることが好ましいまた、前記保護管は、先端に向けて外径が小さくなるテーパ形状を有していてもよい。 The outer diameter of the temperature measuring element is preferably 10 mm to 50 mm . The protective tube may have a tapered shape with an outer diameter that decreases toward the tip.

本発明によれば、精錬処理中の溶鋼を精度良く連続測温できる。それにより、精錬処理における温度制御精度が向上し、生産性の向上が図れる。また、過剰な昇熱が不要となるため精錬時間が短縮され、コスト削減が実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the molten steel in the refining process can be continuously measured with high accuracy. Thereby, temperature control accuracy in the refining process is improved, and productivity can be improved. Moreover, since excessive heating is not required, the refining time is shortened, and the cost can be reduced.

本発明をRH真空脱ガス装置に適用した実施形態を示す断面図であり、(a)は精錬容器、(b)は(a)のA部の拡大図である。It is sectional drawing which shows embodiment which applied this invention to RH vacuum degassing apparatus, (a) is a refining container, (b) is an enlarged view of the A section of (a). 測温体の外径と、測温値の誤差および測温体の寿命との関係を示すグラフである。It is a graph which shows the relationship between the outer diameter of a temperature sensing element, the error of a temperature measurement value, and the lifetime of a temperature sensing element. 測温体の突出長さと、測温値の誤差および測温体の寿命との関係を示すグラフである。It is a graph which shows the relationship between the protrusion length of a temperature sensing element, the error of a temperature measurement value, and the lifetime of a temperature sensing element. 処理時間ごとの、バッチ測温および本発明の連続測温による測定値を示すグラフである。It is a graph which shows the measured value by batch temperature measurement and continuous temperature measurement of this invention for every processing time. 図4のバッチ測温と連続測温との温度誤差率の分布を示すグラフである。It is a graph which shows distribution of the temperature error rate of the batch temperature measurement of FIG. 4, and continuous temperature measurement.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明により溶鋼の連続測温を行う精錬容器の例であり、RH真空脱ガス槽における測温時の状態を示す。溶鋼6を収容した脱ガス槽からなる精錬容器2の外壁は、外側の鉄皮3と、その内側に設けられた耐火物層4により形成されている。取鍋7に収容された溶鋼6は、真空の精錬容器2によって脱ガス処理が行われる。   FIG. 1 is an example of a refining vessel that continuously measures the temperature of molten steel according to the present invention, and shows a state during temperature measurement in an RH vacuum degassing tank. The outer wall of the refining vessel 2 composed of a degassing tank containing the molten steel 6 is formed by an outer iron skin 3 and a refractory layer 4 provided on the inner side. The molten steel 6 accommodated in the ladle 7 is degassed by the vacuum refining vessel 2.

精錬容器2の外側から、精錬容器2の下部の側壁5を貫通して、測温体11が挿入される。測温体11は、図1(b)に示すように、熱電対12を保護管13で覆ったものである。熱電対12は、白金−白金ロジウム合金等、高温で使用してもばらつきや劣化が少ないものが用いられる。保護管13の材質は、耐熱性に優れたサーメットとし、例えば高熱伝導率且つ耐ヒートショック製に優れたモリブデン・ジルコニア(80%Mo−20%ZrO)管などが好ましい。 A temperature sensing element 11 is inserted from the outside of the refining vessel 2 through the lower side wall 5 of the refining vessel 2. As shown in FIG. 1B, the temperature measuring body 11 is a thermocouple 12 covered with a protective tube 13. The thermocouple 12 is a platinum-platinum rhodium alloy or the like that has little variation and deterioration even when used at a high temperature. The material of the protective tube 13 is a cermet having excellent heat resistance, and for example, a molybdenum zirconia (80% Mo-20% ZrO 2 ) tube having high thermal conductivity and excellent heat shock resistance is preferable.

保護管13の外径φは10〜50mm、好ましくは30〜40mmとする。外径φが10mmよりも小さくなると、保護管13が僅かに浸食されただけで熱電対11に影響が及びやすく、測温体11の寿命が短くなる。外径φが50mmよりも大きくなると、熱電対12に浸食が及びにくくなり、測温体11の寿命は長くなるが、溶鋼6と熱電対11との距離が大きくなって測温精度が低下する。また、精錬容器2の内面2aからの測温体11の突出長さLは50〜300mm、好ましくは100〜150mmとする。測温体11の突出長さLは、すなわち溶鋼6への挿入寸法であり、50mmよりも短いと、保護管13の浸食が少なく寿命は長くなるが、測温精度は低下する。突出長さLが300mmよりも長くなると、測温精度は向上するが、浸食が激しく寿命が低下する。   The outer diameter φ of the protective tube 13 is 10 to 50 mm, preferably 30 to 40 mm. When the outer diameter φ is smaller than 10 mm, the thermocouple 11 is easily affected even if the protective tube 13 is slightly eroded, and the life of the temperature measuring element 11 is shortened. When the outer diameter φ is larger than 50 mm, the thermocouple 12 is less likely to be eroded, and the life of the temperature measuring element 11 is prolonged, but the distance between the molten steel 6 and the thermocouple 11 is increased and the temperature measuring accuracy is lowered. . The protruding length L of the temperature measuring element 11 from the inner surface 2a of the refining vessel 2 is 50 to 300 mm, preferably 100 to 150 mm. The protruding length L of the temperature measuring element 11 is an insertion dimension into the molten steel 6, and if it is shorter than 50 mm, the protective tube 13 is less eroded and the life is increased, but the temperature measuring accuracy is lowered. When the protrusion length L is longer than 300 mm, the temperature measurement accuracy is improved, but erosion is severe and the life is shortened.

また、測温体11の容器2への取り付けおよび取り替え時の作業性を良くするために、保護管13は、先端側が細くなるテーパ形状を有していることが好ましい。   Moreover, in order to improve the workability at the time of attaching and replacing the temperature measuring body 11 to the container 2, the protective tube 13 preferably has a tapered shape in which the tip end side is narrowed.

図1に示すように、測温体11の先端部を精錬容器2内の溶鋼6に直接差し込み、精錬容器2の外側に配置されたコネクタ14から測定機器(図示省略)へ接続することにより、脱ガス処理中の溶鋼6の温度をリアルタイムで連続測定することができる。また、図示するように、測温体11が溶鋼6の内部に挿入されることにより、溶湯面に存在する充填物やスラグの影響を受けずに正確に測定できる。そして、保護管の材質、測温体の外径および溶鋼への挿入寸法を上記条件とすることにより、測定精度と寿命とを両立させることができる。   As shown in FIG. 1, by directly inserting the tip of the temperature measuring body 11 into the molten steel 6 in the refining vessel 2 and connecting it to a measuring instrument (not shown) from the connector 14 arranged outside the refining vessel 2, The temperature of the molten steel 6 during the degassing process can be continuously measured in real time. Moreover, as shown in the figure, the temperature measuring element 11 is inserted into the molten steel 6 so that it can be measured accurately without being affected by the filler and slag present on the molten metal surface. And by making the material of a protective tube, the outer diameter of a temperature measuring body, and the insertion dimension into molten steel into the said conditions, it is possible to make measurement accuracy and life compatible.

なお、以上のように例えばモリブデン・ジルコニア製の保護管13を用いても、1500℃を超えた大気中では、8時間程度で激しく酸化し、表層が剥離することがある。精錬容器2内では、処理中の高温の溶鋼6はもちろん、処理を行っていないときにも精錬容器2内の熱を保持するために保熱ガスが用いられるため、測温体11は常に高温にさらされる。したがって、測温体11の酸化を防止するため、測温体11の表面に、モルタルを塗布したり酸化マグネシウム(MgO)を溶射してもよい。   As described above, even when the protective tube 13 made of molybdenum / zirconia, for example, is used, the surface layer may be peeled off intensely in about 8 hours in the atmosphere exceeding 1500 ° C. In the refining vessel 2, since the heat retaining gas is used to keep the heat in the refining vessel 2 not only during the treatment but also in the high-temperature molten steel 6 being treated, the temperature sensing element 11 is always at a high temperature. Exposed to. Therefore, in order to prevent oxidation of the temperature measuring element 11, mortar may be applied to the surface of the temperature measuring element 11, or magnesium oxide (MgO) may be sprayed.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本発明をRH真空脱ガス処理に適用し、測温体の外径を変えて、精錬反応中の溶鋼の温度をリアルタイムで測温し、測温精度および測温体の寿命を調査した。測温体の外径は、5mm、10mm、20mm、30mm、40mm、50mm、60mm、70mmの8種類とした。結果を図2に示す。なお、実用に際して好ましい測温体の寿命を20チャージ以上と設定した。また、好ましい測温精度は、バッチ測温による測定結果との誤差が5℃以下と設定した。   The present invention was applied to the RH vacuum degassing treatment, and the temperature of the molten steel during the refining reaction was measured in real time by changing the outer diameter of the temperature measuring body, and the temperature measuring accuracy and the life of the temperature measuring body were investigated. The outer diameter of the temperature measuring element was 8 types of 5 mm, 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, and 70 mm. The results are shown in FIG. In addition, the lifetime of the temperature sensing element preferable for practical use was set to 20 charges or more. The preferred temperature measurement accuracy was set such that the error from the measurement result by batch temperature measurement was 5 ° C. or less.

図2に示すように、測温体の外径が5mmの場合には、寿命が著しく低下した。また、外径が60mm、70mmの場合には、測温体の寿命は向上するが、測温誤差が極めて大きくなった。測温値の誤差が5℃以下、測温体の寿命が20チャージ以上の両方の条件を満たすのは、本発明の通り、測温体の外径が10mmから50mmの範囲であった。   As shown in FIG. 2, when the outer diameter of the temperature measuring element was 5 mm, the life was significantly reduced. When the outer diameter was 60 mm or 70 mm, the life of the temperature measuring element was improved, but the temperature measuring error was extremely large. The temperature measuring object has an error of 5 ° C. or less and the temperature measuring element has a life of 20 charges or more, as in the present invention, when the outer diameter of the temperature measuring element is in the range of 10 mm to 50 mm.

本発明をRH真空脱ガス処理に適用し、測温体の容器内面からの突出長さ、すなわち溶鋼への挿入寸法を変えて、精錬反応中の溶鋼温度をリアルタイムで測温し、測温精度および測温体の寿命を調査した。測温体の突出長さは、30mm、50mm、100mm、120mm、150mm、200mm、250mm、300mm、400mmの9種類とした。結果を図3に示す。   The present invention is applied to the RH vacuum degassing process, and the length of the temperature measuring body protruding from the inner surface of the container, that is, the insertion dimension into the molten steel is changed, and the temperature of the molten steel during the refining reaction is measured in real time. And the lifetime of the temperature sensor was investigated. The protruding lengths of the temperature measuring elements were nine types of 30 mm, 50 mm, 100 mm, 120 mm, 150 mm, 200 mm, 250 mm, 300 mm, and 400 mm. The results are shown in FIG.

図3に示すように、突出長さが増すほど測温体の寿命が低下し、400mmの場合には、著しく寿命が低下した。また、突出長さが短いと測温体の寿命は向上するが、30mmの場合には測温誤差が極めて大きくなった。実施例1と同様に、実用に際して好ましい測温値の誤差を5℃以下、測温体の寿命を20チャージ以上と設定すると、両方の条件を満たすのは、本発明の通り、測温体の突出長さが50mmから300mmの範囲であった。   As shown in FIG. 3, the life of the temperature measuring element decreases as the protrusion length increases. In the case of 400 mm, the life significantly decreases. Further, when the protrusion length is short, the life of the temperature measuring element is improved, but when it is 30 mm, the temperature measuring error becomes extremely large. As in Example 1, when the temperature measurement error preferred for practical use is set to 5 ° C. or less and the lifetime of the temperature measuring device is set to 20 charges or more, both conditions are satisfied according to the present invention. The protruding length was in the range of 50 mm to 300 mm.

測温体の保護管として、モリブデン・ジルコニア(80%Mo−20%Zr)管を使用し、実施例1、2等の結果等より、RH真空脱ガス槽において、測温体の外径φ=32mm、測温体の容器内への突出長さL=120mmが好適であることを見出し、この条件で、溶鋼の連続測温を実施した。さらに、測温体にモルタル塗布およびMgO溶射を行い、測温体の耐酸化性の向上を図った。   Using a molybdenum / zirconia (80% Mo-20% Zr) tube as a temperature measuring tube, and from the results of Examples 1 and 2, etc., in the RH vacuum degassing tank, the outer diameter φ of the temperature measuring device = 32 mm and the length L = 120 mm of the temperature measuring element protruding into the container was found to be suitable, and under these conditions, continuous temperature measurement of the molten steel was performed. Furthermore, mortar application and MgO spraying were performed on the temperature sensing element to improve the oxidation resistance of the temperature sensing element.

比較値としてバッチ測温を行い、バッチ測温値Tbに対する、本発明にかかる連続測温値Tとバッチ測温値Tbとの差で表す温度誤差率((T−Tb)/Tb×100)を算出した。温度誤差の目標値を5℃以内とし、これを1600℃時の温度誤差率で表すと、0.31%となる。図4に、処理時間ごとの連続測温とバッチ測温の測定値を、図5に、温度誤差率の分布を示す。   Batch temperature measurement is performed as a comparison value, and the temperature error rate ((T−Tb) / Tb × 100) expressed by the difference between the continuous temperature measurement value T according to the present invention and the batch temperature measurement value Tb with respect to the batch temperature measurement value Tb. Was calculated. When the target value of the temperature error is 5 ° C. or less and this is expressed as a temperature error rate at 1600 ° C., it becomes 0.31%. FIG. 4 shows measured values of continuous temperature measurement and batch temperature measurement for each processing time, and FIG. 5 shows a distribution of temperature error rates.

図4に示すように、バッチ測温と連続測温の測定は極めて近似しており、連続測温によって、リアルタイムで正確に測温できた。また、温度誤差率の平均は0.18%であり、目標値の0.31%以下を実現できた。なお、バッチ測温40回における標準偏差は0.11%であった。このように、本発明によって、精錬反応中の溶鋼の温度を、リアルタイムで連続的に精度良く測温できた。   As shown in FIG. 4, the batch temperature measurement and the continuous temperature measurement are very similar, and the temperature measurement can be accurately performed in real time by the continuous temperature measurement. The average temperature error rate was 0.18%, which was 0.31% or less of the target value. The standard deviation at 40 batch temperature measurements was 0.11%. Thus, according to the present invention, the temperature of the molten steel during the refining reaction can be measured continuously and accurately in real time.

本発明は、精錬容器における溶鋼の連続測温のみならず、溶鋼以外の溶融金属の精錬容器に適用できる。   The present invention can be applied not only to continuous temperature measurement of molten steel in a refining vessel, but also to a refining vessel for molten metal other than molten steel.

2 精錬容器
3 鉄皮
4 耐火物層
5 側壁
6 溶鋼
11 測温体
12 熱電対
13 保護管
14 コネクタ
L 突出長さ
φ 外径
2 Refining vessel 3 Iron skin 4 Refractory layer 5 Side wall 6 Molten steel 11 Temperature sensor 12 Thermocouple 13 Protective tube 14 Connector L Projection length φ Outer diameter

Claims (3)

熱電対を保護管で覆った測温体によりRH真空脱ガス槽である精錬容器内の溶鋼の連続測温を行う方法であって、
前記保護管の材質がサーメットであり、前記測温体を、前記精錬容器の側壁を貫通して前記溶鋼内に挿入し、連続測温を行い、
前記測温体の、前記精錬容器の内面からの突出長さが50〜300mmであり、前記測温体先端が前記精錬容器の下部に設けられた浸漬管の上開口部よりも外側に位置することを特徴とする、溶鋼の連続測温方法。
A method for continuously measuring the temperature of molten steel in a refining vessel, which is an RH vacuum degassing tank, with a temperature measuring body covering a thermocouple with a protective tube,
The material of the protective tube is cermet, said temperature sensing element, wherein through the side wall of the smelting vessel is inserted into the molten steel, have rows continuous temperature measurement,
The temperature measuring body has a protruding length from the inner surface of the refining vessel of 50 to 300 mm, and the temperature measuring body tip is located outside the upper opening of a dip tube provided at the lower portion of the refining vessel. characterized in that the continuous temperature measuring method of the molten steel.
前記測温体の外径が10mm〜50mmであることを特徴とする、請求項1に記載の溶鋼の連続測温方法。 2. The continuous temperature measuring method for molten steel according to claim 1, wherein an outer diameter of the temperature measuring element is 10 mm to 50 mm. 前記保護管は、先端に向けて外径が小さくなるテーパ形状を有していることを特徴とする、請求項1又は2に記載の溶鋼の連続測温方法。The molten steel continuous temperature measuring method according to claim 1, wherein the protective tube has a tapered shape whose outer diameter decreases toward the tip.
JP2009088784A 2009-04-01 2009-04-01 Continuous temperature measurement method for molten steel Active JP5299032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088784A JP5299032B2 (en) 2009-04-01 2009-04-01 Continuous temperature measurement method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088784A JP5299032B2 (en) 2009-04-01 2009-04-01 Continuous temperature measurement method for molten steel

Publications (2)

Publication Number Publication Date
JP2010243171A JP2010243171A (en) 2010-10-28
JP5299032B2 true JP5299032B2 (en) 2013-09-25

Family

ID=43096347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088784A Active JP5299032B2 (en) 2009-04-01 2009-04-01 Continuous temperature measurement method for molten steel

Country Status (1)

Country Link
JP (1) JP5299032B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101450651B1 (en) * 2013-11-27 2014-10-15 우진 일렉트로나이트(주) Continuous Temperature Sensor and RH apparatus including it
WO2021106441A1 (en) * 2019-11-29 2021-06-03 Jfeスチール株式会社 Operation method of ladle refining process
CN113237564A (en) * 2021-05-07 2021-08-10 北京理工大学 High-temperature thermocouple multi-point temperature measurement clamp for ablation examination
CN114150200B (en) * 2021-11-25 2023-02-07 北京首钢股份有限公司 Protective tube and application and temperature measuring device thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4519919Y1 (en) * 1970-01-13 1970-08-11
JPH08136352A (en) * 1994-11-08 1996-05-31 Tokyo Yogyo Co Ltd Continuous immersion type thermometer
JPH08320263A (en) * 1995-05-24 1996-12-03 Tokyo Yogyo Co Ltd Molten metal vessel and metal melting furnace having molten metal temperature measuring probe
JPH09111330A (en) * 1995-10-17 1997-04-28 Sumitomo Metal Ind Ltd Molten steel temperature raising method in ladle refining apparatus

Also Published As

Publication number Publication date
JP2010243171A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
US9829385B2 (en) Container for molten metal, use of the container and method for determining an interface
US8071012B2 (en) Temperature measuring device
CA2807856C (en) Device for measuring the temperature in molten metal
JP5299032B2 (en) Continuous temperature measurement method for molten steel
JP2000035364A (en) Device for continuous temperature-measurement of melted metal device
JP7303804B2 (en) Immersion sensor for determining chemical composition of molten metal
KR101998726B1 (en) Apparatus for processing molten metal
JP2011099840A (en) Continuous temperature measurement probe for ladle
JP6077636B1 (en) Oxygen sensor and method for manufacturing oxygen sensor
US20070145651A1 (en) Submerged sensor in a metallurgical vessel
JP5463374B2 (en) Gas blowing nozzle
JPH03248026A (en) Thermocouple protecting pipe characterized by high corrosion resistance for measuring temperature of molten iron
JP5082035B2 (en) Molten metal temperature measuring device and temperature measuring method
JP2010190791A (en) Temperature measurement probe for measuring temperature of molten steel in tundish
JP6196907B2 (en) Temperature measuring probe
CN116399461A (en) Continuous temperature measurement probe and fixing structure thereof
JP2005241394A (en) Temperature measurement probe for molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5299032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350