TW201213730A - Illumination system and luminaire - Google Patents

Illumination system and luminaire Download PDF

Info

Publication number
TW201213730A
TW201213730A TW100111878A TW100111878A TW201213730A TW 201213730 A TW201213730 A TW 201213730A TW 100111878 A TW100111878 A TW 100111878A TW 100111878 A TW100111878 A TW 100111878A TW 201213730 A TW201213730 A TW 201213730A
Authority
TW
Taiwan
Prior art keywords
light
illumination system
reflector
lighting
illumination
Prior art date
Application number
TW100111878A
Other languages
Chinese (zh)
Inventor
Giorgia Tordini
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201213730A publication Critical patent/TW201213730A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/041Optical design with conical or pyramidal surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • F21V7/26Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The invention relates to an illumination system (10), a luminaire and a backlighting system. The illumination system according to the invention comprises a light source (20) and a tapered reflector (30). The tapered reflector comprises an edge-wall (60) connecting the narrow end (50) and the wide end (40). The edge-wall having a light reflective surface for reflecting the light source towards the wide end. The reflective surface is made of one material and exhibits light reflective property having a non-zero diffusing component and a non-zero specular component, the specular component being at least 10% of the total reflection when the incident light is at 30 DEG to the reflective surface. An effect of the illumination system is that a shape of a beam of light emitted by the illumination system may be adapted while maintaining a relatively low glare value.

Description

201213730 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種包含光源及錐形反射器之照明系統。 本發明亦係關於-種包含根據本發明之照明系統之照明 器具。 【先前技術】 此等照明系統本身為已知的。此等照明系統尤其用於用 作一般發光目的之照明器具中,例如用於辦公室燈、用於 店鋪燈或(例如)用於店鋪櫥窗燈。 通常,用於照明公眾場所及(例如)用於辦公室中之照明 器具必須遵照眩光法規。眩光起因於視場中之明亮區域與 黑暗區域之間的過度對比度。眩光可(例如)起因於直接觀 看無屏蔽或經不良屏蔽之光源的燈絲。尤其是當使用led 時’應防止在照明器具附近之使用者直接觀看到led,以 減少照明器具之眩光且增加使用者之視覺舒適性。為了防 止眩光’在(例如)歐洲EN12464-1規範中定義了正規化照 度設定構’該正規化照度設定檔規定:在高於65。之視角 下,光發射不應超過1000 cd/m2之照度。 不同光學建構被用以限制眩光。在螢光光源中,常常使 用百葉窗來限制眩光。儘管百葉窗之使用使得能夠形成良 好定義之光束形狀及低眩光,但百葉窗實質上僅可結合具 有相對較低亮度之光源(諸如,螢光光源)而使用。用於限 制眩光之更新近光學建構係藉由使用稜鏡薄片或板。此等 稜鏡薄片或板(例如,由申請者在商品名稱MLO或 155247.doc 201213730201213730 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an illumination system including a light source and a conical reflector. The invention is also directed to a lighting fixture comprising a lighting system according to the invention. [Prior Art] These illumination systems are known per se. Such lighting systems are particularly useful in lighting fixtures for general lighting purposes, such as for office lights, for store lights or, for example, for shop window lights. Generally, lighting fixtures used to illuminate public places and, for example, in offices must comply with glare regulations. Glare is caused by excessive contrast between bright and dark areas of the field of view. Glare can, for example, result from a filament that directly views an unshielded or poorly shielded source. Especially when using led, 'users in the vicinity of the lighting fixture should be prevented from directly viewing the led to reduce the glare of the lighting fixture and increase the visual comfort of the user. In order to prevent glare, the normalized illumination setting is defined in, for example, the European EN 12464-1 specification. The normalized illumination profile specifies: above 65. From the perspective of light, the light emission should not exceed 1000 cd/m2. Different optical constructions are used to limit glare. In fluorescent light sources, blinds are often used to limit glare. Although the use of louvers enables the formation of well defined beam shapes and low glare, louvers can be used substantially only in conjunction with light sources having relatively low brightness, such as fluorescent sources. The renewed optical construction used to limit glare is by using a crucible sheet or plate. Such enamel sheets or plates (for example, by the applicant under the trade name MLO or 155247.doc 201213730

MicroLens Optics下商業散佈)可結合螢光光源與具有較高 亮度之光源(諸如發光二極體(進一步亦指示為LED))而使 用。已知稜鏡薄片之缺點為稜鏡薄片之有限光束形狀控 制。 【發明内容】 本發明之一目標為提供一種具有改良之光束形狀控制同 時維持相對較低之眩光的照明系統。 根據本發明之一第一態樣之第一實施例,該目標係藉由 技術方案1中所主張之照明系統來達成。根據本發明之一 第態樣β亥目^係藉由如技術方案1 0中所主張之照明器 具來達成。根據本發明之一第三態樣,該目標係藉由如技 術方案15中所主張之背光系統來達成。 根據本發明之該第一態樣之該照明系統包含一光源及一 錐形反射ϋ。該光源包含-發光表面,該發光表面配置於 該錐形反射器之-窄端處且可具有實質上等於該錐形反射 器之該窄端之一尺寸的一《寸,纟可經配置以用於朝向該 錐形反射器之-寬端發射f質上漫射%。該雜形反射器包 含一邊緣壁,該邊緣壁連接該窄端與該寬端,其中該邊緣 壁為一使來自該光源之光反射朝向該寬端之反射表面❶ 該錐形反射器之對稱軸線通常經配置為自該窄端之一中 心至該寬端之一中心,且(例如)與該照明系統之光軸重 合。該對稱軸線與一虛構表面相交,該虛構表面與該錐形 反射益之一邊緣在該寬端及/或該窄端處重合,該對稱軸 線與該虛構表面之間的該相交可(例如)為實質上垂直的。 155247.doc 201213730 該錐形反射器可包含一截圓錐形狀或一戴角錐形狀或任何 不同形狀之錐形反射器。該寬端及/或該窄端之該邊緣與 該虛構表面之間的該相交可為圓形的、橢圓形的及多邊形 的。該相交之形狀為橢圓形或矩形之錐形反射器尤其可十 分適用於街道發光中’在街道發光中需要平行於衔道之一 相對較寬之光束且需要垂直於該街道之一相對較窄之光 束。根據本發明之該錐形反射器亦可指示為一凹面反射 器,且可在該錐形反射器之窄端處具有頸部或無頸部的情 況下體現’該窄端可為開放的或閉合的,在該窄端為閉合 之實施例中,該錐形反射器為一凹面反射杯。眩光值為一 表示眩光之位準之值’該值為在65。之視角下的照度。 該反射器之該錐形形狀將該光塑形為一錐形光束(該錐 形光束之側面與該寬邊緣有關),且將被照明表面限制為 具有對應於該寬邊緣之限制的一區域。該錐形反射器之該 寬邊緣實際上為直接自該光源透射且經反射至該錐形反射 器之該反射表面上的該光之一光截止。現在,尤其是為了 遵照發光法規’需要控制在該錐形光束及被照明表面之界 限處的照度。此外,需要使發光強度之效率最佳化。 此等目的可藉由塑形該錐形反射器及設定該錐形反射器 之大小來達到。發明者提議根據本發明之一實施例的該錐 形反射器之一特定塑形及大小設定(參見下文所描述的本 發明之「第二實施例」)。 發明者亦發現’該錐形反射器之該反射表面之反射性質 亦可經定製以遵照此等法規或促進遵照此等法規。詳言 155247.doc • 6 · 201213730 之發明者提議根據本發明之一第一實施例提供反射表 面,該反射表面係由一材料製成且展現出具有一非零漫射 分量及一非零鏡面反射分量之光反射性質。當入射光相對 於該反射表面成30。時,該鏡面反射分量可為全反射之至 V 10/。,當該入射光相對於該反射表面成3〇。時該鏡面反 射分量為該全反射之至少10%或至少11%0作為一替代方 案或組合,當該入射光相對於該反射表面成90。時,選 擇該鏡面反射分量為該全反射之至少5% ;當該入射光相 對於該反射表面成60。、70。或8〇。時,選擇該鏡面反射分 量為該全反射之至少6% ;當該入射光相對於該反射表面 成40°時,選擇該鏡面反射分量為該全反射之至少7.5%或 至少8.0% ;及/或當該入射光相對於該反射表面成2〇。時, 選擇3玄鏡面反射分量為該全反射之至少丨5 %、μ%、至少 17%或 18〇/〇。 该反射器之該錐形形狀允許在相對較小入射角下將顯著 量之所發射光線引向該等反射表面,且因此歸因於根據本 發明之此等反射表面之該等特定反射性質而發生鏡面反射 而非漫反射。此情形將歸因於漫射(如下文所解釋)而減少 眩光效應,尤其是在該等光截止角(亦即,相對於該錐形 反射器之該主軸線的角度,其對應於在該反射器之該寬邊 緣附近經過的未反射光線)下。因此,藉由調適該反射器 之該等尺寸及該等形狀(且尤其是,該邊緣壁之(多個)斜率 及β亥反射器之尚度)、邊光源之大小及該反射表面中的鏡 面反射部分之大小,可定製自該照明系統輸出之該光的該 155247.doc 201213730 發光強度及該形狀及該眩光效應。詳言之,根據本發明之 該反射率可有助於重新導向光線之原本將造成眩光之一部 分。且尤其是遵照該等發光法規(尤其是大約65。及高於“。 處)而無須任何附件。 此外’增加該鏡面反射之可能性允許增加該照明系統之 發光效率(如下文所解釋)。 用以定義該鏡面反射分量之—特定方法為拋光該反射器 之一反射表面(最初為完全漫射的)或此反射器之鑄模,直 至該反射表面足夠鏡面反射為止,或提供一具有一特定粗 糙度的鑄模(同質的或異質的ρ該反射表面可由任何射出 成形之白色塑膠製成。 凡全漫射之反射器將可用以使原本會展現出太大對比 度之該光截止平滑。 但,歸因於該漫射(及對應的多次反射),光學效率並未 得到最佳化。 此外’此漫射表面情況下之眩光(及因此的照度)亦較 兩’尤其是在光截止處:在一漫射反射器中,光實際上在 所有方向上發射,根據朗伯分佈I(a)=I(0)*cos(a)_其中工為 照度且a為光束相對於反射器之主光軸線的最大角。給定 該反射表面定向在52。(相對於該錐形反射器之該主軸線), 由一完全漫射反射器發射之強度之最大值將位於約38。處 (相對於該錐形反射器之該主軸線),且因此推導出:一朗 伯表面對該等眩光方向之局部貢獻為靠近該等反射器寬邊 緣的全反射光之25。/。’且越接近該主軸線就越少,此係由 155247.doc 201213730 於更多光被反射朝向該反射器之相反側。 因此,在一完全漫反射表面的情況下,需要藉由增加該 反射器之高度而遮蔽比僅光源更多的區域。 藉由提供此反射表面中之一鏡面反射分量,減少了該系 統中之内部光反射(歸因於較少的多次反射),且因此改良 了光學效率且因此可減小該反射器之高度。 反之’通常藉由提供至反射器之内壁上的一金屬塗層來 獲取一完全鏡面反射之反射表面。由於可藉由該反射器之 該等内壁之直接表面而獲取根據本發明之反射表面,故本 發明防止執行此塗佈且因此該製造為更具成本效益的。 此外,發明者意外地觀測到,此反射表面展現出一實質 光學效率,該實質光學效率接近於一完全金屬鏡面反射器 之光學效率,並具有充分的眩光減小以遵照法規。 此外,一完全鏡面反射之反射表面上的反射率(由發明 者自一經塗佈之鋁表面量測得為87%)不如本發明之一反射 表面上的反射率(由發明者自一具有射出成形塑膠邊緣壁 之類似照明系統量測得為95%)重要。因此,一3D表面上 之一鏡面發射飾面的反射率不如一良好拋光之射出成形反 射器高。 根據本發明之該第一實施例之該照明系統的另一效應在 於.用於產生-遵照眩光要求之照明系統的解決方案為相 對具成本效益的。常常’在已知照明系統中,使用稜鏡板/ 薄片來限制該眩光值。此等稜鏡薄片為相對昂貴的且在該 等已知照明系統中應用稜鏡薄片為相對昂責的。又,用於 155247.doc 201213730 限制(例如)螢光光源之眩光的百葉窗之置放為相對耗時的 且因此相對昂貴的。該錐形反射器可以相對具成本效益的 方式(例如)由塑膠來生產,該等塑膠係經由(例如)射出成 形或塑膠變形製程而塑形《在將一層施加至該邊緣壁從而 產生該反射邊緣壁之後,可將該錐形反射器配置於光源周 圍以用於以相對較低成本產生具有有限眩光值之照明系 統。 如由該照明系統發射的光束之一形狀尤其取決於該錐形 反射器之該形狀及用於該錐形反射器之該反射表面的鏡面 反射分量。可經由使用(例如)光學模型化軟體(亦稱為光線 追蹤程式,諸如LightTools®)來判定產生一特定預定義光 束形狀的錐形反射器之形狀。 較佳地,根據本發明之該第一實施例之該照明系統進一 步包含一漫射元件,該漫射元件跨越該錐形反射器延伸以 將該錐形反射器分成兩個部分:一包含該窄端之上部反射 器及一包含該寬端之下部反射器。 有利地,該上部反射器可經設計為一空腔以混合由該光 源發射之光,且該下部反射器可經設計以藉由反射而使來 自s玄上部反射器的穿過該漫射元件之該光塑形或準直。舉 例而。,6玄上部反射器之該錐形壁相對於一主光軸線的角 度低於忒下部反射器之該錐形壁相對於此主光軸線(或該 錐形反射器之S玄主軸線)的角度,以增加此空腔之光學效 率。 该上部反射器因此解決了源照度之問題,而該下部反射 155247.doc •10· 201213730 器減少了高角度下之照度。 另外’在該下部反射器中使用受控鏡面反射及漫反射允 許最佳地僅重新導向將造成眩光之光分量。因此,根據本 發明之該反射表面允許改進藉由該漫射元件獲取的亮度減 少,但減少了相對於該主光軸線之臨界角(例如,根據該 等法規,為65。)處的眩光,以實質上增加光效率且使光截 止效應平滑。因此抽離了不合意的效應,同時使所發射光 月b量最佳化。此外,本發明允許藉由簡單地調整該反射表 面之鏡面反射分量及該反射器之形狀而遵照任何種類之法 規,而不需要額外光學附件。 視情況,該下部反射器可光學地接觸該下部反射器以避 免任何光學損失。詳言之,該等兩個層級(上部反射器及 下部反射器)實現於一單一部分中。因此,歸因於間隙及 其他缺陷而產生的光損失得以最小化。另外,此情形允許 減少裝配成本。 視情況,該漫射元件包含用於漫散射來自該光發射器之 光的漫散射構件。歸因於此漫散射構件,該光源之亮度得 以減小,從而防止使用者在觀察該照明系統時被該光弄得 眩暈。該漫散射構件可為一漫射板、漫射薄片或一漫射羯 片。 詳言之,該漫射元件可包含用於漫散射來自該光發射器 之光的全像散射結構。全像散射結構之效率比其他已知散 射兀件之效率高得多,從而允許自該光源發射漫射光,同 時維持該光源之-相對較高之效率。該高效率通常係歸因 155247.doc -11 - 201213730 於該全像散射結構之相對較低之背向散射。 該漫射元件可包含用於將由該光源發射之光轉換成一較 長波長之光的嵌入之發光材料。該發光材料可有益地用以 藉由將由該光源發射之光轉換成一不同色彩之光而調適由 該照明系統發射之該光的色彩。當(例如)該光源發射紫外 光時,該漫射元件可包含各自吸收紫外光且將該紫外光轉 換成可見光的發光材料之一混合物。發光材料之該特定混 合物在混合時提供具有一預定義之感知色彩的光之一混合 物。或者,該光源發射可見光(例如,藍光),且由發光材 料將部分該藍光轉換成一較大波長之光(例如,黃光)。當 與該藍光之剩餘部分混合時’可產生一預定義色彩之光 (例如,白光)。 作為先前實例之替代,可將發光材料施加至該漫射元件 之一表面上以用於將由該光發射器發射之光轉換成一較長 波長之光。尤其是當將該發光材料施加至該漫射元件之面 向該光源之一表面時,該發光材料層並非立即自該照明系 統外部可見。在該實例中(其中該光源發射藍光,該藍光 之—部分由該發光材料轉換成黃光),執行此轉換之該發 光材料被感知為黃色。當該發光材料自該照明系統外部可 見時’此黃色發光材料(其可(例如)為發光材料:YAG:Ce) 之景象可能並非該照明系統之製造商偏好的,此係因為該 黃色發光材料可能使該照明系統之使用者迷惑地認為該照 明系統發射黃光。因而’當在該散射元件之面向該光源之 β亥表面處施加該發光材料時,該發光材料並非直接自該外 155247.doc •12· 201213730 部可見,從而減少了該漫射元件之該黃色外觀且因而減少 了該照明系統之使用者的迷惑。 視情況,針對一確定的寬端開口的該錐形下部反射器之 幾何形狀由下式給出: 2H/(w+d)=sqrt(2)/tan b 其中//為該反射器高度,w為該寬端之最長邊,d為該漫射 元件之最長邊,且6為遮蔽角(亦即,以下兩者之間的最大 角:(i)該錐形反射器之主轴線,及(ii)穿過該反射器之該 寬邊緣之一點及該主軸線與該漫射元件之間的相交的一 線)。其允許判定用以遮蔽該源所需的反射器之幾何形 狀。需要遮蔽該源以防止眩光。一設計方法將為:首先固 定該寬端之該寬度(「w」)及該等漫射元件尺寸(「d」)(其 可被視為一虛擬光源),且接著調適該錐形反射器之高度 及反射性質。 在該照明系統之一實施例中,該光源包含一有機或無機 發光二極體’該有機或無機發光二極體跨越一實質上等於 该光發射表面之表面發光。使用該有機發光二極體作為光 源時之一益處在於:此等有機發光二極體通常已經跨越該 有機發光二極體之光發射表面均勻地發射實質上漫射光。 因而,不需要額外措施來提供該反射器之該窄端的均勻照 明。此外,因為有機發光二極體通常相對較薄,所以該照 明系統之總高度可能比具有一不同光源之照明系統之總高 度小。 在該照明系統之一實施例中,該光源包含一光發射器及 155247.doc -13· 201213730 一包含該光發射表面之散射元件,該光發射器經組態用於 實質上均勻地照明該散射元件。此實施例之一益處在於: 該光發射器與該散射元件之該組合允許選擇由該光源發射 之光的漫射程度。因為可選擇該散射元件’所以可藉由 (例如)用另一散射元件替換一散射元件來調適散射程度。 不同散射元件之使用允許一光學設計者調適(例如)該錐形 反射器之該最小高度。 根據本發明之該照明系統亦可與另一照明系統共用一光 發射器。當(例如)該照明系統以一照明系統陣列來配置 時,每一照明系統可包含該散射元件,且一光發射器可經 配置以照明複數個照明系統之複數個散射元件。在此配置 中’該光發射器可位於距該複數個散射元件足夠距離處以 確保對該等散射元件之一均勻照明。 在該照明系統之一實施例中’該光源之該光發射表面係 朝向該錐形反射器之該寬端而凸起地塑形。此等凸起地塑 形之光發射表面的一益處在於:此等光發射表面可能由一 具有(例如)一朗伯光分佈之光源(例如,發光二極體)更均 勻地照亮。此改良之均勻性進一步減少由該光源發射之該 漫射光的亮度,從而進一步減少眩光。 該凸起地塑形之光發射表面的另一益處在於:其為該光 發射器留出地方,此情形使得根據本發明之該照明系統之 。亥製造合易《當該光發射器為(例如)一發光二極體時,通 常將该發光:極趙應用於-諸如PCB之電路板。此㈣可 用以固;t該錐形反射器與該凸起地塑形之㈣射表面兩 155247.doc •14· 201213730 者,從而改良製造該照明系統之容易性。另外,該凸起地 塑形之光發射表面可為該光發射器之驅動電子設備提供办 間0 在該照明系統之一實施例中,該邊緣壁向内朝向該錐形 反射器之該對稱軸線彎曲’以用於調適由該照明系統發射 之光的一光束形狀。此向内彎曲之邊緣壁之一益處在於· 在65。處之眩光值得以顯著減小。此減小之眩光值允許將 -更高光通量安裝&具有向内彎曲之邊緣壁的照明系統中 (與實質上直邊緣壁相比較)’同時維持在該眩光規範内。 該邊緣壁的戶斤需確七刀曲率可取決於豸光源乂光發射表面之 形狀及大小,且可使用(例如)該光學模型化軟體(亦稱為光 線追蹤程式’諸如ASAP®、liglm〇〇is®等)來判定。 在該照明系統之-實施例中,該照㈣統包含用於調適 該邊緣壁之-曲率的曲率構件。此等曲率構件可(例如)手 動地或自動地調適該邊緣壁之該曲率以調適由該照明系統 發射之光的光束形狀。因而’根據本發明之該照明系統可 ㈣態α取決μ該等曲率構件進行之該調適而發射不同 光束形狀。 八ν叫〒傅1干、往組悲ffl 調適該錐形反射器之該高度以 门度以用於調適該邊緣壁之該 率。因為對於該錐形反射器之 不同两度而言該眩光值為 質上恆定的,所以該高度之兮 μ調適可用以變更該邊緣壁 一曲率以調適該光束形狀。該 如 邊緣壁可由可變形材料( ’一類似白色橡膠之組份) )耒製造。替代性地或組 155247.doc • 15- 201213730 地,可用一尚光澤白色塗層來覆蓋該邊緣壁(該高光澤白 色塗層之反射性可藉由一漫射(例如,朗伯)貢獻及定義於 該塗層之頂部的一鏡面反射分量來描述)。透過(例如)手動 地或經由馬達控制來調適該錐形反射器之該高度,該可變 形材料變形,該變形調適該邊緣壁之一形狀以變更如由該 照明系統發射之S亥光束形狀。因而,獲取一可調適照明系 統’在該可調適照明系統中可調適光東形狀。 根據本發明之一第二實施例(該第二實施例可單獨地或 結合本發明之該第一實施例之任何特徵進行),該錐形反 射器之該高度為實質上平行於該錐形反射器之一對稱軸線 所量測的一尺寸,且該錐形反射器之該高度經選擇為等於 或大於一最小高度,該最小高度為該錐形反射器之一高度 值範圍中的-最低高度值。在該高度值範圍中,該照明系 統之一眩光值保持實質上恆定。 該錐形反射器之該邊緣壁包含漫反射材料,該漫反射材 料可能為完全漫射的,根據(例如)一白色漫反射材料,通 常具有-為95%至98%之反射率。或者,該邊緣壁可具有 根據該第一實施例之該反射性質(亦即,具有一漫射分量 及一鏡面反射分量)。 根據此第二實施例之該照明系統之一效應在於:發射實 質上漫射光之該光源連同該錐形反射器之該組合產生一照 明系統’纟中由該照明系統發射之一光束的一形狀可經調 適同時維持-相對較低之眩光值。發明者發現,根據本發 明之該照明系統具有一關於眩光之特定行為 在一高於該 155247.doc • 16 - 201213730 最小高度之高度處,在一相對較大之高度值範圍内,該眩 光值保持實質上定。不希望受限於任何特定理論,發明 者咸信,此行為係歸因於由具有該第一尺寸之該光發射表 面之該光源發射的漫射光的組合及該錐形反射器之該漫反 射邊緣壁。此典型組合產生此特定行為,纟中在處於及高 於5亥錐形反射器之一特定最小高冑的高度處的該照明系統 之該眩光值似乎並不會在增加該高度時顯著地改變。在該 錐形反射器之一低於該最小高度之高度下,如自該照明系 統所量測之該眩光值如所預期地隨著該錐形反射器之高度 增加而減小。然而,此預期之行為在處於或接近該最小高 度處時改變。在該高度值範圍内變更該錐形反射器之高度 並不會顯著地改變該眩光值。此外,增加該錐形反射器之 高度通常確實變更由該照明系統發射之光束的形狀。因 而,设§十一照明系統,在該照明系統中,可變更該光束形 狀而並不顯著影響該照明系統之該眩光值。用以限制已知 照明系統中之眩光的已知稜鏡光學板(〇ptical plate)僅能夠 在單一眩光值下產生單一光束形狀。調適該已知稜鏡光學 板可調適該光束形狀,但通常亦增加該系統之眩光值。因 而’在已知稜鏡光學板中’在一眩光值下似乎僅一單—光 束形狀為可能的。使用根據本發明之該照明系統允許實現 多個光束形狀,同時實質上維持該照明系統之該眩光值值 定。此照明系統提供一極令人關注之設計特徵,該設計特 徵可用以設計一特定所需照明分佈及美觀性,同時維持實 質上恆定之低眩光值。 155247.doc 201213730 使用根據此第二實施例之該照明系統時的另一效應在 於:具有實質恆定眩光的該高度值範圍内之該最小高度常 常實質上與該照明系統之一眩光值最小值一致。每一照明 系統可安裝之通量的量係藉由根據正規化發射設定播在照 明系統中剛好可接受之眩光值來判定。歸因於發現實質上 恒疋之眩光值之該範圍處於或接近該照明系統之一眩光值 最小值的事實’可在根據本發明之該照明系統處安裝最大 光通量’同時該高度值範圍内之該眩光值保持在該定義之 正規化發射設定檔内。因而,根據本發明之該照明系統可 經設計以提供一最大光通量,同時將該照明系統之該眩光 值維持在該預定義眩光位準内,且經由對自該照明系統所 發射之該光束塑形而為设計者提供產生一特定所需照明分 佈的能力。 根據本發明之該照明系統的另一效應在於:用於產生一 遵照該等眩光要求之照明系統的解決方案為相對具成本效 益的。常常,在已知照明系統中,使用稜鏡板/薄片來限 制該眩光值。此等稜鏡薄片為相對昂貴的且在該等已知照 明系統中應用稜鏡薄片為相對昂貴的。又,用於限制(例 如)勞光光源之眩光的百葉窗之置放為相對耗時的且因此 · 相對昂貴的。該錐形反射器可以相對具成本效益的方式 (例如)由塑膠來生產,該等塑膠係經由(例如)射出成形或 塑膠變形製程而塑形。在將一層施加至該邊緣壁從而產生 -漫反射邊緣壁之後’可將該錐形反射器配置於該光源周 圍以用於以相對較低成本產生具有有限眩光值之照明系 155247.doc -18- 201213730 統。 如由該照明系統發射的該光束之一形狀尤其取決於該錐 形反射器之形狀及(可能地)用於該錐形反射器之該反射表 面的鏡面反射分量。可經由使用(例如)光學模型化軟體(亦 稱為光線追縱程式,諸如LightTools®)來判定產生一特定 預定義光束形狀的錐形反射器之形狀。 在該照明系統之一實施例中,該高度值範圍包含以下高 度值.在該錐形反射器之該南度值範圍内的該眩光值之一 變化小於該高度值範圍内之一平均眩光值之1〇%,及/或其 中該高度值範圍包含以下高度值:在該錐形反射器之該高 度值範圍内的該眩光值之該變化小於該高度值範圍内之平 均眩光值之5%。發明者發現,該眩光值保持實質上恆定 地處於一相對較大高度值範圍内的平均眩光值之1〇%的範 圍内’從而允許光學設計者在不過度地超過眩光規範的情 況下自該照明系統產生相對較廣範圍之光束形狀。根據經 驗’發明者發現,當(例如)將該照明系統應用為辦公室發 光以用於照明一辦公室時,眩光值之丨〇%的變化仍可接 受:°當在該高度值範圍内的該眩光值之該變化減小時(例 如’減小至小於5%),可安裝於該照明系統中的光通量可 得到更好地最佳化且可更接近於在不超過眩光規範(在65。 之角度下照度為l〇〇〇(cd/m2))情況下可安裝的最大光通 量。根據本發明之一第二態樣,該目標係藉由一包含根據 本發明之照明系統之照明器具來達成。 在該照明器具之一實施例中,該照明器具包含具有一第 155247.doc •19· 201213730 一光束形狀之至少一第一照明系統且包含具有—第-光束 形狀之至少一第二照明系統,該第二光束形狀不同於該第 一光束形狀。在該照明器具中具有該第一照明系統與該第 二照明系統兩者使得一使用者能夠選擇自該照明器具發射 該第一光束形狀或該第二光束形狀或該第一光束形狀與該 : 第二光束形狀之一組合中之任一者。當(例如)該第一光束 形狀尤其益於照明在該照明器具下方之一表面,而該第二 光束形狀尤其益於照明在該照明器具周圍之—廣泛區域 時’當在該照明器具下方之該表面處(例如,一桌子戋a ) 需要光時’可使用該第一光束形狀’而當需要對房間之總 體照明日夺’可使用該第二光束形狀。兩個光束形狀之一組 合可允許對該房間之一般照明以及對桌子的良好照明(其 通常為辦公室照明所需的)。 該照明器具可包含以第一照明系統及第二照明系統之一 混合陣列來配置的複數個第一照明系統及複數個第二照明 系統。或者,該照明器具可包含該複數個照明系統中的具 有一不同光束形狀之少數選定照明系統,以(例如)獲取一 特定照明效應(例如,以照明牆壁上之圖片)。 垂直於該照明系統之該對稱轴線的一橫截面可導致一 e · 形橫截面、糖圓形橫截面或(例如)—多邊形橫截面。可按 . 對應於該等照明系統之橫截面尺寸的一緊密裝填配置在照 明系統之一維陣列中配置該照明器具中之該複數個照明系 在該照明器具之-實施财,該第—照明純包含一第 155247.doc -20· 201213730 一邊緣壁且該第二照明系統包含一第二邊緣壁,該第一邊 緣壁之一曲率不同於該第二邊緣壁之一曲率。因而,可獲 取該複數個照明系統之一規則裝填配置,而該等邊緣壁之 該等不同曲率仍允許該第一照明系統的不同於該第二照明 系統之一光束形狀。 在該照明器具之一實施例中,該照明器具包含一控制 器’該控制器用於獨立於該第二照明系統而控制該第一照 明系統。此控制器可簡單地為一對開關,可藉由該對開關 而獨立於第二照明系統之集合來切換該照明器具中之第一 照明系統之集合,從而允許一使用者僅接通第一照明系統 之該集合,僅接通第二照明系統之該集合,抑或接通第一 照明系統之該集合與第二照明系統之該集合兩者。或者, 忒控制器可包含減光器,該等減光器用以使第一照明系統 之》亥集合獨立於第二照明系統之該集合而減光。亦可存在 光束形狀調適構件,以獨立於來自第二照明系統之該集合 之-玄等第一照明系統的一光束形&而調適來自第一照明系 統之该集合之該等第—照明系統的該光束形狀。 在》玄照明器具之一實施例中,該控制器經組態用於控制 "亥第一邊緣壁之一曲率及/或用於控制該第二邊緣壁之一 曲率。對邊第一邊緣壁之該曲率及/或該第二邊緣壁之該 曲率的此控制可為對該曲率之—連續控制,以使得可使用 該控制器產生實質上任何光束形狀。 ;在-亥’系明益具之一實施例中,該控制器經組態用於控制 -玄第-照明系統之一強度及/或該第二照明系統之一強 &企匕隋形可經由連接至該第一照明系統及該第二照明系 155247.doc -21· 201213730 統之減光器來達成,該等減光器可(例如)由該控制器來控 制。 根據本發明之一第三態樣’該目標係藉由一背光系統來 達成’該背光系統包含根據本發明之該照明系統,或包含 根據本發明之該照明器具。 【實施方式】 圖式純粹為圊解的且並未按比例繪製。特別出於清晰起 見,強烈誇示了一些尺寸。圖式中之類似組件儘可能藉由 相同參考數字來表示。 本發明之此等及其他態樣自下文所描述之實施例而顯而 易見且將參看下文所描述之實施例來闡明。 本發明之第一實施例 圖5展示根據本發明之照明系統10之示意性橫截面圖。 照明系統10包含光源8 0及錐形反射器3 0。光源包含光發射 表面21,光發射表面21具有一實質上類似於錐形反射器3〇 之窄端50之尺寸的尺寸’光發射表面21實質上朝向錐形反 射器30之寬端40發射光(視情況,漫射)。錐形反射器3〇包 含邊緣壁60 ’邊緣壁60連接窄端50與寬端40。錐形反射器 30具有一尚度,該高度為錐形反射器30在實質上平行於錐 形反射器30之對稱軸線A的方向上的尺寸。 照明系統10進一步包含漫射元件7 5,漫射元件7 5延伸跨 越錐形反射器30以將錐形反射器30分成兩個部分:包含該 窄端50之上部反射器70,及包含該寬端40之下部反射器 90。上部反射器70經設計以混合由光源80發射之光,且下 部反射器90經設計以藉由反射使來自上部反射器7〇穿過漫 射元件75之光塑形或準直。如圖5中所描緣,上部反射器 155247.doc • 22· 201213730 70之錐形壁60’相對於主光軸線a之角度低於下部反射器9〇 之錐形壁60"相對於主光軸線A之角度,以便分別促進該混 合及該準直。 錐形壁60’及60"之内反射表面之反射性具有漫射分量及 : 鏡面反射分量,當入射光垂直於反射表面時,鏡面反射分 : 量為全反射之至少5%,且當入射光相對於反射表面成5。 時,鏡面反射分量為全反射之至少5〇%。 •圖8展示針對以下不同入射角(相對於反射表面)的在反 射表面上所反射之光之強度的角分佈:曲線(a):入射角 - =2〇〇 -曲線(b):入射角=3〇。 •曲線(c):入射角=40。 -曲線(d):入射角=50。 -曲線(e):入射角=60。 -曲線(f):入射角=70。 -曲線(g):入射角=80。 -曲線(h):入射角=90。 所使用之材料為GEPAX 8000,且反射器經熱成型為具 " 有以下特徵: 「W」 = 130 mm r d」: =35 mm Γ Η」 =64.8 mm rbj: = 60° 已將鑄模拋光以具有低於0.4微米之平均粗縫度RA。 155247.doc • 23· 201213730 圖8之曲線圖展示高鏡面反射率導致高峰值,而漫射部 分為平坦曲線。 實際上,曲線圖之以「4」來參考之部分展示經反射光 中的漫射光之部分,且無論量測角為何值,此經漫反射光 幾乎相同。此外,入射光愈小,漫反射率愈小(圖8中未屐 示)。 反之’該等峰值展示:入射角愈小,鏡面反射率愈大。 下列表格詳細展示如由發明者在相對於反射表面之不同 入射角下量測的經反射光中的漫射分量及鏡面反射分量。 角度(°) R(漫射) R(鏡面反射) R(鏡面反射)之百分比 20 74.8 17.2 18.7% 30 81.5 10.5 11.4% 40 84.5 7.5 8.1% 50 85.8 6.2 6.7% 60 86.3 5.7 6.2% 70 86.4 5.6 6.1% 80 86.4 5.6 6.1% 90 87.4 4.6 5.0% 此外,圊6展示針對圖5之相同幾何及尺寸的發光裝置的 完全漫反射表面(曲線1)、部分鏡面反射且部分漫反射表面 (與圖8之反射器相同)(曲線2)及完全鏡面反射表面(曲線3) 之照度之間的比較。若完全漫反射表面之光學效率明顯低 於兩個其他類型之反射表面的光學效率,本發明之反射表 面之此效率與完全鏡面反射表面之效率類似。 155247.doc -24- 201213730 此外,圖7展示圖6之曲線1、2、3的在光截止65°附近之 部分。可注意到,完全漫反射表面之眩光為最大的,本發 明之反射表面之眩光減小且完全鏡面反射表面之眩光接近 於零。儘管如此,在光截止(尤其是在60°附近)處完全鏡面 反射表面之光對比度相當高,此情形在被照明表面上賦予 不合意之發光下降。反之,本發明之反射表面使此光截止 平滑(且因此使對比度平滑),其程度比完全漫反射表面少 因此,根據本發明之反射表面允許達到一高光學效率、 足以遵照法規之眩光減小及在光截止處充分的光平滑。 此外’可根據待獲取之所要發光效應且亦根據錐形反射 器30之大小及形狀、幾何形狀來調整錐形反射器3〇之邊緣 壁60’-60"之反射表面的鏡面反射分量。舉例而言,反射器 飾面可為均勻的,但亦可經局部調整。舉例而言,為了產 生非對稱光束,可使反射器之一側之反射率不同於另一側 之反射率。 下部反射器9 0有利地光學地接觸下部反射器7 〇以避免任 何光干損失。詳吕之’該等兩個層級(上部反射器及下 部反射器90)較佳實現於單—部分中(視情況整體製成)。邊 彖2 60及6G可由射出成形於鑄模中之獨特塑膠材料製 mu色型„材料以達到—高反射率(對於此類 =之材料’反射率通常大於9G%,或更佳大於95%)…種 ^射表面之方法可為:首先提供一具有具粗縫度之内 表面或經配置以在射出成形之後提供_完全漫反射表面之 155247.doc •25- 201213730 其他元件的铸模,之後執行拋光步驟以便或多或少地使此 等内表面平滑:内表面拋光愈多,反射表面的鏡面反射愈 多。替代性地或結合此製造方法,亦可直接在邊緣壁60·- 60”之反射表面上執行拋光步驟。 漫射元件75可包含用於漫散射來自光源80之光的漫散射 構件。漫散射構件可為一漫射板、漫射薄片或一漫射箔片 75 〇 詳言之,漫射元件75可包含用於漫散射來自光發射器之 光的全像散射結構。 漫射元件75可包含用於將由光源80發射之光轉換成一較 長波長之光的嵌入之發光材料。該發光材料可有益地用以 藉由將由光源80發射之光轉換成一不同色彩之光而調適由 照明系統10發射之光的一色彩《當(例如)光源8〇發射紫外 光時’漫射元件7 5可包含各自吸收紫外光且將該紫外光轉 換成可見光的發光材料之一混合物。發光材料之該特定混 合物在混合時提供具有一預定義之感知色彩的光之一混合 物。或者,光源80發射可見光(例如,藍光),且由發光材 料將部分該藍光轉換成一較大波長之光(例如,黃光)。當 與該藍光之剩餘部分混合時,可產生一預定義色彩之光 (例如,白光)。 作為先前實例之替代,可將發光材料施加至漫射元件75 之一表面上以用於將由光發射器發射之光轉換成一較長波 長之光。尤其是當將該發光材料施加至漫射元件75之面向 光源80之一表面時,施加該發光材料層以便並非立即自照 155247.doc -26- 201213730 明系統1 〇外部可見。 視情況,針對-確;^的寬端開口,該錐形下部反射器之 幾何形狀由下式給出: ° 2H/(w+d)=sqrt(2)/tan b 照明系統Η)亦可包含用以將漫射元件75安農至錐形反射 器30之構件’此構件經配置成不干擾經透射及反射的光。 結果,光洩漏因此得以最小化且歸因於將此漫射元件乃 固定至錐形反射器30中而產生的對應效率下降亦得以最小 化。 本發明之第二實施例 圖1Α展示根據本發明之照明系統i 〇之示意性橫截面圖。 照明系統10包含光源20及錐形反射器30。光源包含光發射 表面21,光發射表面21具有一實質上相同於錐形反射器3〇 之窄端50之尺寸的尺寸,光發射表面21朝向錐形反射器⑽ 之寬端40發射實質上漫射光。錐形反射器3〇包含邊緣壁 60 ’邊緣壁60連接窄端50與寬端40。可用白色漫反射材料 覆蓋錐形反射器30之内壁’在具有或無第一實施例中已經 論述之鏡面反射分量的情況下,該白色漫反射材料(例如) 具有95%至98%之反射率。錐形反射器30具有一高度h,該 尚度h為錐形反射器30的在實質上平行於錐形反射器3〇之 對稱軸線A的方向上的尺寸。 圖1B展示指示在65。處之所計算強度的曲線圖。可將此 強度值轉換成圖1A之照明系統的照度及眩光值對高度h。 在錐形反射器3 0之寬端dw及窄端dn之恆定尺寸下執行用以 155247.doc •27· 201213730 產生圖1B之計算。僅錐形反射器3〇之高度變化的。發 明者發現,如圖1A中所展示之照明系統1〇具有一關於眩光 之特定行為.在咼於最小高度hmin(曲線圖中所指示)之高 度h處,眩光值幾乎不改變。不希望遵循任何特定理論, 發明者咸信,此行為係歸因於由具有光發射表面21之光源 20發射的漫射光的組合及錐形反射器3〇之漫反射邊緣壁 60。此典型組合產生此特^行為’其中在處於及高於雜形 反射器30之一特定最小高度hmin處的照明系統⑺之該眩光 值似乎並不會在增加高度h時顯著地改變。圖16中所展示 之曲線圖為使用模型化軟體的模擬之結果,在模型化軟體 中假定零光學損失(1〇0%之壁反射率)^實務上,通常為 95%至98%之壁反射率。然而,對於相對較長之錐形反射 器空腔30,可能預期可觀的光學損失。 大體而言,填充相對較小之窄端dn的相對較小之光源有 益於獲取相對較低眩光值。然而’此小光源通常為太亮以 致不能觀看且將使使用者感到視覺不適之光源。 如自圖1B可見,在錐形反射器1〇之高度h低於最小高度 hmin時,如自照明系統1〇(如圖丨八中所展示)所量測的眩光 值隨著高度h增加而減小(如所預期的)。然而,此預期行為 在處於或接近最小高度hmin處改變,其中根據本發明之照 明系統10之眩光值處於其最小值或接近其最小值。在高度 值範圍内變更錐形反射器30之高度h並不會顯著地改變眩 光值。然而,儘管眩光值在高於最小高度hmin之高度卜處 實質上恆定,但由照明系統丨〇發射之光束之形狀確實改變 155247.doc •28- 201213730 (亦參見圖2A至圖2C)。因而,使用如圖1 a中所展示之照明 系統10’可在不變更眩光值之情況下變更禾束形狀。 在咼度值範圍内,眩光值的變化可(例如)小於平均眩光 Ga之10%(如圖1B之曲線圖中所指示)。選擇(例如)邊緣壁 62之一不同形狀(參見圖2A及圖2B)可進一步將跨越高度值 範圍的眩光值之變化減小至小於平均眩光6&之5%(參見例 如圖2B)。因為在此等計算中未考慮損失,所以在如圖1B 中所展示之大高度(高於4〇 mm)下的眩光值之增加將小於 圖1B中所展示的眩光值之增加。 如自圖1B可見,具有實質恆定眩光值之高度值範圍内的 眩光值實質上與照明系統i 0之眩光值最小值一致。此情形 允許光設計者安裝最大光通量,其中所得眩光處於或剛好 低於如在歐洲EN1 2464-1規範中所定義的最大可接受眩光 值。因而’如圖1A中所展示之照明系統10可經設計以提供 一最大光通量’同時維持照明系統10之眩光值低於預定義 眩光位準,且為設計者提供經由對自照明系統1〇發射之光 束塑形而產生一特定所需照明分佈的能力。 錐形反射器30可以相對具成本效益的方式(例如)由塑膠 來生產’該等塑膠係經由(例如)射出成形或塑膠變形製程 而塑形。在將一層施加至邊緣壁從而產生一漫反射邊緣壁 之後’可將錐形反射器30配置於光源20周圍以用於以相對 較低成本產生具有有限眩光值之照明系統1〇。 在如圖1A中所展示之照明系統10的實施例中,光源2〇為 有機發光二極體22。此等有機發光二極體22通常已經跨越 155247.doc •29- 201213730 有機發光二極體22之光發射表面21均勻地發射實質上漫射 光。因而,不需要額外措施來提供錐形反射器30之窄端50 的均勻照明。此外,因為有機發光二極體22通常相對較 薄,所以照明系統10之總高度可能比具有不同光源20之照 明系統之總高度小。 另外,圊1C展示指示隨著圖1A之照明系統之高度h變化 的光束寬度之變化的曲線圖。因此再次,儘管眩光值保持 實質上怪疋’但可顯者地調適自根據本發明之照明系統1 〇 發射的光之光束形狀。此情形為燈設計者提供設計及控制 照明系統10、12、14、1 6的高度靈活性。 圖2 A展示根據本發明之照明系統丨2之另一實施例的示意 性橫截面圖。在圖2A中所展示之實施例中,錐形反射器32 之邊緣壁62向内朝向對稱軸線A彎曲。常常較佳之光束形 狀具有實質上方塊形狀發射分佈,其中發射分佈之中心保 持處於具有相對較陡邊緣之實質上恆定光強度。此發射分 佈可藉由如圖2A中所展示的錐形反射㈣之邊緣壁以的向 内曲率獲取。產生所需發射分佈所需的邊緣壁62之確切曲 率可取決於光源20之光發射表面21之形狀及大小,且可使 用(例如)光學模型化軟體(亦稱為光線追縱程式,諸如 ASAP®、lighttools® 等)來判定。 如圖2A中所展不之照明系統12可包含用於調適邊緣壁a 之曲率且調適照明系統12之發射分佈的曲率構件(未圖 示)。邊緣壁62可(例如)由可變形材料來製造1而,曲率 構件可(例如)為在特定高度h處配置於錐形反射器62周圍之 155247.doc 201213730 環形元件(未圖示),該環形元件 仵之環直徑可經調適以調適 可變形材料之曲率。或者,曲盅##+ 羊構件可調適錐形反射器32 之窄端50與寬端40之間的距離’以調適邊緣壁以曲率以 調適由照明系統12發射之光的發射分佈。因為對於錐形反 射器32之不同高度而言該眩光值為實質上怪定的所以對 高度h之該調適可用以變更邊緣壁62之曲率以調適光束形 狀。 如圖2A中所展示之照明系統12之實施例進一步包含光源 20,光源20包含光發射器24及散射元件%。當(例如)光發 射器24發射呈實質上朗伯光分佈之光時,散射元件%可較 佳地為凹面塑形之散射元件26(如圖2八中所展示)以確保光 發射器24對散射元件26之均勻照明。或者,散射元件%可 為散射材料之實質上扁平薄片或板(未圖示)(與圖1A中所 展示之光源20相比較),在該狀況下,光發射器24定位於 距扁平薄片或板特定距離處以確保對扁平散射元件%之均 勻照明。可選擇光發射器24與散射元件26之組合,以使得 由光源20發射之光的散射程度在預定義限制内。可藉由選 擇一不同散射元件26而調適散射程度。或者,可使用光發 射器24來照明複數個散射元件26 ’該複數個散射元件26各 自配置於其各別照明系統12中。在此配置中,光發射器24 與該複數個散射元件26之間的距離可經選擇以使得光發射 器24均勻地照明該等散射元件26中之每一者。 散射元件26可包含漫散射元件26,及/或可(例如)包含用 於漫反射來自光發射器24之光的全像散射結構。全像散射 155247.doc •31- 201213730 結構通常比其他已知散射元件更有效率,從而允許來自光 源20之漫射光之發射的相對較高效率。 散射元件26可額外或替代性地包含嵌入於散射元件26中 及/或施加於散射元件26之表面上以用於將由光發射器24 發射之光轉換成較長波長之光的發光材料(未圖示)^該發 光材料可有益地用以藉由將由光發射器24發射之光轉換成 一不同色彩之光而調適由照明系統12發射之光的一色彩β 發光材料常常亦具有光散射性質,可選擇光散射性質與光 轉換性質之組合以有效率地產生自錐形反射器3〇、32之窄 端50朝向寬端40發射的具有預定義色彩之漫射光。當(例 如)光發射器24發射紫外光時,散射元件%可包含各自吸 收紫外光且將該紫外光轉換成可見光的發光材料之一混合 物。發光材料之該特定混合物在混合時提供具有一預定義 之感知色彩的光之混合物。或者,光發射器24發射可見光 (例如,藍光),且由發光材料將部分藍光轉換成一較大波 長之光(例如,黃光)。當與該藍光之剩餘部分混合時,可 產生一預定義色彩之光(例如,白光)。 在照明系統12之一實施例中(其中將發光材料施加至散 射元件26之一表面),可有益地將發光材料施加至面向光 發射器24之表面。此發光材料並非立即自照明系統丨2外部 可見的。當自照明系統12外部可見發光材料時,光源2〇之 所感知色彩可偏離由光源20發射之光之色彩。當(例如)發 光材料將來自光發射器24之部分藍光轉換成黃光時,當光 源20未在操作中時,發光材料之所感知色彩為黃色。然 155247.doc -32- 201213730 而,在操作中,光源20發射藍光,部分該藍光由發光材料 轉換成黃光’藍光與黃光組合地提供所感知白色發射光。 因而’光源20之所感知色彩可偏離由光源2〇發射之光之色 彩。當施加發光材料作為面向光發射器24之層時,發光材 料並非直接自外部可見的,從而減少了散射元件2 6之黃色 外觀且因而減少了對照明系統12之使用者之迷惑。 了使用不同發光材料β舉例而言,當光發射器Μ發射實 質上藍光時,可(例如)使用將部分藍色照射光轉換成黃光 之Y3Al5〇12:Ce3+(進一步亦被稱作YAG:Ce)來轉換部分藍 光。選擇散射元件上或散射元件中之此發光材料的比密度 造成照射藍光之預定部分轉換成黃光,從而判定由照明系 統10、12、14、16發射之光之色彩。由發光材料轉換之藍 光之比率可(例如)藉由發光材料之層厚度來判定,或(例 如)藉由分佈於散射元件26中之YAG:Ce粒子的濃度來判 定。或者,例如’可使用CaS:Eu2+(進一步亦被稱作 CaS:Eu) ’ CaS:Eu2+將部分藍色照射光轉換成紅光。將一些 CaS:Eu添加至YAG:Ce可導致具有增加之色溫之白光。 或者’光發射器24(例如)發射紫外光,可由發光材料將 此紫外光轉換成實質上白光。舉例而言,可使用具有不同 磷光體比率之BaMgAlwOn^u2、將紫外光轉換成藍光)、 Ca8Mg(Si04)4Cl2: Eu2+,Mn2+(將紫外光轉換成綠光)及 γ2〇3: Eu ,Bi (將紫外光轉換成紅光)的混合物來選擇自照明系 統10、12、14、16發射之光之色彩,該色彩位於相對冷白 色至暖白色之範圍中(例如,在6500 K與2700 K之間)。可 155247.doc -33· 201213730 使用其他合適發光材料來獲取由照明系統1G、12、14、16 發射之光的所需色彩。 圖2B展示指示在65。處之所計算強度對圖2A之照明系統 之尚度的曲線圖,在65。處之所計算強度與所計算眩光值 有關。圖2B展示與圖1B中已經閣明之行為類似的行為, 類似在於.在尚於大於最小高度hmin之高度h處的眩光值 保持實質上恆定。如自圖1B與圖2B之曲線圈之間的比較 可見,錐形反射器32(如圖2A中所展示)的圍繞平均眩光值 Ga之眩光值之變化小於錐形反射器30(如圖1A中所展示)的 圍繞平均眩光值Ga之眩光值之變化。 圖3展示指示根據本發明之兩個不同照明系統1〇、μ之 光束形狀80、82的曲線圖。具有連接錐形反射器3〇之窄端 50與寬端40之實質上直邊緣壁60的第一照明系統1〇可比得 上如圊1A中所展示之照明系統10。第二照明系統14類似於 第一照明系統10 ’其中差異在於:邊緣壁62向内彎曲可 比得上如圖2A中所展示的照明系統12之實施例中所展示的 邊緣壁。在圖3中所展示之當前實施例中,第一照明系統 10之高度h等於第二照明系統14之高度h,第一照明系統1〇 之窄端50之尺寸dn等於第二照明系統Μ之窄端5〇之尺寸 dn,且第一照明系統10之寬端40之尺寸dw等於第二照明系 統14之寬端40之尺寸dw。第一照明系統1〇產生第一光束形 狀80,且第二照明系統14產生第二光束形狀82 »此第二光 束形狀82在處於及高於65°角處具有減小之強度,當安裝 相同光強度時,與第一照明系統1〇相比較,該減小之強度 155247.doc • 34· 201213730 導致自第二照明系統Μ產生減小之眩光值。儘管圖3之曲 線圖中之差異似乎相對較小,但在65。處之強度之差異為 顯著的,且允許在65。處達成相同眩光值之前在第二照明 系統14中多安裝20。/。至30%之光通量(與第一照明系統丨〇相 比較)。可經由使用(例如)光學模型化軟體(亦稱為光線追 蹤程式,諸如LightTools®)來判定產生所需預定義光束形 狀80、82的錐形反射器30、32之形狀。 圖4A及圖4B僅展示根據本發明之第一實施例或第二實 施例之照明器具100、1 〇2的少數實施例。可在不偏離本發 明之範疇之情況下設計出許多變體。 在圖4A中,展示實質上正方形照明系統16 β圖4a中所 展示之照明器具100包含此等正方形照明系統丨6之一規則 陣列。照明系統1 6之此特定形狀允許以個別照明系統丨6之 各別錐形反射器空腔30、32、36之各別寬端40開口極有效 率地填充照明器具100之可用表面。照明器具1 〇〇亦可包含 第一照明系統16A及第二照明系統16B,第二照明系統16B 中之所發射強度及/或光束形狀及/或色彩可不同於第一照 明系統16A。在此實施例中,照明器具1 〇〇可包含控制器 11〇(參見圖4B),控制器110可用以同時或獨立地控制第一 照明系統1 6A及第二照明系統16B。在照明器具100中具有 第一照明系統16A與第二照明系統16B兩者使得使用者能 夠選擇以下各者中之任一者:由第一照明系統16 A發射的 光、由第二照明系統16B發射的光,或由第一照明系統 16A與第二照明系統16B兩者發射的光之組合。當(例如)第 155247.doc •35- 201213730 一照明系統16A發射尤其有益於照明在該照明器具下方之 表面(例如’桌子)的第一光束形狀’而第二照明系統16B 發射尤其有益於照明在照明器具周圍之廣泛區域的第二光 束形狀時’當在該照明器具下方之表面處(例如,桌子或 台)需要光時,可使用該第一光束形狀,而當需要房間之 總體照明時’可使用該第二光束形狀。兩個光束形狀之組 合可允許對該房間之一般照明以及對桌子的良好照明(通 常為辦公室照明所需的)。 照明器具100可包含按第一照明系統16A及第二照明系統 16B之一混合陣列來配置的複數個第一照明系統16A及複 數個第二照明系統16B ^或者,照明器具1〇〇可包含該複數 個照明系統中的具有一不同光束形狀之少數選定照明系 統’(例如)以獲取一特定照明效應(例如,以照明一牆壁上 之一圊片)。 在圖4B中,如圖2A中所展示之照明系統12按一陣列配 置以形成照明器具102之第二實施例。照明器具1〇2包含若 干列照明系統12,其中平行列相對於先前列而移位以產生 照明系統12之緊密裝填。又,圖4B中所展示之照明器具 102可包含第一照明系統12A及第二照明系統12B,第二照 明系統12B中之所發射強度及/或光束形狀及/或色彩可不 同於第一照明系統12A。再一次,存在控制器110,控制器 11〇(例如)用以同時地或獨立地控制第一照明系統12A及第 二照明系統12B。在照明器具1〇〇中具有第一照明系統12A 與第二照明系統12B兩者使得使用者能夠選擇以下各者中 155247.doc -36- 201213730 之任一者:由第一照明系統12A發射的光、由第二照明系 統12B發射的光,或由第一照明系統12A與第二照明系統 12B兩者發射的光之組合,類似於圖4A中所展示之實施 例》圖4B亦提供對可藉以製造照明器具1〇2之不同元件的 深入瞭解。明顯地,照明系統12包含光發射器24及散射元 件26 ’光發射器24與散射元件26—起形成配置於印刷電路 板122上之光源20。隨後將此裝配件應用至照明器具1〇2之 後壁120 ’且與個別照明系統12之錐形反射器空腔32之陣 列124固定在一起。錐形反射器空腔32之陣列124可(例如) 在一個生產步驟中(例如)經由熟知之射出成形製程來生 產。如之前所指示’散射元件26可包含用於變更或調諧由 個別照明系統12發射之光之色彩的發光材料。因為錐形反 射器空腔32之陣列124的裝配相對較迅速且簡單,從而(例 如)允许使用相對已知且廉價之生產程序,所以允許以相 對具成本效益的方式來生產此照明器具1〇2。 照明器具1〇2可再一次包含按第一照明系統i2A及第二照 明系統12B之混合陣列來配置的複數個第一照明系統12A 及複數個第二照明系統12B。或者,照明器具1〇2可包含該 複數個照明系統12㈣具有-不同光束形&之少數選定照 明系統,(例如)以獲取一特定照明效應。 圖4A及圖4B中所展示之照明器具100、102亦可包含光 &射器24 ’該等光發射器24各自實質上均勻地照明複數個 散射το件26。因為光發射器24通常為相對較昂貴的,所以 此配置可為有益的。然而,光發射器24與其照明之該複數 155247.doc -37- 201213730 個散射元件26之間的距離可相對較大,以確保光發射器對 散射元件26之均勻照明β此距離之增加將增加照 100、102之高度。 八 圖4Α及圊4Β中所展示之照明器具1〇〇、1〇2亦可用作背 光視訊螢幕、廣告板及海報箱(未圖示)中之背光系統1〇〇、 102 ° 應注意,上文所提及之實施例說明而非限制本發明,且 熟習此項技術者將能夠在不偏離附加申請專利範圍之範疇 的情況下設計出許多替代實施例。 在申請專利範圍中’置放於圓括號之間的任何參考符號 不應被解釋為限制該請求項。動詞「包含」及其動詞變化 之使用並不排除除請求項中所陳述之元件或步驟之外的元 件或步驟的存在。在元件之前的詞「-(a或an)」並不排除 複數個此等元件之存在。本發明可借助於包含若干相異元 件之硬體來實施。在列舉若干構件之裝置請求項中,此等 構件中之若干者可藉由同一個硬體項目來體現。在相互不 同之附屬項中敍述某些措施的純粹事實並不指示不能有利 地使用此等措施之組合。 【圖式簡單說明】 圖1A展示根據本發明之照明系統之示意性橫截面圖,圖 展丁才日不在65處之所計算強度對圖i a之照明系統之高 度的曲線圖,且圖1C a +社-πα — « 圃展不私不隨者照明系統之高度變化的 光束寬度之變化的曲線圖。 謀展示根據本發明之照明系統之另一實施例的示意性 155247.doc •38· 201213730 検截面圖,圖2B展示指示在65。處之所計算強度對圖2八之 照明系統之南度的曲線圖。 圖3展不指示根據本發明之兩個不同照明系統之光束形 狀的曲線圖。 圖4A及圖4B展示根據本發明之照明器具之不同實施 例0 圖5為根據本發明之另一實施例之照明系統的縱向橫截 面圖’其中該照明包含一上部反射器及一下部反射器,該 上部反射器與該下部反射器由一延伸跨越該反射器之漫射 元件分離。 圖6為針對具有完全漫反射表面、根據本發明之反射表 面及完全鏡面反射表面之照明系統的在相對於圖5之主光 轴線A之各種方位角下獲取的照度的曲線圖。 圖7為圖6之曲線圖之在65。附近的部分。 圖8為在光之不同角入射下由根據本發明的反射表面反 射之光的強度的曲線圖。 【主要元件符號說明】 1 曲線 2 曲線 3 曲線 10 照明系統 12 照明系統 12A 第一照明系統 12B 第二照明系統 155247.doc •39· 201213730 14 照明系統 16 照明系統 16A 第一照明系統 16B 第二照明系統 20 光源 21 光發射表面 22 有機發光二極體 24 光發射器 26 散射元件 30 錐形反射器/錐形反射器空腔 32 錐形反射器/錐形反射器空腔 36 錐形反射器空腔 40 寬端 50 窄端 60 邊緣壁 60, 上部反射器之錐形壁 60" 下部反射器之錐形壁 62 邊緣壁 70 上部反射器 75 漫射元件 80 光源/光束形狀 82 光束形狀 90 下部反射器 100 照明器具/背光系統 155247.doc -40- 201213730 102 照明器具/背光系統 110 控制器 120 後壁 122 印刷電路板 124 錐形反射器空腔之陣列 A 錐形反射器之對稱軸線 155247.doc • 41 -Commercially distributed under MicroLens Optics) can be used in conjunction with a fluorescent light source and a light source with a higher brightness, such as a light-emitting diode (further also indicated as an LED). A disadvantage of known tantalum sheets is the limited beam shape control of the tantalum sheets. SUMMARY OF THE INVENTION It is an object of the present invention to provide an illumination system having improved beam shape control while maintaining relatively low glare. According to a first embodiment of the first aspect of the invention, the object is achieved by the illumination system as claimed in claim 1. According to an aspect of the present invention, the method is achieved by the illuminating device as claimed in the technical solution 10. According to a third aspect of the present invention, the object is achieved by a backlight system as claimed in claim 15. The illumination system according to the first aspect of the present invention comprises a light source and a conical reflector. The light source includes a light emitting surface disposed at a narrow end of the tapered reflector and having an inch substantially equal to a size of one of the narrow ends of the tapered reflector For emitting a diffuse % of the mass toward the wide end of the conical reflector. The stray reflector includes an edge wall connecting the narrow end and the wide end, wherein the edge wall is a reflective surface that reflects light from the light source toward the wide end ❶ the symmetry of the tapered reflector The axis is typically configured from the center of one of the narrow ends to the center of one of the wide ends and, for example, coincides with the optical axis of the illumination system. The axis of symmetry intersects an imaginary surface that coincides with one of the edges of the tapered reflection at the wide end and/or the narrow end, the intersection between the axis of symmetry and the imaginary surface being, for example, It is substantially vertical. 155247. Doc 201213730 The conical reflector can comprise a conical reflector or a pyramidal shape or a conical reflector of any different shape. The intersection between the wide end and/or the edge of the narrow end and the imaginary surface may be circular, elliptical, and polygonal. The intersecting shape of an elliptical or rectangular conical reflector is particularly well suited for street lighting [in the street lighting needs to be parallel to a relatively wide beam of one of the lanes and needs to be relatively narrow to one of the streets. Beam of light. The conical reflector according to the invention may also be indicated as a concave reflector, and may have an neck or no neck at the narrow end of the conical reflector, which may be open or In the embodiment closed, the narrow end is closed, the conical reflector is a concave reflecting cup. The glare value is one indicating the value of the level of glare'. The value is at 65. Illumination from the perspective of the view. The tapered shape of the reflector shapes the light into a cone of light (the side of the cone of light is associated with the wide edge) and limits the illuminated surface to an area having a limit corresponding to the wide edge . The wide edge of the conical reflector is actually one of the light that is transmitted directly from the source and reflected onto the reflective surface of the conical reflector. Now, especially in order to comply with the illuminating regulations, it is necessary to control the illuminance at the boundary between the cone beam and the illuminated surface. In addition, it is necessary to optimize the efficiency of luminous intensity. These objects can be achieved by shaping the conical reflector and setting the size of the conical reflector. The inventors propose a specific shaping and sizing of the one of the tapered reflectors according to an embodiment of the present invention (see the "second embodiment" of the present invention described below). The inventors have also discovered that the reflective nature of the reflective surface of the conical reflector can also be tailored to comply with such regulations or to facilitate compliance with such regulations. Detailed 155247. The inventor of the present invention proposes a reflective surface according to a first embodiment of the present invention, the reflective surface being made of a material and exhibiting light having a non-zero diffuse component and a non-zero specular component. Reflective properties. When the incident light is at 30 with respect to the reflective surface. The specular component can be totally reflected to V 10/. When the incident light is 3 相对 with respect to the reflective surface. The specular reflection component is at least 10% or at least 11% of the total reflection as an alternative or combination when the incident light is at 90 relative to the reflective surface. The specular component is selected to be at least 5% of the total reflection; when the incident light is 60 relative to the reflective surface. 70. Or 8〇. The specular reflection component is selected to be at least 6% of the total reflection; and when the incident light is 40° with respect to the reflective surface, the specular reflection component is selected to be at least 7. 5% or at least 8. 0%; and/or when the incident light is 2 相对 with respect to the reflective surface. When the 3th mirror reflection component is selected, the total reflection is at least %5%, μ%, at least 17% or 18〇/〇. The tapered shape of the reflector allows a significant amount of emitted light to be directed toward the reflective surfaces at relatively small angles of incidence, and thus due to the particular reflective properties of such reflective surfaces in accordance with the present invention. Specular reflection occurs instead of diffuse reflection. This situation will reduce the glare effect due to diffusion (as explained below), especially at such light cutoff angles (i.e., angles relative to the main axis of the tapered reflector, which corresponds to Under the unreflected light passing near the wide edge of the reflector. Thus, by adapting the dimensions of the reflector and the shapes (and in particular, the slope(s) of the edge wall and the degree of the beta reflector), the size of the edge source and the surface in the reflective surface The size of the specular reflection portion can be customized from the 155247 of the light output by the illumination system. Doc 201213730 Luminous intensity and the shape and the glare effect. In particular, the reflectivity in accordance with the present invention can help to redirect light that would otherwise cause a portion of the glare. In particular, it is compliant with such illuminating regulations (especially about 65. and above) without any attachments. Furthermore, increasing the likelihood of this specular reflection allows for an increase in the luminous efficiency of the illumination system (as explained below). The specific method used to define the specular component is to polish one of the reflective surfaces of the reflector (originally fully diffused) or the mold of the reflector until the reflective surface is sufficiently specularly reflective, or to provide a specific Roughness mold (homogeneous or heterogeneous ρ. The reflective surface can be made of any white plastic that is injection molded. Any fully diffused reflector will be used to smooth out the light cutoff that would otherwise show too much contrast. Due to this diffusion (and corresponding multiple reflections), the optical efficiency is not optimized. Furthermore, the glare (and hence the illuminance) of this diffuse surface is also better than the two 'especially at the light cutoff. : In a diffuse reflector, light is actually emitted in all directions, according to the Lambertian distribution I(a)=I(0)*cos(a)_ where illuminance is and a is the beam relative to reflection The maximum angle of the main optical axis. Given that the reflective surface is oriented at 52. (relative to the main axis of the conical reflector), the maximum intensity of the emission emitted by a fully diffuse reflector will be at about 38. (relative to the main axis of the conical reflector), and thus deduced that a Lambertian surface contributes locally to the glare direction as a total of 25% of the total reflected light near the wide edges of the reflectors. The less the main axis is close to this, the system is 155247. Doc 201213730 More light is reflected towards the opposite side of the reflector. Therefore, in the case of a completely diffuse reflective surface, it is necessary to mask more regions than only the light source by increasing the height of the reflector. By providing a specular component of one of the reflective surfaces, internal light reflection in the system is reduced (due to less multiple reflections), and thus optical efficiency is improved and thus the height of the reflector can be reduced . Conversely, a fully specularly reflective reflective surface is typically obtained by providing a metallic coating on the inner wall of the reflector. Since the reflective surface according to the present invention can be obtained by the direct surface of the inner walls of the reflector, the present invention prevents the coating from being performed and thus the manufacturing is more cost effective. Moreover, the inventors have unexpectedly observed that this reflective surface exhibits a substantial optical efficiency that is close to the optical efficiency of a fully metallic specular reflector and that has sufficient glare reduction to comply with regulations. In addition, the reflectance on the reflective surface of a completely specular reflection (as measured by the inventor from the surface of the coated aluminum surface is 87%) is not as good as the reflectance on the reflective surface of one of the present invention (from the inventor's own shot) It is important to measure 95% of the similar lighting system of the shaped plastic edge wall. Therefore, the reflectivity of one of the mirror-emitting finishes on a 3D surface is not as high as that of a well-polished injection molded reflector. Another effect of the illumination system according to this first embodiment of the invention is. The solution for producing a lighting system that complies with glare requirements is relatively cost effective. Often in the known lighting systems, fascia/sheets are used to limit this glare value. Such crucible sheets are relatively expensive and the use of crucible sheets in such known illumination systems is relatively expensive. Also, for 155247. Doc 201213730 Limiting the placement of glare blinds such as fluorescent light sources is relatively time consuming and therefore relatively expensive. The conical reflector can be produced in a relatively cost effective manner, for example, from plastic, which is shaped, for example, by an injection molding or plastic deformation process, "applying a layer to the edge wall to produce the reflection After the edge wall, the conical reflector can be placed around the light source for producing a lighting system with a limited glare value at a relatively low cost. The shape of one of the beams as emitted by the illumination system depends inter alia on the shape of the conical reflector and the specular reflection component of the reflective surface for the conical reflector. The shape of the conical reflector that produces a particular predefined beam shape can be determined by using, for example, an optical modeling software (also known as a ray tracing program such as LightTools®). Preferably, the illumination system according to the first embodiment of the present invention further comprises a diffusing element extending across the conical reflector to divide the conical reflector into two parts: one containing the A narrow end upper reflector and a reflector comprising the wide end lower portion. Advantageously, the upper reflector can be designed as a cavity to mix light emitted by the light source, and the lower reflector can be designed to pass through the diffusing element from the s-upper reflector by reflection The shape of the light is shaped or collimated. For example. The angle of the tapered wall of the uppermost reflector relative to a main optical axis is lower than the width of the tapered wall of the lower reflector relative to the main optical axis (or the S main axis of the tapered reflector) Angle to increase the optical efficiency of this cavity. The upper reflector thus solves the problem of source illumination, which is reflected 155247. Doc •10· 201213730 reduces the illumination at high angles. In addition, the use of controlled specular and diffuse reflections in the lower reflector allows for optimal redirection of only the light component that would cause glare. Thus, the reflective surface in accordance with the present invention allows for improved brightness reduction by the diffusing element, but reduces glare at a critical angle relative to the main optical axis (e.g., 65 according to such regulations). To substantially increase the light efficiency and smooth the light cutoff effect. Therefore, the undesired effect is extracted and the amount of emitted light b is optimized. Moreover, the present invention allows for compliance with any type of convention by simply adjusting the specular component of the reflective surface and the shape of the reflector without the need for additional optical attachments. Optionally, the lower reflector can optically contact the lower reflector to avoid any optical loss. In particular, the two levels (upper reflector and lower reflector) are implemented in a single section. Therefore, light loss due to gaps and other defects is minimized. In addition, this situation allows for reduced assembly costs. Optionally, the diffusing element includes a diffuse scattering member for diffusely scattering light from the light emitter. Due to this diffuse scattering member, the brightness of the light source is reduced to prevent the user from being stunned by the light while observing the illumination system. The diffusing scattering member can be a diffusing plate, a diffusing sheet or a diffusing sheet. In particular, the diffusing element can comprise a holographic scattering structure for diffusely scattering light from the light emitter. The holographic scattering structure is much more efficient than other known scatter elements, allowing diffused light to be emitted from the source while maintaining a relatively high efficiency of the source. This high efficiency is usually attributed to 155247. Doc -11 - 201213730 The relatively low backscattering of this holographic scattering structure. The diffusing element can comprise an embedded luminescent material for converting light emitted by the source into light of a longer wavelength. The luminescent material can be advantageously used to adapt the color of the light emitted by the illumination system by converting light emitted by the source into a different color of light. When, for example, the source emits ultraviolet light, the diffusing element can comprise a mixture of luminescent materials each absorbing ultraviolet light and converting the ultraviolet light into visible light. This particular mixture of luminescent materials provides a mixture of light having a predefined perceived color when mixed. Alternatively, the source emits visible light (e.g., blue light) and a portion of the blue light is converted to a larger wavelength of light (e.g., yellow light) by the luminescent material. Light of a predefined color (e.g., white light) is produced when mixed with the remainder of the blue light. As an alternative to the prior examples, a luminescent material may be applied to one surface of the diffusing element for converting light emitted by the light emitter into a longer wavelength of light. Especially when the luminescent material is applied to the surface of the diffusing element facing one of the light sources, the luminescent material layer is not immediately visible from the outside of the illuminating system. In this example (where the light source emits blue light, which is partially converted from the luminescent material to yellow light), the luminescent material that performs this conversion is perceived as yellow. When the luminescent material is visible from the outside of the illumination system, the view of the yellow luminescent material (which may be, for example, luminescent material: YAG:Ce) may not be preferred by the manufacturer of the illumination system because of the yellow luminescent material. It may be confusing to the user of the lighting system that the lighting system emits yellow light. Thus, when the luminescent material is applied at the surface of the scattering element facing the source, the luminescent material is not directly from the outside 155247. Doc • 12· 201213730 can be seen, thereby reducing the yellow appearance of the diffusing element and thus reducing the confusion of the user of the lighting system. Optionally, the geometry of the tapered lower reflector for a defined wide end opening is given by: 2H / (w + d) = sqrt (2) / tan b where / / is the height of the reflector, w is the longest side of the wide end, d is the longest side of the diffusing element, and 6 is the obscuring angle (ie, the maximum angle between the following: (i) the main axis of the conical reflector, and (ii) passing through a point of the wide edge of the reflector and a line of intersection between the main axis and the diffusing element). It allows the determination of the geometry of the reflector required to shield the source. The source needs to be masked to prevent glare. A design method would be to first fix the width ("w") of the wide end and the size of the diffusing element ("d") (which can be regarded as a virtual light source), and then adapt the conical reflector Height and reflective properties. In one embodiment of the illumination system, the light source comprises an organic or inorganic light-emitting diode. The organic or inorganic light-emitting diode illuminates across a surface substantially equal to the surface of the light-emitting surface. One of the benefits when using the organic light-emitting diode as a light source is that the organic light-emitting diodes have generally uniformly emitted substantially diffused light across the light-emitting surface of the organic light-emitting diode. Thus, no additional measures are required to provide uniform illumination of the narrow end of the reflector. Moreover, because the organic light emitting diodes are typically relatively thin, the overall height of the illumination system may be less than the overall height of the illumination system having a different light source. In an embodiment of the illumination system, the light source comprises a light emitter and 155247. Doc -13· 201213730 A scattering element comprising the light emitting surface, the light emitter being configured to substantially uniformly illuminate the scattering element. One of the benefits of this embodiment is that the combination of the light emitter and the scattering element allows selection of the degree of diffusion of light emitted by the source. Since the scattering element can be selected, the degree of scattering can be adapted by, for example, replacing a scattering element with another scattering element. The use of different scattering elements allows an optical designer to adapt, for example, the minimum height of the tapered reflector. The illumination system according to the invention may also share a light emitter with another illumination system. When, for example, the illumination system is configured in an array of illumination systems, each illumination system can include the scattering elements, and a light emitter can be configured to illuminate a plurality of scattering elements of the plurality of illumination systems. In this configuration the light emitter can be located at a sufficient distance from the plurality of scattering elements to ensure uniform illumination of one of the scattering elements. In one embodiment of the illumination system, the light emitting surface of the light source is convexly shaped toward the wide end of the tapered reflector. One benefit of such convexly shaped light emitting surfaces is that such light emitting surfaces may be more uniformly illuminated by a source (e.g., a light emitting diode) having, for example, a Lambertian light distribution. This improved uniformity further reduces the brightness of the diffused light emitted by the source, thereby further reducing glare. Another benefit of the raised shaped light emitting surface is that it leaves a place for the light emitter, which is the case for the illumination system in accordance with the present invention. When manufacturing the light emitter, for example, a light-emitting diode, the light is usually applied to a circuit board such as a PCB. The (4) can be used for solidification; t the conical reflector and the convexly shaped (four) emitting surface are two 155247. Doc •14·201213730 to improve the ease of manufacturing the lighting system. Additionally, the raised shaped light emitting surface can provide a location for the drive electronics of the light emitter. In one embodiment of the illumination system, the edge wall is inwardly oriented toward the symmetry of the tapered reflector. The axis is curved 'for a beam shape that is adapted to the light emitted by the illumination system. One of the benefits of this inwardly curved edge wall is at 65. The glare is worth significantly reduced. This reduced glare value allows for - higher luminous flux mounting & illumination system with inwardly curved edge walls (compared to substantially straight edge walls)' while maintaining within the glare specification. The edge wall must have a seven-knife curvature that depends on the shape and size of the xenon light emitting surface, and can be used, for example, with the optical modeling software (also known as ray tracing programs such as ASAP®, liglm〇). 〇is®, etc.) to determine. In an embodiment of the illumination system, the illumination system includes a curvature member for adjusting the curvature of the edge wall. The curvature members can, for example, manually or automatically adapt the curvature of the edge wall to accommodate the beam shape of the light emitted by the illumination system. Thus, the illumination system according to the present invention can emit different beam shapes depending on the adaptation of the curvature members. The ν 〒 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Since the glare value is qualitatively constant for different degrees of the conical reflector, the height 兮 μ adjustment can be used to alter the edge wall-curvature to accommodate the beam shape. The edge wall can be made of a deformable material ('a component similar to white rubber). Alternative or group 155247. Doc • 15-201213730 Ground, the edge wall can be covered with a glossy white coating (the reflectivity of the high gloss white coating can be contributed by a diffuse (eg, Lambert) and defined on top of the coating a specular reflection component to describe). The height of the conical reflector is adapted, for example, manually or via motor control, and the deformable material deforms to adapt one of the edge walls to change the shape of the beam as emitted by the illumination system. Thus, an adaptive lighting system is obtained in which the shape of the light is adjustable. According to a second embodiment of the invention (which may be carried out separately or in combination with any of the features of the first embodiment of the invention), the height of the conical reflector is substantially parallel to the cone a dimension measured by one of the symmetry axes of the reflector, and the height of the cone reflector is selected to be equal to or greater than a minimum height, which is the lowest of a range of height values of the tapered reflector Height value. In this range of height values, one of the illumination systems maintains a substantially constant glare value. The edge wall of the conical reflector comprises a diffusely reflective material which may be completely diffuse, typically having a reflectivity of from 95% to 98%, for example, a white diffuse reflective material. Alternatively, the edge wall may have the reflective property (i.e., have a diffuse component and a specular component) according to the first embodiment. One effect of the illumination system according to this second embodiment is that the combination of the source of substantially diffuse light and the conical reflector produces a shape of a light beam emitted by the illumination system in the illumination system It can be adjusted while maintaining a relatively low glare value. The inventors have found that the illumination system according to the present invention has a specific behavior regarding glare at a higher than the 155247. Doc • 16 - 201213730 At the height of the minimum height, the glare value remains substantially constant over a relatively large range of altitude values. Without wishing to be bound by any particular theory, the inventors are convinced that this behavior is due to the combination of diffused light emitted by the light source having the first size of the light emitting surface and the diffuse reflection of the tapered reflector. Edge wall. This typical combination produces this particular behavior, and the glare value of the illumination system at a height that is at and above a certain minimum height of one of the 5 cone reflectors does not seem to change significantly when the height is increased. . At a height below one of the conical reflectors below the minimum height, the glare value as measured from the illumination system decreases as expected as the height of the conical reflector increases. However, this expected behavior changes when at or near the minimum height. Changing the height of the cone reflector over this range of height values does not significantly alter the glare value. Moreover, increasing the height of the cone reflector typically does alter the shape of the beam emitted by the illumination system. Thus, an §11 illumination system is provided in which the beam shape can be altered without significantly affecting the glare value of the illumination system. Known 〇ptical plates used to limit glare in known illumination systems are only capable of producing a single beam shape at a single glare value. Adapting the known 稜鏡 optical plate adapts the shape of the beam, but generally also increases the glare value of the system. Therefore, it seems to be only a single-beam shape at a glare value in a known 稜鏡 optical plate. The use of the illumination system in accordance with the present invention allows for the implementation of multiple beam shapes while substantially maintaining the glare value of the illumination system. This lighting system provides a highly interesting design feature that can be used to design a particular desired illumination distribution and aesthetics while maintaining a substantially constant low glare value. 155247. Doc 201213730 Another effect when using the illumination system according to this second embodiment is that the minimum height within the range of height values having substantially constant glare is substantially substantially consistent with a minimum of glare values of the illumination system. The amount of flux that can be installed in each illumination system is determined by the glare value just received in the illumination system based on the normalized emission settings. The fact that the range of glare values that are substantially constant is found to be at or near the glare value of one of the illumination systems can be installed at the illumination system according to the invention at the maximum luminous flux while within the range of height values The glare value remains within the defined normalized emission profile. Thus, the illumination system in accordance with the present invention can be designed to provide a maximum luminous flux while maintaining the glare value of the illumination system within the predefined glare level, and via the beam emitted from the illumination system. The shape provides the designer with the ability to produce a particular desired illumination distribution. Another effect of the illumination system in accordance with the present invention is that the solution for producing a lighting system that complies with such glare requirements is relatively cost effective. Often, in known lighting systems, a slab/sheet is used to limit the glare value. Such tantalum sheets are relatively expensive and the use of tantalum sheets in such known lighting systems is relatively expensive. Moreover, the placement of shutters for limiting the glare of, for example, a work light source is relatively time consuming and, therefore, relatively expensive. The conical reflectors can be produced in a relatively cost effective manner, e.g., from plastic, which is shaped by, for example, injection molding or plastic deformation processes. After applying a layer to the edge wall to create a diffusely reflective edge wall, the tapered reflector can be disposed around the source for producing a lighting system having a limited glare value at a relatively low cost. Doc -18- 201213730. The shape of one of the beams as emitted by the illumination system depends inter alia on the shape of the tapered reflector and (possibly) the specular component of the reflective surface of the conical reflector. The shape of the conical reflector that produces a particular predefined beam shape can be determined by using, for example, an optical modeling software (also known as a ray tracing program such as LightTools®). In one embodiment of the illumination system, the range of height values includes the following height values. One of the glare values in the range of southness values of the conical reflector varies less than 1% of the average glare value of the range of height values, and/or wherein the range of height values includes the following height values: The change in the glare value in the range of height values of the conical reflector is less than 5% of the average glare value in the range of the height value. The inventors have found that the glare value remains substantially constant within a range of 1% of the average glare value over a relatively large range of height values', thereby allowing the optical designer to self-destruct without excessively exceeding the glare specification. The illumination system produces a relatively wide range of beam shapes. According to experience, the inventors have found that when, for example, the lighting system is applied as an office lighting for lighting an office, a change in 丨〇% of the glare value is still acceptable: ° when the glare is within the range of height values When the change in value is reduced (eg, 'reduced to less than 5%), the luminous flux that can be installed in the illumination system can be better optimized and can be closer to not exceeding the glare specification (at an angle of 65. The maximum luminous flux that can be installed with a lower illumination of l〇〇〇 (cd/m2). According to a second aspect of the invention, the object is achieved by a lighting fixture comprising a lighting system according to the invention. In an embodiment of the lighting fixture, the lighting fixture comprises a first 155247. Doc • 19· 201213730 A first illumination system of at least one beam shape and comprising at least one second illumination system having a shape of a first beam, the second beam shape being different from the first beam shape. Having both the first illumination system and the second illumination system in the lighting fixture enables a user to select to transmit the first beam shape or the second beam shape or the first beam shape from the lighting fixture with: Any one of a combination of the second beam shapes. When, for example, the first beam shape is particularly advantageous for illuminating one surface below the luminaire, and the second beam shape is particularly beneficial for illuminating a wide area around the luminaire, 'below the luminaire The second beam shape can be used at the surface (e.g., a table 戋a) when light is needed 'the first beam shape can be used' and when the overall illumination of the room is required. The combination of one of the two beam shapes allows for general illumination of the room as well as good illumination of the table (which is typically required for office lighting). The lighting fixture can include a plurality of first lighting systems and a plurality of second lighting systems configured in a hybrid array of one of a first lighting system and a second lighting system. Alternatively, the lighting fixture can include a plurality of selected illumination systems of the plurality of illumination systems having a different beam shape to, for example, obtain a particular illumination effect (e.g., to illuminate a picture on a wall). A cross section perpendicular to the axis of symmetry of the illumination system can result in an e-shaped cross section, a sugar circular cross section or, for example, a polygonal cross section. Can press  a compact loading arrangement corresponding to the cross-sectional dimensions of the lighting systems, wherein the plurality of lightings in the lighting fixture are disposed in the one-dimensional array of the lighting system, the lighting is purely No. 155247. Doc -20· 201213730 An edge wall and the second illumination system includes a second edge wall having a curvature that is different from a curvature of one of the second edge walls. Thus, one of the plurality of illumination systems can be obtained with a regular loading configuration, and the different curvatures of the edge walls still allow for a different beam shape of the first illumination system than the second illumination system. In one embodiment of the lighting fixture, the lighting fixture includes a controller for controlling the first lighting system independently of the second lighting system. The controller can simply be a pair of switches by which the set of first illumination systems in the luminaire can be switched independently of the set of second illumination systems, thereby allowing a user to only turn on the first The set of illumination systems only turns on the set of second illumination systems, or turns on both the set of first illumination systems and the set of second illumination systems. Alternatively, the 忒 controller may include a dimmer for dimming the set of first illumination systems independently of the set of second illumination systems. There may also be beam shape adapting means for adapting the first illumination system from the set of first illumination systems independently of a beam shape & from the first illumination system of the set of second illumination systems The shape of the beam. In one embodiment of the luminaire, the controller is configured to control the curvature of one of the first edge walls and/or to control the curvature of one of the second edge walls. This control of the curvature of the first edge wall of the edge and/or the curvature of the second edge wall can be a continuous control of the curvature such that substantially any beam shape can be produced using the controller. In one embodiment of the -Hai's Mingyi tool, the controller is configured to control one of the strengths of the -Xuandi-lighting system and/or one of the second lighting systems is strong & Connected to the first illumination system and the second illumination system 155247. Doc - 21 · 201213730 The dimmers are implemented, and the dimmers can be controlled, for example, by the controller. According to a third aspect of the invention, the object is achieved by a backlight system comprising the illumination system according to the invention or comprising the illumination fixture according to the invention. [Embodiment] The drawings are purely ambiguous and not drawn to scale. Especially for the sake of clarity, some dimensions are strongly exaggerated. Similar components in the drawings are denoted by the same reference numerals as much as possible. These and other aspects of the invention will be apparent from the description of the embodiments described hereinafter. First Embodiment of the Invention Figure 5 shows a schematic cross-sectional view of an illumination system 10 in accordance with the present invention. The illumination system 10 includes a light source 80 and a conical reflector 30. The light source includes a light emitting surface 21 having a size substantially similar to the size of the narrow end 50 of the tapered reflector 3'. The light emitting surface 21 emits light substantially toward the wide end 40 of the tapered reflector 30. (Depending on the situation, diffuse). The tapered reflector 3'' includes an edge wall 60' edge wall 60 connecting the narrow end 50 to the wide end 40. The conical reflector 30 has a degree that is the dimension of the conical reflector 30 in a direction substantially parallel to the axis of symmetry A of the conical reflector 30. The illumination system 10 further includes a diffusing element 75 that extends across the conical reflector 30 to divide the conical reflector 30 into two portions: a reflector 70 that includes the narrow end 50, and includes the width End 40 lower reflector 90. The upper reflector 70 is designed to mix the light emitted by the light source 80, and the lower reflector 90 is designed to shape or collimate the light from the upper reflector 7 through the diffusing element 75 by reflection. As depicted in Figure 5, the upper reflector 155247. Doc • 22· 201213730 70 The angle of the conical wall 60' relative to the main optical axis a is lower than the angle of the conical wall 60" of the lower reflector 9〇 relative to the main optical axis A in order to promote the mixing and the quasi-respectively respectively straight. The reflective surface of the reflective walls 60' and 60" has a diffuse component and: a specular component, when the incident light is perpendicular to the reflective surface, the specular reflection component: the amount is at least 5% of the total reflection, and when incident The light is 5 with respect to the reflective surface. The specular component is at least 〇% of total reflection. • Figure 8 shows the angular distribution of the intensity of the light reflected on the reflective surface for different angles of incidence (relative to the reflective surface): curve (a): angle of incidence - = 2 〇〇 - curve (b): angle of incidence =3〇. • Curve (c): Incident angle = 40. - Curve (d): Incident angle = 50. - Curve (e): Incident angle = 60. - Curve (f): Incident angle = 70. - Curve (g): Incident angle = 80. - Curve (h): Incident angle = 90. The material used is GEPAX 8000, and the reflector is thermoformed to have the following characteristics: "W" = 130 mm r d": =35 mm Γ Η" = 64. 8 mm rbj: = 60° The mold has been polished to have a value below 0. The average coarseness RA of 4 microns. 155247. Doc • 23· 201213730 The graph in Figure 8 shows that high specular reflectivity results in high peaks and the diffuse portion is flat. In fact, the portion of the graph referenced by "4" shows the portion of the diffused light in the reflected light, and the diffuse reflected light is almost the same regardless of the measurement angle. In addition, the smaller the incident light, the smaller the diffuse reflectance (not shown in Fig. 8). Conversely, these peaks show that the smaller the angle of incidence, the greater the specular reflectance. The following table details the diffuse and specular components of the reflected light as measured by the inventors at different incident angles relative to the reflective surface. Angle (°) R (diffuse) R (specular reflection) R (specular reflection) percentage 20 74. 8 17. 2 18. 7% 30 81. 5 10. 5 11. 4% 40 84. 5 7. 5 8. 1% 50 85. 8 6. 2 6. 7% 60 86. 3 5. 7 6. 2% 70 86. 4 5. 6 6. 1% 80 86. 4 5. 6 6. 1% 90 87. 4 4. 6 5. 0% further, 圊6 shows a fully diffuse reflective surface (curve 1), a partial specular reflection and a partially diffuse reflective surface (same as the reflector of Figure 8) for the same geometry and size of the illumination device of Figure 5 (curve 2) and A comparison between the illuminance of a fully specularly reflective surface (curve 3). If the optical efficiency of a fully diffusely reflective surface is significantly lower than the optical efficiency of two other types of reflective surfaces, the efficiency of the reflective surface of the present invention is similar to that of a fully specularly reflective surface. 155247. Doc -24- 201213730 In addition, Fig. 7 shows the portion of the curves 1, 2, and 3 of Fig. 6 near the light cutoff of 65°. It can be noted that the glare of the fully diffuse reflective surface is greatest, the glare of the reflective surface of the present invention is reduced and the glare of the fully specularly reflective surface is close to zero. Nevertheless, the light contrast of the fully specularly reflective surface at the light cutoff (especially around 60°) is quite high, which gives an undesirable reduction in illumination on the illuminated surface. Conversely, the reflective surface of the present invention smoothes the light cutoff (and thus smoothes the contrast) to a lesser extent than the fully diffuse reflective surface. Thus, the reflective surface according to the present invention allows for a high optical efficiency, sufficient to comply with regulatory glare reduction. And sufficient light smoothing at the light cutoff. Further, the specular reflection component of the reflective surface of the edge wall 60'-60" of the conical reflector 3 can be adjusted according to the desired illumination effect to be obtained and also according to the size and shape and geometry of the conical reflector 30. For example, the reflector finish can be uniform, but can also be partially adjusted. For example, to produce an asymmetric beam, the reflectivity on one side of the reflector can be made different from the reflectivity on the other side. The lower reflector 90 advantageously optically contacts the lower reflector 7 to avoid any loss of light dryness. These two levels (upper reflector and lower reflector 90) are preferably implemented in a single-part (as a whole). Side 彖 2 60 and 6G can be made of a unique plastic material that is molded into the mold to make a color „material to achieve high reflectivity (for such materials = reflectivity is usually greater than 9G%, or better than 95%) The method of spraying the surface may be: firstly providing an inner surface having a rough degree or configured to provide a _ fully diffuse reflective surface after injection molding. Doc •25- 201213730 Molding of other components, followed by a polishing step to smoothen these inner surfaces more or less: the more the inner surface is polished, the more specular reflections the reflective surface has. Alternatively or in combination with this method of manufacture, the polishing step can also be performed directly on the reflective surface of the edge wall 60·- 60". The diffusing element 75 can comprise a diffuse scattering member for diffusely scattering light from the source 80. Diffuse scattering The member can be a diffuser plate, a diffusing sheet or a diffusing foil 75. In particular, the diffusing element 75 can comprise a holographic scattering structure for diffusely scattering light from the light emitter. An embedded luminescent material for converting light emitted by light source 80 into a longer wavelength of light is included. The luminescent material can be advantageously utilized to be adapted by illumination system 10 by converting light emitted by source 80 into a different color of light. A color of the emitted light "When, for example, the light source 8 〇 emits ultraviolet light, the diffusing element 75 may comprise a mixture of luminescent materials each absorbing ultraviolet light and converting the ultraviolet light into visible light. This particular color of luminescent material The mixture provides a mixture of light having a predefined perceived color when mixed. Alternatively, source 80 emits visible light (eg, blue light) and a portion of the blue light is converted by the luminescent material. Light of a larger wavelength (eg, yellow light). When mixed with the remainder of the blue light, a predefined color of light (eg, white light) can be produced. As an alternative to the previous example, the luminescent material can be applied to the diffuse The surface of one of the elements 75 is used to convert the light emitted by the light emitter into a longer wavelength of light. Especially when the luminescent material is applied to the surface of the diffusing element 75 facing one of the light sources 80, the illuminating is applied The material layer so that it is not immediately self-illuminated 155247. Doc -26- 201213730 Ming system 1 〇 externally visible. Depending on the situation, for the wide end opening of the ^^;^, the geometry of the lower cone reflector is given by: ° 2H / (w + d) = sqrt (2) / tan b lighting system Η) A member is included that is used to amend the diffusing element 75 to the conical reflector 30. This member is configured to not interfere with transmitted and reflected light. As a result, the light leakage is thus minimized and the corresponding efficiency degradation caused by fixing the diffusing element to the conical reflector 30 is also minimized. SECOND EMBODIMENT OF THE INVENTION Figure 1A shows a schematic cross-sectional view of an illumination system i 根据 according to the present invention. The illumination system 10 includes a light source 20 and a conical reflector 30. The light source comprises a light emitting surface 21 having a dimension substantially the same as the size of the narrow end 50 of the tapered reflector 3, the light emitting surface 21 emitting substantially diffuse towards the wide end 40 of the tapered reflector (10) Shoot light. The conical reflector 3'' includes an edge wall 60' and the edge wall 60 connects the narrow end 50 to the wide end 40. The inner wall of the conical reflector 30 may be covered with a white diffuse reflective material. With or without the specular component already discussed in the first embodiment, the white diffuse reflective material has, for example, a reflectance of 95% to 98%. . The conical reflector 30 has a height h which is the dimension of the conical reflector 30 in a direction substantially parallel to the axis of symmetry A of the conical reflector 3'. FIG. 1B shows the indication at 65. A graph of the calculated intensity. This intensity value can be converted to the illumination and glare value versus height h of the illumination system of Figure 1A. It is executed at a constant size of the wide end dw and the narrow end dn of the conical reflector 30 for 155247. Doc •27· 201213730 produces the calculation of Figure 1B. Only the height of the conical reflector 3〇 varies. The inventors have found that the illumination system 1 shown in Figure 1A has a specific behavior regarding glare. At the height h of the minimum height hmin (indicated in the graph), the glare value hardly changes. Without wishing to follow any particular theory, the inventors are convinced that this behavior is due to the combination of the diffused light emitted by the source 20 having the light emitting surface 21 and the diffusely reflecting edge wall 60 of the conical reflector. This typical combination produces this characteristic' where the glare value of the illumination system (7) at and above a particular minimum height hmin of one of the hybrid reflectors 30 does not appear to change significantly when the height h is increased. The graph shown in Figure 16 is the result of a simulation using a modeled software, assuming zero optical loss in the modeled software (1 〇 0% wall reflectivity) ^ practically, typically 95% to 98% of the wall Reflectivity. However, for a relatively long conical reflector cavity 30, considerable optical loss may be expected. In general, a relatively small source of light that fills a relatively small narrow end dn is beneficial for obtaining relatively low glare values. However, this small light source is typically a light source that is too bright to be viewed and will cause visual discomfort to the user. As can be seen from FIG. 1B, when the height h of the conical reflector 1 is lower than the minimum height hmin, the glare value measured from the illumination system 1 (as shown in FIG. 8) increases with the height h. Decrease (as expected). However, this expected behavior changes at or near the minimum height hmin, where the glare value of the illumination system 10 according to the present invention is at or near its minimum. Changing the height h of the conical reflector 30 over a range of height values does not significantly change the glare value. However, although the glare value is substantially constant at a height above the minimum height hmin, the shape of the beam emitted by the illumination system 确实 does change 155247. Doc •28- 201213730 (see also Figures 2A to 2C). Thus, the shape of the beam can be changed without changing the glare value using the illumination system 10' as shown in Figure 1a. Within the range of twist values, the change in glare value can be, for example, less than 10% of the average glare Ga (as indicated in the graph of Figure IB). Selecting, for example, one of the different shapes of the edge walls 62 (see Figures 2A and 2B) may further reduce the variation in glare value across the range of height values to less than 5% of the average glare 6& (see, for example, Figure 2B). Since no losses are considered in these calculations, the increase in glare value at a large height (above 4 〇 mm) as shown in Figure 1B will be less than the increase in the glare value shown in Figure 1B. As can be seen from Figure 1B, the glare value in the range of height values having a substantially constant glare value substantially coincides with the minimum value of the glare value of the illumination system i0. This situation allows the light designer to install the maximum luminous flux where the resulting glare is at or just below the maximum acceptable glare value as defined in European EN1 2464-1 specification. Thus, the illumination system 10 as shown in FIG. 1A can be designed to provide a maximum luminous flux while maintaining the glare value of the illumination system 10 below a predefined glare level and for the designer to transmit via the illumination system 1 The beam is shaped to produce a specific desired illumination distribution. The conical reflectors 30 can be produced in a relatively cost effective manner, for example, from plastics. The plastics are shaped by, for example, injection molding or plastic deformation processes. After applying a layer to the edge wall to create a diffuse reflective edge wall, the tapered reflector 30 can be disposed around the source 20 for producing a lighting system having a limited glare value at a relatively low cost. In an embodiment of the illumination system 10 as shown in Figure 1A, the light source 2 is an organic light emitting diode 22. These organic light-emitting diodes 22 have typically crossed 155247. Doc • 29- 201213730 The light-emitting surface 21 of the organic light-emitting diode 22 uniformly emits substantially diffused light. Thus, no additional measures are required to provide uniform illumination of the narrow end 50 of the conical reflector 30. Moreover, because the organic light emitting diodes 22 are typically relatively thin, the overall height of the illumination system 10 may be less than the overall height of the illumination system having different light sources 20. In addition, 圊 1C shows a graph indicating a change in beam width as a function of the height h of the illumination system of Fig. 1A. Thus again, although the glare value remains substantially quirky, the beam shape of the light emitted from the illumination system 1 根据 according to the present invention can be significantly adapted. This situation provides the lamp designer with a high degree of flexibility in designing and controlling the lighting systems 10, 12, 14, 16. Figure 2A shows a schematic cross-sectional view of another embodiment of an illumination system 丨2 in accordance with the present invention. In the embodiment shown in FIG. 2A, the edge wall 62 of the conical reflector 32 is curved inwardly toward the axis of symmetry A. A often preferred beam shape has a substantially square shaped emission profile in which the center of the emission profile remains at a substantially constant light intensity with relatively steep edges. This emission profile can be obtained by the inward curvature of the edge wall of the tapered reflection (IV) as shown in Figure 2A. The exact curvature of the edge wall 62 required to produce the desired emission profile may depend on the shape and size of the light emitting surface 21 of the source 20, and may use, for example, optical modeling software (also known as a ray tracing program such as ASAP). ®, lighttools®, etc.) to determine. Illumination system 12, as shown in Fig. 2A, can include a curvature member (not shown) for adapting the curvature of edge wall a and adapting the emission profile of illumination system 12. The edge wall 62 can be made, for example, of a deformable material, and the curvature member can be, for example, 155247 disposed around the tapered reflector 62 at a particular height h. Doc 201213730 Ring element (not shown), the ring element diameter of the ring element can be adapted to adjust the curvature of the deformable material. Alternatively, the curve ##+ sheep member can adjust the distance between the narrow end 50 and the wide end 40 of the tapered reflector 32 to accommodate the curvature of the edge wall to accommodate the emission profile of the light emitted by the illumination system 12. Since the glare value is substantially ambiguous for different heights of the cone reflector 32, this adaptation to the height h can be used to alter the curvature of the edge wall 62 to accommodate the beam shape. The embodiment of illumination system 12 as shown in Figure 2A further includes a light source 20 comprising a light emitter 24 and a scattering element %. When, for example, light emitter 24 emits light in a substantially Lambertian light distribution, scattering element % may preferably be a concave shaped scattering element 26 (as shown in FIG. 2) to ensure light emitter 24 Uniform illumination of the scattering element 26. Alternatively, the scattering element % can be a substantially flat sheet or plate (not shown) of the scattering material (compared to the light source 20 shown in Figure 1A), in which case the light emitter 24 is positioned at a distance from the flat sheet or The plate is at a specific distance to ensure uniform illumination of the flat scattering element %. The combination of light emitter 24 and scattering element 26 can be selected such that the degree of scattering of light emitted by source 20 is within predefined limits. The degree of scattering can be adapted by selecting a different scattering element 26. Alternatively, light emitter 24 can be used to illuminate a plurality of scattering elements 26'. The plurality of scattering elements 26 are each disposed in their respective illumination system 12. In this configuration, the distance between the light emitter 24 and the plurality of scattering elements 26 can be selected such that the light emitters 24 uniformly illuminate each of the scattering elements 26. The scattering element 26 can comprise a diffuse scattering element 26, and/or can, for example, comprise a holographic scattering structure for diffusely reflecting light from the light emitter 24. Total image scattering 155247. The doc • 31-201213730 structure is generally more efficient than other known scattering elements, allowing for relatively high efficiency of the emission of diffused light from the source 20. The scattering element 26 may additionally or alternatively comprise a luminescent material embedded in the scattering element 26 and/or applied to the surface of the scattering element 26 for converting light emitted by the light emitter 24 into longer wavelength light (not The luminescent material may advantageously be used to modulate a color of a light emitted by the illumination system 12 by converting light emitted by the light emitter 24 into a different color of light. The luminescent material also has light scattering properties, The combination of light scattering properties and light converting properties can be selected to efficiently produce diffused light of a predefined color emitted from the narrow end 50 of the tapered reflectors 3, 32 toward the wide end 40. When, for example, the light emitter 24 emits ultraviolet light, the scattering element % may comprise a mixture of luminescent materials each absorbing ultraviolet light and converting the ultraviolet light into visible light. This particular mixture of luminescent materials provides a mixture of light having a predefined perceived color when mixed. Alternatively, light emitter 24 emits visible light (e.g., blue light) and a portion of the blue light is converted by the luminescent material into a relatively large wavelength of light (e.g., yellow light). When mixed with the remainder of the blue light, a predefined color of light (e.g., white light) can be produced. In an embodiment of the illumination system 12 in which a luminescent material is applied to one surface of the scatter element 26, the luminescent material can be advantageously applied to the surface facing the light emitter 24. This luminescent material is not immediately visible from the outside of the illumination system 丨2. When the luminescent material is visible from outside the illumination system 12, the perceived color of the source 2 can deviate from the color of the light emitted by the source 20. When, for example, the luminescent material converts a portion of the blue light from the light emitter 24 to yellow light, the perceived color of the luminescent material is yellow when the light source 20 is not in operation. Of course 155247. Doc-32-201213730 In addition, in operation, light source 20 emits blue light, and some of the blue light is converted from a luminescent material to a yellow light. Blue light and yellow light combine to provide perceived white light. Thus, the perceived color of the source 20 can deviate from the color of the light emitted by the source 2〇. When a luminescent material is applied as a layer facing the light emitter 24, the luminescent material is not directly visible from the outside, thereby reducing the yellow appearance of the scattering element 26 and thus reducing the confusion of the user of the illumination system 12. Using different luminescent materials β, for example, when the light emitter Μ emits substantially blue light, Y3Al5〇12:Ce3+ (also further referred to as YAG:Ce) that converts part of the blue illumination light into yellow light can be used, for example. To convert part of the blue light. The specific density of the luminescent material on or in the scattering element is selected such that a predetermined portion of the illuminating blue light is converted to yellow light to determine the color of the light emitted by the illumination system 10, 12, 14, 16. The ratio of blue light converted by the luminescent material can be determined, for example, by the layer thickness of the luminescent material or, for example, by the concentration of YAG:Ce particles distributed in the scattering element 26. Alternatively, for example, a portion of blue illumination light may be converted into red light using CaS:Eu2+ (further also referred to as CaS:Eu)' CaS:Eu2+. Adding some CaS:Eu to YAG:Ce results in white light with an increased color temperature. Alternatively, the 'light emitter 24' emits, for example, ultraviolet light, which can be converted by the luminescent material into substantially white light. For example, BaMgAlwOn^u2 with different phosphor ratios can be used to convert ultraviolet light into blue light), Ca8Mg(Si04)4Cl2: Eu2+, Mn2+ (converting ultraviolet light into green light), and γ2〇3: Eu, Bi A mixture of (converting ultraviolet light into red light) to select the color of light emitted from the illumination system 10, 12, 14, 16 in a range from relatively cool white to warm white (eg, at 6500 K and 2700 K) between). Can be 155247. Doc -33· 201213730 Use other suitable luminescent materials to obtain the desired color of the light emitted by illumination system 1G, 12, 14, 16. Figure 2B shows the indication at 65. A plot of the calculated intensity for the illumination system of Figure 2A is at 65. The calculated intensity is related to the calculated glare value. Figure 2B shows an act similar to the behavior already shown in Figure 1B, similar in that. The glare value at a height h that is still greater than the minimum height hmin remains substantially constant. As can be seen from the comparison between the curved circles of FIG. 1B and FIG. 2B, the variation of the glare value around the average glare value Ga of the conical reflector 32 (as shown in FIG. 2A) is smaller than that of the conical reflector 30 (FIG. 1A). The variation of the glare value around the average glare value Ga is shown in . Figure 3 shows a graph indicating the beam shapes 80, 82 of two different illumination systems 1 〇, μ according to the present invention. The first illumination system 1 having a substantially straight edge wall 60 connecting the narrow end 50 of the tapered reflector 3 to the wide end 40 is comparable to the illumination system 10 as shown in Figure 1A. The second illumination system 14 is similar to the first illumination system 10' with the difference that the edge walls 62 are curved inwardly comparable to the edge walls shown in the embodiment of the illumination system 12 as shown in Figure 2A. In the current embodiment shown in FIG. 3, the height h of the first illumination system 10 is equal to the height h of the second illumination system 14, and the dimension dn of the narrow end 50 of the first illumination system 1 is equal to the second illumination system. The dimension dn of the narrow end 5〇, and the dimension dw of the wide end 40 of the first illumination system 10 is equal to the dimension dw of the wide end 40 of the second illumination system 14. The first illumination system 1 produces a first beam shape 80 and the second illumination system 14 produces a second beam shape 82 » this second beam shape 82 has a reduced intensity at and above the 65° angle when the installation is the same When the light intensity is compared with the first illumination system, the intensity of the reduction is 155247. Doc • 34· 201213730 Causes a reduced glare value from the second lighting system. Although the difference in the graph of Figure 3 seems to be relatively small, it is at 65. The difference in intensity is significant and is allowed at 65. An additional 20 is installed in the second illumination system 14 before the same glare value is reached. /. Up to 30% of the luminous flux (compared to the first lighting system). The shape of the conical reflectors 30, 32 that produce the desired predefined beam shapes 80, 82 can be determined by using, for example, an optical modeling software (also known as a ray tracing program such as LightTools®). 4A and 4B show only a few embodiments of the lighting fixtures 100, 1 〇 2 according to the first or second embodiment of the present invention. Many variations can be devised without departing from the scope of the invention. In Fig. 4A, a substantially square illumination system 16 is shown. The lighting fixture 100 shown in Fig. 4a includes a regular array of such square illumination systems. This particular shape of illumination system 16 allows for efficient filling of the usable surface of lighting fixture 100 with respective wide ends 40 of respective tapered reflector cavities 30, 32, 36 of individual illumination system 丨6. The lighting fixture 1 can also include a first illumination system 16A and a second illumination system 16B, and the emitted intensity and/or beam shape and/or color in the second illumination system 16B can be different than the first illumination system 16A. In this embodiment, the lighting fixture 1 can include a controller 11 (see Figure 4B) that can be used to control the first lighting system 16A and the second lighting system 16B simultaneously or independently. Having both the first illumination system 16A and the second illumination system 16B in the lighting fixture 100 enables the user to select any of the following: light emitted by the first illumination system 16 A, by the second illumination system 16B The emitted light, or a combination of light emitted by both the first illumination system 16A and the second illumination system 16B. When (for example) No. 155247. Doc • 35- 201213730 A lighting system 16A launch is particularly beneficial for illuminating a surface (eg, a 'table' of a first beam shape' below the lighting fixture while the second lighting system 16B emits a wide area that is particularly beneficial for illumination around the lighting fixture The second beam shape 'when light is needed at the surface below the lighting fixture (eg, table or table), the first beam shape can be used, and when the overall illumination of the room is required, the second beam can be used shape. The combination of the two beam shapes allows for general illumination of the room as well as good illumination of the table (usually required for office lighting). The lighting fixture 100 can include a plurality of first lighting systems 16A and a plurality of second lighting systems 16B configured in a hybrid array of one of the first lighting system 16A and the second lighting system 16B. Alternatively, the lighting fixture 1 can include the A small number of selected illumination systems having a different beam shape in a plurality of illumination systems 'for example, to obtain a particular illumination effect (eg, to illuminate a slice on a wall). In Figure 4B, illumination system 12 as shown in Figure 2A is arranged in an array to form a second embodiment of lighting fixture 102. The lighting fixture 1 2 includes a plurality of column illumination systems 12 in which parallel columns are displaced relative to the previous columns to produce a tight fill of the illumination system 12. Moreover, the lighting fixture 102 shown in FIG. 4B can include a first illumination system 12A and a second illumination system 12B, and the emitted intensity and/or beam shape and/or color in the second illumination system 12B can be different from the first illumination. System 12A. Again, there is a controller 110 that, for example, is used to control the first illumination system 12A and the second illumination system 12B simultaneously or independently. Having both the first illumination system 12A and the second illumination system 12B in the lighting fixture 1 allows the user to select among the following 155247. Doc-36-201213730: Light emitted by the first illumination system 12A, light emitted by the second illumination system 12B, or a combination of light emitted by both the first illumination system 12A and the second illumination system 12B Similar to the embodiment shown in FIG. 4A, FIG. 4B also provides an in-depth understanding of the different components by which the lighting fixture 1 can be fabricated. Significantly, illumination system 12 includes light emitters 24 and scattering elements 26'. Light emitters 24 together with scattering elements 26 form a light source 20 disposed on printed circuit board 122. This assembly is then applied to the rear wall 120' of the lighting fixture 1' and secured to the array 124 of conical reflector cavities 32 of the individual illumination system 12. The array 124 of conical reflector cavities 32 can be produced, for example, in a production step, for example, via well known injection molding processes. As previously indicated, the scattering element 26 can include a luminescent material for altering or tuning the color of the light emitted by the individual illumination system 12. Because the assembly of the array 124 of conical reflector cavities 32 is relatively quick and simple, thereby allowing, for example, the use of relatively known and inexpensive production procedures, it is permitted to produce such lighting fixtures in a relatively cost effective manner. 2. The lighting fixture 1 2 may again include a plurality of first lighting systems 12A and a plurality of second lighting systems 12B configured in a hybrid array of first lighting system i2A and second lighting system 12B. Alternatively, lighting fixture 1 2 may include a plurality of selected lighting systems having a plurality of lighting systems 12 (four) having different beam shapes &, for example, to obtain a particular lighting effect. The lighting fixtures 100, 102 shown in Figures 4A and 4B can also include light & amps 24' which each illuminate a plurality of scatterers 26 substantially uniformly. This configuration can be beneficial because the light emitter 24 is typically relatively expensive. However, the light emitter 24 and its illumination are plural 155247. The distance between the scattering elements 26 of doc-37-201213730 can be relatively large to ensure that the uniform illumination of the scattering elements 26 by the light emitters will increase the height of the images 100, 102. The lighting fixtures 1〇〇 and 1〇2 shown in Figure 4Α and 圊4Β can also be used as backlight systems in backlight video screens, advertising boards and poster boxes (not shown). The above-mentioned embodiments are illustrative and not limiting, and those skilled in the art will be able to devise many alternative embodiments without departing from the scope of the appended claims. Any reference signs placed between parentheses in the scope of the patent application should not be construed as limiting the claim. The use of the verb "comprise" and its verb variations does not exclude the presence of the elements or steps other than the elements or steps recited in the claim. The word "-(a or an)" preceding the element does not exclude the existence of a plurality of such elements. The invention can be implemented by means of a hardware comprising a plurality of distinct elements. In a device request item enumerating several components, several of these components may be embodied by the same hardware item. The mere fact that certain measures are recited in mutually different items does not indicate that a combination BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A shows a schematic cross-sectional view of a lighting system in accordance with the present invention, showing a plot of the calculated intensity at 65 not on the height of the illumination system of Figure ia, and Figure 1Ca +社-πα — « A graph showing the variation of the beam width of a highly variable illumination system. An exemplary 155247 of another embodiment of an illumination system in accordance with the present invention is shown. Doc •38· 201213730 検 section view, Figure 2B shows indication at 65. The calculated intensity of the plot is plotted against the south of the illumination system of Figure 28. Figure 3 does not show a graph of the beam shape of two different illumination systems in accordance with the present invention. 4A and 4B show different embodiments of a lighting fixture according to the present invention. FIG. 5 is a longitudinal cross-sectional view of an illumination system according to another embodiment of the present invention, wherein the illumination includes an upper reflector and a lower reflector. The upper reflector and the lower reflector are separated by a diffusing element that extends across the reflector. Figure 6 is a graph of illuminance acquired at various azimuth angles relative to the main optical axis A of Figure 5 for an illumination system having a fully diffuse reflective surface, a reflective surface in accordance with the present invention, and a fully specular reflective surface. Figure 7 is a graph of Figure 6 at 65. Nearby section. Figure 8 is a graph of the intensity of light reflected by a reflective surface in accordance with the present invention at incident angles of light. [Main component symbol description] 1 Curve 2 Curve 3 Curve 10 Lighting system 12 Lighting system 12A First lighting system 12B Second lighting system 155247. Doc •39· 201213730 14 Lighting System 16 Lighting System 16A First Lighting System 16B Second Lighting System 20 Light Source 21 Light Emitting Surface 22 Organic Light Emitting Body 24 Light Emitter 26 Scattering Element 30 Conical Reflector / Conical Reflector Cavity 32 Conical Reflector / Conical Reflector Cavity 36 Conical Reflector Cavity 40 Wide End 50 Narrow End 60 Edge Wall 60, Conical Wall of Upper Reflector 60" Conical Wall 62 Edge of Lower Reflector Wall 70 Upper Reflector 75 Diffusing Element 80 Light Source / Beam Shape 82 Beam Shape 90 Lower Reflector 100 Lighting / Backlight System 155247. Doc -40- 201213730 102 Lighting / Backlight System 110 Controller 120 Rear Wall 122 Printed Circuit Board 124 Array of Conical Reflector Cavities A Symmetrical Axis of Conical Reflector 155247. Doc • 41 -

Claims (1)

201213730 七、申請專利範圍: 1. 一種照明系統(10、12、14、16),其包含一光源(20)及 一錐形反射器(30、32、90),其中 該光源(20)包含一光發射表面(21),該光發射表面(21) 配置於該錐形反射器(30、32、90)之一窄端(50、75)處 以用於實質上朝向該錐形反射器(3〇、32、90)之一寬端 (40)發射光,且 該錐形反射器(30、32、90)包含一連接該窄端(50、 75)與該寬端(40)之邊緣壁(60、62、60"),該邊緣壁 (60、62、60")為一將來自該光源(20、75)之光反射朝向 該寬端(40)的光反射表面,其中該反射表面係由一材料 製成且展現出具有一非零漫射分量及一非零鏡面反射分 量之光反射性質’當入射光相對於該反射表面成3〇。時, 該鏡面反射分量為全反射之至少1〇〇/〇。 2. 如請求項1之照明系統(1〇、12、14、16),其進一步包含 一漫射元件(75),該漫射元件(75)延伸跨越該錐形反射 器(30、32)以將該錐形反射器分成兩個部分:一包含該 窄端(50)之上部反射器(70)及一包含該寬端(4〇)之下部反 射器(90)。 3. 如請求項2之照明系統(10、12、14、16),該上部反射器 之°亥錐形形狀經设計以混合由該光源發射之該光且該下 部反射器之該錐形形狀經設計以使自該寬端(40)輸出之 該光準直。 4·如請求項3之照明系統(10、12、14、16),該上部反射器 155247.doc 201213730 之該錐形壁相對於一主光軸線之角度低於該下部反射器 之該錐形壁相對於該主光軸線之角度。 5·如請求項1之照明系統(1〇、12、14、16),其中針對一確 定的寬邊緣開口的該錐形反射器之幾何形狀由下式給 出: 2H/(w+d)=sqrt(2)/tan b 其中"為反射器高度,w為該寬端之最長邊,d為該漫 射元件之最長邊,且6為該反射器之遮蔽角。 6. 如請求項1之照明系統(1〇、12、14、16),其中該反射表 面為連續的,無光學間斷。 7. 如請求項1之照明系統(1〇、12、14、16),其中該錐形反 射器係製成為一體的。 8. 如請求項1之照明系統(1〇、12、14、16),其中該反射表 面係由一白色塑膠製成’該反射表面經拋光直至獲取一 所要鏡面反射分量為止。 9. 一種照明器具(丨00、丨〇2),其包含如請求項1至9中任一 項之照明系統(10、12、14、16),及具有一第一光束形 狀(80)之至少一第一照明系統(10、12、14、16),且包 含具有一不同於該第一光束形狀(80)之第二光束形狀 (82)的至少一第二照明系統(1〇、12、14、16)。 V 1〇·如請求項9之照明器具(100、102),其中該第一照明系統 (1〇、12、14、16)包含一第一邊緣壁(60)且該第二照明 系統(10、12、14、16)包含一第二邊緣壁(62),該第一 邊緣壁(60)之一曲率不同於該第二邊緣壁(62)之一曲 155247.doc 201213730 ιι·如請求項9或10之照明器具(1〇〇、1〇2),其中該照明器具 (100、102)包含一控制器(u〇),該控制器(11〇)用於獨立 於該第二照明系統(1〇、1;2、14、16)而控制該第一照明 系統(10 、 12 、 14 、 16)。 12. 如請求項丨i之照明器具(i 〇 〇、丨〇 2),其中該控制器(i丄〇) 經組態用於控制該第一邊緣壁(60)之一曲率及/或用於控 制該第二邊緣壁(62)之一曲率。 13. 如請求項⑴以之照明器具⑽、_,其中該控制器 (110)經組態用於控制該第一照明系統(1〇、12、 之一強度及/或該第二照明系統(!〇' 12、14、16)之一強 度。 其包含如請求们之照明系統 14. 一種背光系統(1〇〇、 (10 、 12 、 14 、 16), 102) 〇 102), 或包含如請求項9之照 明器具(100、 155247.doc201213730 VII. Patent Application Range: 1. An illumination system (10, 12, 14, 16) comprising a light source (20) and a conical reflector (30, 32, 90), wherein the light source (20) comprises a light emitting surface (21) disposed at one of the narrow ends (50, 75) of the tapered reflector (30, 32, 90) for substantially facing the tapered reflector ( One of the wide ends (40) of 3〇, 32, 90) emits light, and the tapered reflector (30, 32, 90) includes an edge connecting the narrow end (50, 75) and the wide end (40) a wall (60, 62, 60 ") that is a light reflecting surface that reflects light from the light source (20, 75) toward the wide end (40), wherein the reflection The surface is made of a material and exhibits a light reflecting property with a non-zero diffuse component and a non-zero specular component 'when the incident light is 3 turns relative to the reflective surface. The specular component is at least 1 〇〇/〇 of the total reflection. 2. The illumination system (1, 12, 14, 16) of claim 1 further comprising a diffusing element (75) extending across the conical reflector (30, 32) The conical reflector is divided into two sections: a reflector (70) including the narrow end (50) and a reflector (90) including the lower end (4). 3. The illumination system (10, 12, 14, 16) of claim 2, wherein the upper reflector has a tapered shape designed to mix the light emitted by the light source and the tapered portion of the lower reflector The shape is designed to collimate the light output from the wide end (40). 4. The illumination system (10, 12, 14, 16) of claim 3, wherein the angle of the tapered wall of the upper reflector 155247.doc 201213730 relative to a main optical axis is lower than the taper of the lower reflector The angle of the wall relative to the main axis of the light. 5. The illumination system of claim 1 (1, 12, 14, 16), wherein the geometry of the conical reflector for a defined wide edge opening is given by: 2H/(w+d) =sqrt(2)/tan b where " is the height of the reflector, w is the longest side of the wide end, d is the longest side of the diffusing element, and 6 is the obscuration angle of the reflector. 6. The illumination system of claim 1 (1, 12, 14, 16) wherein the reflective surface is continuous without optical discontinuities. 7. The illumination system of claim 1 (1, 12, 14, 16), wherein the conical reflector is made in one piece. 8. The illumination system (1, 12, 14, 16) of claim 1 wherein the reflective surface is made of a white plastic' and the reflective surface is polished until a desired specular component is obtained. A lighting fixture (丨00, 丨〇2) comprising the illumination system (10, 12, 14, 16) according to any one of claims 1 to 9, and having a first beam shape (80) At least one first illumination system (10, 12, 14, 16) and comprising at least one second illumination system (1, 12) having a second beam shape (82) different from the first beam shape (80) , 14, 16). The lighting fixture (100, 102) of claim 9, wherein the first lighting system (1, 12, 14, 16) comprises a first edge wall (60) and the second lighting system (10) , 12, 14, 16) includes a second edge wall (62) having a curvature different from that of the second edge wall (62) 155247.doc 201213730 ιι· as requested 9 or 10 lighting fixture (1〇〇, 1〇2), wherein the lighting fixture (100, 102) comprises a controller (11〇) for being independent of the second lighting system The first illumination system (10, 12, 14, 16) is controlled by (1〇, 1; 2, 14, 16). 12. The lighting fixture (i 〇〇, 丨〇 2) of claim 丨i, wherein the controller (i丄〇) is configured to control the curvature of one of the first edge walls (60) and/or The curvature of one of the second edge walls (62) is controlled. 13. The illuminating device (10), _, wherein the controller (110) is configured to control the first lighting system (1〇, 12, one intensity and/or the second lighting system) One of the strengths of 〇' 12, 14, 16). It contains the illumination system as requested. 14. A backlight system (1〇〇, (10, 12, 14, 16), 102) 〇102), or contains as Lighting device of claim 9 (100, 155247.doc
TW100111878A 2010-04-09 2011-04-06 Illumination system and luminaire TW201213730A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10305373 2010-04-09

Publications (1)

Publication Number Publication Date
TW201213730A true TW201213730A (en) 2012-04-01

Family

ID=44276068

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111878A TW201213730A (en) 2010-04-09 2011-04-06 Illumination system and luminaire

Country Status (2)

Country Link
TW (1) TW201213730A (en)
WO (1) WO2011125010A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076396A (en) * 2014-05-30 2017-08-18 奥斯兰姆施尔凡尼亚公司 Hybrid optical system including flexible optical system and light control film
CN108870321A (en) * 2018-07-04 2018-11-23 广州市雅江光电设备有限公司 A kind of reflector and the optical system applied to colorful project lamp

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554432B1 (en) * 2013-03-11 2014-07-23 株式会社東芝 Lighting device
US9188312B2 (en) 2013-03-14 2015-11-17 GE Lighting Solutions, LLC Optical system for a directional lamp
DE202013101790U1 (en) * 2013-04-25 2014-07-28 Zumtobel Lighting Gmbh Luminaire with housing with several light emission openings
US9279548B1 (en) 2014-08-18 2016-03-08 3M Innovative Properties Company Light collimating assembly with dual horns
EP2993393B1 (en) * 2014-09-03 2018-08-22 Vignal C.E.A. S.A. Lighting apparatus
DE102014119516B4 (en) * 2014-12-23 2018-12-06 Iventum Gmbh Reflector body for lamps
DE202017103633U1 (en) * 2017-06-20 2018-09-24 Tridonic Jennersdorf Gmbh LED module with reflector and integrated color conversion means
JP2023107264A (en) * 2022-01-24 2023-08-03 株式会社ジャパンディスプレイ Luminaire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007225A (en) * 1997-10-16 1999-12-28 Advanced Optical Technologies, L.L.C. Directed lighting system utilizing a conical light deflector
US6203176B1 (en) * 1998-12-14 2001-03-20 Musco Corporation Increased efficiency light fixture, reflector, and method
AU2003259442A1 (en) * 2002-09-12 2004-04-30 Koninklijke Philips Electronics N.V. Lighting device
ES2368839T3 (en) * 2004-09-24 2011-11-22 Koninklijke Philips Electronics N.V. LIGHTING SYSTEM.
JP4799393B2 (en) * 2006-12-20 2011-10-26 京セラ株式会社 Lighting device
WO2009062053A1 (en) * 2007-11-08 2009-05-14 Dialight Corporation Double collimator led color mixing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076396A (en) * 2014-05-30 2017-08-18 奥斯兰姆施尔凡尼亚公司 Hybrid optical system including flexible optical system and light control film
CN108870321A (en) * 2018-07-04 2018-11-23 广州市雅江光电设备有限公司 A kind of reflector and the optical system applied to colorful project lamp

Also Published As

Publication number Publication date
WO2011125010A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
TW201213730A (en) Illumination system and luminaire
CN104251462B (en) Illuminator and light fixture
JP5551714B2 (en) Light source with LED, light guide and reflector
US8231259B2 (en) Luminaire having separate lamps for direct lighting and indirect lighting
JP5711147B2 (en) Light source with LED, light guide and reflector
JP7182608B2 (en) Hybrid lens for controlled backlight distribution
US8740410B2 (en) Troffer-style light fixture with cross-lighting
TWI568966B (en) Troffer-style fixture
EP2721339B1 (en) Edge-lit light panel having a downlight within a lined indentation in the panel
JP2016505209A (en) Optical waveguide and lighting apparatus using the same
TW200846599A (en) Lighting device comprising at least one LED
JP2013545254A (en) Troffer optical assembly
CN102667324A (en) Light emitting diode (led) lighting systems including low absorption, controlled reflectance and diffusion layers
US9022606B2 (en) Virtual surface indirect radiating luminaire
US20140126216A1 (en) Light guide
EP2932152A1 (en) Troffer luminaire system having total internal reflection lens
JP7042962B2 (en) Asymmetric light intensity distribution from luminaires
WO2011027267A1 (en) Illumination system and luminaire
CN104662363B (en) Lighting device with optical reflector, luminaire having such lighting device and method of manufacturing a compact optical reflector
US20150233543A1 (en) Shaped indirect luminaire
US20150233542A1 (en) Batwing optics for indirect luminaire
JP2019511828A (en) Integrated air guide and beam shaping
WO2015187514A1 (en) Luminaire with glare control