JP5003909B2 - Reflector and lighting device - Google Patents

Reflector and lighting device Download PDF

Info

Publication number
JP5003909B2
JP5003909B2 JP2008166455A JP2008166455A JP5003909B2 JP 5003909 B2 JP5003909 B2 JP 5003909B2 JP 2008166455 A JP2008166455 A JP 2008166455A JP 2008166455 A JP2008166455 A JP 2008166455A JP 5003909 B2 JP5003909 B2 JP 5003909B2
Authority
JP
Japan
Prior art keywords
particles
forming body
average particle
film
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008166455A
Other languages
Japanese (ja)
Other versions
JP2010008600A (en
Inventor
則雅 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2008166455A priority Critical patent/JP5003909B2/en
Publication of JP2010008600A publication Critical patent/JP2010008600A/en
Application granted granted Critical
Publication of JP5003909B2 publication Critical patent/JP5003909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、下地層に粒子を混合して表面に微細な凹凸を形成した反射体およびこれを備えた照明装置に関する。   The present invention relates to a reflector in which fine irregularities are formed on a surface by mixing particles in an underlayer and an illumination device including the reflector.

下地層に粒子を混合して表面に微細な凹凸を形成した反射体は既知である。この種の反射体として、基板1上に有機樹脂2と少くとも2種類以上の微小球体3からなる拡散機能材が、樹脂膜厚(d)と微小球半径(r)がd=r(1+cosθ)<2rの関係となる状態で構成し、さらに反射面4となる金属薄膜を積層した拡散反射面とするものがある(特許文献1参照。)。この反射体は、上記数式中のθを制御することで拡散状態を制御できる旨記載されている。しかし、樹脂膜厚(d)と微小球半径(r)の関係が上記のように規定されているが、2種類以上の微小球体がどのような構成となり、またどのように作用するのか不明である。   A reflector in which fine irregularities are formed on the surface by mixing particles in an underlayer is known. As this type of reflector, a diffusion functional material comprising an organic resin 2 and at least two types of microspheres 3 on a substrate 1 has a resin film thickness (d) and microsphere radius (r) of d = r (1 + cos θ ) <2r, and a diffuse reflection surface in which a metal thin film to be the reflection surface 4 is laminated (see Patent Document 1). This reflector describes that the diffusion state can be controlled by controlling θ in the above formula. However, the relationship between the resin film thickness (d) and the microsphere radius (r) is defined as described above, but it is unclear what kind of configuration the two or more types of microspheres are and how they work. is there.

また、他の構成として、粒子を含有したと膜により基材の表面に凹凸のある下地層を形成し、下地層の表面形状、形成面積、形成領域などを変えることによって、反射鏡面の配光特性を変えるものがある(特許文献2参照。)。この反射体では、粒子の粒度分布を調整することにより、下地層の表面に形成された凹凸の状態を変化させて、配光特性を調整できるとしているが、具体的な構成が不明である。   In addition, as another configuration, when a particle is contained, a base layer having irregularities is formed on the surface of the substrate by a film, and the surface distribution, the formation area, the formation region, etc. of the base layer are changed, thereby distributing the light on the reflecting mirror surface. Some change the characteristics (see Patent Document 2). In this reflector, by adjusting the particle size distribution of the particles, the unevenness formed on the surface of the underlayer can be changed to adjust the light distribution characteristics, but the specific configuration is unknown.

特開2002−006119号公報JP 2002-006119 A 特開2002−107516号公報JP 2002-107516 A

基材が例えば回転2次曲面状をなしているなど立体的な形状をなしている反射鏡の場合、下地層を基材に塗装する際に部位によって層厚にばらつきが生じやすい。層厚が設計値の範囲内であれば、所望の拡散反射面が得られるが、層厚が設計値より大きい領域では粒子が塗膜中に埋没して所望の拡散反射面を得ることができないことが分かった。その結果、照明器具の配光特性が悪化してしまうという問題がある。   In the case of a reflecting mirror having a three-dimensional shape such as a base material having a rotating quadratic curved surface, for example, the layer thickness tends to vary depending on the part when the base layer is coated on the base material. If the layer thickness is within the range of the design value, a desired diffuse reflection surface can be obtained. However, in a region where the layer thickness is larger than the design value, particles are buried in the coating film and the desired diffuse reflection surface cannot be obtained. I understood that. As a result, there exists a problem that the light distribution characteristic of a lighting fixture will deteriorate.

本発明は、基材に形成された下地層の層厚にばらつきがあっても拡散反射面が得られる反射体およびこれを用いた照明装置を提供することを目的とする。   An object of this invention is to provide the reflector which can obtain a diffuse reflection surface, and an illuminating device using the same even if the layer thickness of the base layer formed in the base material has dispersion | variation.

本発明の反射体は、基材と;被膜形成体と少なくとも平均粒径が2種類の粒子とを含んで基材表面に形成され、被膜形成体の膜厚が小さい領域では全ての平均粒径の粒子が被膜形成体の表面から突出し、被膜形成体の膜厚が大きい領域では平均粒径の最も大きな粒子が被膜形成体の表面から突出するとともに平均粒径の最も小さな粒子が被膜形成体内に埋没している下地層と;下地層の上に形成された反射膜と;を具備していることを特徴としている。   The reflector of the present invention includes a base material; a film-forming body and at least two kinds of particles having an average particle size, and is formed on the surface of the base material. Particles protrude from the surface of the film forming body, and in the region where the film forming body has a large film thickness, the particles having the largest average particle diameter protrude from the surface of the film forming body and the particles having the smallest average particle diameter enter the film forming body. A buried underlayer; and a reflective film formed on the underlayer.

本発明は、以下の態様を許容する。   The present invention allows the following aspects.

基材は、一般的には反射体の形状を与えている部材であることが多いが、これは本発明において必須要件ではないとともにその構成材料も特段限定されない。例えば、金属、ガラス、プラスチックス、コンクリート、石、木および紙など適宜材質であることを許容する。また、基材の形状は、用途に応じて任意所望に選択することができる。   In general, the base material is often a member giving the shape of a reflector, but this is not an essential requirement in the present invention, and the constituent material is not particularly limited. For example, a material such as metal, glass, plastics, concrete, stone, wood and paper is allowed. Further, the shape of the substrate can be arbitrarily selected according to the application.

下地層は、被膜形成体と少なくとも平均粒径が2種類の粒子とを含んでなり、基材と反射膜との間に介在して、表面に凹凸面を形成する。このため、下地層の上面に後述する反射膜を形成すると、下地層の凹凸面に倣って表面が凹凸の拡散反射面が得られる。したがって、被膜形成体は、粒子の一部が被膜形成体の表面から突出するようにして粒子を担持する。なお、基材の反射面予定領域の全体または一部にのみ本発明による下地層を形成して拡散反射面を形成することが許容される。   The underlayer includes a film forming body and at least two kinds of particles having an average particle diameter, and is interposed between the base material and the reflective film to form an uneven surface on the surface. For this reason, when a reflection film described later is formed on the upper surface of the underlayer, a diffuse reflection surface having an uneven surface following the uneven surface of the underlayer can be obtained. Therefore, the film forming body carries the particles such that a part of the particles protrudes from the surface of the film forming body. In addition, it is permitted to form the diffuse reflection surface by forming the base layer according to the present invention only on the whole or part of the planned reflection surface area of the substrate.

本発明においては、良好な拡散反射面を形成することができる。なお、被膜形成体の膜厚とは粒子が突出していない部位での膜厚をいう。上記の構成を実現するために、被膜形成体の膜厚が小さい領域では全ての平均粒径のほぼ全部の粒子が被膜形成体の表面から外部へ突出している。したがって、被膜形成体の膜厚が小さい領域の場合、全ての平均粒径の粒子が下地層の表面に凹凸を形成するのに寄与する。しかしながら、被膜形成体の膜厚が小さい領域においては粒子の密度が小さくなりやすい傾向があるので、被膜形成体の塗布液や塗布方法などを最適化することにより、凹凸の分散密度を拡散反射膜として適当な程度に収めることができる。   In the present invention, a good diffuse reflection surface can be formed. In addition, the film thickness of a film formation body means the film thickness in the site | part in which particle | grains do not protrude. In order to realize the above configuration, in the region where the film forming body has a small film thickness, almost all the particles having all average particle diameters protrude from the surface of the film forming body to the outside. Therefore, in the region where the film forming body has a small thickness, all the particles having an average particle diameter contribute to the formation of irregularities on the surface of the underlayer. However, since the density of the particles tends to be small in the region where the thickness of the film forming body is small, by optimizing the coating liquid and the coating method of the film forming body, the dispersion density of the unevenness can be reduced. Can be accommodated to an appropriate degree.

反対に、被膜形成体の膜厚が大きい領域の場合、平均粒径の最も大きな粒子のみが被膜形成体の表面から外部へ突出し、平均粒径の最も小さな粒子は、そのほぼ全部が被膜形成体の内部に埋没している。したがって、平均粒径の最も小さな粒子は、下地層の表面に凹凸を形成するのに実質的に寄与しない。しかしながら、被膜形成体の膜厚が大きい領域においては粒子の分散密度が大きくなりやすい傾向があるので、上記と同様に最適化して平均粒径の大きな粒子による凹凸の密度を拡散反射膜として適当な程度に収めることができる。   On the contrary, in the region where the film forming body has a large film thickness, only the particles having the largest average particle diameter protrude from the surface of the film forming body to the outside, and almost all the particles having the smallest average particle diameter are coated film forming body. Buried inside. Accordingly, the particles having the smallest average particle diameter do not substantially contribute to forming irregularities on the surface of the underlayer. However, since the dispersion density of the particles tends to increase in a region where the film forming body has a large film thickness, optimization is performed in the same manner as described above, and the density of irregularities due to particles having a large average particle diameter is suitable as a diffuse reflection film. Can fit in.

以上、被膜形成体の膜厚の大小の領域が存在しても形成される凹凸の分散密度を拡散反射膜として適当な程度に収めることができる理由を説明したが、この原理は平均粒径が3種以上の粒子を用いる場合であっても同様に成り立つ。すなわち、例えば3種の粒子を混合している場合、被膜形成体の中間の膜厚の領域では中間の平均粒径の粒子および最も大きな粒子が被膜形成体の表面から突出し、最も小さな平均粒径の粒子が被膜形成体の内部に埋没する。被膜形成体の膜厚が大きな領域では最も大きな平均粒径の粒子のみが被膜形成体の表面から突出し、平均粒径の中間および最も小さな粒子のほぼ全部が被膜形成体の内部に埋没する。被膜形成体の膜厚が小さい領域では、全ての平均粒径の粒子が被膜形成体の表面から突出する。   As described above, the reason why the dispersion density of the formed unevenness can be accommodated to an appropriate level as a diffuse reflection film even when the film forming body has a large or small region has been explained. The same holds true even when three or more kinds of particles are used. That is, for example, when three kinds of particles are mixed, in the region of the intermediate film thickness of the film forming body, the medium average particle diameter and the largest particle protrude from the surface of the film forming body, and the smallest average particle diameter Particles are buried inside the film forming body. In the region where the thickness of the film forming body is large, only the particles having the largest average particle diameter protrude from the surface of the film forming body, and almost all of the middle and smallest particles of the average particle diameter are buried inside the film forming body. In the region where the film forming body has a small thickness, all particles having an average particle diameter protrude from the surface of the film forming body.

被膜形成体は、その膜厚が、膜厚の小さい領域の膜厚が平均粒径の最も小さい粒子の直径より小さく、かつ全ての平均粒径の粒子を担持可能な値に設定される。また、被膜形成体の材質は、有機および無機のいずれであってもよい。有機質としては、例えばプラスチックスなどを用いることができる。例えば、液状化プラスチックス材料を有機または水の溶媒を用いて希釈して得た塗布液を用いて塗布し、硬化させて形成するのが好適である。無機質としては、例えば低融点ガラス、石膏および漆喰などを用いることができる。   The film-forming body is set to a value that allows the film thickness of the region having a small film thickness to be smaller than the diameter of the particles having the smallest average particle diameter and to carry particles having all average particle diameters. Further, the material of the film forming body may be either organic or inorganic. For example, plastics can be used as the organic substance. For example, it is preferable that the liquefied plastics material is applied by using a coating liquid obtained by diluting with an organic or water solvent and cured. As the inorganic material, for example, low-melting glass, gypsum and plaster can be used.

粒子は、被膜形成体の構成材料との相関により構成材料が選ばれるが、基本的には有機質および無機質のいずれであってもよい。有機質の粒子の場合、好ましくはプラスチックスからなる。プラスチックス製の粒子は比重が比較的小さいので、プラスチックス塗布材料を用いる場合に分散性が良好である。無機質の粒子の場合、例えばガラス、金属酸化物およびセラミックスなどで粒子を形成することができる。   The constituent material of the particles is selected based on the correlation with the constituent material of the film forming body, but may basically be either organic or inorganic. In the case of organic particles, it is preferably made of plastics. Since the particles made of plastics have a relatively small specific gravity, the dispersibility is good when a plastics coating material is used. In the case of inorganic particles, for example, the particles can be formed of glass, metal oxide, ceramics, or the like.

また、粒子は、その粒度を比較的高い精度で均一化することが可能であり、したがって粒度分布が狭くなるように制御できる。このため、複数種の平均粒径の粒子が含まれていても、反射面を顕微鏡観察することによって、それらの粒度分布のピークが明確に現れるので、粒子の平均粒径の種類数を判定することができる。   Further, the particles can be made uniform in particle size with relatively high accuracy, and can therefore be controlled so that the particle size distribution becomes narrow. For this reason, even if particles having a plurality of types of average particle diameters are included, the peak of their particle size distribution appears clearly by observing the reflective surface with a microscope, so the number of types of average particle diameters of the particles is determined. be able to.

さらに、粒子の平均粒径のサイズは、特段限定されないが、反射体の拡散面を得るのに好ましい凹凸面を形成できる粒径を設定すればよい。一般的には5〜50μm程度の範囲から2種類以上の適当な粒径を選択することができる。平均粒径が5μm未満であると、凹凸が細かくなるすぎて下地層に良好な拡散作用を呈する拡散反射面を形成しにくくなる。平均粒径が50μmを超えると、反対に凹凸が粗くなりすぎて拡散反射が粗くなりすぎて良好な拡散反射面を形成しにくくなる。なお、好適には10〜40μm程度の範囲である。また、この場合の平均粒径の種類数の実用的で好ましい範囲は2または3である。   Further, the size of the average particle diameter of the particles is not particularly limited, but may be set to a particle diameter capable of forming a rough surface preferable for obtaining a diffusing surface of the reflector. Generally, two or more kinds of suitable particle sizes can be selected from the range of about 5 to 50 μm. When the average particle size is less than 5 μm, the unevenness becomes so fine that it becomes difficult to form a diffuse reflection surface exhibiting a good diffusing action on the underlayer. On the other hand, if the average particle size exceeds 50 μm, the unevenness becomes too rough and the diffuse reflection becomes too rough, making it difficult to form a good diffuse reflection surface. The range is preferably about 10 to 40 μm. In this case, the practical and preferable range of the number of types of the average particle diameter is 2 or 3.

平均粒径が小さい粒子の粒径は、被膜形成体の膜厚が小さい領域の膜厚より大きく、かつ膜厚が大きい領域の被膜形成体の膜厚より小さくなるように設定される。この関係は、被膜形成体の膜厚が最も小さい領域および最も小さい平均粒径の粒子に対して適用することができる。また、被膜形成体の膜厚が中間的に小さい領域および中間的に小さい粒子に対しても適用することができる。   The particle diameter of the particles having a small average particle diameter is set so as to be larger than the film thickness in the region where the film forming body has a small film thickness and smaller than the film thickness in the region where the film thickness is large. This relationship can be applied to the region where the film forming body has the smallest film thickness and the smallest average particle size. Further, the present invention can also be applied to a region where the film forming body has an intermediately small film thickness and an intermediately small particle.

一方、平均粒径が大きい粒子の粒径は、被膜形成体の膜厚が大きい領域の膜厚より大きくて、かつその2倍以下であるのが好ましい。この関係は、被膜形成体の膜厚が最も大きい領域および最も大きい平均粒径の粒子に対して適用することができる。   On the other hand, the particle diameter of the particles having a large average particle diameter is preferably larger than the film thickness in the region where the film forming body has a large film thickness and not more than twice that. This relationship can be applied to the region where the film forming body has the largest film thickness and the largest average particle diameter.

そうして、上記の構成であれば、被膜形成体の膜厚が小さい領域では全ての平均粒径の粒子が被膜形成体の表面から突出し、被膜形成体の膜厚が大きい領域では平均粒径の大きな粒子のみが被膜形成体の表面から確実に突出するとともに良好に担持できるので、下地層の層厚にばらつきなどによって変化してもいずれの領域においても良好な拡散反射面を形成することができる。   Thus, with the above configuration, all the average particle diameter particles protrude from the surface of the film forming body in the region where the film forming body has a small film thickness, and the average particle diameter in the region where the film forming body has a large film thickness. Only large particles can be reliably projected from the surface of the film-forming body and can be supported well, so that a good diffuse reflection surface can be formed in any region even if the thickness of the underlayer changes due to variations, etc. it can.

少なくとも平均粒径が2種類の粒子は、各平均粒径の大きさと各平均粒径の粒子の数量とが相反関係にあることが好ましい。例えば、3種類の平均粒径の粒子d1、d2、d3用いる場合であって、各粒子の平均粒径の大きさの関係がd1<d2<d3であるとしたときに、各平均粒径の粒子の数量がP1、P2、P3とすると、P1>P2>P3の関係が成り立つように設定するのが好ましい。   It is preferable that at least two kinds of particles having an average particle diameter have a reciprocal relationship between the size of each average particle diameter and the number of particles having each average particle diameter. For example, when three types of particles d1, d2, and d3 having an average particle diameter are used and the relationship between the average particle diameters of the respective particles is d1 <d2 <d3, When the number of particles is P1, P2, and P3, it is preferable to set so that the relationship of P1> P2> P3 is established.

そうして、上記構成であれば、被膜形成体の膜厚が小さい領域と大きい領域とにおける拡散反射面が近似性の比較的高い拡散反射を呈するようになる。   And if it is the said structure, the diffuse reflection surface in the area | region where the film thickness of a film formation body is small and a large area | region will come to exhibit diffuse reflection with comparatively high approximation.

粒子を混合して調整された塗布液を基材に塗布して下地層を形成する場合、既知の各種塗布方法を適宜選択して採用することができる。例えば、吹き付け、流し込みおよび浸漬などの方法を採用することができる。これらの方法により塗布液を基材表面に塗布し、乾燥または硬化させて下地層を形成する際に、本発明によれば、形成される被膜形成体の膜厚が基材の部位によってばらつきなどによって変化しても、前述の理由により概ねにおいてほぼ同様な拡散反射面が得られる。   When a base layer is formed by applying a coating solution prepared by mixing particles to a substrate, various known coating methods can be appropriately selected and employed. For example, methods such as spraying, pouring and dipping can be employed. According to the present invention, when the coating liquid is applied to the substrate surface by these methods and dried or cured to form the underlayer, according to the present invention, the film thickness of the formed film forming body varies depending on the part of the substrate. Even if it changes depending on the above, almost the same diffuse reflection surface can be obtained for the above-mentioned reason.

反射膜は、鏡面反射性の被膜であり、下地層の上にその表面形状に倣って形成される。材質は、特段限定されないが、例えばアルミニウム被膜を既知の成膜法、例えば蒸着などにより形成するが一般的である。   The reflective film is a specular reflective coating, and is formed on the underlayer following the surface shape. The material is not particularly limited. For example, an aluminum film is generally formed by a known film formation method, for example, vapor deposition.

本発明において、必須構成要件ではないが、所望により反射膜の上面に保護膜を形成することができる。保護膜としては、例えば透明質のプラスチックス膜や低融点ガラス膜などを用いることができる。   In the present invention, although it is not an essential component, a protective film can be formed on the upper surface of the reflective film if desired. As the protective film, for example, a transparent plastic film or a low-melting glass film can be used.

本発明の照明装置は、照明装置本体と;照明装置本体に配設された請求項1ないし3のいずれか一記載の反射体と;反射体に対して入光関係に配設された光源と;を具備していることを特徴としている。   An illuminating device according to the present invention comprises: an illuminating device main body; a reflector according to any one of claims 1 to 3 disposed in the illuminating device main body; a light source disposed in a light incident relationship with respect to the reflector; It is characterized by having;

本発明において、照明装置は照明器具を始め、光源を備えた装置の全てを含む概念であり、その用途は照明に限定されない。また、照明装置本体とは、照明装置から反射体および光源を除外した残余の部分をいう。光源は、白熱電球、放電ランプ、発光ダイオードなど多様な発光体であることを許容する。   In the present invention, the illuminating device is a concept that includes all devices including a lighting fixture and a light source, and its application is not limited to illumination. The lighting device main body refers to the remaining part of the lighting device excluding the reflector and the light source. The light source is allowed to be various light emitters such as an incandescent bulb, a discharge lamp, and a light emitting diode.

本発明によれば、下地層が、被膜形成体と少なくとも平均粒径が2種類の粒子とを含んで基材表面に形成され、被膜形成体の膜厚が小さい領域では全ての平均粒径の粒子が被膜形成体の表面から突出し、被膜形成体の膜厚が大きい領域では平均粒径の最も大きな粒子が被膜形成体の表面から突出するとともに平均粒径の最も小さな粒子が被膜形成体内に埋没していることにより、基材に形成された下地層の層厚にばらつきなどにより変化があっても所要の拡散反射面が得られる反射体およびこれを用いた照明装置を提供することができる。   According to the present invention, the undercoat layer is formed on the surface of the base material including the film forming body and at least two kinds of particles having an average particle diameter. Particles protrude from the surface of the film former, and in the region where the film former has a large film thickness, the particles having the largest average particle diameter project from the surface of the film former and the smallest particle diameter is buried in the film former. By doing so, it is possible to provide a reflector capable of obtaining a required diffuse reflection surface even when there is a change due to variations in the layer thickness of the base layer formed on the substrate, and an illumination device using the reflector.

以下、図面を参照して本発明を実施するための形態を説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1ないし図3は、本発明の反射体を実施するための一形態としての照明器具の反射板を示し、図1は反射板の断面略図、図2は被膜形成体の膜厚が小さい領域における要部の模式的拡大断面図、図3は被膜形成体の膜厚が大きい領域における要部の模式的拡大断面図である。   1 to 3 show a reflector of a lighting fixture as an embodiment for implementing the reflector of the present invention, FIG. 1 is a schematic sectional view of the reflector, and FIG. 2 is a region where the film forming body has a small film thickness. FIG. 3 is a schematic enlarged cross-sectional view of the main part in a region where the film forming body has a large film thickness.

反射板1は、基材2が回転2次曲面形状をなしていて、その内面に反射面3が形成されている。反射面3は、図2および図3に示すように基材2の表面に順次形成された下地層4および反射膜5からなる。   As for the reflecting plate 1, the base material 2 has made the rotation secondary curved surface shape, and the reflective surface 3 is formed in the inner surface. As shown in FIGS. 2 and 3, the reflective surface 3 includes a base layer 4 and a reflective film 5 that are sequentially formed on the surface of the substrate 2.

基材2は、例えばアルミニウム板をへら絞りやプレス加工などにより形成されている。また、回転2次曲面として好ましくは回転放物面近似の形状をなしているとともに、少なくとも内面が平滑になっている。   The base material 2 is formed by, for example, drawing an aluminum plate with a spatula or pressing. Further, the rotational quadratic curved surface preferably has a shape approximating a paraboloid of revolution, and at least the inner surface is smooth.

下地層4は、被膜形成体4aおよび異なる平均粒径を有する2種類の粒子すなわち平均粒径の大きな粒子4b1および平均粒径の小さい粒子4b2を含んでいる。被膜形成体4aは、プラスチックス塗料が塗布され、硬化することによって基材2表面の拡散反射面の予定部に形成されている。本形態においては、図1の反射面3の上部領域が被膜形成体4aの膜厚が小さい領域4a1であり、回転放物曲面の頂部近傍の下部領域が被膜形成体4aの膜厚が大きい領域4a2である。   The underlayer 4 includes a film forming body 4a and two types of particles having different average particle diameters, that is, particles 4b1 having a large average particle diameter and particles 4b2 having a small average particle diameter. The film forming body 4a is formed on a predetermined portion of the diffuse reflection surface on the surface of the substrate 2 by applying a plastics paint and curing. In this embodiment, the upper region of the reflecting surface 3 in FIG. 1 is a region 4a1 where the film forming body 4a has a small film thickness, and the lower region near the top of the paraboloid is a region where the film forming body 4a has a large film thickness. 4a2.

2種類の平均粒径を有する粒子4b1、4b2は、例えばプラスチックス製であり、被膜形成体4aに担持されている。平均粒径の小さな粒子4b2は、平均粒径が大きな粒子4b1より数量が多く混合されている。   The particles 4b1 and 4b2 having two kinds of average particle diameters are made of, for example, plastics and are supported on the film forming body 4a. The particles 4b2 having a small average particle diameter are mixed in a larger quantity than the particles 4b1 having a large average particle diameter.

図2に示す被膜形成体4aの膜厚が小さい領域4a1においては、2種類の平均粒径を有する粒子4b1、4b2がともに被膜形成体4aの表面から突出して下地層4の表面に凹凸を形成している。しかし、2種類の粒子4b1、4b2の分散密度が比較的小さくなっている。   In the region 4a1 where the thickness of the film forming body 4a shown in FIG. 2 is small, the particles 4b1 and 4b2 having two kinds of average particle diameters both protrude from the surface of the film forming body 4a to form irregularities on the surface of the underlayer 4 is doing. However, the dispersion density of the two types of particles 4b1 and 4b2 is relatively small.

他方、図3に示す被膜形成体4aの膜厚が大きい領域4a2においては、平均粒径の大きな粒子4b1のみが被膜形成体4aの表面から突出して下地層4の表面に凹凸を形成している。これに対して、平均粒径が小さな粒子4b2は、被膜形成体4aの内部に埋没していて、凹凸の形成には寄与していない。また、2種類の平均粒径を有する粒子4b1、4b2の分散密度が比較的大きくなっている。このため、被膜形成体4aの表面から突出する平均粒径の大きい粒子4b1により形成される凹凸が被膜形成体4aの膜厚が小さい領域4a1における凹凸と概ねにおいて同様な拡散反射面を形成することができる。   On the other hand, in the region 4a2 where the thickness of the film forming body 4a shown in FIG. 3 is large, only the particles 4b1 having a large average particle diameter protrude from the surface of the film forming body 4a to form irregularities on the surface of the base layer 4. . On the other hand, the particles 4b2 having a small average particle diameter are buried in the film forming body 4a and do not contribute to the formation of irregularities. Further, the dispersion density of the particles 4b1 and 4b2 having two kinds of average particle diameters is relatively large. Therefore, the unevenness formed by the particles 4b1 having a large average particle diameter protruding from the surface of the film forming body 4a forms a diffuse reflection surface that is substantially the same as the unevenness in the region 4a1 where the film forming body 4a has a small film thickness. Can do.

なお、本形態においては、図2および図3に示す被膜形成体4aの表面から突出する2種類の平均粒径を有する粒子4b1、4b2の表面に被膜形成物質の薄膜が形成されているが、形成されていなくてもよい。   In this embodiment, a thin film of a film-forming substance is formed on the surfaces of the particles 4b1 and 4b2 having two kinds of average particle diameters protruding from the surface of the film-forming body 4a shown in FIGS. It may not be formed.

反射膜5は、アルミニウムの蒸着膜からなり、基材2表面の拡散反射面の予定部において被膜形成体4aの表面形成されている。   The reflection film 5 is made of an aluminum vapor deposition film, and is formed on the surface of the film forming body 4 a at a predetermined portion of the diffuse reflection surface on the surface of the substrate 2.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

実施例1では、平均粒径14μm、30μmおよび40μmの3種類の粒子を用いて下地層4を形成した。本実施例においては、被膜形成体4aの膜厚が10μm以下であれば、全ての平均粒径の粒子が被膜形成体4aの表面から突出して凹凸の形成に寄与する。また、被膜形成体4aの膜厚が20μm以下であれば、平均粒径30μmおよび40μmの2種類の粒子が被膜形成体4aの表面から突出して凹凸の形成に寄与する。さらに、被膜形成体4aの膜厚が30μm以下であれば、平均粒径40μmの粒子のみが被膜形成体4aの表面から突出して凹凸の形成に寄与する。そして、被膜形成体4aの表面から突出する粒子の分散密度を概ねにおいて同様な拡散反射面を形成する程度に揃えることができる。   In Example 1, the underlayer 4 was formed using three types of particles having an average particle size of 14 μm, 30 μm, and 40 μm. In the present embodiment, if the film forming body 4a has a film thickness of 10 μm or less, all particles having an average particle diameter protrude from the surface of the film forming body 4a and contribute to the formation of irregularities. If the film forming body 4a has a film thickness of 20 μm or less, two types of particles having an average particle diameter of 30 μm and 40 μm protrude from the surface of the film forming body 4a and contribute to the formation of irregularities. Further, when the film forming body 4a has a film thickness of 30 μm or less, only particles having an average particle diameter of 40 μm protrude from the surface of the film forming body 4a and contribute to the formation of irregularities. Then, the dispersion density of the particles protruding from the surface of the film forming body 4a can be made almost uniform so as to form a similar diffuse reflection surface.

実施例1における各平均粒径を有する粒子の最適な数量の関係について説明する。膜厚10μm以下のときの被膜形成体4aの表面から突出する粒子によって形成される凹凸の面積をS1、膜厚が20μm以下のときの同じく凹凸の面積をS2、膜厚が30μm以下のときの同じく凹凸の面積をS3とし、平均粒径14μm、30μmおよび40μmの3種類の粒子の平均粒径をd1、d2、d3とし、単位面積当たりの数量をP1、P2、P3とし、数量の混合比をl、m、nとすると、被膜形成体4aの各膜厚における凹凸面の面積S1、S2、S3は下式のとおりである。なお、数式中kは定数、tは被膜形成体4aの膜厚である。   The relationship between the optimum number of particles having average particle diameters in Example 1 will be described. When the film thickness is 10 μm or less, the uneven area formed by the particles protruding from the surface of the film forming body 4a is S1, when the film thickness is 20 μm or less, the uneven area is S2, and when the film thickness is 30 μm or less. Similarly, the uneven surface area is S3, the average particle diameters of three kinds of particles having an average particle diameter of 14 μm, 30 μm, and 40 μm are d1, d2, and d3, and the quantities per unit area are P1, P2, and P3, and the mixing ratio of the quantities Are l, m, and n, the areas S1, S2, and S3 of the concavo-convex surface in each film thickness of the film forming body 4a are as follows. In the equation, k is a constant and t is the film thickness of the film forming body 4a.

S1=(d1/2)π・P1・k・t+(d2/2)π・P2・k・t+(d3/2)π・P3・k・t
S2=(d2/2)π・P2・k・t+(d3/2)π・P3・k・t
S3=(d3/2)π・P3・k・t
ここで、l+m+n=1、P1:P2:P3=l:m:nとすると、数量の混合比l、m、nは下式のとおりとなる。
S1 = (d1 / 2) 2 π · P1 · k · t + (d2 / 2) 2 π · P2 · k · t + (d3 / 2) 2 π · P3 · k · t
S2 = (d2 / 2) 2 π · P2 · k · t + (d3 / 2) 2 π · P3 · k · t
S3 = (d3 / 2) 2 π · P3 · k · t
Here, assuming that l + m + n = 1 and P1: P2: P3 = 1: m: n, the mixing ratios l, m and n of the quantities are as shown in the following equation.

m=2(d12+d32)・d22/(2・d12・d22+ d32・d12+ 7・d32・d12+ d34
l=d32/(d12 + d22)・(5/2)m
n=(d32/2・d22)m
そこで、d1に14μmを代入し、d2に30μmを代入し、d3に40μmを代入すると、数量の混合比l、m、nは以下のとおりとなる。
m = 2 (d1 2 + d3 2 ) ・ d2 2 / (2 ・ d1 2・ d2 2 + d3 2・ d1 2 + 7 ・ d3 2・ d1 2 + d3 4 )
l = d3 2 / (d1 2 + d2 2 ) ・ (5/2) m
n = (d3 2/2 · d2 2) m
Therefore, when 14 μm is substituted for d1, 30 μm is substituted for d2, and 40 μm is substituted for d3, the mixture ratios l, m, and n of the quantities are as follows.

l=0.54、m=0.24、n=0.22
さらに、重量の混合比に換算すると、その混合比l´、m´、n´は以下のとおりとなる。
l = 0.54, m = 0.24, n = 0.22
Furthermore, when converted to a weight mixing ratio, the mixing ratios l ′, m ′, and n ′ are as follows.

l´=7%、m´=30%、n´=63%
以上を要約すると、次のとおりである。すなわち、平均粒径14μm、30μmおよび40μmの3種類の粒子を重量比で7:30:63の割合で被膜形成体4aに混合して下地層4を形成すれば、被膜形成体4aの膜厚が30μm以下において概ね同等な拡散性の反射面を形成することができる。
l ′ = 7%, m ′ = 30%, n ′ = 63%
The above is summarized as follows. That is, if the base layer 4 is formed by mixing three types of particles having an average particle size of 14 μm, 30 μm, and 40 μm in a weight ratio of 7:30:63 to the film forming body 4a, the film thickness of the film forming body 4a. Is approximately 30 μm or less, a substantially equivalent diffusive reflecting surface can be formed.

実施例1と同様にして2種類の平均粒径14μmおよび40μmの粒子を用いた。被膜形成体4aの膜厚が10μm以下、20μm以下において、概ね同等な拡散性の反射面を形成するための数量の混合比n、lおよび重量の混合比n´、l´は以下のとおりである。   In the same manner as in Example 1, two types of particles having an average particle diameter of 14 μm and 40 μm were used. When the film forming body 4a has a film thickness of 10 μm or less and 20 μm or less, the number of mixing ratios n and l and the weight mixing ratios n ′ and l ′ for forming a substantially equivalent diffusive reflecting surface are as follows. is there.

すなわち、数量の混合比nは、数式n=d1/(d3+d1)、l=1−nであるから、次の値になる。 That is, the mixing ratio n of the quantities is the following value because the formula n = d1 2 / (d3 2 + d1 2 ) and l = 1−n.

l=89%、n=11%
l´=26%、n´=74%
l = 89%, n = 11%
l ′ = 26%, n ′ = 74%

実施例1と同様に2種類の平均粒径30μmおよび40μmの粒子を用いた。被膜形成体4aの膜厚を20μm以下、30μm以下において概ね同等な拡散性の反射面を形成するための数量の混合比n、lおよび重量の混合比n´、l´は以下のとおりである。   As in Example 1, two types of particles having an average particle diameter of 30 μm and 40 μm were used. The mixing ratios n and l and the mixing ratios n ′ and l ′ of the weights for forming a substantially equivalent diffusive reflecting surface when the film forming body 4a is 20 μm or less and 30 μm or less are as follows. .

l =47%、n =53%
l´=27%、n´=73%
図4は、本発明および比較例における反射面の被膜形成体の膜厚と鏡面度の関係を示すグラフである。図において、横軸は被膜形成体の膜厚(μm)を、縦軸は拡散度と逆の関係にある鏡面度を、それぞれ示す。また、図中の曲線Aは本発明、曲線Bは比較例1、曲線Cは比較例2である。
l = 47%, n = 53%
l ′ = 27%, n ′ = 73%
FIG. 4 is a graph showing the relationship between the film thickness and the specularity of the film forming body on the reflecting surface in the present invention and comparative examples. In the figure, the horizontal axis represents the film thickness (μm) of the film-forming body, and the vertical axis represents the specularity having a reverse relationship to the diffusivity. In the figure, curve A is the present invention, curve B is Comparative Example 1, and curve C is Comparative Example 2.

上記本発明(曲線A)は、実施例1において、その被膜形成体の膜厚を変化させたときのデータである。   The present invention (curve A) is data when the film thickness of the film-forming body is changed in Example 1.

比較例1(曲線B)は、平均粒径20μmの粒子のみを用いて下地層を形成し、その被膜形成体の膜厚を変化させたものである。   In Comparative Example 1 (curve B), an underlayer is formed using only particles having an average particle diameter of 20 μm, and the film thickness of the film forming body is changed.

比較例2(曲線C)は、平均粒径30μmの粒子のみを用いて下地層を形成し、その被膜形成体の膜厚を変化させたものである。   In Comparative Example 2 (curve C), an underlayer is formed using only particles having an average particle diameter of 30 μm, and the film thickness of the film-forming body is changed.

図4から理解できるように、本発明によれば、被膜形成体の膜厚10〜25μmにおいて概ね均一な低い鏡面度、換言すれば良好な拡散性を有する反射面が得られる。これに対して、比較例1、2ともに被膜形成体の膜厚の変化に対する鏡面度、換言すれば拡散性の変化が大きい。   As can be understood from FIG. 4, according to the present invention, a reflective surface having a generally uniform low specularity, in other words, good diffusibility, can be obtained at a film forming body thickness of 10 to 25 μm. On the other hand, in both Comparative Examples 1 and 2, the degree of specularity with respect to the change in film thickness of the film-forming body, in other words, the change in diffusibility is large.

発明の反射体を実施するための一形態としての照明器具における反射板の断面略図Schematic cross-sectional view of a reflector in a lighting fixture as an embodiment for implementing the reflector of the invention 同じく被膜形成体の膜厚が小さい領域における要部の模式的拡大断面図Similarly, a schematic enlarged cross-sectional view of a main part in a region where the film forming body has a small thickness. 同じく被膜形成体の膜厚が大きい領域における要部の模式的拡大断面図Similarly, a schematic enlarged cross-sectional view of the main part in a region where the film forming body has a large thickness. 本発明および比較例における反射面の被膜形成体の膜厚と鏡面度の関係を示すグラフThe graph which shows the relationship between the film thickness of the film formation body of a reflective surface in this invention and a comparative example, and specularity

符号の説明Explanation of symbols

1…反射板、2…基材、3…反射面、4…下地層、4a…被膜形成体、4a1…膜厚が小さい領域、4a2…膜厚が大きい領域、4b1…平均粒径の大きな粒子、4b2…平均粒径が小さな粒子、5…反射膜   DESCRIPTION OF SYMBOLS 1 ... Reflecting plate, 2 ... Base material, 3 ... Reflecting surface, 4 ... Base layer, 4a ... Film formation body, 4a1 ... Area | region with small film thickness, 4a2 ... Area | region with large film thickness, 4b1 ... Particle with large average particle diameter 4b2 ... Particles with a small average particle size, 5 ... Reflective film

Claims (4)

基材と;
被膜形成体と少なくとも平均粒径が2種類の粒子とを含んで基材表面に形成され、被膜形成体の膜厚が小さい領域では全ての平均粒径の粒子が被膜形成体の表面から突出し、被膜形成体の膜厚が大きい領域では平均粒径の最も大きな粒子が被膜形成体の表面から突出するとともに平均粒径の最も小さな粒子が被膜形成体内に埋没している下地層と;
下地層の上に形成された反射膜と;
を具備していることを特徴とする反射体。
A substrate;
The film forming body and at least two kinds of particles having an average particle diameter are formed on the surface of the substrate, and in the region where the film forming body has a small film thickness, all particles having an average particle diameter protrude from the surface of the film forming body, In the region where the film forming body has a large film thickness, the underlayer in which the particles having the largest average particle diameter protrude from the surface of the film forming body and the particles having the smallest average particle diameter are buried in the film forming body;
A reflective film formed on the underlayer;
The reflector characterized by comprising.
平均粒径が最も小さい粒子の粒径は、被膜形成体の膜厚が小さい領域の膜厚より大きく、かつ膜厚が最も大きい領域の被膜形成体の膜厚より小さいとともに、平均粒径が大きい粒子の粒径は、被膜形成体の膜厚が大きい領域の膜厚より大きいがその2倍以下であることを特徴とする請求項1記載の反射体。   The particle diameter of the smallest average particle diameter is larger than the film thickness of the area where the film forming body is small and smaller than the film forming area of the area where the film thickness is the largest, and the average particle diameter is large. 2. The reflector according to claim 1, wherein the particle diameter of the particle is larger than a film thickness of a region where the film forming body has a large film thickness, but not more than twice that. 少なくとも平均粒径が2種類の粒子は、各平均粒径の大きさと各平均粒径の粒子の数量とが相反関係にあることを特徴とする請求項1または2記載の反射体。   3. The reflector according to claim 1, wherein at least two kinds of particles having an average particle diameter have a reciprocal relationship between the size of each average particle diameter and the number of particles having each average particle diameter. 照明装置本体と;
照明装置本体に配設された請求項1ないし3のいずれか一記載の反射体と;
反射体に対して入光関係に配設された光源と;
を具備していることを特徴とする照明装置。
A lighting device body;
A reflector according to any one of claims 1 to 3 disposed in a lighting device body;
A light source arranged in a light incident relationship with respect to the reflector;
An illumination device comprising:
JP2008166455A 2008-06-25 2008-06-25 Reflector and lighting device Expired - Fee Related JP5003909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166455A JP5003909B2 (en) 2008-06-25 2008-06-25 Reflector and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166455A JP5003909B2 (en) 2008-06-25 2008-06-25 Reflector and lighting device

Publications (2)

Publication Number Publication Date
JP2010008600A JP2010008600A (en) 2010-01-14
JP5003909B2 true JP5003909B2 (en) 2012-08-22

Family

ID=41589212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166455A Expired - Fee Related JP5003909B2 (en) 2008-06-25 2008-06-25 Reflector and lighting device

Country Status (1)

Country Link
JP (1) JP5003909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009792B2 (en) * 2012-03-29 2016-10-19 オリンパス株式会社 Light source device
WO2015016024A1 (en) * 2013-07-30 2015-02-05 シャープ株式会社 Lighting device, lighting reflector and production method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107516A (en) * 2000-09-28 2002-04-10 Matsushita Electric Works Ltd Reflecting mirror and method for adjusting light distribution on reflecting mirror plane, method for forming reflecting mirror plane, and lighting fixture
JP2002318305A (en) * 2001-04-24 2002-10-31 Mitsui Chemicals Inc Reflecting sheet and side light type surface light source device using the same
JP2003297122A (en) * 2002-04-05 2003-10-17 Mitsui Chemicals Inc Reflector, side light type backlight device and liquid crystal display using it

Also Published As

Publication number Publication date
JP2010008600A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
CN104779337B (en) A kind of reflective substrate and LED component for being used to improve LED component light efficiency
CN105159020B (en) Light-source system and relevant projecting system
CN103270136A (en) Lighting device with polymer containing matrices
KR20120099742A (en) Reflective nanofiber lighting devices
CN101392890A (en) Light-emitting device
JP5003909B2 (en) Reflector and lighting device
TW201213730A (en) Illumination system and luminaire
US20220099867A1 (en) Lighting device and optical member
JP6274046B2 (en) Light source unit
CN202660270U (en) Light emitting diode (LED) lamp with soft light structure
US20150103529A1 (en) Methods of forming reflective coatings and lighting systems provided therewith
US9228716B2 (en) Reflective nanofiber lighting devices
US20190049074A1 (en) Integrated air guide and beam shaping
CN102549333A (en) Luminaire and optical component
US10649130B2 (en) Pebble-plate like louvre with specific domain characteristics
CN103175004A (en) Light-emitting diode (LED) lamp capable of improving light uniformity
CN204611432U (en) There is wide-angle and go out photodistributed lighting device
JP2006292821A (en) Particulate arrangement structure, method of producing the same and method of manufacturing optical medium
KR101113589B1 (en) Antiglare plate for lighting device and menufacture method thereof
JP2012064345A (en) Globe with phosphor layer for led bulb, its manufacturing method, and led bulb
JP5431215B2 (en) Light guide plate and surface light source device
TW201441529A (en) Vehicle lamp system
JP2002107516A (en) Reflecting mirror and method for adjusting light distribution on reflecting mirror plane, method for forming reflecting mirror plane, and lighting fixture
JP2005128475A (en) Optical reflector and reflection type liquid crystal display device
TW201631059A (en) Methods of forming reflective coatings and lighting systems provided therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees