JP5000165B2 - 渦流式流水管及びその設計方法 - Google Patents

渦流式流水管及びその設計方法 Download PDF

Info

Publication number
JP5000165B2
JP5000165B2 JP2006083551A JP2006083551A JP5000165B2 JP 5000165 B2 JP5000165 B2 JP 5000165B2 JP 2006083551 A JP2006083551 A JP 2006083551A JP 2006083551 A JP2006083551 A JP 2006083551A JP 5000165 B2 JP5000165 B2 JP 5000165B2
Authority
JP
Japan
Prior art keywords
pipe
water pipe
water
height
flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006083551A
Other languages
English (en)
Other versions
JP2007255144A (ja
Inventor
良一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CTI Engineering Co Ltd
Original Assignee
CTI Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CTI Engineering Co Ltd filed Critical CTI Engineering Co Ltd
Priority to JP2006083551A priority Critical patent/JP5000165B2/ja
Publication of JP2007255144A publication Critical patent/JP2007255144A/ja
Application granted granted Critical
Publication of JP5000165B2 publication Critical patent/JP5000165B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Description

本発明は、例えば、管内を落下する液体に渦流を形成させることにより、管内を落下する液体を減勢させる渦流式流水管及びその設計方法に関する。
近年、都市部等では、雨水等によって生じる浸水被害を低減するための施設として、浸水対策施設が施工されている。このような浸水対策施設としては、例えば、豪雨時に降った多量の雨水の一部を、地下深くに設けられた貯留施設に一時的に貯留しておき、貯留施設付近を流れる川の水位が低下した状態で、貯留施設に貯留した水をポンプ等で汲み上げて、上記の川へ放流するものがある。
このような浸水対策施設は、地表に降った多量の雨水の一部を地下深くに設けられた貯留施設へ流入させるために、円筒状の流水管を備えている。この流水管には、地表面近くに配置されるとともに多量の雨水を集める接近水路が連結されており、接近水路と貯留施設は、流水管によって連通している。すなわち、接近水路は地表面近くに配置されており、貯留施設は地下深くに設けられているため、接近水路と貯留施設との間には大きな落差が形成されることとなる。このため、接近水路が集めた多量の雨水が直流の状態で流水管内へ流入すると、多量の雨水が有する落下エネルギーが減勢されずに、この雨水が流水管の底面へ落下して、流水管の底面に多大な衝撃が加わり、流水管が破損するおそれがある。
したがって、浸水対策施設が備える流水管としては、接近水路から流入して流水管内を落下する雨水を螺旋状に旋回させ、流水管内を落下する雨水によって渦流を形成することにより、雨水の落下エネルギーを減勢させる渦流式流水管が用いられることが多い。このような渦流式流水管としては、例えば、図17に示すものがある。
図17は、浸水対策施設が備える渦流式流水管1を示す斜視図である。
図17中に示すように、浸水対策施設が備える渦流式流水管1は、軸を上下方向に向けて配置されるとともに底面が閉塞された円筒状の流水管2と、流水管2と連通する流水通路4を有する接近水路6と、接近水路6よりも下方で流水管2と連通する接続管8とを備えている。
流水管2は、接近水路6が連結される切り欠き10が設けられた立坑部12と、接続管8が連結される流出口14が設けられるとともに、立坑部12の下方に配置される減勢部16とを備えている。切り欠き10は、立坑部12の上端に設けられており、切り欠き10に接近水路6が連結されることにより、流水通路4と流水管2が連通している。流出口14は、減勢部16の底板18よりも上方に設けられており、流出口14に接続管8が連結されることにより、接続管8と流水管2が連通している。接続管8は、流水管2と下流管30を連通している。下流管30は、図外の貯留施設に連結されている。
流水通路4は、流水通路4の長手方向に亘って同一幅に形成された本体通路部20と、流水管2側へ向かうにつれて幅が狭く形成されるとともに、底面22が流水管2側へ向かうにつれて下方へ傾斜する傾斜通路部24とを備えている。
接近水路6は、本体通路部20を有する本体部26と、傾斜通路部24を有するとともに、切り欠き10に連結されることにより、傾斜通路部24を流水管2の接線方向に連結させる導入部28とを備えている。
このような構成の渦流式流水管1では、本体通路部20に図外の分水施設等から雨水等の液体が流入すると、この流入した液体が導入部28によって誘導されて流水管2内へ流入する。このとき、流水管2内へ流入した液体は、傾斜通路部24が流水管2の接線方向に連結されているため、螺旋状に旋回して渦流を形成する。そして、流水管2内へ流入した液体は、渦流を形成することにより、落下エネルギーが減勢された状態で流水管2内を落下する。
このような構成の渦流式流水管1の設計方法としては、例えば、非特許文献1に記載されている設計方法が用いられている。
この設計方法は、予め、水理模型実験によって得られた結果に基づいて求められた計算方法により、流水管2内へ単位時間当たりに流入させる液体の計画流量に基づいて、以下の表に示す各施設諸元を設計する方法である。
Figure 0005000165
表中に示すように、非特許文献1に記載されている設計方法では、流水管2内へ単位時間当たりに流入させる液体の計画流量Qpに基づいて、本体通路部20の幅B、本体通路部20の水深Ha、傾斜通路部24の開口幅e、傾斜通路部24の長さLa、傾斜通路部24の底面22の傾斜部分のみの最大高さZ、切り欠き10の高さHZ、立坑部12の内径Daの各施設諸元を設計している。
また、浸水対策施設が備える渦流式流水管1としては、例えば、図18に示すようなものもある。
図18は、浸水対策施設が備える渦流式流水管1と、シールドマシンの発進立抗32を示す斜視図である。
図18中に示すように、この渦流式流水管1は、流水管2が、シールドマシンの発進立抗や到達立抗等、流水管2よりも内径の大きい抗内に設置されている。この場合、発進立抗や到達立抗の内径が、流水管2の内径と比較して、数倍の規模で設計されているため、発進立抗や到達立抗が十分な減勢機能を有することとなる。したがって、水理模型実験を行うことなく、渦流式流水管1の各施設諸元を設計することが多い。なお、図18中では、一例として、流水管2が、シールドマシンの発進立抗32内に設置されている場合を示している。
S.C.Jain and J.F.Kennedy、「VORTEX-FLOW DROP STRUCTURES FOR THE MILWAUKEE METOROPOLITAN SEWERAGE DISTRICT INLINE STORAGE SYSTEM」、IIHR Report、Iowa Institute of Hydraulic Research、July 1983、NO.264、P233〜P242
しかしながら、上述した非特許文献1に記載されている設計方法を含め、従来の設計方法では、減勢部及び接続管の各施設諸元の設計に関しては確立されていない。そのため、減勢部及び接続管に関しては、浸水対策施設毎に水理模型実験を行って、各施設諸元を設計している。
浸水対策施設毎に水理模型実験を行って、減勢部及び接続管の各施設諸元を設計する場合、渦流式流水管の設計期間が長期化してしまうという問題が生じるおそれがある。また、水理模型実験を行って、減勢部及び接続管の各施設諸元を設計する場合、水理模型実験の製造コスト等、各施設諸元の設計に係るコストが増加してしまうという問題が生じるおそれがある。
また、図18に示すような、流水管が内径の大きい抗内に設置される構成の渦流式流水管ではなく、例えば、地下深くに設けられている貯留施設へ、設計流量の液体を側方から流入させる構成の渦流式流水管等、流水管が地中に直接設置される構成の渦流式流水管では、渦流式流水管自体が十分な減勢機能を有することが要求される。この場合、渦流式流水管の各施設の規模を最小の規模とすることにより、渦流式流水管の施工コストを低減させることが要求される。
本発明は、上記のような問題点に着目してなされたもので、水理模型実験を必要とせずに各施設諸元を設計することが可能であるとともに、渦流式流水管自体が十分な減勢機能を有する渦流式流水管及びその設計方法を提供することを課題とする。
上記課題を解決するために、本発明のうち、請求項1に記載した発明は、軸を上下方向に向けて配置されるとともに底面が閉塞された円筒状の流水管と、当該流水管と連通する流水通路を有する接近水路と、当該接近水路よりも下方で前記流水管と連通する接続管と、を備え、
前記流水管は、前記接近水路が連結されて前記流水通路と前記流水管とを連通させる切り欠きが設けられた立坑部と、前記接続管が連結されて接続管と前記流水管とを連通させる流出口が設けられるとともに前記立坑部の下方に配置される減勢部と、を備え、
前記流水通路は、当該流水通路の長手方向に亘って同一幅に形成された本体通路部と、前記流水管側へ向かうにつれて幅が狭く形成されるとともに底面が流水管側へ向かうにつれて下方へ傾斜する傾斜通路部と、を備え、
前記接近水路は、前記本体通路部を有する本体部と、前記傾斜通路部を有するとともに前記切り欠きに連結されて傾斜通路部を前記流水管の接線方向に連結させる導入部と、を備えた渦流式流水管であって、
前記接続管の軸を、前記流水管の軸と直交する方向に向けて配置し、
前記本体通路部の幅をBとし、前記立坑部の内径をDaとしたときに、
前記本体通路部の長さLcを5B以上とし、
前記減勢部の内径Dbを3Da以上、前記接続管の内径Dcを1.5Da以上とし、
前記立坑部の下端から前記流出口の上端までの高さHbを5Da以上、前記流出口の下端から前記減勢部の底面までの高さHcを2.2Da以上、前記傾斜通路部から前記立坑部の下端までの高さHdを5Da以上とし、
前記流水通路内を流れる液体の水面から前記減勢部の底面までの高さHtを25Da以下としたことを特徴とするものである。
本発明によると、流水管内へ単位時間当たりに流入させる液体の計画流量を設定することにより、この計画流量に基づいて、水理模型実験を必要とせずに、渦流式流水管が備える各施設諸元の設計を行うことが可能となる。
また、本発明によると、渦流式流水管の構成を、以下に示す(1)〜(8)の各作用を奏する構成とすることが可能となるため、渦流式流水管自体が十分な減勢機能を有する構成とすることが可能となり、流水管の底面に加わる衝撃を低減させることが可能となる。
(1)接続管の軸を、流水管の軸と直交する方向に向けて配置したため、流水管内を落下する液体によって流水管の底面に作用する圧力を減少させることが可能となるとともに、流水管内を落下する液体によって流水管の底面に作用する圧力変動の振幅を縮小させることが可能となる。また、流水管から接続管へ流入する液体の流れの安定性を向上させることが可能となる。
(2)本体通路部の幅Bに基づいて、本体通路部の長さLcを5B以上としたため、本体通路部内を流れる液体の乱れを低減させることが可能となり、本体通路部内における液体の流れの安定性を向上させることが可能となる。
(3)立坑部の内径Daに基づいて、減勢部の内径Dbを3Da以上としたため、流水管内を落下する液体によって流水管の底面に作用する圧力を減少させることが可能となるとともに、流水管内を落下する液体によって流水管の底面に作用する圧力変動の振幅を縮小させることが可能となる。
(4)立坑部の内径Daに基づいて、立坑部の下端から流出口の上端までの高さHbを5Da以上としたため、流水管内を落下する液体によって流水管の底面に作用する圧力を減少させることが可能となるとともに、減勢部において自由水面を確保して流れを安定させることが可能となる。また、流水管内を落下する液体によって流水管の底面に作用する圧力変動の振幅を縮小させることが可能となる。
(5)立坑部の内径Daに基づいて、流出口の下端から減勢部の底面までの高さHcを2.2Da以上としたため、流水管内を落下する液体によって流水管の底面に作用する圧力を減少させることが可能となるとともに、流水管内を落下する液体によって流水管の底面に作用する圧力変動の振幅を縮小させることが可能となる。
(6)立坑部の内径Daに基づいて、接続管の内径Dcを1.5Da以上としたため、流水管と接続管との連結部において発生する負圧を低減させることが可能となり、流水管と接続管との連結部に生じる破損を防止することが可能となる。
(7)立坑部の内径Daに基づいて、傾斜通路部から立坑部の下端までの高さHdを5Da以上としたため、流水管内を落下する液体を螺旋状に旋回させて、流水管内を落下する液体によって渦流を形成させることが可能となる。
(8)立坑部の内径Daに基づいて、流水通路内を流れる液体の水面から減勢部の底面までの高さHtを25Da以下としたため、流水管内を落下する液体によって流水管の底面に作用する圧力を減少させることが可能となるとともに、流水管内を落下する液体によって流水管の底面に作用する圧力変動の振幅を縮小させることが可能となる。
次に、請求項2に記載した発明は、請求項1に記載した発明であって、前記接続管の長さLbを8Da以上としたことを特徴とするものである。
本発明によると、立坑部の内径Daに基づいて、接続管の長さLbを8Da以上としたため、接続管内を流れる液体の乱れを低減させて、接続管内における液体の流れの安定性を向上させることが可能となる。
次に、請求項3に記載した発明は、請求項1または2に記載した発明であって、前記傾斜通路部から前記立坑部の下端までの高さHdを10Daとしたことを特徴とするものである。
本発明によると、立坑部の内径Daに基づいて、傾斜通路部から立坑部の下端までの高さHdを10Daとしたため、傾斜通路部から立坑部の下端までの高さHdを10Da未満とした場合と比較して、流水管内を落下する液体によって、安定した渦流を形成させることが可能となる。
次に、請求項4に記載した発明は、請求項1から3のうちいずれか1項に記載した発明であって、前記本体通路部の長さLcを10B以上としたことを特徴とするものである。
本発明によると、本体通路部の幅Bに基づいて、本体通路部の長さLcを10B以上としたため、本体通路部の長さLcを10B未満とした場合と比較して、本体通路部内を流れる液体の乱れを更に低減させることが可能となり、本体通路部内における液体の流れの安定性を更に向上させることが可能となる。
次に、請求項5に記載した発明は、軸を上下方向に向けて配置されるとともに底面が閉塞された円筒状の流水管と、当該流水管と連通する流水通路を有する接近水路と、当該接近水路よりも下方で前記流水管と連通する接続管と、を備え、
前記流水管は、前記接近水路が連結されて前記流水通路と前記流水管とを連通させる切り欠きが設けられた立坑部と、前記接続管が連結されて接続管と前記流水管とを連通させる流出口が設けられるとともに前記立坑部の下方に配置される減勢部と、を備え、
前記流水通路は、当該流水通路の長手方向に亘って同一幅に形成された本体通路部と、前記流水管側へ向かうにつれて幅が狭く形成されるとともに底面が流水管側へ向かうにつれて下方へ傾斜する傾斜通路部と、を備え、
前記接近水路は、前記本体通路部を有する本体部と、前記傾斜通路部を有するとともに前記切り欠きに連結されて傾斜通路部を前記流水管の接線方向に連結させる導入部と、を備えた渦流式流水管の設計方法であって、
前記接続管の軸を、前記流水管の軸と直交する方向に向けて配置し、
前記本体通路部の幅とし、前記立坑部の内径Daとしたときに
前記本体通路部の長さLcを5B以上とし
前記減勢部の内径Dbを3Da以上、前記接続管の内径Dcを1.5Da以上とし
前記立坑部の下端から前記流出口の上端までの高さHbを5Da以上、前記流出口の下端から前記減勢部の底面までの高さHcを2.2Da以上、前記傾斜通路部から前記立坑部の下端までの高さHdを5Da以上とし
前記流水通路内を流れる液体の水面から前記減勢部の底面までの高さHtを25Da以下として設計したことを特徴とするものである。
本発明によると、流水管内へ単位時間当たりに流入させる液体の計画流量を設定することにより、この計画流量に基づいて、水理模型実験を必要とせずに、渦流式流水管が備える各施設諸元の設計を行うことが可能となる。
また、本発明によると、流水管の軸の方向、本体通路部の幅及び立坑部の内径に基づいて、渦流式流水管の構成を、渦流式流水管自体が十分な減勢機能を有する構成とすることが可能となり、流水管の底面に加わる衝撃を低減させることが可能となる。
次に、請求項に記載した発明は、請求項に記載した発明であって、前記接続管の長さLbを8Da以上としたことを特徴とするものである。
本発明によると、立坑部の内径Daに基づいて、接続管の長さLbを8Da以上としたため、接続管内を流れる液体の乱れを低減させて、接続管内における液体の流れの安定性を向上させることが可能となる。
本発明によれば、水理模型実験を必要とせずに、渦流式流水管が備える各施設諸元の設計を行うことが可能となるため、渦流式流水管の各施設諸元の設計期間の短縮が可能となるとともに、渦流式流水管の施工コストの低減が可能となる。
次に、本発明の実施形態について図面を参照しつつ説明する。
まず、図1から図16を参照して本実施形態の構成を説明する。
図1は本実施形態の渦流式流水管1の全体を示す斜視図である。なお、図18に示した従来の渦流式流水管1と同様の構成については、同一符号を付して説明する。
図1に示すように、本実施形態の渦流式流水管1は、中心軸線CL1を上下方向に向けて配置される円筒状の流水管2と、流水管2と連通する流水通路4を有する接近水路6と、接近水路6よりも下方で流水管2と連結する接続管8とを備えている。流水管2、接近水路6及び接続管8は、例えば、耐水性を有するコンクリートによって形成されている。
流水管2は、接近水路6が連結される切り欠き10が設けられた立坑部12と、接続管8が連結される流出口14が設けられるとともに、立坑部12の下方に配置される減勢部16とを備えている。減勢部16は、底面が底板18によって閉塞されており、立坑部12の内径よりも大きな内径に形成されている。すなわち、流水管2の底面は、底板18によって閉塞されている。切り欠き10は、立坑部12の上端に設けられており、切り欠き10に接近水路6が連結されることにより、流水通路4と流水管2が連通している。流出口14は、減勢部16の底板18よりも上方に設けられており、流出口14に接続管8が連結されることにより、接続管8と流水管2が連通している。
流水通路4は、流水通路4の長手方向に亘って同一幅に形成された本体通路部20と、流水管2側へ向かうにつれて幅が狭く形成されるとともに、底面22が流水管2側へ向かうにつれて下方へ傾斜する傾斜通路部24とを備えている。
接近水路6は、本体通路部20を有する本体部26と、傾斜通路部24を有するとともに、切り欠き10に連結されることにより、傾斜通路部24を流水管2の接線方向に連結させる導入部28とを備えている。
接続管8は、中心軸線CL2を流水管2の中心軸線CL1と直交する方向に向けて配置されており、流水管2と下流管30を連通している。下流管30は、図外の貯留施設に連結されている。
以下、図2を参照して、接続管8を、接続管8の中心軸線CL2を流水管2の中心軸線CL1と直交する方向に向けて配置した理由について説明する。
図2は、流水管2が有する減勢機能の比較実験に用いる、流水管2と接続管8との連結状態と、流水管2及び接続管8の構成が異なる五種類の水理模型を示す図である。なお、図2中に示されている流水管2は、立坑部12と減勢部16が同一の内径に形成されている。また、図2中には、流水管2内を落下して、流水管2から接続管8へ流入する液体の流れを、破線で示している。
図2(a)〜(e)に示されている流水管2及び接続管8のうち、図2(e)に示されている流水管2及び接続管8は、その他のものと比較して、流水管2から接続管8へ流入する液体の流れが安定している。すなわち、図2(e)に示されている流水管2及び接続管8は、その他のものと比較して、高い減勢機能を有していることが確認された。なお、図2中に円Rで囲んだ箇所は、−3m以上の負圧が発生している箇所を示している。これは、コンクリートが破損する負圧限界を示している。
また、上述した従来の渦流式流水管(図18参照)と同様に、本実施形態の渦流式流水管1においても、流水管2内へ単位時間当たりに流入させる液体の計画流量に基づいて、以下の表に示す各施設諸元が設計されている。
Figure 0005000165
表中に示すように、本実施形態の渦流式流水管1においても、従来の渦流式流水管と同様に、流水管2内へ単位時間当たりに流入させる液体の計画流量Qpに基づいて、本体通路部20の幅B、本体通路部20の水深Ha、傾斜通路部24の開口幅e、傾斜通路部24の長さLa、傾斜通路部24の底面22の傾斜部分のみの最大高さZ、切り欠き10の高さHZ、立坑部12の内径Daの各施設諸元が設計されている。なお、上述した各施設諸元は、後述する図3及び図4中に示している。
また、本実施形態の渦流式流水管1では、上記の表1中に示した各施設諸元の他に、本体通路部20の幅Bと立坑部12の内径Daに基づいて、以下の表に示す各施設諸元が設計されている。
Figure 0005000165
表中に示すように、本実施形態の渦流式流水管1では、本体通路部20の幅Bに基づいて、本体通路部20の長さLcが設計されている。また、立坑部12の内径Daに基づいて、減勢部16の内径Db、接続管8の内径Dc、立坑部12の下端から流出口14の上端までの高さHb、流出口14の下端から減勢部16の底面までの高さHc、傾斜通路部24から立坑部12の下端までの高さHd、流水通路4内を流れる液体の水面から減勢部16の底面までの高さHtの各施設諸元が設計されている。
すなわち、本実施形態の渦流式流水管1では、流水管2内へ単位時間当たりに流入させる液体の計画流量Qpに基づいて、以下の表に示す各施設諸元が設計されている。すなわち、水理模型実験を必要とせずに、表中に示した計算方法を用いることにより、計画流量Qpに基づいて、渦流式流水管1が備える各施設諸元を設計することが可能となっている。各施設諸元を設計する際には、例えば、電子計算機等を用いる。
Figure 0005000165
以下、図3から図16を参照して、本実施形態の渦流式流水管1が備える各施設諸元のうち、上記の表3中に示した各施設諸元を設計した理由について説明する。
図3は、図1に示した渦流式流水管1を、図1中に記載した矢印IIIの方向から見た図であり、図4は、図1に示した渦流式流水管1を、図1中に記載した矢印IVの方向から見た図である。
図3及び図4に示す本体通路部20の長さLcは、本体通路部20の幅Bに基づいて、10B以上に設計されている。これは、本体通路部20の長さLcを10B未満とした場合と比較して、本体通路部20内を流れる液体の乱れを低減させることが可能となるためである。なお、本体通路部20の長さLcの上限値は、流水管2等、その他の施設との関係や施工状況に応じて、任意の値とすることが可能である。
図3及び図4に示す減勢部16の内径Db及び接続管8の内径Dcは、立坑部12の内径Daに基づいて、減勢部16の内径Dbが3Daに設計されており、接続管8の内径Dcが1.5Daに設計されている。また、立坑部12の下端から流出口14の上端までの高さHb及び流出口14の下端から減勢部16の底面までの高さHcは、立坑部12の内径Daに基づいて、立坑部12の下端から流出口14の上端までの高さHbが5Daに設計されており、流出口14の下端から減勢部16の底面までの高さHcが2.2Daに設計されている。
また、傾斜通路部24の底面22の傾斜角度θは、27.5°となっている。
ここで、図5から図16を参照して、減勢部16の内径Db及び接続管8の内径Dcと、立坑部12の下端から流出口14の上端までの高さHb及び流出口14の下端から減勢部16の底面までの高さHcを、上述した値に設定した理由について説明する。なお、図5から図16内に示されている立坑部12の内径Daは、全て、Da=1.8mに設定されている。
まず、図5から図14を参照して、減勢部16の内径Db及び接続管8の内径Dcと、立坑部12の下端から流出口14の上端までの高さHbを、上述した値に設定した理由について説明する。
減勢部16の内径Db及び接続管8の内径Dcと、立坑部12の下端から流出口14の上端までの高さHbを、上述した値に設定する際には、流水管2及び接続管8の構成が異なるA〜Dの四種類の条件下において、流水管2内に液体を落下させる実験を行い、A〜Dの各実験結果から設定した。
(実験A)
図5は、実験Aに用いる渦流式流水管1を示す図である。なお、図5には、説明のために、流水管2、接続管8及び下流管30のみを記載している。
本実験では、図5に示すように、流水管2及び接続管8を、以下に示す(1)〜(3)の条件に設計して実験を行った。
(1)流水管2の構成を、立坑部12の内径と減勢部16の内径が同一に形成されている構成とする。すなわち、減勢部16の内径Dbが、立坑部12のDaと同一に設計されている。
(2)接続管8の内径が、立坑部12と同一の内径に形成されている。すなわち、接続管8の内径Dcが、立坑部12のDaと同一に設計されている。
(3)流出口14の下端から減勢部16の底面までの高さHcを、0m,1m,2m,3m,4m,5mの六段階に変化させ、それぞれの条件下で実験を行う。
本実験では、流水管2内を落下する液体が殆ど減勢されずに落下しており、流水管2は減勢機能を殆ど有していないことが確認された。また、流出口14の上端及び下端において、−3m以上の負圧が発生していることが確認された。
(実験B)
図6は、実験Bに用いる渦流式流水管1を示す図である。なお、図6には、説明のために、流水管2、接続管8及び下流管30のみを記載している。
本実験では、図6に示すように、流水管2及び接続管8を、以下に示す(1)〜(3)の条件に設計して実験を行った。
(1)流水管2の構成を、立坑部12の内径Daに基づいて、減勢部16の内径Dbが2Daに設計されている構成とする。
(2)接続管8の内径が、立坑部12と同一の内径に形成されている。すなわち、接続管8の内径Dcが、立坑部12のDaと同一に設計されている。
(3)流出口14の下端から減勢部16の底面までの高さHcを、0m,1m,2m,3m,4m,5mの六段階に変化させ、それぞれの条件下で実験を行う。
この条件下において行った実験のうち、流出口14の下端から減勢部16の底面までの高さHcを2mとした場合における、減勢部16の底面、すなわち底板18に作用した最大圧力の分布を図7に示し、底板18に作用した圧力変動の振幅(底板18に作用した圧力の最大値と最低値の差)の分布を図8に示す。
図7中に示されるように、底板18に作用した最大圧力の分布は、14m〜16mの範囲が約48%と最も多く、約42%を占める14m〜16mの範囲と併せて約90%となっている。
また、図8中に示されるように、底板18に作用した圧力変動の振幅は、12m〜14mの範囲が約44%、10m〜12mの範囲が約30%、14m〜16mの範囲が約20%となっている。
また、特に図示しないが、本条件下における実験では、流水管2内を落下した液体が減勢部16の底部において多量の泡立ちを発生し、減勢部16内において自由水面を確保することが困難であり、流水管2内における流れの状態が不安定であることが確認された。これは、流出口14の下端から減勢部16の底面までの高さHcを、3m,4m,5mとした条件下で実験を行った場合も同様であった。
(実験C)
図9は、実験Cに用いる渦流式流水管1を示す図である。なお、図9には、説明のために、流水管2、接続管8及び下流管30のみを記載している。
本実験では、図9に示すように、流水管2及び接続管8を、以下に示す(1)〜(4)の条件に設計して実験を行った。
(1)流水管2の構成を、立坑部12の内径Daに基づいて、減勢部16の内径Dbが2Daに設計されている構成とする。
(2)接続管8の内径が、立坑部12と同一の内径に形成されている。すなわち、接続管8の内径Dcが、立坑部12のDaと同一に設計されている。
(3)流出口14の下端から減勢部16の底面までの高さHcを、0m,1m,2m,3m,4m,5mの六段階に変化させ、それぞれの条件下で実験を行う。
(4)立坑部12の下端から流出口14の上端までの高さHbが5Daに設計されている。
この条件下において行った実験のうち、流出口14の下端から減勢部16の底面までの高さHcを2mとした場合における、減勢部16の底面、すなわち底板18に作用した最大圧力の分布を図10に示し、底板18に作用した圧力変動の振幅の分布を図11に示す。
図10中に示されるように、底板18に作用した最大圧力の分布は、8m〜10mの範囲が約70%と最も多く、約18%を占める10m〜12mの範囲と併せて約88%となっている。
また、図11中に示されるように、底板18に作用した圧力変動の振幅は、4m〜6mの範囲が約67%、6m〜8mの範囲が約22%となっている。
したがって、底板18に作用した最大圧力及び圧力変動の振幅が、上記の実験Bよりも小さくなっている。また、特に図示しないが、流出口14の上端及び下端において発生している負圧が−1mとなっており、上記の実験Aよりも低下していることが確認された。
しかしながら、本実験では、流水管2から接続管8へ移動した液体の、接続管8内における流れが不安定であることが確認された。この要因としては、流水管2と接続管8との連結部において、流水管2から接続管8へ移動する液体が、流水管2及び接続管8の内壁面から剥離して、流水管2及び接続管8の有効断面積が縮小することが挙げられる。これは、流出口14の下端から減勢部16の底面までの高さHcを、3m,4m,5mとした条件下で実験を行った場合も同様であった。
(実験D)
図12は、実験Dに用いる渦流式流水管1を示す図である。なお、図12には、説明のために、流水管2、接続管8及び下流管30のみを記載している。
本実験では、図12に示すように、流水管2及び接続管8を、以下に示す(1)〜(4)の条件に設計して実験を行った。
(1)流水管2の構成を、立坑部12の内径Daに基づいて、減勢部16の内径Dbが3Daに設計されている構成とする。
(2)接続管8の内径が、立坑部12と同一の内径に形成されている。すなわち、接続管8の内径Dcが、立坑部12のDaと同一に設計されている。
(3)流出口14の下端から減勢部16の底面までの高さHcを、0m,1m,2m,3m,4m,5mの六段階に変化させ、それぞれの条件下で実験を行う。
(4)立坑部12の下端から流出口14の上端までの高さHbが5Daに設計されている。
この条件下において行った実験のうち、流出口14の下端から減勢部16の底面までの高さHcを2mとした場合における、減勢部16の底面、すなわち底板18に作用した最大圧力の分布を図13に示し、底板18に作用した圧力変動の振幅の分布を図14に示す。
図13中に示されるように、底板18に作用した最大圧力の分布は、8m〜10mの範囲が約97%と最も多く、約3%を占める10m〜12mの範囲と併せて100%となっている。
また、図14中に示されるように、底板18に作用した圧力変動の振幅は、4m〜6mの範囲が約75%、2m〜4mの範囲が約25%となっている。
したがって、底板18に作用した最大圧力及び圧力変動の振幅が、上記の実験B及びCよりも小さくなっている。
しかしながら、本実験では、流水管2から接続管8へ移動した液体の、接続管8内における流れが不安定であることが確認された。この要因としては、流出口14の下端において負圧が発生することにより、流水管2と接続管8との連結部において、流水管2から接続管8へ移動する液体が、流水管2及び接続管8の内壁面から剥離して、流水管2及び接続管8の有効断面積が縮小することが挙げられる。これは、流出口14の下端から減勢部16の底面までの高さHcを、3m,4m,5mとした条件下で実験を行った場合も同様であった。
以上の実験結果より、減勢部16の内径Db及び接続管8の内径Dcは、立坑部12の内径Daに基づいて、減勢部16の内径Dbを3Daに設計し、接続管8の内径Dcを1.5Daに設計した。また、立坑部12の内径Daに基づいて、立坑部12の下端から流出口14の上端までの高さHbを5Daに設計した。
次に、図15及び図16を参照して、流出口14の下端から減勢部16の底面までの高さHcを、上述した値に設定した理由について説明する。
流出口14の下端から減勢部16の底面までの高さHcを、上述した値に設定する際には、流水管2及び接続管8の構成を、以下に示す(1)〜(4)の条件Eに設計し、この条件下において、流水管2内に液体を落下させる実験を行い、実験結果から設定した。
(実験E)
本実験では、流水管2及び接続管8を、以下に示す(1)〜(4)の条件に設計して実験を行った。
(1)流水管2の構成を、立坑部12の内径Daに基づいて、減勢部16の内径Dbが3Daに設計されている構成とする。
(2)接続管8の内径Dcが、立坑部12の内径Daに基づいて、1.5Daに設計されている。
(3)流出口14の下端から減勢部16の底面までの高さHcを、0m,1m,2m,3m,4m,5mの六段階に変化させ、それぞれの条件下で実験を行う。
(4)立坑部12の下端から流出口14の上端までの高さHbが5Daに設計されている。
この条件下において行った実験結果を、図15及び図16に示す。
図15は、流出口14の下端から減勢部16の底面までの高さHcを2m,3m,4mとした場合における、減勢部16の底面、すなわち底板18に作用した最大圧力の分布を示す図であり、図15(a)は、Hcを2mとした場合、図15(b)は、Hcを3mとした場合、図15(c)は、Hcを4mとした場合を示している。
図15(a)中に示されるように、Hcを2mとした場合における底板18に作用した最大圧力の分布は、4m〜6mの範囲が約51%と最も多く、6m〜8mの範囲が約29%、8m〜10mの範囲が約13%となっている。
図15(b)中に示されるように、Hcを3mとした場合における底板18に作用した最大圧力の分布は、6m〜8mの範囲が約80%と最も多く、約17%を占める8m〜10mの範囲と併せて約97%となっている。
図15(c)中に示されるように、Hcを4mとした場合における底板18に作用した最大圧力の分布は、6m〜8mの範囲が約98%と最も多くなっている。
なお、Hcを1mとした場合における底板18に作用した最大圧力の分布は、偏りが大きいため、図示を省略している。また、特に図示していないが、Hcを5mとした場合における底板18に作用した最大圧力の分布は、6m〜8mの範囲が約70%と最も多く、約30%を占める8m〜10mの範囲と併せて約100%となっている。
したがって、Hcを5mとした場合における底板18に作用した最大圧力の分布は、Hcを4mとした場合における底板18に作用した最大圧力の分布よりも、最大圧力の高い範囲が増加していることが確認された。
図16は、流出口14の下端から減勢部16の底面までの高さHcを2m,3m,4mとした場合における、減勢部16の底面、すなわち底板18に作用した圧力変動の振幅の分布を示す図であり、図16(a)は、Hcを2mとした場合、図16(b)は、Hcを3mとした場合、図16(c)は、Hcを4mとした場合を示している。
図16(a)中に示されるように、Hcを2mとした場合における底板18に作用した圧力変動の振幅の分布は、4m〜6mの範囲が約47%と最も多く、2m〜4mの範囲が約37%、6m〜8mの範囲が約11%となっている。
図16(b)中に示されるように、Hcを3mとした場合における底板18に作用した圧力変動の振幅の分布は、2m〜4mの範囲が約89%と最も多く、約10%を占める4m〜6mの範囲と併せて約99%となっている。
図16(c)中に示されるように、Hcを4mとした場合における底板18に作用した圧力変動の振幅の分布は、0m〜2mの範囲が約76%と最も多く、約24%を占める2m〜4mの範囲と併せて約100%となっている。
したがって、底板18に作用した圧力変動の振幅の分布は、Hcを増加させるに従って縮小されるとともに、Hcの上限値が4mとなることが確認された。
この実験結果より、流出口14の下端から減勢部16の底面までの高さHcを4mとすることが、底板18に作用した最大圧力の分布及び圧力変動の振幅の分布に対する観点から好適であることが確認された。しかしながら、渦流式流水管1を備える施設の運用を考慮した場合、底板18の設計荷重を12m以上とした場合には、流出口14の下端から減勢部16の底面までの高さHcを3m以上としてもよい。
ここで、本実験では、立坑部12の内径Daを1.8mとしているため、流出口14の下端から減勢部16の底面までの高さHcを4mとすると、流出口14の下端から減勢部16の底面までの高さHcと立坑部12の内径Daとの関係は、Hc≒2.2Daとなる。なお、本実施形態では、Hc=2.2Daとして説明する。
したがって、流出口14の下端から減勢部16の底面までの高さHcは、立坑部12の内径Daに基づいて2.2Daに設計した。
また、図3及び図4に示す接続管8の長さLbは、立坑部12の内径Daに基づいて、8Da以上に設計されている。これは、流水管2内から流出口14を通じて接続管8内へ流入した液体が、接続管8の長さLbを立坑部12の内径Daの8倍以上とした場合に、安定して流れることが確認されたためである。なお、接続管8の長さLbの上限値は、下流管30等、その他の施設との関係や施工状況に応じて、任意の値とすることが可能である。
また、図4に示す流水通路4内を流れる液体の水面から減勢部16の底面、すなわち底板18までの高さHtは、立坑部12の内径Daに基づいて、25Daに設計されている。これは、流水通路4内を流れる液体の水面から底板18までの高さHtが25Daを超えると、渦流式流水管1が有する減勢機能よりも、流水管2内を落下する液体の落下エネルギーが大きくなるためである。
また、図4に示す傾斜通路部24から立坑部12の下端までの高さHdは、立坑部12の内径Daに基づいて、10Daに設計されている。これは、傾斜通路部24から立坑部12の下端までの高さHdを10Da未満とした場合と比較して、流水管2内を落下する液体によって形成される渦流が発達するためである。
次に、上記の構成を備えた渦流式流水管1の作用・効果等を説明する。なお、以下の説明では、液体を雨水とした場合を例に挙げて説明する。
豪雨時に多量の雨水が降ると、この多量の雨水が分水施設等を経由して、本体通路部20へ流入する。本体通路部20へ流入した雨水は、導入部28によって誘導されて流水管2内へ流入する。
流水管2内へ流入した雨水は、傾斜通路部24が流水管2の接線方向に連結されているため、螺旋状に旋回して渦流を形成する。そして、流水管2内へ流入した雨水は、渦流を形成することにより、立坑部12及び減勢部16の内壁面に接触しながら、落下エネルギーが減勢された状態で流水管2内を落下する。
流水管2内を落下する雨水は、流出口14を通じて接続管8内へ流入する。そして、接続管8から下流管30へ移動して、下流管30から図外の貯留施設へ流出する。
したがって、本実施形態の渦流式流水管1であれば、流水管2内へ単位時間当たりに流入させる液体の計画流量Qpを設定することにより、この計画流量Qpに基づいて、水理模型実験を必要とせずに、渦流式流水管1が備える各施設諸元の設計を行うことが可能となる。その結果、渦流式流水管1が備える各施設諸元の設計期間の短縮が可能となるとともに、渦流式流水管1の施工コストの低減が可能となる。
また、本実施形態の渦流式流水管1であれば、渦流式流水管1の構成を、以下に示す(1)〜(6)の各作用を奏する構成とすることが可能となるため、渦流式流水管1自体が十分な減勢機能を有する構成とすることが可能となり、流水管2の底面に加わる衝撃を低減させることが可能となる。その結果、渦流式流水管1の各施設の規模を、渦流式流水管1自体が十分な減勢機能を有する最小の規模とすることが可能となり、渦流式流水管1の施工コストを低減させることが可能となる。
(1)接続管8の中心軸線CL2を、流水管2の中心軸線CL1と直交する方向に向けて配置したことにより、流水管2内を落下する液体によって流水管2の底面に作用する圧力を減少させることが可能となるとともに、流水管2内を落下する液体によって流水管2の底面に作用する圧力変動の振幅を縮小させることが可能となる。また、流水管2から接続管8へ流入する液体の流れの安定性を向上させることが可能となる。
(2)立坑部12の内径Daに基づいて、減勢部16の内径Dbを3Daとしたため、流水管2内を落下する液体によって流水管2の底面に作用する圧力を減少させることが可能となるとともに、流水管2内を落下する液体によって流水管2の底面に作用する圧力変動の振幅を縮小させることが可能となる。
(3)立坑部12の内径Daに基づいて、立坑部12の下端から流出口14の上端までの高さHbを5Daとしたため、流水管2内を落下する液体によって流水管2の底面に作用する圧力を減少させることが可能となるとともに、減勢部16において自由水面を確保して流れを安定させることが可能となる。さらに、流水管2内を落下する液体によって流水管2の底面に作用する圧力変動の振幅を縮小させることが可能となる。
(4)立坑部12の内径Daに基づいて、流出口14の下端から減勢部16の底面までの高さHcを2.2Daとしたため、流水管2内を落下する液体によって流水管2の底面に作用する圧力を減少させることが可能となるとともに、流水管2内を落下する液体によって流水管2の底面に作用する圧力変動の振幅を縮小させることが可能となる。
(5)立坑部12の内径Daに基づいて、接続管8の内径Dcを1.5Daとしたため、流水管2と接続管8との連結部において発生する負圧を低減させることが可能となり、流水管2と接続管8との連結部に生じる破損を防止することが可能となる。
(6)立坑部12の内径Daに基づいて、流水通路4内を流れる液体の水面から減勢部16の底面までの高さHtを25Daとしたため、流水管2内を落下する液体によって流水管2の底面に作用する圧力を減少させることが可能となるとともに、流水管2内を落下する液体によって流水管2の底面に作用する圧力変動の振幅を縮小させることが可能となる。
さらに、本実施形態の渦流式流水管1であれば、立坑部12の内径Daに基づいて、接続管8の長さLbを8Da以上としたため、接続管8内を流れる液体の乱れを低減させて、接続管8内における液体の流れの安定性を向上させることが可能となる。その結果、流水管2から接続管8へ流入した液体を、安全に下流管30へ移動させることが可能となる。
また、本実施形態の渦流式流水管1であれば、立坑部12の内径Daに基づいて、傾斜通路部24から立坑部12の下端までの高さHdを10Daとしたため、傾斜通路部24から立坑部12の下端までの高さHdを10Da未満とした場合と比較して、流水管2内を落下する液体によって、安定した渦流を形成させることが可能となる。その結果、渦流式流水管1が有する減勢機能を向上させることが可能となる。
また、本実施形態の渦流式流水管1であれば、本体通路部20の幅Bに基づいて、本体通路部20の長さLcを10B以上としたため、本体通路部20の長さLcを10B未満とした場合と比較して、本体通路部20内を流れる液体の乱れを更に低減させることが可能となり、本体通路部20内における液体の流れの安定性を更に向上させることが可能となる。その結果、渦流式流水管1が有する減勢機能を向上させることが可能となる。
なお、本実施形態の渦流式流水管1では、立坑部12の内径Daに基づいて、減勢部16の内径Dbを3Da、接続管8の内径Dcを1.5Daとし、立坑部12の下端から流出口14の上端までの高さHbを5Da、流出口14の下端から減勢部16の底面までの高さHcを2.2Daとしたが、これらの値は下限値であり、上述した値に限定されるものではない。すなわち、減勢部16の内径Dbを3Da以上、接続管8の内径Dcを1.5Da以上とし、立坑部12の下端から流出口14の上端までの高さHbを5Da以上、流出口14の下端から減勢部16の底面までの高さHcを2.2Da以上としてもよい。もっとも、本実施形態の渦流式流水管1のように、立坑部12の内径Daに基づいて、減勢部16の内径Dbを3Da、接続管8の内径Dcを1.5Daとし、立坑部12の下端から流出口14の上端までの高さHbを5Da、流出口14の下端から減勢部16の底面までの高さHcを2.2Daとすることが、渦流式流水管1の各施設の規模を、渦流式流水管1自体が十分な減勢機能を有する構成とするための、最小の規模とすることが可能となるため、好適である。
また、本実施形態の渦流式流水管1では、立坑部12の内径Daに基づいて、流水通路4内を流れる液体の水面から減勢部16の底面までの高さHtを25Daとしたが、これに限定されるものではなく、流水通路4内を流れる液体の水面から減勢部16の底面までの高さHtを25Da未満としてもよい。要は、流水通路4内を流れる液体の水面から減勢部16の底面までの高さHtが、渦流式流水管1が有する減勢機能よりも、流水管2内を落下する液体の落下エネルギーが大きくなる高さである25Daを超えていなければよい。すなわち、流水通路4内を流れる液体の水面から減勢部16の底面までの高さHtは、25Da以下であればよい。
さらに、本実施形態の渦流式流水管1では、立坑部12の内径Daに基づいて、接続管8の長さLbを8Da以上としたが、接続管8の長さLbは、これに限定されるものではない。すなわち、渦流式流水管1が有する減勢機能のみが要求される場合等は、接続管8の長さLbを、例えば、8Da未満としてもよい。もっとも、本実施形態の渦流式流水管1のように、立坑部12の内径Daに基づいて、接続管8の長さLbを8Da以上とすることが、接続管8内を流れる液体の乱れを低減させることが可能となるため、好適である。
また、本実施形態の渦流式流水管1では、立坑部12の内径Daに基づいて、傾斜通路部24から立坑部12の下端までの高さHdを10Daとしたが、傾斜通路部24から立坑部12の下端までの高さHdは、これに限定されるものではない。すなわち、傾斜通路部24から立坑部12の下端までの高さHdが5Da以上であれば、流水管2内を落下する液体を螺旋状に旋回させて、流水管2内を落下する液体によって渦流を形成させることが可能となるため、傾斜通路部24から立坑部12の下端までの高さHdは、5Da以上であればよく、10Da未満であってもよい。もっとも、本実施形態の渦流式流水管1のように、傾斜通路部24から立坑部12の下端までの高さHdを10Daとすることが、傾斜通路部24から立坑部12の下端までの高さHdを10Da未満とした場合と比較して、流水管2内を落下する液体によって形成される渦流を発達させることが可能となるため、好適である。
また、本実施形態の渦流式流水管1では、本体通路部20の幅Bに基づいて、本体通路部20の長さLcを10B以上としたが、本体通路部20の長さLcは、これに限定されるものではない。すなわち、本体通路部20の長さLcが5B以上であれば、本体通路部20内を流れる液体の乱れを低減させることが可能となり、本体通路部20内における液体の流れの安定性を向上させることが可能となるため、本体通路部20の長さLcは、5B以上であればよく、10B未満であってもよい。もっとも、本実施形態の渦流式流水管1のように、本体通路部20の長さLcを10B以上とすることが、本体通路部20の長さLcを10B未満とした場合と比較して、本体通路部20内を流れる液体の乱れを更に低減させることが可能となるため、好適である。
以下、表5を参照して、本実施形態の渦流式流水管と同様の構成を有する渦流式流水管を設計する際に、上記の表4に示す計算方法を用いて各施設諸元の設計を実施した例を示す。
本実施例では、計画流量Qpを2.00(m3/s)としている。また、実際の設計においては、微小な数値は要求されないため、(Qp/0.137)(2/5)を2.92として、各施設諸元を計算している。
Figure 0005000165
なお、表5中には、本体通路部の長さLcとして、本体通路部の長さLcを10B未満とした場合と比較して、本体通路部内を流れる液体の乱れを更に低減させることが可能な長さをLc1として示し、本体通路部内を流れる液体の乱れを低減させることが可能となる最低限の長さをLc2として示している。
また、表5中には、傾斜通路部から立坑部の下端までの高さHdとして、流水管内を落下する液体によって形成される渦流を発達させることが可能な高さをHd1として示し、流水管内を落下する液体によって渦流を形成させることが可能な最低限の高さをHd2として示している。それに伴い、高さHdがHd1である場合の流水通路内を流れる液体の水面から減勢部の底面までの高さをHt1として示し、高さHdがHd2である場合の流水通路内を流れる液体の水面から減勢部の底面までの高さをHt2として示している。
表5中に示されているように、本発明の渦流式流水管の設計方法であれば、計画流量Qp=2.00(m3/s)を設定し、この計画流量Qpを表4に示した計算方法に適用するだけで、水理模型実験を必要とせずに、渦流式流水管が備える各施設諸元の設計を行うことが可能となることが確認された。
また、本発明の渦流式流水管の設計方法によって設計された渦流式流水管は、減勢機能を有する最小の規模に設計されることが確認された。
本発明の渦流式流水管の全体を示す斜視図である。 流水管と接続管との連結状態が異なる五種類の水理模型を示す図である。 図1に示した渦流式流水管を、図1中に記載した矢印IIIの方向から見た図である。 図1に示した渦流式流水管を、図1中に記載した矢印IVの方向から見た図である。 実験Aに用いる渦流式流水管を示す図である。 実験Bに用いる渦流式流水管を示す図である。 実験Bにおいて、底板に作用した最大圧力の分布を示す図である。 実験Bにおいて、底板に作用した圧力変動の振幅の分布を示す図である。 実験Cに用いる渦流式流水管を示す図である。 実験Cにおいて、底板に作用した最大圧力の分布を示す図である。 実験Cにおいて、底板に作用した圧力変動の振幅の分布を示す図である。 実験Dに用いる渦流式流水管を示す図である。 実験Dにおいて、底板に作用した最大圧力の分布を示す図である。 実験Dにおいて、底板に作用した圧力変動の振幅の分布を示す図である。 実験Eにおいて、底板に作用した最大圧力の分布を示す図であり、(a)はHcを2mとした場合、(b)はHcを3mとした場合、(c)はHcを4mとした場合を示す図である。 実験Eにおいて、底板に作用した圧力変動の振幅の分布を示す図であり、(a)はHcを2mとした場合、(b)はHcを3mとした場合、(c)はHcを4mとした場合を示す図である。 従来の渦流式流水管を示す斜視図である。 従来の渦流式流水管とシールドマシンの発進立抗を示す斜視図である。
符号の説明
1 渦流式流水管
2 流水管
4 流水通路
6 接近水路
8 接続管
10 切り欠き
12 立坑部
14 流出口
16 減勢部
18 底板
20 本体通路部
22 傾斜通路部の底面
24 傾斜通路部
26 本体部
28 導入部
30 下流管
32 シールドマシンの発進立抗
CL1 流水管の中心軸線
CL2 接続管の中心軸線
R 負圧発生箇所
θ 傾斜通路部の底面の傾斜角度

Claims (6)

  1. 軸を上下方向に向けて配置されるとともに底面が閉塞された円筒状の流水管と、当該流水管と連通する流水通路を有する接近水路と、当該接近水路よりも下方で前記流水管と連通する接続管と、を備え、
    前記流水管は、前記接近水路が連結されて前記流水通路と前記流水管とを連通させる切り欠きが設けられた立坑部と、前記接続管が連結されて接続管と前記流水管とを連通させる流出口が設けられるとともに前記立坑部の下方に配置される減勢部と、を備え、
    前記流水通路は、当該流水通路の長手方向に亘って同一幅に形成された本体通路部と、前記流水管側へ向かうにつれて幅が狭く形成されるとともに底面が流水管側へ向かうにつれて下方へ傾斜する傾斜通路部と、を備え、
    前記接近水路は、前記本体通路部を有する本体部と、前記傾斜通路部を有するとともに前記切り欠きに連結されて傾斜通路部を前記流水管の接線方向に連結させる導入部と、を備えた渦流式流水管であって、
    前記接続管の軸を、前記流水管の軸と直交する方向に向けて配置し、
    前記本体通路部の幅をBとし、前記立坑部の内径をDaとしたときに、
    前記本体通路部の長さLcを5B以上とし、
    前記減勢部の内径Dbを3Da以上、前記接続管の内径Dcを1.5Da以上とし、
    前記立坑部の下端から前記流出口の上端までの高さHbを5Da以上、前記流出口の下端から前記減勢部の底面までの高さHcを2.2Da以上、前記傾斜通路部から前記立坑部の下端までの高さHdを5Da以上とし、
    前記流水通路内を流れる液体の水面から前記減勢部の底面までの高さHtを25Da以下としたことを特徴とする渦流式流水管。
  2. 前記接続管の長さLbを8Da以上としたことを特徴とする請求項1に記載した渦流式流水管。
  3. 前記傾斜通路部から前記立坑部の下端までの高さHdを10Daとしたことを特徴とする請求項1または2に記載した渦流式流水管。
  4. 前記本体通路部の長さLcを10B以上としたことを特徴とする請求項1から3のうちいずれか1項に記載した渦流式流水管。
  5. 軸を上下方向に向けて配置されるとともに底面が閉塞された円筒状の流水管と、当該流水管と連通する流水通路を有する接近水路と、当該接近水路よりも下方で前記流水管と連通する接続管と、を備え、
    前記流水管は、前記接近水路が連結されて前記流水通路と前記流水管とを連通させる切り欠きが設けられた立坑部と、前記接続管が連結されて接続管と前記流水管とを連通させる流出口が設けられるとともに前記立坑部の下方に配置される減勢部と、を備え、
    前記流水通路は、当該流水通路の長手方向に亘って同一幅に形成された本体通路部と、前記流水管側へ向かうにつれて幅が狭く形成されるとともに底面が流水管側へ向かうにつれて下方へ傾斜する傾斜通路部と、を備え、
    前記接近水路は、前記本体通路部を有する本体部と、前記傾斜通路部を有するとともに前記切り欠きに連結されて傾斜通路部を前記流水管の接線方向に連結させる導入部と、を備えた渦流式流水管の設計方法であって、
    前記接続管の軸を、前記流水管の軸と直交する方向に向けて配置し、
    前記本体通路部の幅とし、前記立坑部の内径Daとしたときに
    前記本体通路部の長さLcを5B以上とし
    前記減勢部の内径Dbを3Da以上、前記接続管の内径Dcを1.5Da以上とし
    前記立坑部の下端から前記流出口の上端までの高さHbを5Da以上、前記流出口の下端から前記減勢部の底面までの高さHcを2.2Da以上、前記傾斜通路部から前記立坑部の下端までの高さHdを5Da以上とし
    前記流水通路内を流れる液体の水面から前記減勢部の底面までの高さHtを25Da以下として設計したことを特徴とする渦流式流水管の設計方法。
  6. 前記接続管の長さLbを8Da以上としたことを特徴とする請求項に記載した渦流式流水管の設計方法。
JP2006083551A 2006-03-24 2006-03-24 渦流式流水管及びその設計方法 Active JP5000165B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083551A JP5000165B2 (ja) 2006-03-24 2006-03-24 渦流式流水管及びその設計方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083551A JP5000165B2 (ja) 2006-03-24 2006-03-24 渦流式流水管及びその設計方法

Publications (2)

Publication Number Publication Date
JP2007255144A JP2007255144A (ja) 2007-10-04
JP5000165B2 true JP5000165B2 (ja) 2012-08-15

Family

ID=38629652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083551A Active JP5000165B2 (ja) 2006-03-24 2006-03-24 渦流式流水管及びその設計方法

Country Status (1)

Country Link
JP (1) JP5000165B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303338A (ja) * 1994-05-09 1995-11-14 Tokai Univ 氾濫水貯留・圧気電力貯蔵共用システム
JP2000319979A (ja) * 1999-05-14 2000-11-21 Ishikawajima Harima Heavy Ind Co Ltd 多段渦流式落差工

Also Published As

Publication number Publication date
JP2007255144A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
EP3387250B1 (en) A gravitational vortex water turbine assembly
JP2013199940A (ja) 渦防止装置およびポンプ装置
JP2019132150A (ja) 渦抑制装置を備えたポンプ
JP5025273B2 (ja) ポンプ装置及びポンプゲート装置
JP6624980B2 (ja) 排水機場および排水方法
JP5000165B2 (ja) 渦流式流水管及びその設計方法
JP6616657B2 (ja) 減勢管
JP2006070537A (ja) 直角v字型減勢工、それを使用したカスケード工、及びそれらを使用した段落水路
JP2007032037A (ja) 横軸ポンプ、ポンプゲート設備、排水機場
JP5937299B2 (ja) 排水装置用渦流式水面制御装置
JP4064670B2 (ja) 設備の建屋
CN211924555U (zh) 一种带分离式叶片的离心泵叶轮
RU2597382C1 (ru) Насосное устройство
JP4104492B2 (ja) 減勢工
US5501572A (en) Inlet housing for centrifugal pumps
JP3347978B2 (ja) クローズ型ポンプ吸込水槽の水中渦防止装置
KR101736848B1 (ko) 피코 소수력 발전 시스템
JP2005320931A (ja) 横軸ポンプの吸込みカバー構造
RU2610802C1 (ru) Рабочее колесо центробежного насоса
JP6472738B2 (ja) 渦防止装置、および渦防止装置を備えるポンプ設備
JP7339017B2 (ja) ポンプ
JP2524872Y2 (ja) 全速待機運転ポンプ
JP2010261821A (ja) 沸騰水型原子炉の気水分離器
JP2019132151A (ja) 渦抑制装置を備えたポンプ
Del Giudice et al. Vortex dropshafts: history and current applications to the sewer system of Naples (Italy)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5000165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250