JP2006310134A - Porous thin-film electrode constituted of titania particle and its reforming method - Google Patents

Porous thin-film electrode constituted of titania particle and its reforming method Download PDF

Info

Publication number
JP2006310134A
JP2006310134A JP2005132272A JP2005132272A JP2006310134A JP 2006310134 A JP2006310134 A JP 2006310134A JP 2005132272 A JP2005132272 A JP 2005132272A JP 2005132272 A JP2005132272 A JP 2005132272A JP 2006310134 A JP2006310134 A JP 2006310134A
Authority
JP
Japan
Prior art keywords
titania
thin film
film electrode
particles
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005132272A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
憲二 山田
Yamato Yamane
大和 山根
Shigenori Matsushima
茂憲 松嶋
Hiroyuki Nakamura
裕之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Nippon Steel Chemical Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2005132272A priority Critical patent/JP2006310134A/en
Publication of JP2006310134A publication Critical patent/JP2006310134A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2045Light-sensitive devices comprising a semiconductor electrode comprising elements of the fourth group of the Periodic System (C, Si, Ge, Sn, Pb) with or without impurities, e.g. doping materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titania thin-film electrode achieving a dye-sensitized solar cell with high photoelectric conversion efficiency. <P>SOLUTION: A thin film made of titania particles of a primary particle size of 100 nm or less is formed on a conductive transparent substrate to make up a porous titania thin-film electrode, plasma is generated by putting the titania thin-film electrode under high-pressure discharge treatment in a gaseous body containing at least one kind selected from rare gas, hydrogen, carbon, nitrogen, oxygen, fluorine, silicon, phosporus, sulphur, chlorine, transition metal or their compound. In the manufacturing method of a reformed porous titania thin-film electrode material, titania in the titania particles with a different element composition ratio or with different contents of titanium and other elements other than oxygen is made into a porous titania thin film with a titania particle surface layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、色素増感太陽電池の重要な構成部材であるチタニア粒子及びチタニア粒子を含む薄膜電極の表面処理法及び表面処理したチタニア粒子及びチタニア薄膜電極材料に関する。   The present invention relates to a titania particle and a surface treatment method of a thin film electrode containing titania particles, which are important constituent members of a dye-sensitized solar cell, and a surface-treated titania particle and a titania thin film electrode material.

特開2003-197282号公報JP 2003-197282 A 特開2001-205103号公報JP 2001-205103 A WO2001/010552号公報WO2001 / 010552 Publication 特開2000-140636号公報Japanese Unexamined Patent Publication No. 2000-140636 特開2002-355562号公報JP 2002-355562 A WO2000-10706号公報WO2000-10706 Publication 特開2001-212457号公報JP 2001-212457 A 特開2002-353483号公報JP 2002-353483 A 特開2003-308893号公報JP2003-308893 特開2003-308889号公報JP2003-308889 特開2003-308890号公報Japanese Patent Laid-Open No. 2003-308890 電気化学会第71回講演要旨集、134頁、2004年.The 71st Annual Meeting of the Electrochemical Society, 134, 2004. 電気化学会第71回講演要旨集、123頁、2004年.The 71st Annual Meeting of the Electrochemical Society, 123, 2004. 2003年日本化学会西日本大会講演予稿集、368頁、2003年.2003 Proceedings of Western Chemical Society of Japan, 368 pages, 2003.

色素増感太陽電池の構成部材であるチタニア粒子からなる薄膜電極の表面改質を検討した例として、化学的処理法がある。例えば、非特許文献1には次のような記載がある。チタニア薄膜電極を色素吸着させた後、ブロック分子の1wt%トルエン溶液に浸漬させた。ブロック分子として、酢酸、t-ブチルピリジン、アルミニウムsec-ブトキシドが用いられた。いずれのブロック分子もチタニア上の電子と電解液中のI2との再結合を防止し、開放端電圧を増加させた。酢酸は光電流を増大させ、他のブロック分子と異なった効果を示した。 As an example of examining surface modification of a thin film electrode made of titania particles, which is a constituent member of a dye-sensitized solar cell, there is a chemical treatment method. For example, Non-Patent Document 1 has the following description. The titania thin film electrode was dye-adsorbed and then immersed in a 1 wt% toluene solution of block molecules. Acetic acid, t-butylpyridine, and aluminum sec-butoxide were used as block molecules. Both block molecules prevented the recombination of electrons on titania with I 2 in the electrolyte and increased the open circuit voltage. Acetic acid increased photocurrent and showed a different effect than other blocking molecules.

また、チタニア層表面に高バンドギャップ酸化物を被覆して多層化することが検討された。例えば、非特許文献2には、色素吸着後のチタニア半導体層にZnO、MgO等の高バンドギャップ半導体の前駆体である酢酸塩で処理して表面修飾を行うことにより、短絡電流は減少するものの開放端電圧は向上したことが示されている。   In addition, it was studied that the titania layer surface was coated with a high band gap oxide to form a multilayer. For example, in Non-Patent Document 2, although the titania semiconductor layer after dye adsorption is treated with acetate, which is a precursor of high band gap semiconductors such as ZnO and MgO, surface modification is performed, but the short-circuit current is reduced. It is shown that the open circuit voltage is improved.

特許文献1は、色素増感太陽電池の製造において、金属酸化物半導体の電気伝導性向上、金属酸化物半導体形成法の低温化などを目的として、共蒸着により炭素を含む金属酸化物半導体層を形成させているが、金属酸化物半導体層の表面に炭素微粒子を付着させているに過ぎない。   Patent Document 1 discloses a metal oxide semiconductor layer containing carbon by co-evaporation for the purpose of improving the electrical conductivity of a metal oxide semiconductor and lowering the temperature of a metal oxide semiconductor formation method in the manufacture of a dye-sensitized solar cell. Although formed, carbon fine particles are merely attached to the surface of the metal oxide semiconductor layer.

非特許文献3は、チタニア電極の物理的処理法として、チタニア電極にアルゴンプラズマ処理後に窒素プラズマ処理を行った例を開示している。しかし、色素増感太陽電池の光電変換効率が1%以下で、粒子径も100nmを超えるチタニア粒子を用いており、また作製状態の悪いチタニア電極を用いており、プラズマ処理効果の発現については明確にできていない。   Non-Patent Document 3 discloses an example in which a titania electrode is subjected to nitrogen plasma treatment after argon plasma treatment as a physical treatment method of the titania electrode. However, the photoelectric conversion efficiency of the dye-sensitized solar cell is less than 1%, titania particles with a particle diameter exceeding 100 nm are used, and a titania electrode with a poor production state is used, and the manifestation of the plasma treatment effect is clear. Not done.

また、特許文献2、特許文献3、特許文献4は、チタニアに窒素を含有させた例を開示している。窒素を含む雰囲気中でチタン含有金属をスパッタリングする方法、チタニアを窒素原子を含むガスのプラズマ中で処理する方法によりチタニア中に窒素を含有させている。いずれの場合もチタニアの光触媒特性の改善を目的としたものであり、色素増感太陽電池への応用はなされていない。   Patent Literature 2, Patent Literature 3, and Patent Literature 4 disclose examples in which titania contains nitrogen. Nitrogen is contained in titania by a method of sputtering a titanium-containing metal in an atmosphere containing nitrogen and a method of treating titania in a plasma of a gas containing nitrogen atoms. In either case, the purpose is to improve the photocatalytic properties of titania, and no application to dye-sensitized solar cells has been made.

特許文献5、特許文献6、特許文献7は、チタニアに水素プラズマ処理又は希ガス類元素プラズマ処理を行い、酸素欠陥を有する可視光応答型光触媒を作製した例を開示している。酸素欠陥を有するチタニアからなる電極を湿式太陽電池に応用しているが、電極作製過程では300℃で焼結を行っており、これより酸素欠陥が消失するので、湿式太陽電池の特性に及ぼす酸素欠陥効果は発現してない。   Patent Document 5, Patent Document 6, and Patent Document 7 disclose examples of producing a visible light responsive photocatalyst having oxygen defects by performing hydrogen plasma treatment or rare gas element plasma treatment on titania. An electrode made of titania having oxygen defects is applied to wet solar cells. However, since the electrodes are sintered at 300 ° C. during the electrode preparation process, oxygen defects disappear from this, so oxygen on the characteristics of wet solar cells is affected. Defect effects are not manifested.

特許文献8は、色素増感太陽電池において、基板上の透明導電層に金属アルコキシド又は金属酸化物ゲルを塗布した後、これをプラズマ処理することにより金属酸化物半導体層を形成させることを開示しているが、プラズマ処理により形成させた場合には金属酸化物半導体全体に不純物が含有した状態となり、目的の純粋な金属酸化物を作製することは極めて困難であり、かつ本発明のように金属酸化物表面層の改質までには至っていない。   Patent Document 8 discloses that in a dye-sensitized solar cell, a metal alkoxide or a metal oxide gel is applied to a transparent conductive layer on a substrate and then a metal oxide semiconductor layer is formed by plasma treatment. However, when formed by plasma treatment, the entire metal oxide semiconductor contains impurities, and it is extremely difficult to produce the desired pure metal oxide. The oxide surface layer has not been modified yet.

特許文献9は、表面に透明電極を有する基板上に、金属酸化物微粒子がバインダに分散させた塗布液を塗布し、乾燥して金属酸化物含有塗布層を形成し、次いで該金属酸化物含有塗布膜をプラズマ処理してバインダを除去することにより表面積の大きな金属酸化物半導体膜を形成させることを開示しているが、プラズマ処理により有機ポリマーであるバインダの完全除去は困難であり、またプラズマ処理によりプラズマ生成物が不純物として金属酸化物微粒子表面に付着するので、色素増感太陽電池の特性を低減させる可能性がある。   In Patent Document 9, a coating liquid in which metal oxide fine particles are dispersed in a binder is applied onto a substrate having a transparent electrode on the surface and dried to form a metal oxide-containing coating layer, and then the metal oxide-containing coating Although it is disclosed that a metal oxide semiconductor film having a large surface area is formed by removing the binder by plasma treatment of the coating film, it is difficult to completely remove the binder, which is an organic polymer, by plasma treatment. Since the plasma product adheres to the surface of the metal oxide fine particle as an impurity by the treatment, there is a possibility of reducing the characteristics of the dye-sensitized solar cell.

特許文献10、特許文献11は、コロナ放電、プラズマ放電、紫外線、オゾンにより基板上の透明導電層の親水化処理を行い、チタニア水溶液の濡れ性を向上させているが、本発明のようにチタニア多孔膜にプラズマ処理したものではない。   In Patent Documents 10 and 11, hydrophilic treatment of the transparent conductive layer on the substrate is performed by corona discharge, plasma discharge, ultraviolet light, and ozone to improve the wettability of the titania aqueous solution. The porous film is not plasma-treated.

ところで、低コストで製造可能な太陽電池として、例えば、チタニアのような酸化物半導体にルテニウム金属錯体のような光増感色素を吸着させた材料を用いた色素増感太陽電池が提案されている。   By the way, as a solar cell that can be manufactured at low cost, for example, a dye-sensitized solar cell using a material in which a photosensitizing dye such as a ruthenium metal complex is adsorbed on an oxide semiconductor such as titania has been proposed. .

色素増感太陽電池は具体的には、例えばITOのような透明導電層を設けた透明ガラス板あるいは透明樹脂板のような透明基板の透明導電層側に、例えばルテニウム錯体からなる色素を表面に吸着したチタニアなどを半導体層として形成した負極と、正極となる白金などの金属層あるいは導電層を設けた基板との間に電解質の液を封入したものがある。色素増感太陽電池に光が照射されると、負極では光を吸収した色素の電子が励起し、励起した電子が半導体層に移動し、更に透明電極へと導かれ、正極では導電層からくる電子により電解質を還元する。還元された電解質は色素に電子を伝えることで酸化され、このサイクルで色素増感太陽電池が発電すると考えられている。   Specifically, the dye-sensitized solar cell has, for example, a dye composed of a ruthenium complex on the surface of a transparent substrate such as a transparent glass plate or a transparent resin plate provided with a transparent conductive layer such as ITO. There is a type in which an electrolyte solution is sealed between a negative electrode formed with adsorbed titania or the like as a semiconductor layer and a substrate provided with a metal layer or a conductive layer such as platinum as a positive electrode. When the dye-sensitized solar cell is irradiated with light, the electrons of the dye that absorbed the light are excited in the negative electrode, the excited electrons move to the semiconductor layer, and are further guided to the transparent electrode, and from the conductive layer in the positive electrode The electrolyte is reduced by electrons. The reduced electrolyte is oxidized by transferring electrons to the dye, and it is believed that the dye-sensitized solar cell generates electricity during this cycle.

現在、色素増感太陽電池はシリコン太陽電池に比して照射光エネルギに対する発電エネルギ効率が低く、その効率を上げることが実効的な色素増感太陽電池を製造する上での重要な課題となっている。色素増感太陽電池の効率は、それを構成する各要素の特性や、更にそれら要素の組み合わせによっても影響を受けると考えられており、さまざまな試みがなされている。   Currently, dye-sensitized solar cells have lower power generation energy efficiency with respect to irradiation light energy than silicon solar cells, and raising the efficiency is an important issue in producing effective dye-sensitized solar cells. ing. The efficiency of the dye-sensitized solar cell is considered to be influenced by the characteristics of each element constituting the dye-sensitized solar cell and the combination of these elements, and various attempts have been made.

そこで、色素増感太陽電池のアノードの改良に関する研究が多数行われている。例えば、色素増感太陽電池に用いる光入射側電極としては、透過率が高く、面積抵抗の低い透明導電性材料として、錫をドープした酸化インジウム(ITO)やフッ素をドープした酸化錫膜(FTO)等が使用されているが、これらの性能を更に向上させる研究が行われている。また、アノードの主構成成分であるチタニアを改質することが、上記のように多数研究されている。   Therefore, many studies on improvement of the anode of the dye-sensitized solar cell have been conducted. For example, as a light incident side electrode used for a dye-sensitized solar cell, as a transparent conductive material having high transmittance and low area resistance, indium oxide doped with tin (ITO) or tin oxide film doped with fluorine (FTO) ), Etc. are used, but research to further improve these performances has been conducted. Further, as described above, many studies have been made on modifying titania which is a main component of the anode.

色素増感太陽電池の光電変換効率を増大させるためには、チタニア電極の特性向上が重要であり、チタニア電極への吸着色素量の増大、チタニア粒子表面からの逆電子過程の抑制、チタニア粒子内及び粒子間の電子拡散性の増大をもたらす必要がある。本発明は高効率色素増感太陽電池の構成部材である改良されたチタニア電極を提供することを目的とする。   In order to increase the photoelectric conversion efficiency of the dye-sensitized solar cell, it is important to improve the properties of the titania electrode, increase the amount of adsorbed dye on the titania electrode, suppress the reverse electron process from the surface of the titania particle, And an increase in electron diffusivity between particles. An object of this invention is to provide the improved titania electrode which is a structural member of a highly efficient dye-sensitized solar cell.

本発明者らは、上記問題点を鋭意検討した結果、本発明に到達した。すなわち、本発明は次の発明からなる。
1) 導電性透明基板上に一次粒子径が100nm以下のチタニア粒子からなる薄膜を形成させて多孔質チタニア薄膜電極を作製し、該チタニア薄膜電極を希ガス、水素、炭素、窒素、酸素、フッ素、ケイ素、りん、硫黄、塩素、遷移金属又はこれらの化合物から選ばれる少なくとも1種を含む気体の中で、高圧放電処理することでプラズマを発生させ、チタニア粒子内部におけるチタニアとはチタンと酸素の元素組成比が異なるか又はチタンと酸素以外の他元素の含有率が異なるチタニア粒子表面層を有する多孔質チタニア薄膜とすることを特徴とする改質された多孔質チタニア薄膜電極材料の製造方法。
2) 一次粒子径が100nm以下のチタニア粒子を希ガス、水素、炭素、窒素、酸素、フッ素、ケイ素、りん、硫黄、塩素、遷移金属又はこれらの化合物から選ばれる少なくとも1種を含む気体の中で、高圧放電処理することでプラズマを発生させ、チタニア粒子内部におけるチタニアとはチタンと酸素の元素組成比が異なるか又はチタンと酸素以外の他元素の含有率が異なる表面層を有するチタニア粒子とすることを特徴とする改質されたチタニア粒子の製造方法。
3) 一次粒子径が100nm以下のチタニア粒子又は導電性透明基板上に一次粒子径が100nm以下のチタニア粒子からなる薄膜を形成させて多孔質チタニア薄膜電極を、ヘリウム、ネオン、アルゴン、水素、窒素、酸素、水、メタン、エタン、メタノール、エタノール、アンモニア、一酸化炭素、二酸化炭素、一酸化窒素、二酸化窒素、四フッ化炭素、パーフルオロエタン、四塩化炭素、テトラメトキシシラン、テトラメチルシラン、オクタメチルシクロテトラシロキサン、燐酸、六フッ化硫黄及び四塩化チタンから選ばれる少なくとも1種の気体の中で、高圧放電処理することでプラズマを発生させてプラズマ処理することを特徴とするチタニア粒子又は多孔質チタニア薄膜電極材料の処理方法。
4) 高圧放電処理を減圧、常圧又は高圧下のガス気流下で行う3)記載の処理方法。
5) チタニア粒子又は多孔質チタニア薄膜電極が、色素増感太陽電池用である3)又は4)記載の処理方法。
6) 1)に記載のチタニア薄膜電極の製造方法で得られたチタニア薄膜電極材料をアノードに用いた色素増感太陽電池。
As a result of intensive studies on the above problems, the present inventors have reached the present invention. That is, this invention consists of the following invention.
1) A porous titania thin film electrode is produced by forming a thin film composed of titania particles having a primary particle diameter of 100 nm or less on a conductive transparent substrate, and the titania thin film electrode is used as a rare gas, hydrogen, carbon, nitrogen, oxygen, fluorine. In a gas containing at least one selected from silicon, phosphorus, sulfur, chlorine, transition metals, or a compound thereof, plasma is generated by high-pressure discharge treatment, and titania inside titania particles is titanium and oxygen. A method for producing a modified porous titania thin film electrode material comprising a porous titania thin film having a titania particle surface layer having different elemental composition ratios or different contents of elements other than titanium and oxygen.
2) Titania particles with a primary particle size of 100 nm or less in a gas containing at least one selected from a rare gas, hydrogen, carbon, nitrogen, oxygen, fluorine, silicon, phosphorus, sulfur, chlorine, transition metals or compounds thereof In the titania particles having a surface layer in which the plasma is generated by high-pressure discharge treatment and the elemental composition ratio of titanium and oxygen is different from the titania inside the titania particles or the content of elements other than titanium and oxygen is different. A method for producing modified titania particles, comprising:
3) A thin film composed of titania particles having a primary particle diameter of 100 nm or less or titania particles having a primary particle diameter of 100 nm or less is formed on a conductive transparent substrate to form a porous titania thin film electrode with helium, neon, argon, hydrogen, nitrogen. , Oxygen, water, methane, ethane, methanol, ethanol, ammonia, carbon monoxide, carbon dioxide, nitrogen monoxide, nitrogen dioxide, carbon tetrafluoride, perfluoroethane, carbon tetrachloride, tetramethoxysilane, tetramethylsilane, Titania particles, characterized in that plasma treatment is performed by generating plasma by high-pressure discharge treatment in at least one gas selected from octamethylcyclotetrasiloxane, phosphoric acid, sulfur hexafluoride and titanium tetrachloride, or A method for processing a porous titania thin film electrode material.
4) The treatment method according to 3), wherein the high-pressure discharge treatment is performed in a gas stream under reduced pressure, normal pressure, or high pressure.
5) The processing method according to 3) or 4), wherein the titania particles or the porous titania thin film electrode is for a dye-sensitized solar cell.
6) A dye-sensitized solar cell using, as an anode, a titania thin film electrode material obtained by the method for producing a titania thin film electrode described in 1).

高圧放電処理することでプラズマを発生させチタニア粒子又はチタニア薄膜電極材料を処理(プラズマ処理という)することによりチタニアの表面改質が行われる。これにより、次のような作用が生じる。   By performing high-pressure discharge treatment, plasma is generated and the titania particles or the titania thin-film electrode material is treated (referred to as plasma treatment), so that titania surface modification is performed. As a result, the following operation occurs.

a) チタニア表面の水酸基濃度を増大させることにより、色素吸着量を増大させる。また色素分子が吸着できない表面部位におけるブロック分子の吸着量も増大させることができ、逆電子過程を抑制すると共に、表面欠陥の消失による電子拡散性を増大させる。
b) チタニア表面層で、構成元素である酸素又はチタンを、炭素、窒素、フッ素、ケイ素、りん、硫黄、塩素を含む陰性元素又は陽性元素と置換させることにより、表面荷電状態を変化させ、逆電子過程を抑制させる。
c) チタニア表面層で、構成元素であるチタンを、遷移金属、炭素、ケイ素、りん、硫黄を含む陽性元素と置換させることにより、表面バンド構造を変化させ、色素からの電子注入を増大させる。
d) チタニア表面層に構造不規則性をもたらすことにより、チタニア粒子凝集体の焼成を伴う多孔性チタニア電極の作製時に、チタニア粒子界面のネッキング性を向上させ、チタニア粒子間の電子拡散性を増大させる。
a) Increase the amount of dye adsorbed by increasing the concentration of hydroxyl groups on the titania surface. In addition, the amount of block molecules adsorbed on the surface portion where the dye molecules cannot be adsorbed can be increased, suppressing the reverse electron process and increasing the electron diffusivity due to disappearance of surface defects.
b) In the titania surface layer, oxygen or titanium, which is a constituent element, is replaced with negative or positive elements including carbon, nitrogen, fluorine, silicon, phosphorus, sulfur, and chlorine to change the surface charge state and reverse Suppress electronic processes.
c) In the titania surface layer, titanium, which is a constituent element, is replaced with positive elements including transition metals, carbon, silicon, phosphorus, and sulfur, thereby changing the surface band structure and increasing electron injection from the dye.
d) Improve the necking property at the interface of titania particles and increase the electron diffusivity between titania particles when producing a porous titania electrode with firing of titania particle aggregates by introducing structural irregularities in the titania surface layer. Let

次に本発明を詳細に説明する。
本発明に使用されるチタニア粒子は公知のものが特に制限なく使用できるが、一次粒子径が100nm以下であり、多孔質である必要がある。また、また、チタニアは、湿式法、例えば、硫酸法で製造した二酸化チタン及び乾式法で製造したアナターゼ型チタニアであることができる。なお、多孔質チタニア粒子は細孔容積の比が20vol%以上であることがよく、色素のサイズ(直径)が1.5nm程度であるので少なくとも5nm程度以上の細孔径を有することがよい。チタニア粒子としては、100nm以下のチタニアの一次粒子は市販品があるのでそれを使用してもよく、数nm〜30nm程度の一次粒子を水熱法で調製してもよい。色素増感太陽電池の高効率化を実現するためには、チタニア電極のチタニア粒径は通常数nm〜数10nmが好適であり、100nmを超えるものは好ましくない。
Next, the present invention will be described in detail.
As the titania particles used in the present invention, known titania particles can be used without particular limitation, but the primary particle diameter must be 100 nm or less and be porous. In addition, the titania can be a wet method, for example, titanium dioxide produced by a sulfuric acid method and an anatase titania produced by a dry method. The porous titania particles preferably have a pore volume ratio of 20 vol% or more, and since the pigment has a size (diameter) of about 1.5 nm, it preferably has a pore diameter of at least about 5 nm. As titania particles, there are commercially available titania primary particles of 100 nm or less, and these may be used, or primary particles of about several nm to 30 nm may be prepared by a hydrothermal method. In order to achieve high efficiency of the dye-sensitized solar cell, the titania particle diameter of the titania electrode is usually preferably several nm to several tens of nm, and those exceeding 100 nm are not preferable.

チタニア粒子は、酢酸溶液等に縣濁させて超音波ホモジナイザー処理し、更にポリエチレングリコールを加えて超音波ホモジナイザー処理するなどして、粒子同士が凝集を減らし、空隙サイズを小さくすることがよい。また、このようにして得られたチタニアペーストは、スクリーン印刷法で複数回塗りを行うなどして、チタニア膜厚を6〜25μm程度とすることがよい。   The titania particles are preferably suspended in an acetic acid solution and subjected to an ultrasonic homogenizer treatment, and further polyethylene glycol is added and an ultrasonic homogenizer treatment to reduce aggregation between the particles and to reduce the void size. Further, the titania paste obtained in this way is preferably made to have a titania film thickness of about 6 to 25 μm by, for example, coating a plurality of times by a screen printing method.

チタニアペーストを塗布後、乾燥、焼結を行う。焼結により、チタニア粒子間の接合状態が向上し(ネッキング現象が顕著に起こり)、電子拡散性が向上することが期待される。また、300℃以上で焼結を行うことにより、酸素欠陥がほぼなくなると考えられる。したがって、焼結温度は300℃では低くすぎ、チタニア結晶がアナターゼからルチルに変化しない程度、かつ透明導電膜の電気抵抗が増大しない程度で、出きるだけ高い温度が望ましいといえ、具体的には350〜450℃程度の温度が好ましい。これ以上高くすると、透明導電膜の抵抗が増大し、太陽電池の効率は低下する可能性がある。   After applying the titania paste, drying and sintering are performed. Sintering is expected to improve the bonding state between titania particles (a necking phenomenon occurs remarkably) and improve the electron diffusibility. Further, it is considered that oxygen defects are almost eliminated by sintering at 300 ° C. or higher. Therefore, the sintering temperature is too low at 300 ° C., and it is desirable that a temperature as high as possible is desirable so that the titania crystal does not change from anatase to rutile and the electrical resistance of the transparent conductive film does not increase. A temperature of about 350 to 450 ° C is preferred. If it is made higher than this, the resistance of the transparent conductive film increases, and the efficiency of the solar cell may decrease.

なお、本発明は、結晶化したチタニア粒子そのものをプラズマ処理するものであり、金属アルコキシド又は金属酸化物ゲルを塗布した後、これをプラズマ処理することで、チタニア薄膜を形成する方法、すなわち金属アルコキシド又は金属酸化物ゲルをプラズマ処理することにより、例えば結晶化したチタニア粒子化する方法とは区別される。また、プラズマ処理等により透明導電層を親水化処理することにより、チタニア水溶液の濡れ性を改善する方法とは区別される。   In the present invention, the crystallized titania particles themselves are subjected to plasma treatment. After applying a metal alkoxide or metal oxide gel, this is plasma treated to form a titania thin film, that is, metal alkoxide. Alternatively, it is distinguished from a method of, for example, crystallizing titania particles by plasma treatment of a metal oxide gel. Further, it is distinguished from a method for improving the wettability of an aqueous titania solution by hydrophilizing the transparent conductive layer by plasma treatment or the like.

プラズマ処理するに当たっては、チタニア粒子を処理する場合は粒子状のまま処理してもよいが、均一に処理するためには基材に薄膜状に塗布し、それを処理することが好ましい。チタニア薄膜電極を処理する場合は、ITOやFTO等の透明電極にチタニア分散液を塗布し、処理後はそのまま色素を含浸させることによりチタニア薄膜電極とすることができるものとすることがよい。   In the plasma treatment, when titania particles are treated, they may be treated in the form of particles, but in order to treat uniformly, it is preferable to apply a thin film on the substrate and treat it. When processing a titania thin film electrode, it is preferable to apply a titania dispersion to a transparent electrode such as ITO or FTO and impregnate the dye as it is after the processing to obtain a titania thin film electrode.

プラズマ処理は、希ガス、水素、炭素、窒素、酸素、フッ素、ケイ素、りん、硫黄、塩素、遷移金属又はこれらの化合物から選ばれる少なくとも1種を含む気体の中で、高圧放電処理することでプラズマを発生させ、チタニア粒子内部におけるチタニアとはチタンと酸素の元素組成比が異なるか又はチタンと酸素以外の他元素の含有率が異なるように行う。   The plasma treatment is performed by performing a high-pressure discharge treatment in a gas containing at least one selected from a rare gas, hydrogen, carbon, nitrogen, oxygen, fluorine, silicon, phosphorus, sulfur, chlorine, a transition metal or a compound thereof. Plasma is generated so that the composition ratio of titanium and oxygen is different from that of titania inside the titania particles or the content of elements other than titanium and oxygen is different.

好適な気体としては、ヘリウム、ネオン、アルゴン、水素、窒素、酸素、水、メタン、エタン、メタノール、エタノール、アンモニア、一酸化炭素、二酸化炭素、一酸化窒素、二酸化窒素、四フッ化炭素、パーフルオロエタン、四塩化炭素、テトラメトキシシラン、テトラメチルシラン、オクタメチルシクロテトラシロキサン、燐酸、六フッ化硫黄及び四塩化チタンから選ばれる少なくとも1種の気体がある。これらは混合ガスであってもよく、多段階で異なる気体を使用してもよい。好ましくはアルゴン又は窒素であり、両者を使用する場合は、アルゴン、窒素の順にプラズマ処理することが望ましい。そして、これらの気体を減圧、常圧又は高圧下で流しながら、高圧放電処理することでプラズマを発生させてプラズマ処理することが望ましい。   Suitable gases include helium, neon, argon, hydrogen, nitrogen, oxygen, water, methane, ethane, methanol, ethanol, ammonia, carbon monoxide, carbon dioxide, nitrogen monoxide, nitrogen dioxide, carbon tetrafluoride, There is at least one gas selected from fluoroethane, carbon tetrachloride, tetramethoxysilane, tetramethylsilane, octamethylcyclotetrasiloxane, phosphoric acid, sulfur hexafluoride and titanium tetrachloride. These may be mixed gases, or different gases may be used in multiple stages. Argon or nitrogen is preferred, and when both are used, it is desirable to perform plasma treatment in the order of argon and nitrogen. Then, it is desirable to generate plasma by performing high-pressure discharge treatment while flowing these gases under reduced pressure, normal pressure, or high pressure to perform plasma treatment.

プラズマ処理は、処理系内への大気の侵入が実質的にない状態で行うことがよい。水素プラズマ処理は、高圧放電により行う。放電出力は処理する酸化物半導体の量やプラズマの発生状態を考慮して適宜決定できる。気体の導入量は、減圧状態やプラズマの発生状態を考慮して適宜決定できる。放電時間は、チタニアの酸素欠陥量等を考慮して適宜決定する。例えば、放電出力は100〜500W、放電時間は1〜30分程度である。圧力は、常圧又は高圧であってもよいが、例えば1〜100Paであることができる。水素プラズマ又は希ガスプラズマを用いれば、チタニアへの酸素欠陥の導入を効率的に行うことができる。   The plasma treatment is preferably performed in a state where there is substantially no air intrusion into the treatment system. The hydrogen plasma treatment is performed by high pressure discharge. The discharge output can be appropriately determined in consideration of the amount of oxide semiconductor to be processed and the plasma generation state. The amount of gas introduced can be appropriately determined in consideration of the reduced pressure state and the plasma generation state. The discharge time is appropriately determined in consideration of the amount of oxygen defects in titania and the like. For example, the discharge output is 100 to 500 W, and the discharge time is about 1 to 30 minutes. The pressure may be normal pressure or high pressure, but can be, for example, 1 to 100 Pa. If hydrogen plasma or rare gas plasma is used, oxygen defects can be efficiently introduced into titania.

プラズマ処理は2段階で行うことが好ましく、前段のプラズマ処理(前処理)はアルゴンプラズマ処理のような不活性ガスプラズマ処理であることがよい。この前処理は色素増感太陽電池の高効率化に重要であり、前処理をしないと、逆に効率が低下する場合もある。この理由については明確ではないが、この前処理によりチタニア粒子表面に吸着している水を除去する他、後段の窒素ガスのような活性ガスプラズマ処理に何らかの影響を与えるためと考えられる。後段のプラズマ処理は窒素プラズマ処理が特に優れる。   The plasma treatment is preferably performed in two stages, and the previous plasma treatment (pretreatment) is preferably an inert gas plasma treatment such as an argon plasma treatment. This pretreatment is important for increasing the efficiency of the dye-sensitized solar cell, and if the pretreatment is not carried out, the efficiency may decrease. Although the reason for this is not clear, it is considered that this pretreatment removes water adsorbed on the surface of the titania particles and also has some influence on the active gas plasma treatment such as nitrogen gas in the subsequent stage. The plasma treatment at the latter stage is particularly excellent with nitrogen plasma treatment.

色素増感太陽電池の基本構成は、基板上に、透明導電膜と色素吸着チタニア層の順に積層された表面電極(アノード)と、基板上に導電層が設けられた対向電極を有し、両電極間に電解質を配した構成である。そして、表面電極の内面側には色素吸着チタニア層がある。色素吸着チタニア層は、チタニア粒子等の金属酸化物粒子とこの粒子間の間隙を埋めるように又は粒子の表面を覆うように存在する増感色素からなっている。なお、光は表面電極側から入る。   The basic structure of a dye-sensitized solar cell has a surface electrode (anode) laminated in the order of a transparent conductive film and a dye adsorption titania layer on a substrate, and a counter electrode provided with a conductive layer on the substrate. In this configuration, an electrolyte is disposed between the electrodes. And there exists a pigment | dye adsorption titania layer in the inner surface side of a surface electrode. The dye adsorbing titania layer is composed of metal oxide particles such as titania particles and a sensitizing dye existing so as to fill a gap between the particles or to cover the surface of the particles. Light enters from the surface electrode side.

色素増感太陽電池に用いる基板としては、透明な絶縁材料であれば特に限定されるものではなく、例えば通常のガラス板やプラスチック板などが挙げられ、更に基材は屈曲性のあるものでも良く、例えばPET樹脂などが挙げられるが、好ましくは約500℃を上限にチタニアを基材に焼付ける工程に耐え得る耐熱材料であることであり、透明なガラス板が挙げられる。   The substrate used for the dye-sensitized solar cell is not particularly limited as long as it is a transparent insulating material, and examples thereof include a normal glass plate and plastic plate, and the base material may be flexible. For example, PET resin and the like can be mentioned, but it is preferably a heat-resistant material that can withstand the process of baking titania on a substrate at an upper limit of about 500 ° C., and a transparent glass plate can be mentioned.

次に、この基板1の表面に、基材の透明性を損なわないような透明導電膜、例えばITO、FTO、ATO、TOあるいはこれらを組み合わせたものでよく、更には透明性を損なわない厚みの金属層であってもよい。透明導電膜2全体としての厚みは0.2〜1μm、好ましくは0.3〜0.8μmの範囲である。   Next, the surface of the substrate 1 may be a transparent conductive film that does not impair the transparency of the base material, for example, ITO, FTO, ATO, TO, or a combination thereof, and has a thickness that does not impair the transparency. It may be a metal layer. The thickness of the transparent conductive film 2 as a whole is in the range of 0.2 to 1 μm, preferably 0.3 to 0.8 μm.

次に、色素吸着チタニア層を設ける。通常はチタニア層を形成したのち、これに増感色素を吸着させるが、本発明ではチタニア層を形成したのち、上記プラズマ処理を行うか、チタニア層を構成するチタニア粒子を予め上記プラズマ処理したのち、透明導電膜上にチタニア層を形成する。チタニアとしては、アナターゼ型、ルチル型等のチタニアの他、水チタニア、含水チタニア類であってもよい。また、Nb、V又はTaの各元素の少なくとも1つをチタニアに対して30ppm〜5%の重量濃度(金属元素として)になるようドーピングしてもよい。   Next, a dye adsorption titania layer is provided. Usually, after the titania layer is formed, the sensitizing dye is adsorbed to the titania layer.In the present invention, after the titania layer is formed, the plasma treatment is performed or the titania particles constituting the titania layer are previously subjected to the plasma treatment. A titania layer is formed on the transparent conductive film. As titania, in addition to titania such as anatase type and rutile type, water titania and hydrous titania may be used. Further, at least one of each element of Nb, V, or Ta may be doped so as to have a weight concentration (as a metal element) of 30 ppm to 5% with respect to titania.

このようなチタニアであれば用いることが可能であるが、平均粒子径が5〜100nm、好ましくは10〜50nmの範囲の微粒子であることがよい。このような粒子径である場合、平滑化処理した導電性膜と金属酸化物粒子の接触面積が大きくなり、それによって抵抗が減少するだけでなく、チタニアの表面改質も十分に行える。   Such titania can be used, but fine particles having an average particle diameter of 5 to 100 nm, preferably 10 to 50 nm are preferred. When the particle size is such, the contact area between the smoothed conductive film and the metal oxide particles is increased, whereby not only the resistance is reduced, but also the surface modification of titania can be sufficiently performed.

チタニアの膜を、透明電極上に形成する方法については、特に限定されるものではなく、例えばペースト化した金属酸化物をスピンコート、印刷、スプレーコートなどの各手法を用いても良い。また、製膜後にチタニア等の金属酸化物の焼結などを目的に焼成することも可能である。   The method for forming the titania film on the transparent electrode is not particularly limited, and for example, paste metal oxide may be used by spin coating, printing, spray coating, or the like. It is also possible to sinter for the purpose of sintering a metal oxide such as titania after film formation.

次に、上記のようにして得られた多孔質チタニア薄膜電極材料を構成するチタニアに色素を吸着させて色素吸着チタニアとする。前記のようにこの吸着では色素は、金属酸化物粒子の周囲に入り込むが、金属酸化物粒子が多孔質であればその内部にも入り込む。増感色素の種類については特に限定されるものではないが、シス-L2-ビス(2,2'-ビピリジル-4,4'-ジカルボキシレート)ルテニウム(II)錯体(ここで、Lはハロゲン、CN又はSCNである)などのルテニウム錯体であることが好ましい。 Next, a dye is adsorbed to titania constituting the porous titania thin film electrode material obtained as described above to obtain a dye-adsorbed titania. As described above, in this adsorption, the dye enters the periphery of the metal oxide particles, but also enters the inside of the metal oxide particles if the metal oxide particles are porous. The type of sensitizing dye is not particularly limited, but cis-L 2 -bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) complex (where L is It is preferably a ruthenium complex such as halogen, CN or SCN.

色素吸着の方法についても特に限定されるものではないが、適当な溶媒に色素を溶解した色素溶液中に、多孔質チタニア薄膜電極材料を浸す、いわゆる含浸法などを挙げることができる。   The method for adsorbing the dye is not particularly limited, and examples thereof include a so-called impregnation method in which a porous titania thin film electrode material is immersed in a dye solution in which the dye is dissolved in an appropriate solvent.

含浸法などにより色素吸着金属酸化物層を形成し、必要によりこれを加熱又は乾燥して、基板上に導電膜及び色素吸着チタニア層を有する表面電極とする。この表面電極はアノードとして作用する。もう一方の正極として作用する電極(対向電極)は、表面電極と対向して配置する。正極となる電極は、導電性の金属などでよく、また、例えば通常のガラス板やプラスチック板などの基板に金属膜や炭素膜等の導電膜を施したものでもよい。   A dye-adsorbing metal oxide layer is formed by an impregnation method or the like, and this is heated or dried as necessary to obtain a surface electrode having a conductive film and a dye-adsorbing titania layer on a substrate. This surface electrode acts as an anode. The other electrode (opposite electrode) acting as the positive electrode is arranged to face the surface electrode. The electrode to be the positive electrode may be a conductive metal or the like, or may be a substrate such as a normal glass plate or plastic plate provided with a conductive film such as a metal film or carbon film.

表面電極と対向電極の間には、電解質層を設ける。この電解質層の種類は、光励起され半導体への電子注入を果した後の色素を還元するための酸化還元種を含んでいれば特に限定されず、液状の電解質であってもよく、これに公知のゲル化剤(高分子又は低分子のゲル化剤)を添加して得られるゲル状の電解質であってもよい。   An electrolyte layer is provided between the surface electrode and the counter electrode. The type of the electrolyte layer is not particularly limited as long as it contains a redox species for reducing the dye after photoexcitation and electron injection into the semiconductor, and may be a liquid electrolyte, which is well known. It may be a gel electrolyte obtained by adding a gelling agent (polymer or low molecular weight gelling agent).

例えば、溶液電解質に用いる電解質の例としては、ヨウ素とヨウ化物(LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物ヨウ素塩等)の組み合わせ、臭素と臭化物(LiBr、NaBr、KBr、CsBr、CaBr2 等の金属臭化物、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の4級アンモニウム化合物臭素塩等)の組み合わせ、ポリ硫化ナトリウム、アルキルチオール、アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン、キノン等が挙げられる。電解質は混合して用いてもよい。 For example, examples of the electrolyte used in the solution electrolyte, iodine and iodide (LiI, NaI, KI, CsI, metal iodide such as CaI 2, tetraalkylammonium iodide, pyridinium iodide, such as imidazolium iodide 4 Combination of bromine and bromide (metal bromide such as LiBr, NaBr, KBr, CsBr, CaBr 2 and the like, quaternary ammonium compound bromide salt such as tetraalkylammonium bromide, pyridinium bromide, etc.), poly Examples thereof include sulfur compounds such as sodium sulfide, alkyl thiol, and alkyl disulfide, viologen dyes, hydroquinone, and quinone. The electrolyte may be used as a mixture.

電解液に溶媒を使用する場合は、粘度が低く高イオン移動度を示し、優れたイオン伝導性を発現できる化合物であることが望ましい。このような溶媒の例としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、3-メチル-2-オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等のアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物、ジメチルスルホキシド、スルフォラン等の非プロトン極性物質、水等が挙げられる。これらの溶媒は混合して用いることもできる。   When a solvent is used in the electrolytic solution, it is desirable that the compound has a low viscosity and high ion mobility and can exhibit excellent ionic conductivity. Examples of such solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether , Chain ethers such as polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether and polypropylene glycol monoalkyl ether, ethylene Glycol, propylene glycol, polyethylene glycol, polypropylene glycol Lumpur, polyhydric alcohols such as glycerin, acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile, dimethyl sulfoxide, aprotic polar substances such as sulfolane, water and the like. These solvents can also be used as a mixture.

また、電解質としては、高沸点を有する溶融塩電解質も適する。半導体電極が色素吸着チタニア層からなる場合は、溶融塩電解質と組み合わせることにより、特に優れた電池特性を発揮する。溶融塩電解質組成物は溶融塩を含む。溶融塩電解質組成物は常温で液体であるのが好ましい。主成分である溶融塩は室温において液状であるか又は低融点の電解質であり、その一般的な例としては「電気化学」、1997年、第65巻、第11号、p.923 等に記載のピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等が挙げられる。溶融塩は単独で使用しても2種以上混合して使用してもよい。また、LiI、NaI、KI、LiBF4、CF3COOLi、CF3COONa、LiSCN、NaSCN等のアルカリ金属塩を併用することもできる。通常、溶融塩電解質組成物はヨウ素を含有する。溶融塩電解質組成物の揮発性は低いことが好ましく、溶媒を含まないことが好ましい。溶融塩電解質組成物はゲル化して使用してもよい。 A molten salt electrolyte having a high boiling point is also suitable as the electrolyte. When the semiconductor electrode is composed of a dye-adsorbing titania layer, particularly excellent battery characteristics are exhibited by combining with a molten salt electrolyte. The molten salt electrolyte composition includes a molten salt. The molten salt electrolyte composition is preferably liquid at room temperature. The molten salt as the main component is an electrolyte that is liquid at room temperature or has a low melting point, and a general example thereof is “Electrochemistry”, 1997, Vol. 65, No. 11, p. Pyridinium salts, imidazolium salts, and triazolium salts described in No. 923. The molten salt may be used alone or in combination of two or more. Alkali metal salts such as LiI, NaI, KI, LiBF 4 , CF 3 COOLi, CF 3 COONa, LiSCN, and NaSCN can also be used in combination. Usually, the molten salt electrolyte composition contains iodine. The molten salt electrolyte composition preferably has low volatility and preferably does not contain a solvent. The molten salt electrolyte composition may be used after gelation.

本発明の太陽電池は、上記負極とヨウ化メチルプロピルイミダゾリウム、ヨウ素、tert-ブチルピリジン、ヨウ化リチウムからなる溶融塩電解質と組み合わせることにより、優れた電池特性を発揮する。また、t-ブチルピリジンや、2-ピコリン、2,6-ルチジン等の塩基性化合物を前述の溶液電解質、溶融塩電解質組成物に添加することも好ましい電解質層を与える。   The solar battery of the present invention exhibits excellent battery characteristics when combined with the negative electrode and a molten salt electrolyte comprising methylpropylimidazolium iodide, iodine, tert-butylpyridine, and lithium iodide. Moreover, it is also preferable to add a basic compound such as t-butylpyridine, 2-picoline, or 2,6-lutidine to the aforementioned solution electrolyte or molten salt electrolyte composition.

このような電解質層を設ける方法は特に限定されるものではなく、例えば両電極の間にフィルム状のスペーサを配置して隙間を形成し、その隙間に電解質を注入する方法でも良く、また、負極内面に電解質を塗布などした後に正極を適当な間隔をおいて積載する方法でも良い。電解質が流出しないよう、両極とその周囲を封止することが望ましいが、封止の方法や封止材の材質については特に限定するものではない。   The method of providing such an electrolyte layer is not particularly limited. For example, a method may be used in which a film-like spacer is disposed between both electrodes to form a gap and an electrolyte is injected into the gap. A method may be used in which the positive electrode is stacked at an appropriate interval after an electrolyte is applied to the inner surface. It is desirable to seal both electrodes and their surroundings so that the electrolyte does not flow out, but the sealing method and the material of the sealing material are not particularly limited.

チタニア表面への高圧放電処理により表面水酸基濃度を増大させる。チタニア表面の水酸基濃度が増大することにより、カルボキシル基を有するRu色素を密に吸着させると共に、吸着色素分子間又は空間的に色素分子が入ることができない表面部位にカルボキシル基を有するブロック分子を密に吸着させることが可能となる。また、電子供与性のブロック分子を用いれば、表面欠陥による電子トラップが抑制され電子拡散性を増加させる。これより色素増感太陽電池の光電変換効率が増大する。更に、チタニア表面への高圧放電処理により、構成元素である酸素を陰性元素と置換させ、表面荷電状態を負にすることにより、色素増感太陽電池の電解液成分であるI3 -の吸着を抑制することが可能となり、逆電子過程が抑制できる。チタニア表面への高圧放電処理により、構成元素であるチタンを陽性元素と置換させ、チタニアの伝導帯付近に新たに陽性元素のエネルギー準位が形成させることが可能となり、色素増感太陽電池の色素からの光励起電子の移動が容易となる。これより色素増感太陽電池の光電変換効率が増大する。チタニア表面への高圧放電処理により、チタニア表面層に構造不規則性をもたらすことが可能であり、チタニア薄膜電極の作製時の焼成過程でネッキングが容易に起こる。これよりチタニア粒子間の電子移動が容易となり、色素増感太陽電池の光電変換効率が増大する。 The surface hydroxyl group concentration is increased by high-pressure discharge treatment on the titania surface. By increasing the concentration of hydroxyl groups on the titania surface, Ru dyes having carboxyl groups are closely adsorbed, and block molecules having carboxyl groups are densely adsorbed on the surface sites where dye molecules cannot enter between adsorbed dye molecules or spatially. It becomes possible to make it adsorb | suck to. If an electron donating block molecule is used, electron traps due to surface defects are suppressed and electron diffusibility is increased. This increases the photoelectric conversion efficiency of the dye-sensitized solar cell. Furthermore, the high-pressure discharge treatment on the titania surface replaces the constituent element oxygen with a negative element and makes the surface charge state negative, thereby adsorbing the electrolyte component I 3 of the dye-sensitized solar cell. It is possible to suppress the reverse electron process. By the high-pressure discharge treatment on the titania surface, it is possible to replace the constituent element titanium with a positive element and to form a new energy level of the positive element near the conduction band of titania. The movement of photoexcited electrons from the substrate becomes easy. This increases the photoelectric conversion efficiency of the dye-sensitized solar cell. By the high-pressure discharge treatment on the titania surface, it is possible to bring structural irregularities to the titania surface layer, and necking easily occurs during the firing process during the production of the titania thin film electrode. This facilitates electron transfer between titania particles and increases the photoelectric conversion efficiency of the dye-sensitized solar cell.

以下、本発明の実施例を示すが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

参考例1
チタニア粒子(一次粒子径:29nm)を1M 酢酸溶液に30wt%で懸濁させ、600Wホモジナイザーで2分間超音波処理を行った。この溶液にポリエチレングリコール(平均分子量20,000)をチタニアに対して10wt%〜60wt%まで変化させて加え、600Wホモジナイザーで2分間超音波処理を行い溶解させてチタニアペーストを作製した。サイズ5×20mmに型取りしたスクリーン印刷機にてFTO透明電極上にチタニアペーストを塗布し、加熱炉により空気中450℃、30分で焼結を行った。この塗布-焼結を計3回繰り返してチタニア薄膜電極材料を作製した。
このチタニア薄膜電極材料を300μM Ru色素(N719)エタノール溶液に48時間浸漬した後、アセトニトリルで洗浄し、室温にて乾燥させた。スペーサーにハイミラン、対極に白金スパッタリング電極を用い、電解液に0.58M t-ブチルピリジン、0.5Mヨウ化リチウム、0.04Mヨウ素をアセトニトリルに溶解させたものを用いて電池セルを構成した。電池セルに光強度100mW/cm2の擬似太陽光を照射して、電池セルの端子間電圧-電流特性を測定した。
Reference example 1
Titania particles (primary particle size: 29 nm) were suspended in 1 M acetic acid solution at 30 wt%, and sonicated with a 600 W homogenizer for 2 minutes. Polyethylene glycol (average molecular weight 20,000) was added to this solution while changing it from 10 wt% to 60 wt% with respect to titania, and ultrasonic treatment was carried out for 2 minutes with a 600 W homogenizer to prepare a titania paste. A titania paste was applied onto the FTO transparent electrode by a screen printer molded to a size of 5 × 20 mm, and sintered in air at 450 ° C. for 30 minutes. This coating-sintering was repeated 3 times in total to produce a titania thin film electrode material.
This titania thin film electrode material was immersed in an ethanol solution of 300 μM Ru dye (N719) for 48 hours, washed with acetonitrile, and dried at room temperature. A battery cell was constructed using a high-milan spacer as the spacer, a platinum sputtering electrode as the counter electrode, and 0.58M t-butylpyridine, 0.5M lithium iodide, and 0.04M iodine dissolved in acetonitrile as the electrolyte. The battery cell was irradiated with simulated sunlight having a light intensity of 100 mW / cm 2 to measure the voltage-current characteristics between the terminals of the battery cell.

表1に電池セルの特性に及ぼすポリエチレングリコール含有率依存性を示す。ポリエチレングリコール含有率40%では、短絡電流とフィルファクター(ff)が増大し、光電変換効率は最大値を示した。図1に光電変換効率のポリエチレングリコール含有率依存性を示す。チタニア粒子凝集状態はポリエチレングリコール含有率に依存することにより、光電変換効率はポリエチレングリコール含有率20〜25%、40%付近で極大値を示した。   Table 1 shows the dependency of the polyethylene glycol content on the characteristics of the battery cell. When the polyethylene glycol content was 40%, the short circuit current and the fill factor (ff) increased, and the photoelectric conversion efficiency showed the maximum value. FIG. 1 shows the dependency of photoelectric conversion efficiency on polyethylene glycol content. Since the titania particle aggregation state depends on the polyethylene glycol content, the photoelectric conversion efficiency showed a maximum value at a polyethylene glycol content of 20 to 25% and around 40%.

Figure 2006310134
Figure 2006310134

実施例1
参考例1に準じて作製したチタニア薄膜電極材料A(ポリエチレングリコール含有率約40%として得たチタニア薄膜電極材料をいう。以下の実施例においても同じ)を用いて、ベルジャー型低温プラズマ装置によりアルゴンプラズマ処理を行った。プラズマ装置内をアルゴン雰囲気15Paに保ち、放電出力100W〜400W、放電時間5分にてアルゴンプラズマ処理を行って、改質されたプラズマ処理チタニア薄膜電極材料を得た。
このプラズマ処理チタニア薄膜電極材料を使用して、参考例1と同様にして電池セルを構成し、光強度100mW/cm2の擬似太陽光を照射して、電池セルの端子電圧―電流特性を測定した。
表2にアルゴンプラズマ処理前後の太陽電池セル特性の比較を示す。アルゴンプラズマ処理により短絡電流が増加して、光電変換効率が増大した。放電出力300Wのアルゴンプラズマ処理により、色素吸着量はチタニア電極厚さ1μm当たり6.50×10-9mol/μmから6.77×10-9mol/μmに増加した。XPSによるO1sスペクトル解析により、533eV付近にOH基に起因するショルダーがアルゴンプラズマ処理後に明瞭に出現したことより、チタニアの表面水酸基濃度が増大することを確認した。
Example 1
Using a titania thin film electrode material A (referred to a titania thin film electrode material obtained with a polyethylene glycol content of about 40%, the same applies to the following examples) prepared in accordance with Reference Example 1, argon was produced by a bell jar type low temperature plasma apparatus. Plasma treatment was performed. The inside of the plasma apparatus was maintained at an argon atmosphere of 15 Pa, and an argon plasma treatment was performed at a discharge output of 100 W to 400 W and a discharge time of 5 minutes to obtain a modified plasma-treated titania thin film electrode material.
Using this plasma-treated titania thin film electrode material, a battery cell was constructed in the same manner as in Reference Example 1, and the terminal voltage-current characteristics of the battery cell were measured by irradiating simulated sunlight with a light intensity of 100 mW / cm 2. did.
Table 2 shows a comparison of solar cell characteristics before and after the argon plasma treatment. The short circuit current increased by the argon plasma treatment, and the photoelectric conversion efficiency increased. The amount of dye adsorbed increased from 6.50 × 10 −9 mol / μm to 6.77 × 10 −9 mol / μm per 1 μm of titania electrode thickness by argon plasma treatment with a discharge power of 300 W. O 1s spectrum analysis by XPS confirmed that the surface hydroxyl group concentration of titania increased from the fact that shoulders due to OH groups appeared clearly after argon plasma treatment in the vicinity of 533 eV.

Figure 2006310134
Figure 2006310134

実施例2
チタニア薄膜電極材料Aを用いて、ベルジャー型低温プラズマ装置により酸素プラズマ処理を行った。プラズマ装置内を酸素雰囲気10Paに保ち、放電出力100W、放電時間1分にて酸素プラズマ処理を行って、改質されたプラズマ処理チタニア薄膜電極材料を得た。
このプラズマ処理チタニア薄膜電極材料を使用して、参考例1と同様にして電池セルを構成し、光強度100mW/cm2の擬似太陽光を照射して、電池セルの端子電圧―電流特性を測定した。酸素プラズマ処理により短絡電流が10%増加して、光電変換効率が増大した。
Example 2
Using the titania thin film electrode material A, oxygen plasma treatment was performed by a bell jar type low temperature plasma apparatus. The inside of the plasma apparatus was maintained in an oxygen atmosphere of 10 Pa, and oxygen plasma treatment was performed at a discharge output of 100 W and a discharge time of 1 minute to obtain a modified plasma-treated titania thin film electrode material.
Using this plasma-treated titania thin film electrode material, a battery cell was constructed in the same manner as in Reference Example 1, and the terminal voltage-current characteristics of the battery cell were measured by irradiating simulated sunlight with a light intensity of 100 mW / cm 2. did. The oxygen plasma treatment increased the short-circuit current by 10% and increased the photoelectric conversion efficiency.

実施例3
チタニア薄膜電極材料Aを用いて、ベルジャー型低温プラズマ装置により水素/アルゴン混合ガスプラズマ処理を行った。ベルジャー内に導入する混合ガス(水素/アルゴン)流量比は1/1とした。プラズマ装置内を水素混合ガス雰囲気10Paに保ち、放電出力100W、放電時間1分にて水素混合ガスプラズマ処理を行って改質されたプラズマ処理チタニア薄膜電極材料を得た。
このプラズマ処理チタニア薄膜電極材料を使用して、参考例1と同様にして電池セルを構成し、電池セルの端子電圧―電流特性を測定した。水素混合ガスプラズマ処理により短絡電流が12%増加して、光電変換効率が増大した。
Example 3
Using the titania thin film electrode material A, hydrogen / argon mixed gas plasma treatment was performed by a bell jar type low temperature plasma apparatus. The flow rate ratio of the mixed gas (hydrogen / argon) introduced into the bell jar was 1/1. A plasma-treated titania thin film electrode material was obtained by performing a hydrogen-mixed gas plasma treatment at a discharge power of 100 W and a discharge time of 1 minute while maintaining the inside of the plasma apparatus at a hydrogen-mixed gas atmosphere of 10 Pa.
Using this plasma-treated titania thin film electrode material, a battery cell was constructed in the same manner as in Reference Example 1, and the terminal voltage-current characteristics of the battery cell were measured. The short circuit current increased by 12% by the hydrogen mixed gas plasma treatment, and the photoelectric conversion efficiency increased.

実施例4
チタニア薄膜電極材料Aを用いて、ベルジャー型低温プラズマ装置により水素/酸素/アルゴン混合ガスプラズマ処理を行った。ベルジャー内に導入する混合ガス(水素/酸素/アルゴン)流量比は1/1/2とした。プラズマ装置内を水素混合ガス雰囲気10Paに保ち、放電出力100W、放電時間1分にて水素混合ガスプラズマ処理を行って改質されたプラズマ処理チタニア薄膜電極材料を得た。
このプラズマ処理チタニア薄膜電極材料を使用して、参考例1と同様にして電池セルを構成し、電池セルの端子電圧―電流特性を測定した。水素混合ガスプラズマ処理により短絡電流が11%増加して、光電変換効率が増大した。
Example 4
Using the titania thin film electrode material A, hydrogen / oxygen / argon mixed gas plasma treatment was performed by a bell jar type low temperature plasma apparatus. The flow rate ratio of the mixed gas (hydrogen / oxygen / argon) introduced into the bell jar was set to 1/2. A plasma-treated titania thin film electrode material was obtained by performing a hydrogen-mixed gas plasma treatment at a discharge power of 100 W and a discharge time of 1 minute while maintaining the inside of the plasma apparatus at a hydrogen-mixed gas atmosphere of 10 Pa.
Using this plasma-treated titania thin film electrode material, a battery cell was constructed in the same manner as in Reference Example 1, and the terminal voltage-current characteristics of the battery cell were measured. The short circuit current increased by 11% and the photoelectric conversion efficiency increased by the hydrogen gas mixture plasma treatment.

実施例5
チタニア薄膜電極材料Aを用いて、ベルジャー型低温プラズマ装置によりアルゴンプラズマ処理を行った後、引き続き窒素プラズマ処理を行った。プラズマ装置内をアルゴン雰囲気15Paに保ち、放電出力300W、放電時間5分にてアルゴンプラズマ処理を行った後、プラズマ装置内を窒素で置換し、窒素雰囲気30Paに保ち、放電出力300W、放電時間5分にて窒素プラズマ処理を行って改質されたプラズマ処理チタニア薄膜電極材料を得た。
このプラズマ処理チタニア薄膜電極材料を使用して、参考例1と同様にして電池セルを構成し、電池セルの端子電圧―電流特性を測定した。
表3に連続プラズマ処理前後の電池セル特性の比較を示す。連続プラズマ処理により、短絡電流及びフィルファクター(ff)が増加して光電変換効率が増大した。
図2にアルゴン/窒素連続プラズマ処理チタニアのXPSによるN1sスペクトルを示す。399〜402eV付近にN-N結合、C-N結合、N-H結合、N-O結合、N=O結合に起因するピーク、また396eV付近にTi-N結合に起因するピークが出現しており、連続プラズマ処理により窒素ドーピングが起こっている。チタニア表面層の全含有窒素に対するTi-N結合窒素の分率は15〜20%であるが、Ti-N結合の窒素はN3-の状態となり、I3 -イオン吸着の抑制と電子拡散性の増大が起こり、短絡電流およびフィルファクターが増大し、開放端電圧の保持をもたらしたことがわかる。
Example 5
The titania thin film electrode material A was used for argon plasma treatment with a bell jar type low temperature plasma apparatus, and then nitrogen plasma treatment was performed. The inside of the plasma apparatus was maintained at an argon atmosphere of 15 Pa, and after performing argon plasma treatment at a discharge output of 300 W and a discharge time of 5 minutes, the inside of the plasma apparatus was replaced with nitrogen, and the nitrogen atmosphere was maintained at 30 Pa, a discharge output of 300 W and a discharge time of 5 Plasma treatment titania thin film electrode material modified by nitrogen plasma treatment was obtained at a minute.
Using this plasma-treated titania thin film electrode material, a battery cell was constructed in the same manner as in Reference Example 1, and the terminal voltage-current characteristics of the battery cell were measured.
Table 3 shows a comparison of battery cell characteristics before and after the continuous plasma treatment. The continuous plasma treatment increased the short circuit current and the fill factor (ff), thereby increasing the photoelectric conversion efficiency.
Fig. 2 shows the N1s spectrum by XPS of titania with argon / nitrogen continuous plasma treatment. Peaks due to NN bond, CN bond, NH bond, NO bond, and N = O bond appear around 399 to 402eV, and peaks due to Ti-N bond appear around 396eV. Nitrogen doping by continuous plasma treatment Is happening. Although the fraction of Ti-N bonds nitrogen to total nitrogen containing titania surface layer is 15 to 20% nitrogen Ti-N bond becomes a state of N 3-, I 3 - suppression and electron diffusion of ion adsorption It can be seen that the increase in short circuit current and fill factor resulted in retention of the open circuit voltage.

Figure 2006310134
Figure 2006310134

実施例6
チタニア薄膜電極材料Aを用いて、ベルジャー型低温プラズマ装置によりアルゴンプラズマ処理を行った後、引き続きアンモニアプラズマ処理を行った。プラズマ装置内をアルゴン雰囲気15Paに保ち、放電出力300W、放電時間5分にてアルゴンプラズマ処理を行った後、プラズマ装置内を窒素で置換し、アンモニア雰囲気30Paに保ち、放電出力300W、放電時間5分にてアンモニアプラズマ処理を行って改質されたプラズマ処理チタニア薄膜電極材料を得た。
このプラズマ処理チタニア薄膜電極材料を使用して、参考例1と同様にして電池セルを構成し、電池セルの端子電圧―電流特性を測定した。連続プラズマ処理により、短絡電流及びフィルファクターがそれぞれ8%及び10%増加して光電変換効率が増大した。
Example 6
The titania thin film electrode material A was used to perform an argon plasma treatment with a bell jar type low temperature plasma apparatus, followed by an ammonia plasma treatment. The inside of the plasma apparatus was maintained at an argon atmosphere of 15 Pa, and after performing argon plasma treatment with a discharge output of 300 W and a discharge time of 5 minutes, the inside of the plasma apparatus was replaced with nitrogen, and the ammonia atmosphere was maintained at 30 Pa, a discharge output of 300 W and a discharge time of 5 A modified plasma-treated titania thin film electrode material was obtained by performing an ammonia plasma treatment in minutes.
Using this plasma-treated titania thin film electrode material, a battery cell was constructed in the same manner as in Reference Example 1, and the terminal voltage-current characteristics of the battery cell were measured. The continuous plasma treatment increased the photoelectric conversion efficiency by increasing the short circuit current and fill factor by 8% and 10%, respectively.

実施例7
チタニア薄膜電極材料Aを用いて、実施例6と同様にして、CO2プラズマ処理、CCl4プラズマ処理、SF6プラズマ処理、CF4プラズマ処理、テトラメチルシラン/O2(ガス流量比1/1)混合ガスプラズマ処理を行った。いずれのプラズマ処理チタニア薄膜電極材料から構成した電池セルも、短絡電流が3〜11%、フィルファクターが5〜12%増加して光電変換効率が増大した。
Example 7
CO 2 plasma treatment, CCl 4 plasma treatment, SF 6 plasma treatment, CF 4 plasma treatment, tetramethylsilane / O 2 (gas flow ratio 1/1) using titania thin film electrode material A in the same manner as in Example 6. ) Mixed gas plasma treatment was performed. Battery cells composed of any plasma-treated titania thin-film electrode material also increased photoelectric conversion efficiency by increasing the short-circuit current by 3 to 11% and the fill factor by 5 to 12%.

実施例8
チタニア薄膜電極材料Aを用いて、ベルジャー型低温プラズマ装置によりアルゴンプラズマ処理を行った後、引き続き窒素プラズマ処理を行った。プラズマ装置内をアルゴン雰囲気15Paに保ち、放電出力200W、放電時間5分にてアルゴンプラズマ処理を行った後、プラズマ装置内を窒素で置換し、窒素雰囲気30Paに保ち、放電出力200W、放電時間5分にて窒素プラズマ処理を行った。
参考例1と同様にしてアルゴン/窒素連続プラズマ処理チタニア薄膜電極材料にRu色素(N719)を吸着させた後、参考例1と同様にして電池セルを作製した。ただし、電解液として、0.58M t-ブチルピリジン(TBP)、0.5Mヨウ化リチウム、0.04Mヨウ素をアセトニトリルに溶解させたもの以外に、0.5Mジメチルプロピルイミダゾリウムヨウ素(DMPImI)、0.58M t-ブチルピリジン(TBP)、0.5Mヨウ化リチウム、0.04Mヨウ素をアセトニトリルに溶解させたものを用いた。
表4に連続プラズマ処理前後の電池セル特性の比較を示す。連続プラズマ処理により、電解液へのt-ブチルピリジン(TBP)及びジメチルプロピルイミダゾリウムヨウ素(DMPImI)の添加効果が大きく現れ、逆電子過程を抑制させて開放端電圧の上昇とフィルファクター(ff)の増加が起こり、光電変換効率が増大した。
Example 8
The titania thin film electrode material A was used for argon plasma treatment with a bell jar type low temperature plasma apparatus, and then nitrogen plasma treatment was performed. The inside of the plasma apparatus was maintained at an argon atmosphere of 15 Pa, and after performing argon plasma treatment at a discharge output of 200 W and a discharge time of 5 minutes, the inside of the plasma apparatus was replaced with nitrogen, and the nitrogen atmosphere was maintained at 30 Pa, a discharge output of 200 W and a discharge time of 5 Nitrogen plasma treatment was performed in minutes.
In the same manner as in Reference Example 1, Ru dye (N719) was adsorbed to the argon / nitrogen continuous plasma-treated titania thin film electrode material, and then a battery cell was produced in the same manner as in Reference Example 1. However, in addition to 0.58M t-butylpyridine (TBP), 0.5M lithium iodide, 0.04M iodine dissolved in acetonitrile, 0.5M dimethylpropylimidazolium iodine (DMPImI), 0.58M t- What dissolved butyl pyridine (TBP), 0.5M lithium iodide, and 0.04M iodine in acetonitrile was used.
Table 4 shows a comparison of battery cell characteristics before and after the continuous plasma treatment. By continuous plasma treatment, the effect of adding t-butylpyridine (TBP) and dimethylpropylimidazolium iodine (DMPImI) to the electrolyte is significant, and the reverse electron process is suppressed to increase the open-circuit voltage and fill factor (ff) As a result, the photoelectric conversion efficiency increased.

Figure 2006310134
Figure 2006310134


実施例9
チタニア粒子を充填したプラズマ反応器がプラズマ処理中に回転し、粒子表面を均質にプラズマ処理することが可能な粒子用低温プラズマ装置を用いて、アルゴンプラズマ処理を行った後、引き続き窒素プラズマ処理を行った。プラズマ反応器内をアルゴン雰囲気15Paに保ち、放電出力200W、放電時間45分にてアルゴンプラズマ処理を行った後、プラズマ装置内を窒素で置換し、窒素雰囲気30Paに保ち、放電出力200W、放電時間10分〜50分にて窒素プラズマ処理を行った。プラズマ処理中は反応器を70rpmにて回転させた。
このプラズマ処理チタニア粒子を使用して参考例1と同様にしてチタニア薄膜電極材料を作製し、電池セルを構成した。表5に電池セルの特性の窒素プラズマ処理時間依存性を示す。窒素プラズマ処理時間に伴って、短絡電流が増加し、開放端電圧は減少する傾向を示したが、光電変換効率は増加する傾向を示した。プラズマ処理チタニア粒子を用いることにより、チタニア粒子のネッキング性が向上して粒子間の電子拡散性が増大し、光電変換効率が増大したことがわかる。図3、図4にそれぞれチタニア薄膜電極の作製前後のXPSのN1sスペクトルを示す。電極作製前にチタニア表面にドーピングされていた窒素原子が電極作製後に消失しており、焼成過程でチタニア表面層の結晶化が促進されることがわかる。この結晶化に伴ってチタニア粒子間のネッキング性が向上する。

Example 9
A plasma reactor filled with titania particles rotates during the plasma treatment, and after performing argon plasma treatment using a low temperature plasma device for particles that can uniformly treat the particle surface, nitrogen plasma treatment is continued. went. The inside of the plasma reactor is maintained at an argon atmosphere of 15 Pa, the argon plasma treatment is performed at a discharge power of 200 W and a discharge time of 45 minutes, the inside of the plasma apparatus is replaced with nitrogen, and the nitrogen atmosphere is maintained at 30 Pa, a discharge power of 200 W and a discharge time. Nitrogen plasma treatment was performed for 10 to 50 minutes. During the plasma treatment, the reactor was rotated at 70 rpm.
Using the plasma-treated titania particles, a titania thin film electrode material was produced in the same manner as in Reference Example 1 to constitute a battery cell. Table 5 shows the dependency of the battery cell characteristics on the nitrogen plasma treatment time. The short-circuit current increased and the open-circuit voltage tended to decrease with the nitrogen plasma treatment time, but the photoelectric conversion efficiency tended to increase. It can be seen that by using the plasma-treated titania particles, the necking property of the titania particles is improved, the electron diffusibility between the particles is increased, and the photoelectric conversion efficiency is increased. 3 and 4 show XPS N1s spectra before and after the production of the titania thin film electrode. It can be seen that the nitrogen atoms doped on the titania surface before electrode preparation disappear after the electrode preparation, and that the crystallization of the titania surface layer is promoted during the firing process. With this crystallization, the necking property between titania particles is improved.

Figure 2006310134
Figure 2006310134

光電変換効率のポリエチレングリコール含有率依存性を示す。The dependency of photoelectric conversion efficiency on polyethylene glycol content is shown. 連続プラズマ処理チタニアのXPSによるN1sスペクトルを示す。N1s spectrum by XPS of continuous plasma treated titania is shown. チタニア薄膜電極の作製前のXPSのN1sスペクトルを示す。The N1s spectrum of XPS before producing a titania thin film electrode is shown. チタニア薄膜電極の作製後のXPSのN1sスペクトルを示す。The N1s spectrum of XPS after producing a titania thin film electrode is shown.

Claims (6)

導電性透明基板上に一次粒子径が100nm以下のチタニア粒子からなる薄膜を形成させて多孔質チタニア薄膜電極を作製し、該チタニア薄膜電極を希ガス、水素、炭素、窒素、酸素、フッ素、ケイ素、りん、硫黄、塩素、遷移金属又はこれらの化合物から選ばれる少なくとも1種を含む気体の中で、高圧放電処理することでプラズマを発生させ、チタニア粒子内部におけるチタニアとはチタンと酸素の元素組成比が異なるか又はチタンと酸素以外の他元素の含有率が異なるチタニア粒子表面層を有する多孔質チタニア薄膜とすることを特徴とする改質された多孔質チタニア薄膜電極材料の製造方法。   A porous titania thin film electrode is produced by forming a thin film composed of titania particles having a primary particle diameter of 100 nm or less on a conductive transparent substrate, and the titania thin film electrode is used as a rare gas, hydrogen, carbon, nitrogen, oxygen, fluorine, silicon. Plasma is generated by high-pressure discharge treatment in a gas containing at least one selected from phosphorus, sulfur, chlorine, transition metals, or these compounds. Titania in the titania particles is the elemental composition of titanium and oxygen A method for producing a modified porous titania thin film electrode material comprising a porous titania thin film having a titania particle surface layer having a different ratio or different content of elements other than titanium and oxygen. 一次粒子径が100nm以下のチタニア粒子を希ガス、水素、炭素、窒素、酸素、フッ素、ケイ素、りん、硫黄、塩素、遷移金属又はこれらの化合物から選ばれる少なくとも1種を含む気体の中で、高圧放電処理することでプラズマを発生させ、チタニア粒子内部におけるチタニアとはチタンと酸素の元素組成比が異なるか又はチタンと酸素以外の他元素の含有率が異なる表面層を有するチタニア粒子とすることを特徴とする改質されたチタニア粒子の製造方法。   In a gas containing at least one selected from titania particles having a primary particle diameter of 100 nm or less selected from rare gas, hydrogen, carbon, nitrogen, oxygen, fluorine, silicon, phosphorus, sulfur, chlorine, transition metals, or these compounds, Plasma is generated by high-pressure discharge treatment, and titania particles having a surface layer in which the elemental composition ratio of titanium and oxygen is different from that of titania inside the titania particles or the content of elements other than titanium and oxygen is different. A process for producing modified titania particles characterized by 一次粒子径が100nm以下のチタニア粒子又は導電性透明基板上に一次粒子径が100nm以下のチタニア粒子からなる薄膜を形成させて多孔質チタニア薄膜電極を、ヘリウム、ネオン、アルゴン、水素、窒素、酸素、水、メタン、エタン、メタノール、エタノール、アンモニア、一酸化炭素、二酸化炭素、一酸化窒素、二酸化窒素、四フッ化炭素、パーフルオロエタン、四塩化炭素、テトラメトキシシラン、テトラメチルシラン、オクタメチルシクロテトラシロキサン、燐酸、六フッ化硫黄及び四塩化チタンから選ばれる少なくとも1種の気体の中で、高圧放電処理することでプラズマを発生させてプラズマ処理することを特徴とするチタニア粒子又は多孔質チタニア薄膜電極材料の処理方法。   A porous titania thin film electrode is formed by forming a thin film composed of titania particles having a primary particle diameter of 100 nm or less or titania particles having a primary particle diameter of 100 nm or less on a conductive transparent substrate, and helium, neon, argon, hydrogen, nitrogen, oxygen , Water, methane, ethane, methanol, ethanol, ammonia, carbon monoxide, carbon dioxide, nitrogen monoxide, nitrogen dioxide, carbon tetrafluoride, perfluoroethane, carbon tetrachloride, tetramethoxysilane, tetramethylsilane, octamethyl Titania particles or porous material characterized in that plasma treatment is performed by generating plasma by high-pressure discharge treatment in at least one gas selected from cyclotetrasiloxane, phosphoric acid, sulfur hexafluoride and titanium tetrachloride Processing method for titania thin film electrode material. 高圧放電処理を減圧、常圧又は高圧下のガス気流下で行う請求項3記載の処理方法。   The processing method according to claim 3, wherein the high-pressure discharge treatment is performed under a gas stream under reduced pressure, normal pressure, or high pressure. チタニア粒子又は多孔質チタニア薄膜電極が、色素増感太陽電池用である請求項3又は4記載の処理方法。   The processing method according to claim 3 or 4, wherein the titania particles or the porous titania thin film electrode is for a dye-sensitized solar cell. 請求項1に記載のチタニア薄膜電極材料の製造方法で得られたチタニア薄膜電極材料をアノードに用いた色素増感太陽電池。   The dye-sensitized solar cell which used the titania thin film electrode material obtained with the manufacturing method of the titania thin film electrode material of Claim 1 for the anode.
JP2005132272A 2005-04-28 2005-04-28 Porous thin-film electrode constituted of titania particle and its reforming method Withdrawn JP2006310134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132272A JP2006310134A (en) 2005-04-28 2005-04-28 Porous thin-film electrode constituted of titania particle and its reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132272A JP2006310134A (en) 2005-04-28 2005-04-28 Porous thin-film electrode constituted of titania particle and its reforming method

Publications (1)

Publication Number Publication Date
JP2006310134A true JP2006310134A (en) 2006-11-09

Family

ID=37476791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132272A Withdrawn JP2006310134A (en) 2005-04-28 2005-04-28 Porous thin-film electrode constituted of titania particle and its reforming method

Country Status (1)

Country Link
JP (1) JP2006310134A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126689A1 (en) * 2007-04-10 2008-10-23 Konica Minolta Holdings, Inc. Method for manufacturing dye-sensitized solar cell
WO2010125974A1 (en) * 2009-04-30 2010-11-04 株式会社ブリヂストン Semiconductor electrode, solar cell using semiconductor electrode, and method for producing semiconductor electrode
JP2010262794A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Semiconductor electrode, solar cell using semiconductor electrode, and method for manufacturing semiconductor electrode
JP2010262795A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Semiconductor electrode, solar cell using semiconductor electrode, and method for manufacturing semiconductor electrode
JP2010262793A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Semiconductor electrode, solar cell using semiconductor electrode, and method for manufacturing semiconductor electrode
WO2011148878A1 (en) 2010-05-24 2011-12-01 ソニー株式会社 Photoelectric conversion device and method for manufacturing same
KR20200020475A (en) * 2018-08-17 2020-02-26 한국과학기술원 ELECTRODE CATALYST FOR GENERATING OXYGEN CONTAINING NiFeMo OXYHYDROXIDE AND METHOD PREPARING OF THE SAME

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126689A1 (en) * 2007-04-10 2008-10-23 Konica Minolta Holdings, Inc. Method for manufacturing dye-sensitized solar cell
WO2010125974A1 (en) * 2009-04-30 2010-11-04 株式会社ブリヂストン Semiconductor electrode, solar cell using semiconductor electrode, and method for producing semiconductor electrode
JP2010262794A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Semiconductor electrode, solar cell using semiconductor electrode, and method for manufacturing semiconductor electrode
JP2010262795A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Semiconductor electrode, solar cell using semiconductor electrode, and method for manufacturing semiconductor electrode
JP2010262793A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Semiconductor electrode, solar cell using semiconductor electrode, and method for manufacturing semiconductor electrode
KR101246385B1 (en) 2009-04-30 2013-03-22 가부시키가이샤 브리지스톤 Semiconductor electrode, solar cell using semiconductor electrode, and method for producing semiconductor electrode
WO2011148878A1 (en) 2010-05-24 2011-12-01 ソニー株式会社 Photoelectric conversion device and method for manufacturing same
KR20200020475A (en) * 2018-08-17 2020-02-26 한국과학기술원 ELECTRODE CATALYST FOR GENERATING OXYGEN CONTAINING NiFeMo OXYHYDROXIDE AND METHOD PREPARING OF THE SAME
KR102111465B1 (en) * 2018-08-17 2020-05-18 한국과학기술원 ELECTRODE CATALYST FOR GENERATING OXYGEN CONTAINING NiFeMo OXYHYDROXIDE AND METHOD PREPARING OF THE SAME

Similar Documents

Publication Publication Date Title
Tang et al. A microporous platinum counter electrode used in dye-sensitized solar cells
Park et al. Copper and nitrogen doping on TiO2 photoelectrodes and their functions in dye-sensitized solar cells
Juang et al. Energy harvesting under dim-light condition with dye-sensitized and perovskite solar cells
Chen et al. Ionic liquid-tethered nanoparticle/poly (ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells
KR100825730B1 (en) Die-sensitized solar cells including polymer electrolyte containing conductive particles suspended therein and method for manufacturing the same
EP2530779B1 (en) Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
JP5008034B2 (en) Photoelectric conversion element and manufacturing method thereof
Zhang et al. Performance enhancement for quasi-solid-state dye-sensitized solar cells by using acid-oxidized carbon nanotube-based gel electrolytes
Wang et al. Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed
JP2008004550A (en) Surface modification method for counter electrode, and counter electrode with modified surface
EP2151883A1 (en) Photoelectrical cell, and coating agent for forming porous semiconductor film for the photoelectrical cell
Anantharaj et al. Fabrication of stable dye sensitized solar cell with gel electrolytes using poly (ethylene oxide)-poly (ethylene glycol)
JP2006310134A (en) Porous thin-film electrode constituted of titania particle and its reforming method
JP2004234988A (en) Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
KR101045849B1 (en) High Efficiency Flexible Dye-Sensitized Solar Cell and Manufacturing Method Thereof
Dissanayake et al. Efficiency enhancement by mixed cation effect in polyethylene oxide (PEO)-based dye-sensitized solar cells
JP2007052933A (en) Ion implantation method of titania particle, and method of manufacturing ion implanted titania thin film electrode
Arsyad et al. Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte
Shah et al. Efficiency enhancement of dye-sensitized solar cells (DSSCs) using copper nanopowder (CuNW) in TiO2 as photoanode
Wu et al. Bridging TiO2 nanoparticles using graphene for use in dye‐sensitized solar cells
Senevirathne et al. Use of fumed silica nanoparticles to attain polymer free novel quasi-solid state electrolyte for high-efficiency dye-sensitized solar cells
JP2001345124A (en) Chemically modified semiconductor electrode, method of manufacturing it, and photocell using it
JP2007242544A (en) Photoelectric converter and its manufacturing method, and surface treatment solution of metal oxide porous layer
JP5636736B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2003297442A (en) Photoelectric conversion oxide semiconductor electrode and dye-sensitized solar battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701