JP5005712B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5005712B2
JP5005712B2 JP2009022446A JP2009022446A JP5005712B2 JP 5005712 B2 JP5005712 B2 JP 5005712B2 JP 2009022446 A JP2009022446 A JP 2009022446A JP 2009022446 A JP2009022446 A JP 2009022446A JP 5005712 B2 JP5005712 B2 JP 5005712B2
Authority
JP
Japan
Prior art keywords
light
led
blue
emitting device
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009022446A
Other languages
Japanese (ja)
Other versions
JP2010182724A (en
Inventor
卓生 村井
明日美 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009022446A priority Critical patent/JP5005712B2/en
Publication of JP2010182724A publication Critical patent/JP2010182724A/en
Application granted granted Critical
Publication of JP5005712B2 publication Critical patent/JP5005712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光ダイオード(LED;Lighting Emitting Diode)を用いた照明器具や表示器具に適用可能な発光装置に関するものである。   The present invention relates to a light-emitting device applicable to a lighting fixture or a display fixture using a light-emitting diode (LED).

これまでLEDを用いた白色光源や色可変光源に係わる手法が多く提案されており、その中で白色領域での色温度を変えることを目的としたものも少なくない。代表的なものとしては、RGBの単色3種LEDチップを用い、各々のチップ出力を変えることで色可変とする構成のものがよく知られている。ただし、この場合には、各チップが狭波長域での発光となるため、連続的波長分布を得ることが難しく演色性は良好とは言えなかった。また、演色性をあげるために、複数の単色光のLEDチップを用いた複数色の混合をとる照明光源が提案されているが(例えば、特許文献1参照)、調色や光色安定性の面で制御回路が複雑化し、また空間的に色分離しやすく混色性(色均一性)で課題があった。   Many methods related to white light sources and color variable light sources using LEDs have been proposed so far, and many of them are intended to change the color temperature in the white region. As a typical one, a configuration in which RGB single-color three-type LED chips are used and the colors are variable by changing the output of each chip is well known. However, in this case, since each chip emits light in a narrow wavelength region, it is difficult to obtain a continuous wavelength distribution, and color rendering is not good. In order to improve color rendering, an illumination light source that uses a plurality of single-color LED chips to mix a plurality of colors has been proposed (see, for example, Patent Document 1). The control circuit is complicated in terms of color, and it is easy to separate colors spatially, and there is a problem in color mixing (color uniformity).

一方、そのような課題に対して、白色LED(青色LEDと、青色LEDに励起発光する黄色系蛍光体を組合せた構成のもの)を用い、ある程度幅広い連続波長を持たせ、それに緑LEDや赤LEDを加える方式のものも提案されている(例えば、特許文献2、3参照)。特許文献2では、簡単な構成により、発光色の異なるLEDの光束比を変化させて混色し、相関色温度を任意に変化させることができ、完全放射体の色温度軌跡、またはCIE昼光の軌跡とほぼ等しい色温度可変LED光源モジュールを提供するとしている。また、特許文献3では、黒体放射軌跡との偏差が大きくなることを抑制し、色温度を変化させることが可能な可変色の照明装置を提供するとしている。   On the other hand, for such a problem, a white LED (a combination of a blue LED and a yellow phosphor that excites and emits light to the blue LED) is used to give a wide continuous wavelength to some extent, and a green LED or red A method of adding an LED has also been proposed (see, for example, Patent Documents 2 and 3). In Patent Document 2, with a simple configuration, the luminous flux ratios of LEDs with different emission colors can be changed and mixed, and the correlated color temperature can be changed arbitrarily. The color temperature locus of a complete radiator, or CIE daylight A color temperature variable LED light source module substantially equal to the trajectory is provided. Further, Patent Document 3 provides a variable color lighting device that can suppress a deviation from a black body radiation locus and can change a color temperature.

特開2006−261702号公報(第8−9頁、図4,図5)Japanese Patent Laying-Open No. 2006-261702 (page 8-9, FIGS. 4 and 5) 特開2002−270899号公報(第2−3頁、図1,図5)JP 2002-270899 A (page 2-3, FIGS. 1 and 5) 特開2008−160061号公報(第5−7頁、図1)Japanese Patent Laying-Open No. 2008-160061 (page 5-7, FIG. 1)

前述した特許文献2、3に記載の従来技術では、目的とする白色の色温度に光色を変えようとする場合に、構成要素である白色LEDの調光が必要となる。しかしながら、その際、白色LEDは青色LEDチップ上にそれに励起発光する黄色系蛍光体混合材用を被覆した構成であるため、青色LEDチップの発光強度に比例し蛍光体の発光強度が変化する。したがって、青色LEDチップの調光により青色LEDチップのピーク波長が変動し、若干、分光スペクトルの形状や色度変化を与えるものの、白色LEDの発光が極端な青色光や黄色光を呈することはない。   In the conventional techniques described in Patent Documents 2 and 3 described above, when the light color is to be changed to the target white color temperature, dimming of the white LED as a component is required. However, at that time, the white LED has a configuration in which a blue LED chip is coated with a yellow phosphor mixed material that excites and emits light. Therefore, the emission intensity of the phosphor changes in proportion to the emission intensity of the blue LED chip. Therefore, although the peak wavelength of the blue LED chip fluctuates due to the dimming of the blue LED chip and slightly changes the shape and chromaticity of the spectral spectrum, the light emission of the white LED does not exhibit extreme blue light or yellow light. .

一方、白色光の高演色化にはJIS 規格により白色合成光の分光波形を、完全放射体の分光波形(5000K以下の低色温度白色)、あるいは国際照明委員会の定めたCIE昼光の分光波形(5000K以上の高色温度白色)に近似させることが不可欠である。即ち、およそのところ、低色温度では短波長から長波長にかけ連続的に相対分光強度を高めること、また、高色温度では短波長から長波長にかけ連続的に相対分光強度を弱くする必要がある。それに対して、この従来技術によれば白色LEDの青色領域の発光成分と黄色系の中間波長領域の発光成分との強度を個別に制御できず、色温度変更時に色温度の高低に応じた理想の高演色の白色光に近づけるための分光波形を作り出すことができなかった。   On the other hand, for higher color rendering of white light, the spectral waveform of the white synthesized light according to the JIS standard, the spectral waveform of the perfect radiator (low color temperature white of 5000K or less), or the CIE daylight spectrum determined by the International Lighting Commission It is essential to approximate the waveform (high color temperature white above 5000K). That is, it is necessary to increase the relative spectral intensity continuously from a short wavelength to a long wavelength at a low color temperature, and to decrease the relative spectral intensity continuously from a short wavelength to a long wavelength at a high color temperature. . On the other hand, according to this conventional technology, the intensity of the light emitting component in the blue region and the light emitting component in the yellow intermediate wavelength region of the white LED cannot be individually controlled, and the ideal according to the level of the color temperature when the color temperature is changed. It was not possible to create a spectral waveform to approximate the high color rendering white light.

つまり、従来技術においては、色温度調整しようとする場合、白色LEDの特性で決まる青色領域の発光強度と中間領域の発光強度との比がおよそ一定のまま、その他の緑LEDや赤色LEDなどの調光によって所望の光色を得ていた。そのような手法でも中間波長の領域を有しているため極端に光質(演色性)が悪くならないにせよ、昼光色〜電球色領域の幅広い白色領域で色温度可変とする場合、前述した演色性評価の基準光の少なくとも完全放射体分光、あるいはCIE 昼光分光の一方との波形の差異が大きくなり、広い白色範囲全般で高演色性を維持できないという課題があった。   In other words, in the prior art, when the color temperature is to be adjusted, the ratio of the emission intensity of the blue region determined by the characteristics of the white LED and the emission intensity of the intermediate region remains approximately constant, and other green LEDs, red LEDs, etc. The desired light color was obtained by dimming. Even if such a method has an intermediate wavelength region, the color rendering property described above is used when the color temperature is variable in a wide white region from daylight to light bulb color, even though the light quality (color rendering) does not deteriorate extremely. The difference in the waveform of at least the complete radiator spectrum of the reference light for evaluation or one of the CIE daylight spectrum became large, and there was a problem that high color rendering properties could not be maintained over a wide white range.

本発明は、前記のような課題を解決するためになされたもので、少なくともJIS 照明白色領域で高い演色性を維持し、色温度可変とする発光効率のよいLED白色色温度の可変が可能な発光装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and maintains a high color rendering property at least in the JIS illumination white region and can change the white color temperature of the LED with good light emission efficiency by making the color temperature variable. An object is to obtain a light emitting device.

本発明に係る発光装置は、少なくとも発光強度が最大となる波長が同じの3つの青色LEDと、橙色または赤色の光を発する赤色系LEDと、3つの青色LEDのうち1つの青色LEDと赤色系LEDが対角線上に位置するように3つの青色LEDと赤色系LEDが2×2配列されていると共に、少なくとも赤色系LEDと対角線上に位置する青色LEDと他のLEDとの間に、互いに光が入射しないようにリブが設けられたパッケージと、赤色系LEDと対角線上に位置する青色LEDを除く2つの青色LEDを封止し、その青色LEDの光により励起して青色波長と赤色波長との中間波長領域の発光色を呈する蛍光材料とを備え、色度座標における蛍光材料の色度点と、赤色系LEDの色度点と、青色LEDの色度点とを結んだ直線で囲まれる領域が、少なくともJIS Z9112で規定される蛍光ランプ光源色の色度範囲の5つの四辺形領域の一部を含んでいる。 The light emitting device according to the present invention includes at least three blue LEDs having the same wavelength with the maximum emission intensity, a red LED that emits orange or red light, and one blue LED and a red one of the three blue LEDs. Two blue LEDs and a red LED are arranged 2 × 2 so that the LEDs are located diagonally, and at least the red LED, the blue LED located diagonally and the other LEDs are mutually light The package is provided with ribs so as not to be incident, and the red LED and the two blue LEDs excluding the blue LED located on the diagonal line are sealed, and excited by the light of the blue LED, the blue wavelength and the red wavelength A fluorescent material exhibiting a light emission color in the intermediate wavelength region, and surrounded by a straight line connecting the chromaticity point of the fluorescent material in the chromaticity coordinates, the chromaticity point of the red LED, and the chromaticity point of the blue LED Region will contain a portion of the five quadrilateral region of the fluorescent lamp light source color chromaticity range defined by at least JIS Z9112.

本発明によれば、3つの青色LEDのうち1つの青色LEDと赤色系LEDが対角線上に位置するように3つの青色LEDと赤色系LEDが2×2配列されていると共に、少なくとも赤色系LEDと対角線上に位置する青色LEDと他のLEDとの間に、互いに光が入射しないようにリブを設けている。これにより、赤色系LEDと対角線上に位置する青色LEDからの光が、残りの2つの青色LEDへの入射を防止することができ、演色性の質の低下を抑えることができる。また、赤色系LEDと対角線上に位置する青色LEDの発光強度と、蛍光材料が封止された2つの青色LEDによる中間波長の発光強度とを独立して制御が可能となり、そのため、高演色性を維持して低色温度〜高色温度までの広い範囲で発光効率のよい色可変の発光装置を得ることができる。 According to the present invention, two blue LEDs and a red LED are arranged 2 × 2 so that one of the three blue LEDs and the red LED are located diagonally, and at least the red LED A rib is provided between the blue LED located on the diagonal line and the other LED so that light does not enter each other. Thereby, the light from the blue LED located diagonally to the red LED can be prevented from entering the remaining two blue LEDs, and the deterioration of the color rendering property can be suppressed. In addition, it is possible to independently control the light emission intensity of the blue LED located diagonally with the red LED and the light emission intensity of the intermediate wavelength by the two blue LEDs sealed with the fluorescent material . Thus, it is possible to obtain a color-variable light-emitting device with good luminous efficiency in a wide range from low color temperature to high color temperature.

本発明の実施の形態1に係る発光装置の構成を示す平面図及び断面図である。It is the top view and sectional drawing which show the structure of the light-emitting device concerning Embodiment 1 of this invention. 実施の形態1の他の形態を示す発光装置の平面図及び断面図である。FIG. 6 is a plan view and a cross-sectional view of a light-emitting device showing another embodiment of the first embodiment. 実施の形態1に係る発光装置の発光スペクトルと低・高色温度領域のJIS標準光源スペクトルを示す図である。It is a figure which shows the emission spectrum of the light-emitting device which concerns on Embodiment 1, and the JIS standard light source spectrum of a low and high color temperature area | region. 実施の形態1に用いる短波長LEDチップの励起蛍光体の色度範囲を示す図である。4 is a diagram illustrating a chromaticity range of an excitation phosphor of a short wavelength LED chip used in Embodiment 1. FIG. 図3の発光スペクトルによる合成白色例(3000K,6500K)を示す図である。It is a figure which shows the synthetic | combination white example (3000K, 6500K) by the emission spectrum of FIG. 実施の形態1の他の形態を示す発光装置の平面図及び断面図である。FIG. 6 is a plan view and a cross-sectional view of a light-emitting device showing another embodiment of the first embodiment. 実施の形態1の他の形態を示す発光装置の断面図である。6 is a cross-sectional view of a light-emitting device showing another embodiment of Embodiment 1. FIG. 実施の形態1の他の形態における発光装置の発光スペクトルを示す図である。FIG. 6 shows an emission spectrum of the light-emitting device according to another embodiment of the first embodiment. 図8の発光スペクトルによる合成白色例(3000K )を示す図である。It is a figure which shows the synthetic | combination white example (3000K) by the emission spectrum of FIG. 実施の形態1の他の形態を示す発光装置の断面図である。6 is a cross-sectional view of a light-emitting device showing another embodiment of Embodiment 1. FIG. 実施の形態1の発光装置におけるセンシング及び調光制御のブロック図である。3 is a block diagram of sensing and dimming control in the light emitting device of Embodiment 1. FIG. LEDパッケージを複数個配列して示す発光装置の平面図である。It is a top view of the light-emitting device which shows and arranges a plurality of LED packages. 本発明の実施の形態2に係る発光装置の構成を示す平面図及び断面図である。It is the top view and sectional drawing which show the structure of the light-emitting device concerning Embodiment 2 of this invention. 実施の形態2における発光装置の発光スペクトルを示す図である(青色LEDチップ励起の狭帯域発光の赤色蛍光体を利用)。It is a figure which shows the emission spectrum of the light-emitting device in Embodiment 2 (utilizing the red fluorescent substance of the narrow band light emission of blue LED chip excitation). 実施の形態2における発光装置の発光スペクトルを示す図である(青色LEDチップ励起の広帯域発光の赤色蛍光体を利用)。It is a figure which shows the light emission spectrum of the light-emitting device in Embodiment 2 (utilizing the red fluorescent substance of the blue light emitting diode-excited broadband light emission). 実施の形態2の他の形態における発光装置の発光スペクトルを示す図である(近紫外LEDチップ励起の狭帯域発光の赤色蛍光体を利用)。It is a figure which shows the light emission spectrum of the light-emitting device in the other form of Embodiment 2 (utilizing the near-ultraviolet LED chip excitation narrow band light emission red fluorescent substance). 実施の形態2の発光装置におけるセンシング及び調光制御のブロック図である。6 is a block diagram of sensing and dimming control in the light emitting device of Embodiment 2. FIG. 本発明の実施の形態3に係る発光装置の構成を示す平面図及び断面図である。It is the top view and sectional drawing which show the structure of the light-emitting device concerning Embodiment 3 of this invention. 実施の形態3における発光装置の発光スペクトルを示す図である。FIG. 10 shows an emission spectrum of the light-emitting device in Embodiment 3. 実施の形態3の他の形態における発光装置の発光スペクトルを示す図である。FIG. 13 shows an emission spectrum of a light-emitting device according to another embodiment of the third embodiment. 実施の形態3の発光装置におけるセンシング及び調光制御のブロック図である。6 is a block diagram of sensing and dimming control in the light emitting device of Embodiment 3. FIG.

実施の形態1.
以下、本発明の実施の形態について図面を参照しながら説明する。
図1は本発明の実施の形態1に係る発光装置の構成を示す平面図及び断面図である。
図1において、パッケージ基板1には、青色光を発する青色LEDチップ4(青色発光素子)と、青色光、近紫外光、あるいは紫外光を発する2つの短波長LEDチップ2(短波長発光素子)と、赤色光を発する赤色LEDチップ3(長波長発光素子)とが実装されている。このパッケージ基板1は、セラミックス、金属などの高熱伝導材料、あるいはチップ発熱に耐えられる耐熱性樹脂材料などで構成されている。なお、LEDの自己発熱による発光効率の低下防止、及びその熱を効率よくパッケージ外部へ伝達するために、それら材料を組み合わせた構成としてもよい。また、パッケージ基板1は、LEDを実装するLED実装基板であり、その内側表面には、光反射効率を高めるために、塗装、メッキ、蒸着などにより拡散あるいは鏡面性の高反射面が形成されている。
Embodiment 1 FIG.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B are a plan view and a cross-sectional view showing a configuration of a light emitting device according to Embodiment 1 of the present invention.
In FIG. 1, a package substrate 1 includes a blue LED chip 4 (blue light emitting element) that emits blue light and two short wavelength LED chips 2 (short wavelength light emitting elements) that emit blue light, near ultraviolet light, or ultraviolet light. And the red LED chip 3 (long wavelength light emitting element) which emits red light is mounted. The package substrate 1 is made of a high heat conductive material such as ceramics or metal, or a heat resistant resin material that can withstand chip heat generation. In addition, it is good also as a structure which combined those materials in order to prevent the luminous efficiency fall by the self-heating of LED, and to transmit the heat | fever efficiently to the exterior of a package. The package substrate 1 is an LED mounting substrate on which LEDs are mounted. On the inner surface thereof, a diffusion or specular high reflection surface is formed by painting, plating, vapor deposition, or the like, in order to increase light reflection efficiency. Yes.

また、パッケージ基板1の内側には、図1には示していないが、パッケージ基板1の外側に通じる複数種のLEDを各々独立に制御可能な導電路が形成されており、フェースアップLEDチップがダイボンドされた後、LEDチップに通電可能となるようにワイヤボンド接続されている。各LEDチップ2、3、4は、フリップチップタイプでもよい。その場合、金属バンプなどで導電路と接続、またはサブマウントに一度実装した後、それをワイヤボンドで接続した構成とする。なお、これ以降、パッケージ基板1に各LEDチップを実装し、LEDチップを樹脂封止した構成のものをLEDパッケージ7と呼ぶこととする。   Although not shown in FIG. 1, a conductive path capable of independently controlling a plurality of types of LEDs that communicate with the outside of the package substrate 1 is formed inside the package substrate 1. After die bonding, the LED chip is wire-bonded so that it can be energized. Each LED chip 2, 3, 4 may be a flip chip type. In that case, after connecting with a conductive path with a metal bump or the like, or once mounted on a submount, it is connected with a wire bond. Hereinafter, a configuration in which each LED chip is mounted on the package substrate 1 and the LED chip is resin-sealed will be referred to as an LED package 7.

図1に示すLEDパッケージ7では、各LEDチップ2、3、4を囲むようにリブ8が設けられており、隣り合うLEDチップの発光が互いに干渉することのないように配慮している。なお、リブ8で囲まれた各領域をキャビティと呼ぶことにする。短波長LEDチップ2が実装されたキャビティ内を黄〜緑系蛍光体樹脂5で封止し、その他のLEDチップ3、4を透光性樹脂6で封止する構成としている。透光性樹脂6は、例えばエポキシやシリコーンなどの樹脂とし、黄〜緑系蛍光体樹脂5もそれらの樹脂に蛍光体を適当量混合させたような材料で構成されている。   In the LED package 7 shown in FIG. 1, ribs 8 are provided so as to surround the LED chips 2, 3, and 4, and consideration is given so that light emission of adjacent LED chips does not interfere with each other. Each region surrounded by the ribs 8 is called a cavity. The cavity in which the short wavelength LED chip 2 is mounted is sealed with a yellow to green phosphor resin 5, and the other LED chips 3 and 4 are sealed with a translucent resin 6. The translucent resin 6 is, for example, a resin such as epoxy or silicone, and the yellow to green phosphor resin 5 is also made of a material in which an appropriate amount of phosphor is mixed with the resin.

本実施の形態の場合、青色領域の強度を制御する目的の青色LEDチップ4の光が、目的の中間波長を得る黄〜緑系蛍光体樹脂5の領域に入射すると、短波長LEDチップ2の青色LEDチップ4の光によっても黄〜緑系蛍光体樹脂5が励起発光してしまう。このような場合、色温度に応じた高演色の白色光を得ることに影響を与える可能性があるため、少なくとも青色LEDチップ4の実装キャビティと、短波長LEDチップ2の実装キャビティとの境界に、特に後者領域への前者の光の入射を防止するためにリブ8を設けて演色性の質を落とさないようにしている。   In the case of the present embodiment, when the light of the target blue LED chip 4 that controls the intensity of the blue region is incident on the region of the yellow to green phosphor resin 5 that obtains the target intermediate wavelength, Even the light of the blue LED chip 4 causes the yellow to green phosphor resin 5 to emit light. In such a case, there is a possibility that high-color-rendering white light corresponding to the color temperature is obtained, so at least at the boundary between the mounting cavity of the blue LED chip 4 and the mounting cavity of the short wavelength LED chip 2. In particular, in order to prevent the former light from entering the latter region, ribs 8 are provided so as not to degrade the color rendering properties.

一方、黄〜緑系蛍光体樹脂5は、赤色LEDチップ3に対しては励起感度を殆ど持たないため、赤色LEDチップ3の配置されたキャビティのリブ8は無くても目的の白色スペクトルの生成にさほど支障を与えない。そこで、例えば図2の(a)、(b)に示すように、同一のキャビティ内に2つの短波長LEDチップ2と赤色LEDチップ3を配置し、それを黄〜緑系蛍光体樹脂5で封止する構成としても、特に赤色光が蛍光体の発光強度に影響を与えることなく封止樹脂内での混光(混色)作用を高めることができる。   On the other hand, the yellow to green phosphor resin 5 has almost no excitation sensitivity for the red LED chip 3, so that a desired white spectrum can be generated even without the rib 8 of the cavity where the red LED chip 3 is disposed. It will not cause much trouble. Therefore, for example, as shown in FIGS. 2A and 2B, two short-wavelength LED chips 2 and a red LED chip 3 are arranged in the same cavity, and these are made of yellow to green phosphor resin 5. Even when the sealing is performed, the light mixing (color mixing) action in the sealing resin can be enhanced without particularly the red light affecting the emission intensity of the phosphor.

なお、蛍光変換機能を与える別の構成として、短波長LEDチップ2の表面に蛍光体をコーティングして透明樹脂材料で封止するような構成としてもよい。また、短波長LEDチップ2の表面を透明樹脂材料で封止し、そのキャビティ上部に蛍光体を樹脂バインドしたような薄い蛍光シートを配置するような構成でも構わない。   In addition, it is good also as a structure which coats the fluorescent substance on the surface of the short wavelength LED chip 2, and seals with a transparent resin material as another structure which provides a fluorescence conversion function. Moreover, the structure which seals the surface of the short wavelength LED chip 2 with a transparent resin material, and arrange | positions the thin fluorescent sheet which carried out resin binding of the fluorescent substance on the cavity top may be sufficient.

ここで、短波長LEDチップ2に青色LEDチップを用いた場合の白色合成例について説明する。
蛍光体は、青色LEDチップにより励起する材料であって、目的とする合成白色のおよそ青色光と赤色光との中間に位置する黄〜緑色の中間波長を補う波長域で連続的に広帯域発光(発光半値幅50〜100nm 程度の蛍光体を単一、または複数種合成とする)するものを選定する。このとき青色LEDチップ2、赤色LEDチップ3の発光要素、及び短波長(青色)LEDチップ2+蛍光体の発光要素の発光スペクトルを同時に表現すると、図3に示すように、短波長領域発光スペクトル11(青色LEDチップ2)、長波長領域発光スペクトル13(赤色LEDチップ3)、波長軸(横軸)で青と赤との中間で連続的な発光波長成分を有する中間波長領域発光スペクトル12(短波長(青色)LEDチップ2+蛍光体)となる。なお、図中の縦軸は任意の相対強度である。
Here, an example of white synthesis when a blue LED chip is used for the short wavelength LED chip 2 will be described.
The phosphor is a material that is excited by the blue LED chip, and continuously emits light in a broad band in the wavelength range that compensates for the intermediate wavelength of yellow to green, which is located approximately between the target synthetic white light and red light ( A fluorescent substance having a light emission half width of about 50 to 100 nm is synthesized (single or plural kinds of phosphors are selected). At this time, when the emission spectra of the light emitting elements of the blue LED chip 2 and the red LED chip 3 and the light emitting elements of the short wavelength (blue) LED chip 2 + phosphor are simultaneously expressed, as shown in FIG. (Blue LED chip 2), long wavelength region emission spectrum 13 (red LED chip 3), intermediate wavelength region emission spectrum 12 (short) having a continuous emission wavelength component between blue and red on the wavelength axis (horizontal axis). Wavelength (blue) LED chip 2 + phosphor). In addition, the vertical axis | shaft in a figure is arbitrary relative intensity | strengths.

それらの発光強度は個別に制御可能であるため、従来例の白色LEDとは異なり、可視光の短波長領域である青色領域、及び広い中間波長領域である黄色〜緑色をそれぞれ独立に調整可能であるため、目的の色温度に応じて長波長光量(赤色光)を調整して与え合成白色を得ることができる。なお、青色LEDチップに励起する前記蛍光体として、例えば緑色発光でSrGa2S4:Eu、黄色発光で(Y,Gd)3Al5O12:Ceの組成により黄〜緑色発光の(Sr,Ba)2SiO4 :Eu2+などがある。これまでの例では長波長発光要素を赤色LEDチップ3として示したが、蛍光体種類によって発光波形が異なる中間波長領域の波形に応じて、色温度可変時に広い色温度領域で高演色性を保つような単一種の橙色や真紅のLEDチップでもよいし、あるいはそれら複数の長波長LEDチップを用いた構成としてもよい。 Since their emission intensity can be controlled individually, unlike the conventional white LED, the blue region, which is the short wavelength region of visible light, and the yellow to green, which is a wide intermediate wavelength region, can be adjusted independently. Therefore, it is possible to obtain a composite white color by adjusting the long wavelength light amount (red light) according to the target color temperature. As the phosphor excited on the blue LED chip, for example, SrGa 2 S 4 : Eu for green light emission, (Y, Gd) 3 Al 5 O 12 : Ce for yellow light emission and yellow to green light emission (Sr, Ba) 2 SiO 4 : Eu 2+ and the like. In the examples so far, the long-wavelength light emitting element is shown as the red LED chip 3, but high color rendering properties are maintained in a wide color temperature region when the color temperature is variable according to the waveform in the intermediate wavelength region where the light emission waveform varies depending on the phosphor type. Such a single type of orange or crimson LED chip may be used, or a configuration using a plurality of long wavelength LED chips may be used.

ここで、高演色の白色光を合成する場合は、国際照明委員会(CIE )が規定した照明標準光の分光波形との差異を少なくすることが必要となる。そこで例えば、目的の色温度が電球色の場合は、図3(a)に示すように、低色温度の標準光源スペクトル14(完全放射体光、5000K 以下の場合)の形状に近くなるように各LEDチップ11、12、13の発光強度を調整して白色合成を行う必要がある。また、目的の色温度が昼光色の場合には、同図(b)に示すように、高色温度の標準光源スペクトル15(CIE昼光、5000K以上の場合 )の形状に近くなるように各LEDチップ11、12、13の発光強度を調整して白色合成する必要がある。図3(a)(b)に示す本実施の形態の発光要素による合成光は、連続的な中間波長を有するので、発光効率が良好であるとともに、各LEDチップ11、12、13の強度調整により、理想とする標準光の分光波形に近くなるように相対分光強度を制御できるため、波形に幅広い色度で目的の設定色温度に応じた演色性の高い発光装置を得ることができる。   Here, when synthesizing white light of high color rendering, it is necessary to reduce the difference from the spectral waveform of the illumination standard light defined by the International Commission on Illumination (CIE). Therefore, for example, when the target color temperature is a light bulb color, as shown in FIG. 3A, the shape of the standard light source spectrum 14 with a low color temperature (when full radiator light is less than 5000K) is approximated. It is necessary to adjust the light emission intensity of each LED chip 11, 12, 13 to perform white synthesis. When the target color temperature is daylight color, as shown in FIG. 5B, each LED is close to the shape of the standard light source spectrum 15 of high color temperature (when CIE daylight is 5000K or more). It is necessary to synthesize white by adjusting the emission intensity of the chips 11, 12, and 13. The combined light by the light emitting element of the present embodiment shown in FIGS. 3 (a) and 3 (b) has a continuous intermediate wavelength, so that the light emission efficiency is good and the intensity of each LED chip 11, 12, 13 is adjusted. As a result, the relative spectral intensity can be controlled so as to be close to the ideal spectral waveform of standard light, so that a light emitting device having a wide color chromaticity and a high color rendering property according to the target set color temperature can be obtained.

短波長LEDチップ2を青色LEDチップとした場合の、青色LEDチップ+蛍光体の発光要素は、青色LEDチップ自体が可視光であり色味を大きく与える。そこで、励起発光する蛍光体の混光比が大きくなるように蛍光体使用量などを調整し、青色LEDチップの強度に対して蛍光体の波長変換光強度が十分大きくなるように構成する。この場合、図4のxy色度図上で示すように、蛍光体の色度点、青色LED色度点、赤色LED色度点の3点を直線で結んだ場合にできる三角形領域内に、目的とする色温度の可変白色領域(6700〜2800K 程度)を含むように、蛍光体の色度点を設定する。即ち、その色度を実現する蛍光体の材料構成として単一種、または複数の蛍光体の調合により実現する。例えば、蛍光体の色度として黒体軌跡上の昼光色(D)〜電球色(L)を可変とする場合には、図4の太い点線A内に色度点を与える蛍光体の材料、また、黒体軌跡上の温白(WW)〜電球色(L)を可変とする場合には、一点鎖線B内に色度点を与える蛍光体の材料を適用する。   When the short-wavelength LED chip 2 is a blue LED chip, the blue LED chip + phosphor light-emitting element gives visible color because the blue LED chip itself is visible light. Therefore, the usage amount of the phosphor is adjusted so that the light mixture ratio of the phosphor that emits excitation light is increased, and the wavelength converted light intensity of the phosphor is sufficiently increased with respect to the intensity of the blue LED chip. In this case, as shown on the xy chromaticity diagram of FIG. 4, within a triangular region formed when three points of the phosphor chromaticity point, blue LED chromaticity point, and red LED chromaticity point are connected by a straight line, Set the chromaticity point of the phosphor so that it includes the variable white region (about 6700-2800K) of the target color temperature. That is, the phosphor material structure realizing the chromaticity is realized by mixing a single kind or a plurality of phosphors. For example, when the daylight color (D) to the light bulb color (L) on the black body locus are variable as the chromaticity of the phosphor, the phosphor material that gives the chromaticity point within the thick dotted line A in FIG. When making the warm white (WW) to the light bulb color (L) on the black body locus variable, a phosphor material that gives a chromaticity point within the alternate long and short dash line B is applied.

混色原理によれば、前述の三角形領域内では、各発光要素の発光強度比を調整することで任意の光色を作り出すことができる。以下に青色LEDチップ4、及び赤色LEDチップ3、及び短波長LEDチップ2+複数の蛍光体の混光比を調整し、色度図上の蛍光ランプ光源色の色度範囲(日本工業規格JIS:Z9112)において最も高色温度の領域である昼白色、最も低色温度の領域である電球色に白色合成した例を示す。   According to the color mixing principle, an arbitrary light color can be created by adjusting the light emission intensity ratio of each light emitting element within the triangular region described above. The chromaticity range of the fluorescent lamp light source color on the chromaticity diagram (Japanese Industrial Standard JIS: In Z9112), an example is shown in which white color is combined with the daylight white color, which is the highest color temperature region, and the light bulb color, which is the lowest color temperature region.

このようにして得られる分光例を図5に示す。図1の構成で青色LEDチップ4と短波長LEDチップ2とを同じ波長(発光強度が最大となるピーク波長)の素子として、蛍光体を調整して合成白色を生成した。青色LEDチップ4はピーク波長を450nm 、赤色LEDチップ3はピーク波長を630nm 、蛍光体は何れも紫外光〜青色光に対し励起発光する2種のシリケート蛍光体の混合(黄色系のピーク波長570nm :半値幅100nm 、緑色系のピーク波長525nm :半値幅70nmの混合)とした。   A spectral example obtained in this way is shown in FIG. With the configuration of FIG. 1, the blue LED chip 4 and the short wavelength LED chip 2 are used as elements having the same wavelength (the peak wavelength at which the emission intensity is maximized), and the phosphor is adjusted to generate a synthetic white color. The blue LED chip 4 has a peak wavelength of 450 nm, the red LED chip 3 has a peak wavelength of 630 nm, and the phosphor is a mixture of two types of silicate phosphors that excite and emit light from ultraviolet light to blue light (yellow peak wavelength 570 nm). : Half width 100 nm, green peak wavelength 525 nm: mixture of half width 70 nm).

図5はこれらの発光要素を黒体軌跡上で白色合成した合成光の発光スペクトルの例である。実線は高色温度(6500K )であり、平均演色評価数はRa=85、また、点線の低色温度(3000K )でもRa=85と高い演色性を示す。なお、演色性とは、日本工業規格(JIS:Z8726)で規定されるとおり、基準光で物体を照明した場合に対する、試験光で照明した場合の色再現性である。特殊演色評価数、平均演色評価数とも100 点満点で数値化された指標である。このように合成白色の青みに直接寄与する、蛍光体を用いないキャビティの青色LEDチップ4の発光強度と、他のキャビティの短波長(青色)LEDチップ2+蛍光体混合樹脂6による中間波長の発光強度とを独立して制御可能であるため、図5のように高演色性を維持して低色温度〜高色温度までの広い範囲で発光効率のよい色可変の発光装置を得ることができる。   FIG. 5 is an example of an emission spectrum of synthesized light obtained by synthesizing these light emitting elements in white on a black body locus. The solid line is a high color temperature (6500K), the average color rendering index is Ra = 85, and even the low color temperature of the dotted line (3000K) is Ra = 85, showing high color rendering. Note that the color rendering property is the color reproducibility when illuminated with test light as compared with the case where an object is illuminated with reference light, as defined by Japanese Industrial Standards (JIS: Z8726). Both the special color rendering index and the average color rendering index are quantified on a 100-point scale. Thus, the light emission intensity of the blue LED chip 4 in the cavity not using the phosphor, which directly contributes to the synthetic white blue, and the light emission at the intermediate wavelength by the short wavelength (blue) LED chip 2+ phosphor mixed resin 6 in the other cavity. Since the intensity can be controlled independently, as shown in FIG. 5, a color variable light-emitting device having a high luminous efficiency in a wide range from a low color temperature to a high color temperature while maintaining high color rendering can be obtained. .

なお、ここで用いた短波長(青色)LEDチップ4は、別のキャビティの青色を与える目的の短波長(青色)LEDチップ2と同じ仕様のチップである。このように青色LEDチップとして同じ仕様であっても、あるいは若干波長や出力強度が異なるものであっても構わず、同様の混色及び色可変効果が得られる。同じ仕様の青色LEDチップで構成すれば、青色発光成分の強度だけを考慮した調光となるので制御しやすくなる利点がある。   In addition, the short wavelength (blue) LED chip 4 used here is a chip having the same specifications as the short wavelength (blue) LED chip 2 for the purpose of giving the blue color of another cavity. Thus, even if it is the same specification as a blue LED chip, or a thing with a slightly different wavelength and output intensity may be sufficient, the same color mixing and a color variable effect are acquired. If the blue LED chips having the same specification are used, there is an advantage that the light control is performed considering only the intensity of the blue light-emitting component, so that the control is easy.

また、図1のLEDパッケージ7は、2×2の4キャビティを有する構成とした例であり、特に可視効率の高い中間波長領域のキャビティを対角線上に2つ配置している。当然、発光効率は各LEDチップ2、3、4への投入電力にも依存するが、少なくとも本構成では中間波長領域の発光を行う面積を広くするとともに、それを励起させる短波長LEDチップ2の数も多くした大光束を得るために適した配列である。この構成以外にも例えば図6(a)、(b)に示すように、3種のLEDチップ4、2、3を波長の順(短波長、中間波長、長波長)に配列するなど発光要素の配列形態は多様であり、何れも本装置の目的とする高演色の色温度可変を実現することができ、発光要素の配列によって本実施の形態の主概念が失われるものではない。   Further, the LED package 7 of FIG. 1 is an example having a structure of 2 × 2 4 cavities, and in particular, two cavities in the intermediate wavelength region with high visible efficiency are arranged diagonally. Of course, the light emission efficiency depends on the input power to each LED chip 2, 3, and 4, but at least in this configuration, the area for emitting light in the intermediate wavelength region is widened and the short wavelength LED chip 2 that excites it is excited. This arrangement is suitable for obtaining a large luminous flux with a large number. In addition to this configuration, for example, as shown in FIGS. 6A and 6B, three types of LED chips 4, 2, 3 are arranged in order of wavelength (short wavelength, intermediate wavelength, long wavelength), etc. There are various arrangement forms of these, and any of them can realize the target color change of high color rendering, and the main concept of the present embodiment is not lost by the arrangement of the light emitting elements.

なお、キャビティ単位で形成されたLEDパッケージ7においては、図7に示すように、全キャビティを透光性樹脂などのパッケージ表面樹脂9で覆って封止する構成としてもよい。このようにすることで各キャビティから放射された光がその表面樹脂9内で広がり、LEDパッケージ7内の光色の違う発光要素の配列による空間的な色むらが低減し、LEDパッケージ7内での色均斉化を高める効果を生じる。この場合、LEDパッケージ7の上面を覆う樹脂9内に例えば酸化チタンなどの光拡散フィラーを混合封入することで、さらに拡散を高めることができる。また、このようなフィラーは、前述の樹脂9を形成する前の、各発光要素の封止樹脂内に混合しても同様の光拡散効果を得ることができる。   In the LED package 7 formed in units of cavities, as shown in FIG. 7, the entire cavity may be covered with a package surface resin 9 such as a translucent resin and sealed. By doing so, the light emitted from each cavity spreads in the surface resin 9, and the spatial color unevenness due to the arrangement of the light emitting elements having different light colors in the LED package 7 is reduced. This produces the effect of increasing the color leveling. In this case, the diffusion can be further enhanced by mixing and encapsulating a light diffusion filler such as titanium oxide in the resin 9 covering the upper surface of the LED package 7. Moreover, even if such a filler is mixed in the sealing resin of each light emitting element before the above-described resin 9 is formed, the same light diffusion effect can be obtained.

また、短波長LEDチップ2を紫外または近紫外LEDチップとして構成してもよい。紫外または近紫外LEDチップの場合には、その発光に対する可視感度が無いか、あるいは低いため、発光色は励起される黄〜緑系蛍光体樹脂5の発光スペクトル(色度)によりほぼ決定される。また、図8は短波長LEDチップ2としてピーク波長約400nm の近紫外LEDチップを用いた場合の各LEDチップの発光スペクトルを示したもので、目標の色温度が低色温度の場合は(a)に示すような強度比で混色し、高色温度の場合は(b)に示すような強度比で混色する。図中の点線16は、近紫外線励起の発光スペクトルを示している。   Further, the short wavelength LED chip 2 may be configured as an ultraviolet or near ultraviolet LED chip. In the case of an ultraviolet or near-ultraviolet LED chip, since there is no visible sensitivity to the emitted light or it is low, the emission color is almost determined by the emission spectrum (chromaticity) of the excited yellow to green phosphor resin 5. . FIG. 8 shows an emission spectrum of each LED chip when a near-ultraviolet LED chip having a peak wavelength of about 400 nm is used as the short wavelength LED chip 2. When the target color temperature is a low color temperature, (a ) And color mixture at an intensity ratio as shown in (b) when the color temperature is high. The dotted line 16 in the figure shows the emission spectrum of near ultraviolet excitation.

図9は黒体軌跡上の低色温度点(3000K )になるように白色合成した場合の一例である。この場合は、短波長から3つ目の山に相当する領域が400nm の近紫外光によって励起発光している一種の蛍光体(黄色系ピーク波長約570nm 、半値幅100nm )による発光領域であるが、二種の蛍光体適用のときに比較すれば発光帯域が若干狭くなっているが、それでもRa=80の高い演色性を示している。このような蛍光体として例えば緑色発光でZnS:Cu,Al 、BaMgAl10O17:Eu,Mnの組成により緑〜黄色発光の(Sr,Ba)2SiO4:Eu2+ などがある。 FIG. 9 shows an example in which white synthesis is performed so that the low color temperature point (3000 K) on the black body locus is obtained. In this case, the region corresponding to the third peak from the short wavelength is an emission region of a kind of phosphor (yellowish peak wavelength of about 570 nm, half-value width of 100 nm) that is excited by 400 nm near-ultraviolet light. The emission band is slightly narrower than when two types of phosphors are applied, but still exhibits a high color rendering property of Ra = 80. Examples of such a phosphor include (Sr, Ba) 2 SiO 4 : Eu 2+ which emits green light and emits green to yellow light depending on the composition of ZnS: Cu, Al, BaMgAl 10 O 17 : Eu, Mn.

以上のように、中間波長領域の発光を短波長(紫外または近紫外)LEDチップ2と蛍光体により実現した場合においても、短波長LEDチップ2の発光領域に強い色味を持たないため(近紫外LEDチップでは柔らかい青紫光を発する)、中間波長領域の調光時の強度変化のみを混色対象とした制御で色可変を行うことができる。また、この場合もやはり混色白色光の青色領域を与える青色LEDチップ4の発光強度と、中間波長領域の発光強度にほぼ比例する短波長(紫外あるいは近紫外)LEDチップ2とを独立して調整可能であるため、幅広い色温度領域の白色光を実現することができる。   As described above, even when the light emission in the intermediate wavelength region is realized by the short wavelength (ultraviolet or near ultraviolet) LED chip 2 and the phosphor, the light emitting region of the short wavelength LED chip 2 does not have a strong color (nearly). The ultraviolet LED chip emits soft blue-violet light), and the color can be changed by controlling only the intensity change at the time of dimming in the intermediate wavelength region. Also in this case, the emission intensity of the blue LED chip 4 that gives the blue region of the mixed color white light and the short wavelength (ultraviolet or near ultraviolet) LED chip 2 that is substantially proportional to the emission intensity in the intermediate wavelength region are adjusted independently. Therefore, white light in a wide color temperature range can be realized.

また、近紫外LEDチップを用いた従来の白色合成例として、近紫外線LEDチップと青色、緑色、赤色の3種の蛍光体とを組合せる方式があるが、現在、近紫外LEDチップで励起する青色蛍光体(例えばBaMgAl10O17:Eu 、Sr10(PO4)6Cl2:Eu)はその量子効率が高いとは いえず、得られる近紫外LEDチップとそれら蛍光体とを用いた青色光の発光効率は、現行の青色LEDチップ自身の発光効率と比較して波長変換時のエネルギー損失がある分、低いという欠点を有している。 In addition, as a conventional white color synthesis example using a near-ultraviolet LED chip, there is a method of combining a near-ultraviolet LED chip and three kinds of phosphors of blue, green, and red. Blue phosphors (e.g. BaMgAl 10 O 17 : Eu, Sr 10 (PO 4 ) 6 C l2 : Eu) cannot be said to have high quantum efficiency, and blue using the obtained near-ultraviolet LED chip and these phosphors. The light emission efficiency has a disadvantage that it is lower than the current blue LED chip itself because of the energy loss during wavelength conversion.

したがって、本実施の形態の構成のように発光効率面では、合成光の青色領域に直接青色LEDチップの光を用いる構成が発光効率面で優れるという特徴がある。また、紫外LEDチップを用いる場合には、蛍光体の励起効率が高い反面、紫外LEDチップ自体の放射強度が高いとは言えず、やはり発光効率面が低い点、また、一般照明としての用途では安全性面から紫外線の放射防止構造が不可欠であり、コスト的負荷が大きくなる欠点を有している。以上のことからも、目的とする合成白色光の青色領域を直接青色LEDチップの光色を利用し、その調光により光色調整可能とする本発光装置は、青色強度の制御幅が広く、広い色温度領域で発効効率の高い光色を再現できる装置といえる。   Therefore, as in the configuration of the present embodiment, in terms of light emission efficiency, the configuration in which the light of the blue LED chip is directly used in the blue region of the synthesized light is excellent in terms of light emission efficiency. In addition, when using an ultraviolet LED chip, the excitation efficiency of the phosphor is high, but it cannot be said that the radiation intensity of the ultraviolet LED chip itself is high. From the viewpoint of safety, an ultraviolet radiation prevention structure is indispensable, and has a drawback of increasing the cost burden. From the above, this light-emitting device that makes it possible to use the light color of the blue LED chip directly for the blue region of the target synthetic white light and to adjust the light color by the dimming has a wide control range of blue intensity, It can be said that this device can reproduce light colors with high efficiency in a wide color temperature range.

さらに、少なくとも紫外や近紫外LEDチップを用いる場合は、それを配置したキャビティ領域の表面側、あるいは近紫外LEDチップを用いたLEDパッケージ7の表面側に紫外線を反射あるいは吸収する機能を有するフィルターを装着する構成とする。例えば図10は短波長(紫外、近紫外)LEDチップ2を実装したキャビティ上に紫外線カットフィルター10を配置した構成例であるが、本構成によりLEDパッケージ7からの可視光より短波長の光の放射を抑えることができ、生体(眼や皮膚など)への影響を考慮した場合に安全な発光装置を提供することができる。特に紫外LEDチップを用いる場合には、紫外線を通さないガラスで密封するなどの構成をとるようにする。   Furthermore, when using at least an ultraviolet or near ultraviolet LED chip, a filter having a function of reflecting or absorbing ultraviolet light on the surface side of the cavity region where the chip is disposed or on the surface side of the LED package 7 using the near ultraviolet LED chip is provided. It shall be configured to be attached. For example, FIG. 10 shows a configuration example in which an ultraviolet cut filter 10 is disposed on a cavity in which a short wavelength (ultraviolet, near ultraviolet) LED chip 2 is mounted. With this configuration, light having a wavelength shorter than that of visible light from the LED package 7 can be obtained. Radiation can be suppressed, and a safe light-emitting device can be provided when the influence on a living body (eye or skin) is taken into consideration. In particular, when an ultraviolet LED chip is used, a configuration such as sealing with glass that does not transmit ultraviolet rays is adopted.

以上の発光装置は、光源要素の出力(各々のLEDチップ)を固定値としても固定色の高演色の光源装置としての機能を有する。ここで、センシング機能や調光機能を持たせることで、外部からの色温度の設定値に応じて自動的な色可変調整を行うことができる。例えば図11はそのような構成の発光装置のブロック図を簡単に示したもので、光の安定化を考慮し、センサー類を備えその状態検出値を用いて、所望の設定色温度になるように制御部21を介して各LEDチップ2、3、4の電流値を調整するようにしたものである。   The light emitting device described above has a function as a light source device of high color rendering with a fixed color even if the output of each light source element (each LED chip) is a fixed value. Here, by providing a sensing function and a dimming function, automatic color variable adjustment can be performed in accordance with an externally set color temperature value. For example, FIG. 11 is a simplified block diagram of a light-emitting device having such a configuration. In consideration of light stabilization, sensors are provided and a state detection value is used to achieve a desired set color temperature. In addition, the current value of each LED chip 2, 3, 4 is adjusted via the control unit 21.

この制御は、例えば制御部21に設けられたマイコン内でルール設定するような構成で実現するが、基本的にはLEDパッケージ7周辺の物理情報を状態検出部23でセンシングしてフィードバックをかける構成とする。各LEDチップ2、3、4に変動を与える要因として環境及び周辺部材の温度特性があり、状態検出部23として例えばサーミスタセンサーや、各LEDチップ間の特性の違いによる経時的、あるいは調光時の光色不安定性に対してカラーセンサー等(カラーフィルターを備えたフォトダイオードなど)を用いて状態量を検出する。このような構成により色温度設定部22での設定色温度に対して、環境条件変動や各LEDチップ2、3、4特有の調光特性に合わせ、各LEDチップ2、3、4の出力制御(電流制御)を行うことができ、光色安定性を実現することが可能である。センサー類はLEDパッケージ7近傍、あるいはLEDパッケージ7実装基板上などに配置するようにする。なお、理想とする高演色波形(前述のCIE照明標準光A,Cなどの波形)については、例えば制御部21内にROM、RAMなどのメモリーを持たせ、色温度に応じた分光波形情報をデータベース化しておく。そして、色温度の初期設定時には、その情報を利用して各LEDチップ2、3、4の強度調整を行うようにする。   This control is realized by, for example, a configuration in which a rule is set in a microcomputer provided in the control unit 21, but basically a configuration in which physical information around the LED package 7 is sensed by the state detection unit 23 and feedback is applied. And Factors that cause fluctuations in the LED chips 2, 3, and 4 include the temperature characteristics of the environment and peripheral members. For example, the state detection unit 23 may be a thermistor sensor, time-dependent or dimming due to differences in characteristics between the LED chips The state quantity is detected using a color sensor or the like (photodiode provided with a color filter) for the light color instability. With such a configuration, the output control of each LED chip 2, 3, 4 is performed in accordance with the environmental condition variation and the dimming characteristic peculiar to each LED chip 2, 3, 4 with respect to the set color temperature in the color temperature setting unit 22 (Current control) can be performed, and light color stability can be realized. The sensors are arranged near the LED package 7 or on the LED package 7 mounting substrate. For ideal high color rendering waveforms (waveforms such as the above-mentioned CIE illumination standard lights A and C), for example, a memory such as ROM or RAM is provided in the control unit 21, and spectral waveform information corresponding to the color temperature is provided. Create a database. When the color temperature is initially set, the intensity of each LED chip 2, 3, 4 is adjusted using the information.

以上のような発光装置の発光要素部分は、例えば図12に示すようにLEDパッケージ7を複数個配列させることで、円形、角形、あるいはライン形の発光モジュールとして扱うこともでき、また、様々な形態の照明、表示装置に対応させることが可能である。さらには、個々のLEDパッケージ7や図12のようなモジュールの表面に配光制御レンズを備えるようにして、高演色の色温度可変の狭配光照明(スポット照明)装置とすることも可能である。   The light emitting element portion of the light emitting device as described above can be handled as a circular, square, or line light emitting module by arranging a plurality of LED packages 7 as shown in FIG. 12, for example. It is possible to correspond to the form of illumination and display device. Furthermore, a light distribution control lens is provided on the surface of each LED package 7 or module as shown in FIG. 12, so that a high color rendering variable color temperature variable light distribution (spot illumination) device can be obtained. is there.

実施の形態2.
図3及び図8では、長波長発光素子を橙〜赤色系LEDチップで構成したが、図1で短波長LEDチップ2として示した紫外、近紫外、あるいは青色LEDチップと、それに励起発光する橙〜赤色蛍光体とにより構成してもよい。
図13は本発明の実施の形態2に係る発光装置の構成を示す平面図及び断面図である。
本実施の形態においては、2つの短波長LEDチップ2のうち1つの短波長LEDチップ2(紫外、近紫外、あるいは青色LEDチップ)のキャビティには、例えば赤系蛍光体樹脂17により封止されている。例えば青色LEDチップ+赤系蛍光体17とする場合は、CaAlSiN3:Eu2+ やCaS:Eu のような比較的発光半値幅が広い蛍光体が知られており、この 場合は、長波長領域で広範囲の連続波長を再現できるため、調整色温度により演色性が極端に低下するようなことはない。図14はそのような赤色発光要素を含む発光要素を示した図で、短波長領域発光スペクトル11(青色LEDチップ2)、中間波長領域発光スペクトル12、長波長領域発光スペクトル13(短波長LEDチップ2+赤系蛍光体17)を示している。
Embodiment 2. FIG.
3 and 8, the long wavelength light emitting element is composed of an orange to red LED chip. However, the ultraviolet, near ultraviolet, or blue LED chip shown as the short wavelength LED chip 2 in FIG. -You may comprise by red fluorescent substance.
FIG. 13 is a plan view and a cross-sectional view showing the configuration of the light-emitting device according to Embodiment 2 of the present invention.
In the present embodiment, the cavity of one short wavelength LED chip 2 (ultraviolet, near ultraviolet, or blue LED chip) of the two short wavelength LED chips 2 is sealed with, for example, a red phosphor resin 17. ing. For example, when a blue LED chip + red phosphor 17 is used, a phosphor having a relatively wide emission half width such as CaAlSiN 3 : Eu 2+ or CaS: Eu is known. In this case, a long wavelength region is used. In this way, a wide range of continuous wavelengths can be reproduced, so that the color rendering properties are not extremely lowered by the adjusted color temperature. FIG. 14 is a view showing a light emitting element including such a red light emitting element. The short wavelength region emission spectrum 11 (blue LED chip 2), the intermediate wavelength region emission spectrum 12, and the long wavelength region emission spectrum 13 (short wavelength LED chip). 2+ red phosphor 17).

図15はそのような青色LEDチップ励起の赤系蛍光体、及び中間波長として青色LEDチップ励起の緑色と黄色の混合蛍光体を適用したものである。図中の点線と実線は、それぞれ黒体軌跡上の低色温度(3000K )と高色温度(6500K )に調整した場合の例である。この白色光の平均演色評価数は前者がRa=89、後者がRa=87で色温度によらず高い演色性を示している。   FIG. 15 shows the application of such a red phosphor excited by a blue LED chip and a mixed phosphor of green and yellow excited by a blue LED chip as an intermediate wavelength. The dotted line and solid line in the figure are examples when adjusted to a low color temperature (3000 K) and a high color temperature (6500 K) on the black body locus, respectively. The average color rendering index of white light is Ra = 89 for the former and Ra = 87 for the latter, indicating high color rendering properties regardless of the color temperature.

また、赤色発光素子を紫外や近紫外のLEDチップに励起発光する長波長蛍光体を用いることも可能である。例えば図16に示すように、近紫外励起の特性を有するLiEu1-xSmxW2O8、La2O2S2 :Euのような蛍光体を適用することで、赤色LEDチップ3とほぼ同じ波長域 で狭帯域発光する材料も存在し、そのような材料を用いることでもやはり高い演色性を再現することが可能である。また、この構成でも合成光の青色領域と中間波長領域を独立して発光強度を制御することが可能であるため、幅広い照明白色領域において高演色の色温度可変が可能な発光装置を実現することができる。 It is also possible to use a long-wavelength phosphor that excites a red light emitting element on an ultraviolet or near ultraviolet LED chip. For example, as shown in FIG. 16, by applying a phosphor such as LiEu1-xSmxW 2 O 8 or La 2 O 2 S 2 : Eu having the characteristics of near-ultraviolet excitation, the wavelength region is almost the same as that of the red LED chip 3. There is also a material that emits light in a narrow band, and it is possible to reproduce high color rendering properties by using such a material. In addition, even with this configuration, it is possible to control the emission intensity independently for the blue region and intermediate wavelength region of the synthesized light, so that a light emitting device capable of changing the color temperature with high color rendering in a wide illumination white region is realized. Can do.

さらに、図11の構成と同様に図17のような制御系を構成することで、色光の安定した色温度の可変が可能な光源装置を得ることができる。   Further, by configuring the control system as shown in FIG. 17 similarly to the configuration of FIG. 11, it is possible to obtain a light source device capable of stably changing the color temperature of the color light.

実施の形態3.
図18は本発明の実施の形態3に係る発光装置の構成を示す平面図及び断面図である。
本実施の形態は、青色LEDチップ4、短波長LEDチップ2+蛍光体、赤色LEDチップ3の他に、発光要素としてさらに緑色LEDチップ19を加えて構成されるLEDパッケージ7である。この場合は、中間発光領域を青色LEDチップ+蛍光体、または紫外あるいは近紫外LEDチップ+蛍光体とした構成で、それぞれ図19及び図20に示す発光要素で発光スペクトルを表すことができる。緑色LEDチップ19は、例えば発光ピークが500〜550nm程度にあるものを用いる。この波長域か可視効率が高いため、この構成のように狭域の緑色発光スペクトル20を加えた合成白色は、緑方向での色補正を行いたい場合、あるいは発光効率向上を目的とする場合に有効に作用する。この場合も図11で説明した内容に沿った例えば図21の制御系を備えることで、色光の安定した色温度の可変が可能な光源装置を得ることができる。
Embodiment 3 FIG.
18A and 18B are a plan view and a cross-sectional view showing the configuration of the light-emitting device according to Embodiment 3 of the present invention.
The present embodiment is an LED package 7 configured by adding a green LED chip 19 as a light emitting element in addition to the blue LED chip 4, the short wavelength LED chip 2 + phosphor, and the red LED chip 3. In this case, the light emission spectrum can be represented by the light emitting elements shown in FIGS. 19 and 20, respectively, with a configuration in which the intermediate light emitting region is a blue LED chip + phosphor, or an ultraviolet or near ultraviolet LED chip + phosphor. As the green LED chip 19, for example, one having a light emission peak of about 500 to 550 nm is used. Since the visible efficiency is high in this wavelength range, the synthetic white with the narrow green emission spectrum 20 as in this configuration is used when color correction in the green direction is desired or when the purpose is to improve the emission efficiency. It works effectively. Also in this case, by providing the control system shown in FIG. 21, for example, in accordance with the contents described with reference to FIG. 11, a light source device capable of changing the color temperature with stable color light can be obtained.

前述した実施の形態は、以上説明したように高演色性を維持したまま光色を変更できるLED色温度の可変白色発光装置に係わるものであり、光束に関係なく一般照明や演出照明などの照明装置の他、美術館や医療用などの特殊照明に適用できる。また、ショーケースや冷蔵庫など機器組み込みの高演色の照明装置、さらに、サイン灯や表示用バックライトの光源装置などにも適用可能なものである。このように適用した場合には、電力消費を大幅に低減できる。   The embodiment described above relates to the LED color temperature variable white light emitting device that can change the light color while maintaining high color rendering as described above, and illumination such as general illumination and effect illumination regardless of the luminous flux. In addition to equipment, it can be applied to special lighting for museums and medical use. Further, the present invention can be applied to a high color rendering illumination device built in equipment such as a showcase or a refrigerator, and a light source device for a sign lamp or a display backlight. When applied in this way, power consumption can be greatly reduced.

1 パッケージ基板、2 短波長LEDチップ、3 赤色LEDチップ、4 青色LEDチップ、5 黄〜緑系蛍光体樹脂、6 透光性樹脂、7 LEDパッケージ、9 パッケージ表面樹脂、10 紫外線カットフィルター、11 短波長領域発光スペクトル(青色LEDチップ)、12 中間波長領域発光スペクトル(青色LEDチップ+蛍光体)、13 長波長領域発光スペクトル(橙〜赤色LEDチップ)、14 低色温度の白色JIS標準光源スペクトル(完全放射体スペクトル)、15 高色温度の白色標準光源スペクトル(CIE昼光色スペクトル)、16 中間波長領域発光スペクトル(近紫外LEDチップ+蛍光体)、17 赤系蛍光体樹脂、18 長波長領域発光スペクトル(短波長LEDチップ+赤系蛍光体)、19 緑色LEDチップ、20 緑色発光スペクトル。   1 package substrate, 2 short wavelength LED chip, 3 red LED chip, 4 blue LED chip, 5 yellow to green phosphor resin, 6 translucent resin, 7 LED package, 9 package surface resin, 10 UV cut filter, 11 Short wavelength region emission spectrum (blue LED chip), 12 Medium wavelength region emission spectrum (blue LED chip + phosphor), 13 Long wavelength region emission spectrum (orange to red LED chip), 14 Low color temperature white JIS standard light source spectrum (Complete emitter spectrum), 15 High color temperature white standard light source spectrum (CIE daylight color spectrum), 16 Medium wavelength region emission spectrum (near ultraviolet LED chip + phosphor), 17 Red phosphor resin, 18 Long wavelength region emission Spectrum (short wavelength LED chip + red phosphor), 19 green LED chip, 2 Green emission spectrum.

Claims (8)

少なくとも発光強度が最大となる波長が同じの3つの青色LEDと、
橙色または赤色の光を発する赤色系LEDと、
前記3つの青色LEDのうち1つの青色LEDと前記赤色系LEDが対角線上に位置するように前記3つの青色LEDと前記赤色系LEDが2×2配列されていると共に、少なくとも前記赤色系LEDと対角線上に位置する青色LEDと他のLEDとの間に、互いに光が入射しないようにリブが設けられたパッケージと、
前記赤色系LEDと対角線上に位置する青色LEDを除く2つの青色LEDを封止し、当該青色LEDの光により励起して青色波長と赤色波長との中間波長領域の発光色を呈する蛍光材料とを備え、
色度座標における前記蛍光材料の色度点と、前記赤色系LEDの色度点と、前記青色LEDの色度点とを結んだ直線で囲まれる領域が、少なくともJIS Z9112で規定される蛍光ランプ光源色の色度範囲の5つの四辺形領域の一部を含んでいることを特徴とする発光装置。
At least three blue LEDs having the same wavelength with the maximum emission intensity,
A red LED emitting orange or red light;
The three blue LEDs and the red LED are arranged 2 × 2 so that one of the three blue LEDs and the red LED are located diagonally, and at least the red LED A package provided with ribs so that light does not enter each other between the blue LED located on the diagonal line and the other LED; and
A fluorescent material that seals two blue LEDs, excluding the red LED and a blue LED located diagonally, and is excited by light of the blue LED to emit light in an intermediate wavelength region between a blue wavelength and a red wavelength; With
A fluorescent lamp in which a region surrounded by a straight line connecting the chromaticity point of the fluorescent material, the chromaticity point of the red LED, and the chromaticity point of the blue LED in chromaticity coordinates is defined by at least JIS Z9112. A light emitting device including a part of five quadrilateral regions in a chromaticity range of a light source color .
前記赤色系LEDと対角線上に位置する青色LEDのみをリブで囲み、その他のLEDを前記蛍光材料を含む樹脂で封止したことを特徴とする請求項記載の発光装置。 Wherein only the blue LED located red LED and diagonally to enclose ribs, the light emitting device according to claim 1, wherein the sealed with a resin containing other LED the fluorescent material. 前記赤色系LEDと対角線上に位置する青色LED及び前記赤色系LEDを透光性樹脂で封止し、残りの青色LEDを前記蛍光材料を含む樹脂で封止した後に、その上部を共通の部材で覆ったことを特徴とする請求項1又は2記載の発光装置。 The red LED and the blue LED located diagonally and the red LED are sealed with a translucent resin, and the remaining blue LED is sealed with a resin containing the fluorescent material, and then the upper part is a common member The light emitting device according to claim 1, wherein the light emitting device is covered with a light emitting device. 少なくとも前記樹脂中に光拡散フィラーを混合させたことを特徴とする請求項記載の発光装置。 The light emitting device according to claim 3, wherein a light diffusing filler is mixed in at least the resin. 前記赤色系LEDと対角線上に位置する青色LEDを除く2つの青色LEDの表面にその光を反射または吸収する部材を設けたことを特徴とする請求項1又は2記載の発光装置。 3. The light emitting device according to claim 1, wherein a member for reflecting or absorbing the light is provided on the surface of two blue LEDs excluding the red LED and a blue LED positioned diagonally . 前記3つの青色LED及び前記赤色系LEDの発光強度を独立に可変としたことを特徴とする請求項1乃至の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 5 , wherein light emission intensities of the three blue LEDs and the red LED are independently variable. 前記赤色系LEDと対角線上に位置する青色LEDを緑色LEDに置き換え、当該緑色LEDの発光強度を独立に可変としたことを特徴とする請求項1乃至4の何れか一項に記載の発光装置。 Replacing the blue LED located in the red LED and diagonally to the green LED, the light-emitting device according to any one of claims 1 to 4, characterized in that the variable light emission intensity of the green LED independently . 色温度を設定する色温度設定部と、
本発光装置の周囲温度及び発光色を検出する状態検出部と、
前記色温度設定部により設定された色温度と前記状態検出部により検出された周囲の温度状態とに基づいて前記3つの青色LED及び前記赤色系LEDの発光強度を調整する制御部と
を備えたことを特徴とする請求項又は記載の発光装置。
A color temperature setting section for setting the color temperature;
A state detection unit for detecting the ambient temperature and emission color of the light emitting device ;
A control unit that adjusts the light emission intensity of the three blue LEDs and the red LED based on the color temperature set by the color temperature setting unit and the ambient temperature state detected by the state detection unit; The light-emitting device according to claim 6 or 7 .
JP2009022446A 2009-02-03 2009-02-03 Light emitting device Active JP5005712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022446A JP5005712B2 (en) 2009-02-03 2009-02-03 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022446A JP5005712B2 (en) 2009-02-03 2009-02-03 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012117858A Division JP2012191225A (en) 2012-05-23 2012-05-23 Light-emitting device

Publications (2)

Publication Number Publication Date
JP2010182724A JP2010182724A (en) 2010-08-19
JP5005712B2 true JP5005712B2 (en) 2012-08-22

Family

ID=42764099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022446A Active JP5005712B2 (en) 2009-02-03 2009-02-03 Light emitting device

Country Status (1)

Country Link
JP (1) JP5005712B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191225A (en) * 2012-05-23 2012-10-04 Mitsubishi Electric Corp Light-emitting device
US9454936B2 (en) 2013-03-12 2016-09-27 Samsung Display Co., Ltd. Display apparatus

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935576A (en) * 2010-09-29 2017-07-07 皇家飞利浦电子股份有限公司 The luminescent device of wavelength convert
WO2012124509A1 (en) * 2011-03-11 2012-09-20 シャープ株式会社 Light source, lighting device and display device
WO2013101280A2 (en) * 2011-04-11 2013-07-04 Cree, Inc. Solid state lighting device including green shifted red component
US8841831B2 (en) 2012-03-13 2014-09-23 Panasonic Corporation Light emitting device, and illumination apparatus and luminaire using same
US9112119B2 (en) 2012-04-04 2015-08-18 Axlen, Inc. Optically efficient solid-state lighting device packaging
CN103889101A (en) * 2012-12-24 2014-06-25 鸿富锦精密工业(深圳)有限公司 Color temperature adjusting method and lighting device using same
JP2014146661A (en) 2013-01-28 2014-08-14 Panasonic Corp Light emitting module, illumination device and luminaire
JP6384704B2 (en) * 2013-03-28 2018-09-05 パナソニックIpマネジメント株式会社 Lighting device
US10018776B2 (en) * 2013-04-15 2018-07-10 Sharp Kabushiki Kaisha Illumination device, illumination equipment, and display device
JP6145818B2 (en) * 2013-05-13 2017-06-14 パナソニックIpマネジメント株式会社 Lighting system
JP6331389B2 (en) * 2013-12-27 2018-05-30 日亜化学工業株式会社 Light emitting device
JP6358457B2 (en) 2014-01-20 2018-07-18 パナソニックIpマネジメント株式会社 Light emitting device, illumination light source, and illumination device
US10024530B2 (en) * 2014-07-03 2018-07-17 Sansi Led Lighting Inc. Lighting device and LED luminaire
CN107455015B (en) 2014-09-12 2019-11-26 飞利浦照明控股有限公司 Light fixture, LED strip, lighting apparatus and the method for manufacturing light fixture
US10424562B2 (en) 2014-12-16 2019-09-24 Citizen Electronics Co., Ltd. Light emitting device with phosphors
JP6115967B2 (en) * 2015-04-16 2017-04-19 富士フイルム株式会社 Endoscope system
JP7080010B2 (en) * 2016-02-04 2022-06-03 晶元光電股▲ふん▼有限公司 Light emitting element and its manufacturing method
JP6835344B2 (en) * 2016-04-06 2021-02-24 インテックス株式会社 High color rendering light source device
JP6769248B2 (en) * 2016-11-09 2020-10-14 日亜化学工業株式会社 Light emitting device
JP6438062B2 (en) * 2017-03-15 2018-12-12 富士フイルム株式会社 Endoscope system
US11257990B2 (en) * 2017-09-29 2022-02-22 Nichia Corporation Light emitting device
US10950764B2 (en) 2017-11-28 2021-03-16 Nichia Corporation Light-emitting device
CN111050444B (en) * 2019-02-01 2021-04-09 靳鹏 Method for simulating CIE standard illuminant by using multi-channel LED and illumination system
JP7270044B2 (en) * 2019-08-07 2023-05-09 京セラ株式会社 lighting equipment
JP7057528B2 (en) * 2020-09-10 2022-04-20 日亜化学工業株式会社 Light emitting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274843B2 (en) * 2003-04-21 2009-06-10 シャープ株式会社 LED device and mobile phone device, digital camera and LCD display device using the same
JP2005101296A (en) * 2003-09-25 2005-04-14 Osram-Melco Ltd Device, module, and lighting apparatus of variable color light emitting diode
JP2007027421A (en) * 2005-07-15 2007-02-01 Harison Toshiba Lighting Corp Led package and lighting device
JP2007088348A (en) * 2005-09-26 2007-04-05 Sharp Corp Illumination device, back light device, and liquid crystal display
JP2008108835A (en) * 2006-10-24 2008-05-08 Harison Toshiba Lighting Corp Semiconductor light emitting device and method for manufacturing the same
JP5099418B2 (en) * 2006-11-30 2012-12-19 東芝ライテック株式会社 Lighting device
JP2008205133A (en) * 2007-02-19 2008-09-04 Sharp Corp Backlight device and color temperature adjustment method
JP5009651B2 (en) * 2007-03-08 2012-08-22 ローム株式会社 Lighting device
JP2008283155A (en) * 2007-05-14 2008-11-20 Sharp Corp Light emitting device, lighting device, and liquid crystal display device
JP4804421B2 (en) * 2007-05-30 2011-11-02 三菱電機株式会社 Lighting device and lighting fixture
JP5431688B2 (en) * 2007-06-29 2014-03-05 ソウル セミコンダクター カンパニー リミテッド Multi LED package
TWM342713U (en) * 2007-10-19 2008-10-11 Prodisc Technology Inc Light-emitting device capable of adjusting color temperature and its control circuit structure
JP2009176661A (en) * 2008-01-28 2009-08-06 Nec Lighting Ltd Led illumination apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191225A (en) * 2012-05-23 2012-10-04 Mitsubishi Electric Corp Light-emitting device
US9454936B2 (en) 2013-03-12 2016-09-27 Samsung Display Co., Ltd. Display apparatus

Also Published As

Publication number Publication date
JP2010182724A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5005712B2 (en) Light emitting device
US20220068893A1 (en) Systems For Providing Tunable White Light with High Color Rendering
EP3155874B1 (en) Light emitting arrangement with adjustable emission spectrum
EP2027412B1 (en) Lighting device
EP2671019B1 (en) Lighting apparatus providing increased luminous flux while maintaining color point and cri
JP5181505B2 (en) Light emitting device
US20150049459A1 (en) White light emitting module
JP2012191225A (en) Light-emitting device
JP2019534541A (en) Tunable LED emitter with continuous spectrum
JP5443959B2 (en) Lighting device
KR20120093181A (en) Solid state lighting devices including light mixtures
JP2008108835A (en) Semiconductor light emitting device and method for manufacturing the same
JP2008034188A (en) Lighting system
JP2008218486A (en) Light emitting device
JP6223479B2 (en) Solid light emitter package, light emitting device, flexible LED strip, and luminaire
EP3845033B1 (en) Cyan enriched white light
JP2010147306A (en) Light emitting device, and lighting fixture and display instrument using the light emitting device
KR20100134779A (en) A luminous device
JP2014150293A (en) Light-emitting device
JP2023095896A (en) Lighting device
JP6583572B2 (en) Light emitting device
KR100902988B1 (en) Method for manufacturing white light emitting diode
JP2014112621A (en) Semiconductor light-emitting device and luminaire
KR100883991B1 (en) Wide-band nature light emitting diode, method for manufacturing thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250