JP5005177B2 - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP5005177B2
JP5005177B2 JP2005059534A JP2005059534A JP5005177B2 JP 5005177 B2 JP5005177 B2 JP 5005177B2 JP 2005059534 A JP2005059534 A JP 2005059534A JP 2005059534 A JP2005059534 A JP 2005059534A JP 5005177 B2 JP5005177 B2 JP 5005177B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
dye
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005059534A
Other languages
Japanese (ja)
Other versions
JP2006244877A (en
Inventor
竜一 白土
修二 早瀬
浩一 山下
充 河野
能弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Kyushu Institute of Technology NUC
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Kyushu Institute of Technology NUC filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2005059534A priority Critical patent/JP5005177B2/en
Publication of JP2006244877A publication Critical patent/JP2006244877A/en
Application granted granted Critical
Publication of JP5005177B2 publication Critical patent/JP5005177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は多孔質酸化物半導体微粒子を用いた色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell using porous oxide semiconductor fine particles.

現在、単結晶、多結晶あるいはアモルファスのシリコン半導体を用いた太陽電池が、電卓などの電気製品や、住宅用などに用いられている。しかしながら、このようなシリコン半導体を用いた太陽電池の製造には、プラズマCVDや高温結晶成長プロセスなどの高精度プロセスが用いられるため、多大のエネルギを必要とすると共に、真空を必要とする高価な装置が必要なために製造コストが高くなっている。   At present, solar cells using single crystal, polycrystalline, or amorphous silicon semiconductors are used for electric products such as calculators, houses, and the like. However, high-precision processes such as plasma CVD and high-temperature crystal growth processes are used in the manufacture of solar cells using such silicon semiconductors, which requires a lot of energy and is expensive and requires a vacuum. Manufacturing costs are high due to the need for equipment.

そこで、低コストで製造可能な太陽電池として、例えば、酸化チタンのような酸化物半導体にルテニウム金属錯体のような光増感色素を吸着させた材料を用いた色素増感太陽電池が提案されている。   Therefore, as a solar cell that can be manufactured at a low cost, for example, a dye-sensitized solar cell using a material in which a photosensitizing dye such as a ruthenium metal complex is adsorbed on an oxide semiconductor such as titanium oxide has been proposed. Yes.

色素増感太陽電池は具体的には、例えばITOのような透明導電層を設けた透明ガラス板あるいは透明樹脂板のような透明基板の透明導電層側に、例えばルテニウム錯体からなる色素を表面に吸着した酸化チタンなどを半導体層として形成した負極と、正極となる白金などの金属層あるいは導電層を設けた基板との間に電解質の液を封入したものがある。色素増感太陽電池に光が照射されると、負極では光を吸収した色素の電子が励起し、励起した電子が半導体層に移動し、更に透明電極へと導かれ、正極では導電層からくる電子により電解質を還元する。還元された電解質は色素に電子を伝えることで酸化され、このサイクルで色素増感太陽電池が発電すると考えられている。   Specifically, the dye-sensitized solar cell has, for example, a dye composed of a ruthenium complex on the surface of a transparent substrate such as a transparent glass plate or a transparent resin plate provided with a transparent conductive layer such as ITO. There is a type in which an electrolyte solution is sealed between a negative electrode in which adsorbed titanium oxide or the like is formed as a semiconductor layer and a substrate provided with a metal layer or a conductive layer such as platinum as a positive electrode. When the dye-sensitized solar cell is irradiated with light, the electrons of the dye that absorbed the light are excited in the negative electrode, the excited electrons move to the semiconductor layer, and are further guided to the transparent electrode, and from the conductive layer in the positive electrode The electrolyte is reduced by electrons. The reduced electrolyte is oxidized by transferring electrons to the dye, and it is believed that the dye-sensitized solar cell generates electricity during this cycle.

現在、色素増感太陽電池はシリコン太陽電池に比して照射光エネルギに対する発電エネルギ効率が低く、その効率を上げることが実効的な色素増感太陽電池を製造する上での重要な課題となっている。色素増感太陽電池の効率は、それを構成する各要素の特性や、更にそれら要素の組み合わせによっても影響を受けると考えられており、さまざまな試みがなされている。   Currently, dye-sensitized solar cells have lower power generation energy efficiency with respect to irradiation light energy than silicon solar cells, and raising the efficiency is an important issue in producing effective dye-sensitized solar cells. ing. The efficiency of the dye-sensitized solar cell is considered to be influenced by the characteristics of each element constituting the dye-sensitized solar cell and the combination of these elements, and various attempts have been made.

色素増感太陽電池に用いる光入射側電極としては、透過率が高く、面積抵抗の低い透明導電性材料が望まれてきた。この条件を満たす電極材料として、錫をドープした酸化インジウム(ITO)が従来から良く使われてきた。しかしながら、ITOは、色素増感太陽電池における多孔質膜の作製過程における熱処理において安定性に劣るという欠点を有していた。   As a light incident side electrode used for a dye-sensitized solar cell, a transparent conductive material having high transmittance and low sheet resistance has been desired. As an electrode material satisfying this condition, indium oxide (ITO) doped with tin has been often used. However, ITO has a defect that it is inferior in stability in heat treatment in the process of producing a porous film in a dye-sensitized solar cell.

フッ素をドープした酸化錫膜(FTO)において、比抵抗が3.5×10-4(Ωcm)程度の低いものが得られており、ITOに比べて酸化チタン多孔質層を熱処理形成する際の熱安定性が高いことが分かり、この材料が色素増感太陽電池の透明電極として広く利用され始めた。ところが、ITOと比較して抵抗が高いために、良好な抵抗を得るためにはより厚い膜が必要となる。そのため透明導電膜を持つガラス基板の透過率が低下して、色素を持つ酸化チタン多孔質層への光の入射量が低下してしまい光変換効率の低下が起こることが問題となっていた。 Fluorine-doped tin oxide film (FTO) with a specific resistance as low as 3.5 × 10 -4 (Ωcm) has been obtained. Thermal stability when heat-treating a titanium oxide porous layer compared to ITO This material has been widely used as a transparent electrode for dye-sensitized solar cells. However, since the resistance is higher than that of ITO, a thicker film is required to obtain good resistance. For this reason, the transmittance of the glass substrate having the transparent conductive film is reduced, and the amount of light incident on the titanium oxide porous layer having the dye is reduced, resulting in a decrease in light conversion efficiency.

特開2002-151168号公報JP 2002-151168 A 特開2005-19205号公報JP 2005-19205 A 特開2003-323818号公報JP2003-323818 特開平1-259572号公報JP-A-1-259572 特開平2-181473号公報Japanese Patent Laid-Open No. 2-181473

特許文献1には、酸化チタンのような半導体に光増感剤として機能する色素を吸着させ
た半導体層が記載されており、この半導体層は光電変換層となる。そして、透明基板、透明導電膜、光電変換膜、電解液、白金膜、導電性基板の順に構成された色素増感太陽電池が開示されている。
Patent Document 1 describes a semiconductor layer in which a dye functioning as a photosensitizer is adsorbed on a semiconductor such as titanium oxide, and this semiconductor layer becomes a photoelectric conversion layer. And the dye-sensitized solar cell comprised in order of the transparent substrate, the transparent conductive film, the photoelectric converting film, the electrolyte solution, the platinum film, and the electroconductive board | substrate is disclosed.

特許文献2には、各種太陽電池に使用される透明導電膜であって、基板上に設けられる透明導電膜の電気抵抗が50Ω/□以下、その上に積層されるアンチモンを含む酸化スズからなる透明導電膜であって、可視光線の透過率が70%以上である2層の透明導電膜について記載されている。特許文献3には、透明基板上にITO膜を形成し、その上に耐熱性高いFTO膜を形成した透明電極用基材が記載されている。   Patent Document 2 discloses a transparent conductive film used for various types of solar cells, wherein the transparent conductive film provided on the substrate has an electric resistance of 50 Ω / □ or less, and is composed of tin oxide containing antimony laminated thereon. It is a transparent conductive film, and describes a two-layer transparent conductive film having a visible light transmittance of 70% or more. Patent Document 3 describes a transparent electrode substrate in which an ITO film is formed on a transparent substrate and an FTO film having high heat resistance is formed thereon.

特許文献4、5には、非晶質太陽電池に使用される透明電極中の塩素濃度又はフッ素濃度を制御することにより、光電変換効率を高めることが記載されている。しかし、これは色素増感太陽電池に関するものではない。また、ITO膜を形成する方法は、上記のような問題がある他、インジウムの入手が困難となりつつあるという問題がある。   Patent Documents 4 and 5 describe that the photoelectric conversion efficiency is increased by controlling the chlorine concentration or the fluorine concentration in the transparent electrode used in the amorphous solar cell. However, this is not related to dye-sensitized solar cells. In addition to the above problems, the method of forming the ITO film has a problem that it is difficult to obtain indium.

本発明は、基板、透明導電膜及び増感色素吸着金属酸化物の順に積層されてなる表面側電極とこれに対向して設けられる対向面側電極の間に電解質を配した色素増感太陽電池のエネルギ変換効率を向上させることを目的とする。   The present invention provides a dye-sensitized solar cell in which an electrolyte is disposed between a surface-side electrode formed by laminating a substrate, a transparent conductive film, and a sensitizing dye-adsorbing metal oxide in this order, and a counter-surface-side electrode provided to face the surface-side electrode. The purpose is to improve the energy conversion efficiency.

本発明者らは、FTO膜の抵抗値や透過率と色素増感太陽電池の特性を調査した結果、FTO膜の透過率が色素増感太陽電池の特性に大きな影響を与えることを付きとめた。従来用いられている透明導電膜は、抵抗値を低下させるためにフッ素を膜中にドーピングするが、原料由来の残留塩素も共に含有している。透明導電膜の付いたガラス基板の透過率は、これらドーパントの膜中存在量に依存して変化する。透過率は色素増感型太陽電池の特性に強い影響を及ぼすと考えた。そこで、透明導電膜中にフッ素を含まず抵抗値は高いが透過率の高い層を形成する。その上に従来の良好な抵抗値を持つFTO層を形成して、多孔質酸化チタンと酸化錫透明導電膜の界面抵抗は従来の値を維持した基板により、色素増感太陽電池を形成しその変換効率を調べたところ、透明導電膜中にフッ素を含まない層が存在した膜上に形成した太陽電池の効率が高いことが分かり、本発明を完成した。   As a result of investigating the resistance value and transmittance of the FTO film and the characteristics of the dye-sensitized solar cell, the present inventors have found that the transmittance of the FTO film greatly affects the characteristics of the dye-sensitized solar cell. . Conventionally used transparent conductive films dope fluorine into the film in order to reduce the resistance value, but also contain residual chlorine derived from the raw material. The transmittance of the glass substrate with the transparent conductive film changes depending on the amount of these dopants in the film. The transmittance was considered to have a strong influence on the characteristics of the dye-sensitized solar cell. Therefore, the transparent conductive film does not contain fluorine and has a high resistance value but a high transmittance layer. A conventional FTO layer having a good resistance value is formed thereon, and a dye-sensitized solar cell is formed by using a substrate in which the interface resistance between the porous titanium oxide and the tin oxide transparent conductive film maintains the conventional value. As a result of examining the conversion efficiency, it was found that the efficiency of the solar cell formed on the film in which a layer containing no fluorine was present in the transparent conductive film was high, and the present invention was completed.

本発明は、透明基板、透明導電膜及び増感色素吸着金属酸化物の順に積層されてなる表面側電極とこれに対向して設けられる対向面側電極の間に電解質を配した色素増感太陽電池において、透明導電膜が2層以上の層からなり、各層の膜厚が0.05〜1μmの範囲にあり、増感色素吸着金属酸化物と接する層にはフッ素を含む酸化錫からなる第一の透明導電膜が設けられ、第一の透明導電膜に接する層にはフッ素を含まない酸化金属膜からなる第二の透明導電膜が設けられ、透明導電膜の可視光透過率が80%以上であり、面積抵抗が10Ω/□以下であることを特徴とする色素増感太陽電池である。ここで、上記第一の透明導電膜及び第二の透明導電膜に含有される塩素量は0.01〜0.1wt%であり、第一の透明導電膜に含有されるフッ素量は0.01〜0.1wt%である。 The present invention relates to a dye-sensitized solar in which an electrolyte is disposed between a surface-side electrode formed by laminating a transparent substrate, a transparent conductive film, and a sensitizing dye-adsorbing metal oxide in this order, and a counter-surface-side electrode provided opposite to the surface-side electrode. In the battery, the transparent conductive film is composed of two or more layers, the thickness of each layer is in the range of 0.05 to 1 μm, and the layer in contact with the sensitizing dye-adsorbing metal oxide is composed of tin oxide containing fluorine. One transparent conductive film is provided, and a layer in contact with the first transparent conductive film is provided with a second transparent conductive film made of a metal oxide film not containing fluorine, and the visible light transmittance of the transparent conductive film is 80%. This is a dye-sensitized solar cell having a sheet resistance of 10Ω / □ or less. Here, the amount of chlorine contained in the first transparent conductive film and the second transparent conductive film is 0.01 to 0.1 wt%, and the amount of fluorine contained in the first transparent conductive film is 0. 01-0.1 wt%.

本発明の色素増感太陽電池の表面側電極は、透明基板、透明導電膜及び増感色素吸着金属酸化物からなる。そして、透明導電膜は2層以上の層からなり、増感色素吸着金属酸化物に接する層から順に第一、第二の透明導電膜と称する。   The surface side electrode of the dye-sensitized solar cell of the present invention is composed of a transparent substrate, a transparent conductive film, and a sensitizing dye-adsorbing metal oxide. And a transparent conductive film consists of two or more layers, and is called the 1st, 2nd transparent conductive film in an order from the layer which touches a sensitizing dye adsorption metal oxide.

第一の透明導電膜は、フッ素を含む酸化錫(FTO)からなり、第二の透明導電膜は、フッ素を含まない酸化錫(TO)からなり、1)第一の透明導電膜及び第二の透明導電膜に含有される塩素量が0.01〜0.1wt%であること、又は、2)第一の透明導電膜に含有されるフッ素量が0.01〜0.1wt%であることが好ましい。更に、透明導電膜が熱分解酸化反応により透明基板上に付着されたものであることが好ましい。   The first transparent conductive film is made of fluorine-containing tin oxide (FTO), the second transparent conductive film is made of fluorine-free tin oxide (TO), and 1) the first transparent conductive film and the second The amount of chlorine contained in the transparent conductive film is 0.01 to 0.1 wt%, or 2) the amount of fluorine contained in the first transparent conductive film is 0.01 to 0.1 wt% It is preferable. Furthermore, it is preferable that the transparent conductive film is attached on the transparent substrate by a thermal decomposition oxidation reaction.

更に、本発明の色素増感太陽電池は、増感色素吸着金属酸化物が、増感色素吸着酸化チタンであり、その平均粒子径が5〜500nmであることが好ましい。   Furthermore, in the dye-sensitized solar cell of the present invention, the sensitizing dye-adsorbing metal oxide is preferably a sensitizing dye-adsorbing titanium oxide, and the average particle diameter is preferably 5 to 500 nm.

本発明によれば、高効率な色素増感太陽電池を提供することができる。   According to the present invention, a highly efficient dye-sensitized solar cell can be provided.

以下、本発明の色素増感太陽電池を、その層構造を示す図1及び図2を参照して説明する。
本発明の色素増感太陽電池の基本構成は、基板1上に、透明導電膜2と色素吸着金属酸化物層3の順に積層された表面電極10と、基板4上に導電層5が設けられた対向電極11を有し、両電極間に電解質6を配した構成である。そして、表面電極10の内面側には色素吸着金属酸化物層3があり、これを半導体電極という。色素吸着金属酸化物層は、酸化チタン粒子等の金属酸化物粒子とこの粒子間の間隙を埋めるように又は粒子の表面を覆うように存在する増感色素からなっている。なお、光は表面電極10側から入る。
Hereinafter, the dye-sensitized solar cell of this invention is demonstrated with reference to FIG.1 and FIG.2 which shows the layer structure.
The basic structure of the dye-sensitized solar cell of the present invention is that a surface electrode 10 in which a transparent conductive film 2 and a dye-adsorbing metal oxide layer 3 are laminated in this order on a substrate 1 and a conductive layer 5 on the substrate 4 are provided. The counter electrode 11 is provided, and the electrolyte 6 is disposed between the two electrodes. A dye adsorbing metal oxide layer 3 is provided on the inner surface side of the surface electrode 10 and is referred to as a semiconductor electrode. The dye-adsorbing metal oxide layer is composed of metal oxide particles such as titanium oxide particles and a sensitizing dye existing so as to fill a gap between the particles or to cover the surface of the particles. Light enters from the surface electrode 10 side.

色素増感太陽電池に用いる基板1としては、透明な絶縁材料であれば特に限定されるものではなく、例えば通常のガラス板やプラスチック板などが挙げられ、更に基材は屈曲性のあるものでも良く、例えばPET樹脂などが挙げられるが、好ましくは約500℃を上限に酸化チタンを基材に焼付ける工程に耐え得る耐熱材料であることであり、透明なガラス板が挙げられる。   The substrate 1 used for the dye-sensitized solar cell is not particularly limited as long as it is a transparent insulating material, and examples thereof include a normal glass plate and a plastic plate, and the base material may be flexible. Well, for example, a PET resin can be mentioned, but it is preferably a heat-resistant material that can withstand the process of baking titanium oxide on a substrate at an upper limit of about 500 ° C., and a transparent glass plate can be mentioned.

次に、この基板1の表面に、基材の透明性を損なわないような透明導電膜2を設けるが、透明導電膜2は少なくとも2層から構成される。図2は表面電極10の層構造を更に詳細に説明するための図であり、色素吸着金属酸化物層3に接する第一の透明導電膜21はFTOであり、第一の透明導電膜21に接する第二の透明導電膜22はTOである。必要によりに第二の透明導電膜22に接する第三の透明導電膜23を設けることができるが、これはITO、FTO、ATO、TOあるいはこれらを組み合わせたものでよく、更には透明性を損なわない厚みの金属層であってもよい。また、第四以降の透明導電膜を設けることもできる。図2では第三の透明導電膜23が基板1と接している。   Next, a transparent conductive film 2 is provided on the surface of the substrate 1 so as not to impair the transparency of the base material. The transparent conductive film 2 is composed of at least two layers. FIG. 2 is a diagram for explaining the layer structure of the surface electrode 10 in more detail. The first transparent conductive film 21 in contact with the dye-adsorbing metal oxide layer 3 is FTO, and the first transparent conductive film 21 The second transparent conductive film 22 in contact is TO. If necessary, a third transparent conductive film 23 in contact with the second transparent conductive film 22 can be provided, but this may be ITO, FTO, ATO, TO, or a combination of these, and further impairs transparency. It may be a metal layer with no thickness. A fourth and subsequent transparent conductive films can also be provided. In FIG. 2, the third transparent conductive film 23 is in contact with the substrate 1.

これらの導電層を設ける方法は特に限定されるものではなく、スパッタリング、PVD、レーザアブレーションあるいはペースト化した各材料を用いればスピンコート、バーコート、スクリーン印刷の手法など既知の手法を用いることができる。しかし、好ましくは、前述のスプレー法やCVD法などの熱分解法が、得られる膜の特性の面からも優れており、また経済性をも兼ね備えた製膜法として適する。これら方法において用いられる錫原料としては、SnCl4、(CnH2n+14Sn(ただしn=1〜4)、C49SnCl3、(CH32SnCl2等を使用するのがよい。また、FTOとするためにフッ素をドーピングするための原料としては、スプレー法の場合、NH4F、CVD法の場合、HF、CCl22、CHClF2、CH3CHF2、CF3Br等がよい。これら原料を用いた多層構造のFTO及びTOの製膜は、フッ素を含まない製膜条件においては、フッ素ドーパント原料の導入を止めて行い、膜中にフッ素を導入する場合には、フッ素ドーパント原料を導入することにより、2層や3層構造を持つ透明導電膜を形成でき光透過率の改善を達成することができる。 The method for providing these conductive layers is not particularly limited, and known methods such as spin coating, bar coating, and screen printing methods can be used if each material formed by sputtering, PVD, laser ablation, or pasting is used. . However, it is preferable that the thermal decomposition method such as the spray method or the CVD method described above is excellent in terms of the characteristics of the obtained film and is suitable as a film forming method having economic efficiency. As the tin raw material used in these methods, SnCl 4 , (CnH 2n + 1 ) 4 Sn (where n = 1 to 4), C 4 H 9 SnCl 3 , (CH 3 ) 2 SnCl 2 and the like are used. Good. In addition, as a raw material for doping fluorine for FTO, NH 4 F in the case of spraying, HF, CCl 2 F 2 , CHClF 2 , CH 3 CHF 2 , CF 3 Br, etc. in the case of CVD Is good. Film formation of FTO and TO having a multi-layer structure using these raw materials is carried out by stopping the introduction of the fluorine dopant raw material under the film forming conditions not containing fluorine, and when introducing fluorine into the film, the fluorine dopant raw material By introducing a transparent conductive film having a two-layer or three-layer structure, an improvement in light transmittance can be achieved.

第一の透明導電膜21及び第二の透明導電膜22の厚みは0.05〜1μm、好ましくは0.08〜0.4μmの範囲であり、透明導電膜2全体としての厚みは0.2〜〜1μm、好ましくは0.3〜0.8μmの範囲である。第一の透明導電膜21と第二の透明導電膜22の厚みの比は、0.5〜5の範囲が好ましい。   The thickness of the first transparent conductive film 21 and the second transparent conductive film 22 is in the range of 0.05 to 1 μm, preferably 0.08 to 0.4 μm, and the total thickness of the transparent conductive film 2 is 0.2 to 1 μm, preferably 0.3. It is in the range of ~ 0.8 μm. The ratio of the thickness of the first transparent conductive film 21 and the second transparent conductive film 22 is preferably in the range of 0.5-5.

次に、色素吸着金属酸化物層3、すなわち半導体電極を設ける。通常は金属酸化物の層を形成したのち、これに増感色素を吸着させる。金属酸化物としては、光電変換材料と知られているものが使用でき、酸化チタン、酸化亜鉛、酸化タングステン等を挙げることができるが、酸化チタンが好ましい。酸化チタンとしては、アナターゼ型、ルチル型等の酸化チタンの他、水酸化チタン、含水酸化チタン類であってもよい。また、Nb、V又はTaの各元素の少なくとも1つを酸化チタンに対して30ppm〜5%の重量濃度(金属元素として)になるようドーピングしてもよい。   Next, the dye adsorbing metal oxide layer 3, that is, the semiconductor electrode is provided. Usually, after a metal oxide layer is formed, a sensitizing dye is adsorbed thereto. As the metal oxide, a material known as a photoelectric conversion material can be used, and examples thereof include titanium oxide, zinc oxide, tungsten oxide, and the like, and titanium oxide is preferable. Titanium oxide may be titanium hydroxide such as anatase type or rutile type, titanium hydroxide or hydrous titanium oxide. Further, at least one of each element of Nb, V, or Ta may be doped so as to have a weight concentration (as a metal element) of 30 ppm to 5% with respect to titanium oxide.

このような金属酸化物であれば本発明に用いることが可能であるが、平均粒子径が5〜500nm、好ましくは10〜200 nmの範囲の微粒子であることがよい。このような粒子径である場合、平滑化処理した導電性膜と金属酸化物粒子の接触面積が大きくなり、それによって抵抗が減少するものと考えられる。   Such a metal oxide can be used in the present invention, but fine particles having an average particle diameter of 5 to 500 nm, preferably 10 to 200 nm are preferred. In the case of such a particle size, it is considered that the contact area between the conductive film subjected to the smoothing treatment and the metal oxide particles is increased, thereby reducing the resistance.

金属酸化物の膜を、透明電極2上に形成する方法については、特に限定されるものではなく、例えばペースト化した金属酸化物をスピンコート、印刷、スプレーコートなどの各手法を用いても良い。また、製膜後に酸化チタン等の金属酸化物の焼結などを目的に焼成することも可能である。   The method of forming the metal oxide film on the transparent electrode 2 is not particularly limited, and for example, each method such as spin coating, printing, spray coating, or the like may be used for the paste of the metal oxide. . It is also possible to sinter for the purpose of sintering a metal oxide such as titanium oxide after film formation.

次に、金属酸化物に色素を吸着させて色素吸着酸化チタンとする。前記のようにこの吸着では色素は、金属酸化物粒子の周囲に入り込むが、金属酸化物粒子が多孔質であればその内部にも入り込む。増感色素の種類については特に限定されるものではないが、シス-L2-ビス(2,2'-ビピリジル-4,4'-ジカルボキシレート)ルテニウム(II)錯体(ここで、Lはハロゲン、CN又はSCNである)などのルテニウム錯体であることが好ましい。 Next, a dye is adsorbed on the metal oxide to obtain a dye-adsorbed titanium oxide. As described above, in this adsorption, the dye enters the periphery of the metal oxide particles, but also enters the inside of the metal oxide particles if the metal oxide particles are porous. The type of sensitizing dye is not particularly limited, but cis-L 2 -bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) complex (where L is It is preferably a ruthenium complex such as halogen, CN or SCN.

色素吸着の方法についても特に限定されるものではないが、適当な溶媒に色素を溶解した色素溶液中に、基板1上に、導電膜2及び金属酸化物層を形成したものを浸す、いわゆる含浸法などを挙げることができる。   The method for adsorbing the dye is not particularly limited, but the so-called impregnation is performed by immersing the conductive film 2 and the metal oxide layer formed on the substrate 1 in a dye solution in which the dye is dissolved in an appropriate solvent. Law.

含浸法などにより色素吸着金属酸化物層を形成し、必要によりこれを加熱又は乾燥して、基板1上に導電膜2及び色素吸着金属酸化物層3を有する表面電極10とする。この表面電極10は負極として作用する。もう一方の正極として作用する電極(対向電極)11は、表面電極10と対向して配置する。正極となる電極は、導電性の金属などでよく、また、例えば通常のガラス板やプラスチック板などの基板5に金属膜や炭素膜等の導電膜4を施したものでもよい。   A dye-adsorbing metal oxide layer is formed by an impregnation method or the like, and this is heated or dried as necessary to obtain a surface electrode 10 having a conductive film 2 and a dye-adsorbing metal oxide layer 3 on a substrate 1. The surface electrode 10 functions as a negative electrode. An electrode (counter electrode) 11 acting as the other positive electrode is disposed to face the surface electrode 10. The electrode serving as the positive electrode may be a conductive metal or the like, or may be a substrate 5 such as a normal glass plate or plastic plate provided with a conductive film 4 such as a metal film or a carbon film.

負極となる表面電極10と、正極となる対向電極11の間には、電解質層6を設ける。この電解質層の種類は、光励起され半導体への電子注入を果した後の色素を還元するための酸化還元種を含んでいれば特に限定されず、液状の電解質であってもよく、これに公知のゲル化剤(高分子又は低分子のゲル化剤)を添加して得られるゲル状の電解質であってもよい。   An electrolyte layer 6 is provided between the surface electrode 10 serving as the negative electrode and the counter electrode 11 serving as the positive electrode. The type of the electrolyte layer is not particularly limited as long as it contains a redox species for reducing the dye after photoexcitation and electron injection into the semiconductor, and may be a liquid electrolyte, which is well known. It may be a gel electrolyte obtained by adding a gelling agent (polymer or low molecular weight gelling agent).

例えば、溶液電解質に用いる電解質の例としては、ヨウ素とヨウ化物(LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物ヨウ素塩等)の組み合わせ、臭素と臭化物(LiBr、NaBr、KBr、CsBr、CaBr2 等の金属臭化物、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の4級アンモニウム化合物臭素塩等)の組み合わせ、ポリ硫化ナトリウム、アルキルチオール、アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン、キノン等が挙げられる。電解質は混合して用いてもよい。 For example, examples of the electrolyte used in the solution electrolyte, iodine and iodide (LiI, NaI, KI, CsI, metal iodide such as CaI 2, tetraalkylammonium iodide, pyridinium iodide, such as imidazolium iodide 4 Combination of bromine and bromide (metal bromide such as LiBr, NaBr, KBr, CsBr, CaBr 2 and the like, quaternary ammonium compound bromide salt such as tetraalkylammonium bromide, pyridinium bromide, etc.), poly Examples thereof include sulfur compounds such as sodium sulfide, alkyl thiol, and alkyl disulfide, viologen dyes, hydroquinone, and quinone. The electrolyte may be used as a mixture.

電解液に溶媒を使用する場合は、粘度が低く高イオン移動度を示し、優れたイオン伝導性を発現できる化合物であることが望ましい。このような溶媒の例としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、3-メチル-2-オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等のアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物、ジメチルスルホキシド、スルフォラン等の非プロトン極性物質、水等が挙げられる。これらの溶媒は混合して用いることもできる。   When a solvent is used in the electrolytic solution, it is desirable that the compound has a low viscosity and high ion mobility and can exhibit excellent ionic conductivity. Examples of such solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether , Chain ethers such as polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether and polypropylene glycol monoalkyl ether, ethylene Glycol, propylene glycol, polyethylene glycol, polypropylene glycol Lumpur, polyhydric alcohols such as glycerin, acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile, dimethyl sulfoxide, aprotic polar substances such as sulfolane, water and the like. These solvents can also be used as a mixture.

また、電解質としては、高沸点を有する溶融塩電解質が好ましい。半導体電極が色素吸着酸化チタン層からなる場合は、溶融塩電解質と組み合わせることにより、特に優れた電池特性を発揮する。溶融塩電解質組成物は溶融塩を含む。溶融塩電解質組成物は常温で液体であるのが好ましい。主成分である溶融塩は室温において液状であるか又は低融点の電解質であり、その一般的な例としては「電気化学」、1997年、第65巻、第11号、p.923 等に記載のピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等が挙げられる。溶融塩は単独で使用しても2種以上混合して使用してもよい。また、LiI、NaI、KI、LiBF4、CF3COOLi、CF3COONa、LiSCN、NaSCN等のアルカリ金属塩を併用することもできる。通常、溶融塩電解質組成物はヨウ素を含有する。溶融塩電解質組成物の揮発性は低いことが好ましく、溶媒を含まないことが好ましい。溶融塩電解質組成物はゲル化して使用してもよい。 Further, as the electrolyte, a molten salt electrolyte having a high boiling point is preferable. When the semiconductor electrode is composed of a dye-adsorbed titanium oxide layer, particularly excellent battery characteristics are exhibited by combining with a molten salt electrolyte. The molten salt electrolyte composition includes a molten salt. The molten salt electrolyte composition is preferably liquid at room temperature. The molten salt as the main component is an electrolyte that is liquid at room temperature or has a low melting point, and a general example thereof is “Electrochemistry”, 1997, Vol. 65, No. 11, p. Pyridinium salts, imidazolium salts, and triazolium salts described in No. 923. The molten salt may be used alone or in combination of two or more. Alkali metal salts such as LiI, NaI, KI, LiBF 4 , CF 3 COOLi, CF 3 COONa, LiSCN, and NaSCN can also be used in combination. Usually, the molten salt electrolyte composition contains iodine. The molten salt electrolyte composition preferably has low volatility and preferably does not contain a solvent. The molten salt electrolyte composition may be used after gelation.

本発明の太陽電池は、上記負極とヨウ化メチルプロピルイミダゾリウム、ヨウ素、tert-ブチルピリジン、ヨウ化リチウムからなる溶融塩電解質と組み合わせることにより、優れた電池特性を発揮する。また、t-ブチルピリジンや、2-ピコリン、2,6-ルチジン等の塩基性合物を前述の溶液電解質、溶融塩電解質組成物に添加することも好ましい電解質層を与える。   The solar battery of the present invention exhibits excellent battery characteristics when combined with the negative electrode and a molten salt electrolyte comprising methylpropylimidazolium iodide, iodine, tert-butylpyridine, and lithium iodide. Moreover, it is also preferable to add a basic compound such as t-butylpyridine, 2-picoline, or 2,6-lutidine to the aforementioned solution electrolyte or molten salt electrolyte composition.

このような電解質層を設ける方法は特に限定されるものではなく、例えば両電極の間にフィルム状のスペーサ7を配置して隙間を形成し、その隙間に電解質を注入する方法でも良く、また、負極内面に電解質を塗布などした後に正極を適当な間隔をおいて積載する方法でも良い。電解質が流出しないよう、両極とその周囲を封止することが望ましいが、封止の方法や封止材の材質については特に限定するものではない。   The method for providing such an electrolyte layer is not particularly limited, and for example, a film-like spacer 7 may be disposed between both electrodes to form a gap, and an electrolyte may be injected into the gap, A method of stacking the positive electrode at an appropriate interval after applying an electrolyte to the inner surface of the negative electrode may be used. It is desirable to seal both electrodes and their surroundings so that the electrolyte does not flow out, but the sealing method and the material of the sealing material are not particularly limited.

以下、実施例及び比較例に基づいて本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples and comparative examples.

実施例1〜4及び比較例1〜2
大きさが30mm×30mm、厚さ1mmのホウケイ酸ガラスを十分洗浄乾燥し、ガラス基板とした。この基板上に以下のようにして透明導電膜を形成した。
n−ブチル錫トリクロライド、水とエタノールの混合溶液に、フッ素ドープ層(FTO層)を形成する場合には、フッ化アンモニウムを加え、フッ素を含まない層(TO層)を形成する場合にはフッ化アンモニウムを加えない混合溶液により、窒素ガスと酸素の混合ガスによりスプレー法にて、水とエタノール、窒素ガスと酸素ガスの混合割合を変えるとともに、ガラスの加熱温度を変化させながらTO膜又はFTO膜を作製した。
Examples 1-4 and Comparative Examples 1-2
A borosilicate glass having a size of 30 mm × 30 mm and a thickness of 1 mm was sufficiently washed and dried to obtain a glass substrate. A transparent conductive film was formed on this substrate as follows.
In the case of forming a fluorine-doped layer (FTO layer) in a mixed solution of n-butyltin trichloride, water and ethanol, when ammonium fluoride is added and a layer not containing fluorine (TO layer) is formed. By using a mixed solution without adding ammonium fluoride, the mixing ratio of water and ethanol, nitrogen gas and oxygen gas is changed by a spray method using a mixed gas of nitrogen gas and oxygen, while changing the heating temperature of the glass while changing the heating temperature of the glass. An FTO film was prepared.

こうして得られた透明導電膜付きガラスを十分に洗浄乾燥した後、酸化チタン微粒子ペーストを0.5cm×1cmの面積にスキージ法により塗布し、450℃で1時間、電気炉で熱処理を行い、酸化チタン多孔質膜を形成した。得られた酸化チタン多孔質膜の厚さは、ほぼ16μmであった。
この多孔質膜をN3 (RuL2(NCS)2, L: 4,4'-dicarboxy-2,2'-bipyridine)色素を含むエタノール溶液中に13時間程度浸して、酸化チタン微粒子に色素を修飾して、表面電極とした。
The glass with a transparent conductive film thus obtained was thoroughly washed and dried, and then the titanium oxide fine particle paste was applied to an area of 0.5 cm × 1 cm by a squeegee method, and heat-treated at 450 ° C. for 1 hour in an electric furnace to oxidize. A titanium porous membrane was formed. The obtained titanium oxide porous membrane had a thickness of approximately 16 μm.
This porous membrane is immersed in an ethanol solution containing N3 (RuL 2 (NCS) 2 , L: 4,4'-dicarboxy-2,2'-bipyridine) dye for about 13 hours to modify the dye on the titanium oxide fine particles. Thus, a surface electrode was obtained.

一方、基板上にスパッタ法により製膜した白金を持つITO又はFTOを前記表面電極の対向電極として使用し、50μmのスペーサにより封止した。このセルの中に、アセトニトリル中0.5MのLiI、0.5Mのt-ブチルピリジンと、0.05Mのヨウ素を主成分としてなる電解質を注入して、太陽電池とした。   On the other hand, ITO or FTO having platinum formed on the substrate by sputtering was used as the counter electrode of the surface electrode and sealed with a 50 μm spacer. Into this cell, an electrolyte containing 0.5M LiI, 0.5M t-butylpyridine in acetonitrile and 0.05M iodine as main components was injected to form a solar cell.

各実施例、比較例で得た透明導電膜の構成、膜厚、フッ素濃度及び塩素濃度を表1に示す。
透明導電膜構成の欄に2以上の種類が記載されている場合は、下から順に第一の透明導電膜、第二の透明導電膜、第三の透明導電膜を表す。
Table 1 shows the structure, film thickness, fluorine concentration, and chlorine concentration of the transparent conductive film obtained in each Example and Comparative Example.
When two or more types are described in the column of the transparent conductive film configuration, the first transparent conductive film, the second transparent conductive film, and the third transparent conductive film are sequentially shown from the bottom.

Figure 0005005177
Figure 0005005177

太陽電池の特性は、ソーラーシミュレータを用いAM1.5、100 mW/cm2の擬似太陽光を色素増感太陽電池に照射し行った。太陽電池の変換効率(フッ素を含む単一層からなる従来品との相対値)とFTO膜の諸特性を表2に示す。 The characteristics of the solar cell were obtained by irradiating the dye-sensitized solar cell with pseudo solar light of AM 1.5 and 100 mW / cm 2 using a solar simulator. Table 2 shows the conversion efficiency of the solar cell (relative to the conventional product comprising a single layer containing fluorine) and various characteristics of the FTO film.

Figure 0005005177
Figure 0005005177

太陽電池の層構造を説明するための模式図Schematic diagram for explaining the layer structure of a solar cell 透明導電膜の層構造を説明するための模式図Schematic diagram for explaining the layer structure of the transparent conductive film

符号の説明Explanation of symbols

1:基板、2:透明導電膜、3:色素吸着金属酸化物層、4:基板、5:導電膜、6:電解液、7:スペーサ、10:表面電極、11:対向電極、21:第一の透明導電膜、22:第二の透明導電膜、23:第三の透明導電膜 1: substrate, 2: transparent conductive film, 3: dye adsorption metal oxide layer, 4: substrate, 5: conductive film, 6: electrolyte, 7: spacer, 10: surface electrode, 11: counter electrode, 21: first One transparent conductive film, 22: second transparent conductive film, 23: third transparent conductive film

Claims (5)

透明基板、透明導電膜及び増感色素吸着金属酸化物の順に積層されてなる表面側電極とこれに対向して設けられる対向面側電極の間に電解質を配した色素増感太陽電池において、透明導電膜が2層以上の層からなり、各層の膜厚が0.05〜1μmの範囲にあり、増感色素吸着金属酸化物と接する層にはフッ素を含む酸化錫からなる第一の透明導電膜が設けられ、第一の透明導電膜に接する層にはフッ素を含まない酸化錫からなる第二の透明導電膜が設けられ、第一の透明導電膜及び第二の透明導電膜に含有される塩素量が0.01〜0.1wt%であり、第一の透明導電膜に含有されるフッ素量が0.01〜0.1wt%であり、透明導電膜の可視光透過率が80%以上であり、面積抵抗が10Ω/□以下であることを特徴とする色素増感太陽電池。 In a dye-sensitized solar cell in which an electrolyte is disposed between a surface-side electrode that is laminated in the order of a transparent substrate, a transparent conductive film, and a sensitizing dye-adsorbing metal oxide, and a counter-surface-side electrode that is provided to face the electrode. The conductive film is composed of two or more layers, the thickness of each layer is in the range of 0.05 to 1 μm, and the layer in contact with the sensitizing dye adsorbing metal oxide is a first transparent conductive film made of tin oxide containing fluorine. A film is provided, and a layer in contact with the first transparent conductive film is provided with a second transparent conductive film made of tin oxide not containing fluorine, and is contained in the first transparent conductive film and the second transparent conductive film. The chlorine content is 0.01-0.1 wt%, the fluorine content contained in the first transparent conductive film is 0.01-0.1 wt%, and the visible light transmittance of the transparent conductive film is 80%. A dye-sensitized solar cell having a sheet resistance of 10Ω / □ or less . 透明導電膜が熱分解酸化反応により透明基板上に付着されたものである請求項1記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1, wherein the transparent conductive film is attached to the transparent substrate by a thermal decomposition oxidation reaction . 第一の透明導電膜がn−ブチル錫トリクロライドとフッ化アンモニウムの熱分解酸化反応により透明基板上に付着されたものであり、第二の透明導電膜がn−ブチル錫トリクロライドの熱分解酸化反応により透明基板上に付着されたものである請求項1又は2記載の色素増感太陽電池。 The first transparent conductive film is attached to the transparent substrate by the thermal decomposition oxidation reaction of n-butyltin trichloride and ammonium fluoride, and the second transparent conductive film is the thermal decomposition of n-butyltin trichloride. The dye-sensitized solar cell according to claim 1 or 2, which is attached on a transparent substrate by an oxidation reaction. 増感色素吸着金属酸化物が、増感色素吸着酸化チタンであり、その平均粒子径が5〜500nmである請求項1又は2記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1 or 2, wherein the sensitizing dye-adsorbing metal oxide is sensitizing dye-adsorbing titanium oxide and has an average particle diameter of 5 to 500 nm. 第二の透明導電膜に接する層には、更に、フッ素を含む酸化錫からなる第三の透明導電膜が設けられている請求項1〜4のいずれかに記載の色素増感太陽電池。The dye-sensitized solar cell according to any one of claims 1 to 4, wherein a layer in contact with the second transparent conductive film is further provided with a third transparent conductive film made of tin oxide containing fluorine.
JP2005059534A 2005-03-03 2005-03-03 Dye-sensitized solar cell Active JP5005177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059534A JP5005177B2 (en) 2005-03-03 2005-03-03 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059534A JP5005177B2 (en) 2005-03-03 2005-03-03 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2006244877A JP2006244877A (en) 2006-09-14
JP5005177B2 true JP5005177B2 (en) 2012-08-22

Family

ID=37051086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059534A Active JP5005177B2 (en) 2005-03-03 2005-03-03 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5005177B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362273B2 (en) * 2001-12-03 2009-11-11 日本板硝子株式会社 Substrate manufacturing method
JP2004311176A (en) * 2003-04-04 2004-11-04 Fujikura Ltd Substrate for transparent electrode, and manufacturing method of the same

Also Published As

Publication number Publication date
JP2006244877A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP5008034B2 (en) Photoelectric conversion element and manufacturing method thereof
EP2530779A1 (en) Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
TWI449236B (en) Gel type electrolyte, method of fabrication thereof and dye-sensitized solar cell using the same
EP1675211A1 (en) Electrolyte composition and photoelectric converter using same
JP5144986B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006310134A (en) Porous thin-film electrode constituted of titania particle and its reforming method
EP2509085A2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell including the same
JP5013691B2 (en) Dye-sensitized solar cell and method for producing titanium oxide for semiconductor electrode thereof
TWI510497B (en) An additive for an electrolyte composition and an electrolyte composition using the same and a dye-sensitized solar cell
JP2004087387A (en) Electrolyte composition and photoelectrochemical cell
JP4356865B2 (en) Method for producing metal-metal oxide composite electrode, photoelectric conversion element and photovoltaic cell
KR101088676B1 (en) Electrolyte for dye-sensitized solarcell comprising pyrrolidinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
JP2008305716A (en) Photoelectric conversion device
JP4864716B2 (en) Dye-sensitized solar cell and method for producing the same
KR101088675B1 (en) Electrolyte for dye-sensitized solarcell comprising pyridinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
JP2007200714A (en) Dye-sensitized solar cell and its manufacturing method
JP5005177B2 (en) Dye-sensitized solar cell
KR101006078B1 (en) Dye sensitized solar cells using solid-state nanocomposite electrolytes
JP2011150881A (en) Photoelectric transfer element, optical sensor, and solar cell
JP2011150883A (en) Photoelectric transfer element, optical sensor, and solar cell
JP2004127579A (en) Manufacturing method of metal-metal oxide composite electrode, photoelectric transducing element and photoelectric cell
JP2006127782A (en) Metal-metal oxide composite electrode, manufacturing method therefor, and photoelectric conversion device
JP6415380B2 (en) Photoelectric conversion element
JP5906521B2 (en) Phthalocyanine dye, dye-sensitized solar cell and photoelectric conversion element using phthalocyanine dye
JP5380617B1 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350