JP4997528B2 - Power generation mechanism using liquid crystal flow - Google Patents

Power generation mechanism using liquid crystal flow Download PDF

Info

Publication number
JP4997528B2
JP4997528B2 JP2006240401A JP2006240401A JP4997528B2 JP 4997528 B2 JP4997528 B2 JP 4997528B2 JP 2006240401 A JP2006240401 A JP 2006240401A JP 2006240401 A JP2006240401 A JP 2006240401A JP 4997528 B2 JP4997528 B2 JP 4997528B2
Authority
JP
Japan
Prior art keywords
liquid crystal
pair
crystal molecules
walls
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006240401A
Other languages
Japanese (ja)
Other versions
JP2008064866A (en
Inventor
知宏 辻
成臣 蝶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi University of Technology
Original Assignee
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi University of Technology filed Critical Kochi University of Technology
Priority to JP2006240401A priority Critical patent/JP4997528B2/en
Publication of JP2008064866A publication Critical patent/JP2008064866A/en
Application granted granted Critical
Publication of JP4997528B2 publication Critical patent/JP4997528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、液晶流動を利用した発電機構に関する。水晶等のある種の結晶性物質は、ひずみを加えて弾性的な変形を発生させると、その変形に応じた電荷が表面に表われるという性質を有している。液晶においてもひずみを生じさせると、その液晶を挟む壁面間に電位差が生じるという現象(フレクソエレクトリック効果)が知られている。
本発明は、かかる液晶のフレクソエレクトリック効果を利用した発電機構に関する。
The present invention relates to a power generation mechanism using liquid crystal flow. Certain crystalline substances, such as quartz, have the property that when an elastic deformation is generated by applying strain, a charge corresponding to the deformation appears on the surface. A phenomenon (flexoelectric effect) is known in which a potential difference is generated between the wall surfaces sandwiching the liquid crystal when the liquid crystal is also distorted.
The present invention relates to a power generation mechanism using the flexoelectric effect of such liquid crystal.

図7に示すように、液晶分子の形は、くさび形のもの(図7(A))と、バナナ形のもの(図7(B))に類型化できる。
図7(A)に示すように、くさび形の分子の場合には広がり変形をさせることによって自発分極が発生し両壁面間に電位差が生じる。また、図7(B)に示すように、バナナ形の分子の場合には曲がり変形を生じさせることによって自発分極が発生し両壁面間に電位差が生じる。
そして、両壁面間に発生する電位差は、くさび形分子の場合には両壁面のなす角度θに比例し、バナナ形分子の場合には壁面の曲率半径に反比例する(非特許文献1)。
As shown in FIG. 7, the liquid crystal molecules can be classified into a wedge shape (FIG. 7A) and a banana shape (FIG. 7B).
As shown in FIG. 7A, in the case of a wedge-shaped molecule, spontaneous polarization occurs due to spreading and deformation, and a potential difference is generated between both wall surfaces. Further, as shown in FIG. 7B, in the case of a banana-shaped molecule, spontaneous polarization is generated by causing bending deformation, and a potential difference is generated between both wall surfaces.
The potential difference generated between both wall surfaces is proportional to the angle θ formed by both wall surfaces in the case of a wedge-shaped molecule, and inversely proportional to the radius of curvature of the wall surface in the case of a banana-shaped molecule (Non-Patent Document 1).

しかるに、上記のごとき変形によって両壁面間に電位差が発生することは知られているものの、この電位差を利用して液晶から外部に電力を供給する技術は現在のところ開発されていない。   However, although it is known that a potential difference is generated between both wall surfaces due to the deformation as described above, a technique for supplying electric power from the liquid crystal to the outside using this potential difference has not been developed at present.

岡野光治・小林駿介共編,液晶・基礎編,培風館,1985,P130−135Mitsuji Okano and Keisuke Kobayashi, Liquid Crystal, Basics, Baifukan, 1985, P130-135

本発明は上記事情に鑑み、液晶におけるフレクソエレクトリック効果を利用して、外部に電力を供給することができる液晶流動を利用した発電機構を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a power generation mechanism using liquid crystal flow that can supply electric power to the outside using a flexoelectric effect in liquid crystal.

第1発明の液晶流動を利用した発電機構は、液晶と、互いに対向する対向面を有する一対の壁を備え、該一対の壁が一対の対向面間に前記液晶を挟むように配置された液晶収容部材と、該液晶収容部材における一対の壁に接続された出力端子と、前記液晶の液晶分子を回転させる液晶分子回転手段と、前記一対の対向面近傍に位置する液晶分子の運動を拘束する液晶拘束手段とからなり、該液晶拘束手段は、該液晶分子回転手段によって液晶分子が回転されたときに、各面近傍に位置する液晶分子同士が相対的に異なる回転速度で回転するように液晶分子を拘束するものであり、前記液晶分子回転手段は、前記一対の対向面のうち、一の対向面に沿った方向に相対的に移動可能に設けられた前記液晶収容部材の一対の壁と、該一対の壁を、前記一対の対向面間に前記液晶を挟んだ状態を保持しつつ、該一対の対向面に沿った方向における相対的な移動速度が異なるように移動させる移動機構とからなり、前記液晶収容部材における一対の壁は、一方の壁が、その移動が固定された固定壁であり、他方の壁が、移動可能に設けられた移動壁であり、前記液晶がタンブリング液晶であり、前記移動機構によって、前記移動壁を一方向に連続して移動させることを特徴とする。
第2発明の液晶流動を利用した発電機構は、液晶と、互いに対向する対向面を有する一対の壁を備え、該一対の壁が一対の対向面間に前記液晶を挟むように配置された液晶収容部材と、該液晶収容部材における一対の壁に接続された出力端子と、前記液晶の液晶分子を回転させる液晶分子回転手段と、前記一対の対向面近傍に位置する液晶分子の運動を拘束する液晶拘束手段とからなり、該液晶拘束手段は、該液晶分子回転手段によって液晶分子が回転されたときに、各面近傍に位置する液晶分子同士が相対的に異なる回転速度で回転するように液晶分子を拘束するものであり、前記液晶分子回転手段は、前記一対の対向面のうち、一の対向面に沿った方向に相対的に移動可能に設けられた前記液晶収容部材の一対の壁と、該一対の壁を、前記一対の対向面間に前記液晶を挟んだ状態を保持しつつ、該一対の対向面に沿った方向における相対的な移動速度が異なるように移動させる移動機構とからなり、前記液晶収容部材における一対の壁は、一方の壁が、その移動が固定された固定壁であり、他方の壁が、移動可能に設けられた移動壁であり、前記液晶がアライニング液晶であり、前記移動機構によって、前記移動壁を連続して往復移動させることを特徴とする。
第3発明の液晶流動を利用した発電機構は、第1または2発明において、前記一対の対向面において、一方の面には、該面近傍に位置する液晶分子の回転を固定する回転固定処理が行われており、他方の面には、該面近傍に位置する液晶分子を回転可能に拘束する拘束処理が行われていることを特徴とする。
第4発明の液晶流動を利用した発電機構は、液晶と、互いに対向する対向面を有する一対の壁を備え、該一対の壁が一対の対向面間に前記液晶を挟むように配置された液晶収容部材と、該液晶収容部材における一対の壁に接続された出力端子と、前記液晶の液晶分子を回転させる液晶分子回転手段と、前記一対の対向面近傍に位置する液晶分子の運動を拘束する液晶拘束手段とからなり、該液晶拘束手段は、該液晶分子回転手段によって液晶分子が回転されたときに、各面近傍に位置する液晶分子同士が相対的に異なる回転速度で回転するように液晶分子を拘束するものであり、前記液晶分子回転手段が、前記一対の対向面間に、該一対の対向面に沿った方向の速度成分を有する液晶流動を連続して発生させるものであることを特徴とする。
なお、本明細書において、「相対的に異なる回転速度」とは、回転速度の絶対値の相違だけでなく、回転方向の相違をも含む概念である。
また、本明細書において、「相対的な移動速度が異なる」とは、移動速度の絶対値の相違だけでなく、移動方向の相違をも含む概念である。
A power generation mechanism using liquid crystal flow according to a first aspect of the present invention includes a liquid crystal and a pair of walls having opposing surfaces facing each other, and the pair of walls are disposed so that the liquid crystal is sandwiched between the pair of opposing surfaces. An accommodation member, an output terminal connected to a pair of walls in the liquid crystal accommodation member, a liquid crystal molecule rotating means for rotating the liquid crystal molecules of the liquid crystal, and restraining the movement of the liquid crystal molecules located in the vicinity of the pair of opposed surfaces The liquid crystal restraining means, and the liquid crystal restraining means is configured so that when the liquid crystal molecules are rotated by the liquid crystal molecule rotating means, the liquid crystal molecules located in the vicinity of each surface rotate at relatively different rotational speeds. all SANYO constraining the molecules, the liquid crystal molecules rotation means, of the pair of opposing surfaces, a pair of walls of the liquid crystal accommodating member provided relatively movably in a direction along one of the opposed surfaces And the pair of walls A moving mechanism that moves the liquid crystal so that the relative moving speeds in the directions along the pair of facing surfaces are different while holding the liquid crystal sandwiched between the pair of facing surfaces. One wall is a fixed wall whose movement is fixed, the other wall is a movable wall provided to be movable, the liquid crystal is a tumbling liquid crystal, and the moving mechanism The moving wall is continuously moved in one direction .
A power generation mechanism using liquid crystal flow according to a second aspect of the present invention includes a liquid crystal and a pair of walls having opposing surfaces facing each other, and the pair of walls are disposed so that the liquid crystal is sandwiched between the pair of opposing surfaces. An accommodation member, an output terminal connected to a pair of walls in the liquid crystal accommodation member, a liquid crystal molecule rotating means for rotating the liquid crystal molecules of the liquid crystal, and restraining the movement of the liquid crystal molecules located in the vicinity of the pair of opposed surfaces The liquid crystal restraining means, and the liquid crystal restraining means is configured so that when the liquid crystal molecules are rotated by the liquid crystal molecule rotating means, the liquid crystal molecules located in the vicinity of each surface rotate at relatively different rotational speeds. The liquid crystal molecule rotating means includes a pair of walls of the liquid crystal containing member provided so as to be relatively movable in a direction along one of the pair of opposing surfaces. , The pair of walls A moving mechanism that moves the liquid crystal so that the relative moving speeds in the directions along the pair of facing surfaces are different while holding the liquid crystal sandwiched between the pair of facing surfaces. One wall is a fixed wall whose movement is fixed, the other wall is a movable wall provided so as to be movable, the liquid crystal is an aligning liquid crystal, and by the moving mechanism, The moving wall is continuously reciprocated.
The power generation mechanism using liquid crystal flow according to a third aspect of the present invention is the power generation mechanism according to the first or second aspect, wherein one surface of the pair of opposing surfaces has a rotation fixing process for fixing the rotation of liquid crystal molecules located near the surfaces. The other surface is subjected to a restraining process in which the liquid crystal molecules located in the vicinity of the other surface are rotatably restrained.
A power generation mechanism using liquid crystal flow according to a fourth aspect of the present invention includes a liquid crystal and a pair of walls having opposing surfaces facing each other, and the pair of walls are disposed so that the liquid crystal is sandwiched between the pair of opposing surfaces. An accommodation member, an output terminal connected to a pair of walls in the liquid crystal accommodation member, a liquid crystal molecule rotating means for rotating the liquid crystal molecules of the liquid crystal, and restraining the movement of the liquid crystal molecules located in the vicinity of the pair of opposed surfaces The liquid crystal restraining means, and the liquid crystal restraining means is configured so that when the liquid crystal molecules are rotated by the liquid crystal molecule rotating means, the liquid crystal molecules located in the vicinity of each surface rotate at relatively different rotational speeds. The liquid crystal molecule rotating means continuously generates a liquid crystal flow having a velocity component in a direction along the pair of opposed surfaces between the pair of opposed surfaces. Features.
In the present specification, “relatively different rotational speeds” is a concept that includes not only differences in absolute values of rotational speeds but also differences in rotational directions.
Further, in this specification, “the relative moving speeds are different” is a concept including not only a difference in absolute values of moving speeds but also a difference in moving directions.

第1発明によれば、液晶分子がタンブリング液晶であり、固定壁に沿って移動壁を連続して一方向に移動させるので、固定壁と移動壁の間に位置する液晶分子が連続して回転している状況となる。すると、一の対向面近傍の液晶分子の軸方向と他の対向面近傍の液晶分子の軸方向とのなす角を連続して変化させることができるから、一対の壁間に、なす角度の変化量および変化速度に応じた電位差を連続して発生させることができ、その電位差に応じた電力を出力端子から取り出すことができる。しかも、移動壁の移動を調整するだけで、一対の壁間に発生する電位差の変動を調整できるから、発生する電位差の制御が容易になる。
第2発明によれば、液晶分子がアライニング液晶であり、固定壁に沿って移動壁を連続して往復移動させるので、固定壁と移動壁の間に位置する液晶分子が連続して揺動している状況となる。すると、一の対向面近傍の液晶分子の軸方向と他の対向面近傍の液晶分子の軸方向とのなす角を連続して変化させることができるから、一対の壁間に、なす角度の変化量および変化速度に応じた電位差を連続して発生させることができ、その電位差に応じた電力を出力端子から取り出すことができる。しかも、移動壁の移動を調整するだけで、一対の壁間に発生する電位差の変動を調整できるから、発生する電位差の制御が容易になる。
第3発明によれば、一の対向面近傍の液晶分子はその回転が固定されているから、両壁の相対的な移動速度差を調整するだけで、一対の壁間に発生する電位差の変動を調整できるから、発生する電位差の制御が容易になる。
第4発明によれば、一対の対向面間に連続する液晶流動を生じさせれば、壁面近傍を流れる液晶分子は対向面との干渉により回転するので、一の対向面近傍の液晶分子の軸方向と他の対向面近傍の液晶分子の軸方向とのなす角を連続して変化させることができる。すると、一対の壁間に、なす角度の変化量および変化速度に応じた電位差を連続して発生させることができ、その電位差に応じた電力を出力端子から取り出すことができる。しかも、液晶流動の流速に応じて液晶分子の回転速度を変化させることができる。よって、液晶流動の流速を調整するだけで一対の壁間に発生する電位差の変動を調整できるから、発生する電位差の制御が容易になる。
According to the first invention, since the liquid crystal molecules are tumbling liquid crystals and the moving wall is continuously moved in one direction along the fixed wall, the liquid crystal molecules located between the fixed wall and the moving wall are continuously rotated. It becomes the situation that is. Then, the angle formed between the axial direction of the liquid crystal molecules in the vicinity of one opposing surface and the axial direction of the liquid crystal molecules in the vicinity of the other opposing surface can be continuously changed. A potential difference according to the amount and the change speed can be continuously generated, and electric power according to the potential difference can be taken out from the output terminal. In addition, since the fluctuation of the potential difference generated between the pair of walls can be adjusted only by adjusting the movement of the moving wall, the generated potential difference can be easily controlled.
According to the second invention, the liquid crystal molecules are aligned liquid crystals, and the moving wall is continuously reciprocated along the fixed wall, so that the liquid crystal molecules located between the fixed wall and the moving wall continuously swing. It becomes the situation that is. Then, the angle formed between the axial direction of the liquid crystal molecules in the vicinity of one opposing surface and the axial direction of the liquid crystal molecules in the vicinity of the other opposing surface can be continuously changed. A potential difference according to the amount and the change speed can be continuously generated, and electric power according to the potential difference can be taken out from the output terminal. In addition, since the fluctuation of the potential difference generated between the pair of walls can be adjusted only by adjusting the movement of the moving wall, the generated potential difference can be easily controlled.
According to the third aspect of the invention, since the rotation of the liquid crystal molecules in the vicinity of one opposing surface is fixed, the potential difference generated between the pair of walls can be changed only by adjusting the relative moving speed difference between both walls. Therefore, it is easy to control the generated potential difference.
According to the fourth aspect of the invention , if a continuous liquid crystal flow is generated between a pair of opposing surfaces, the liquid crystal molecules flowing in the vicinity of the wall surface rotate due to interference with the opposing surface. Ru can be varied continuously angle between the axial direction of the liquid crystal molecules in the direction other opposing surface vicinity. Then, it is possible to continuously generate a potential difference according to the amount of change in the angle formed and the speed of change between the pair of walls, and to extract electric power according to the potential difference from the output terminal. In addition, the rotational speed of the liquid crystal molecules can be changed according to the flow rate of the liquid crystal flow. Therefore, since the fluctuation of the potential difference generated between the pair of walls can be adjusted only by adjusting the flow rate of the liquid crystal flow, the generated potential difference can be easily controlled.

つぎに、本発明の実施形態を図面に基づき説明する。
図1は本実施形態の液晶流動を利用した発電機構10の概略説明図である。同図において、符号LC、mはそれぞれ液晶および液晶分子を示している。この液晶LCは、発電機構10の固定壁SPと移動壁MPに挟まれている。
固定壁SPは、その移動が固定された壁である。
一方、移動壁MPは固定壁SPと対向する位置に設けられており、固定壁SPに対して固定壁SPとの距離を一定に保った状態で、固定壁SPの表面(図1では上面)に沿って移動可能に設けられている。図1では、移動壁MPは、固定壁SPに対して左右方向に移動可能に設けられている。
上記の移動壁MPと固定壁SPとが特許請求の範囲にいう液晶収容部材であり、固定壁SPおよび移動壁MPの互いに対向する面が特許請求の範囲にいう対向面である。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic explanatory diagram of a power generation mechanism 10 using liquid crystal flow of the present embodiment. In the figure, reference characters LC and m indicate liquid crystal and liquid crystal molecules, respectively. The liquid crystal LC is sandwiched between the fixed wall SP and the moving wall MP of the power generation mechanism 10.
The fixed wall SP is a wall whose movement is fixed.
On the other hand, the moving wall MP is provided at a position facing the fixed wall SP, and the surface of the fixed wall SP (upper surface in FIG. 1) in a state where the distance from the fixed wall SP to the fixed wall SP is kept constant. It is provided so that it can move along. In FIG. 1, the moving wall MP is provided to be movable in the left-right direction with respect to the fixed wall SP.
The moving wall MP and the fixed wall SP are the liquid crystal containing members referred to in the claims, and the opposing surfaces of the fixed wall SP and the moving wall MP are the opposing surfaces referred to in the claims.

なお、移動壁MPは、固定壁SPの対向面と平行に移動する必要はなく、固定壁SPの対向面に沿った方向の速度成分、言い換えれば、固定壁SPの対向面と平行な速度成分を有するように移動できればよい。
さらになお、固定壁SPは必ずしも完全に移動が固定されている必要は無く、移動壁MPに対して相対的に移動が固定されている状況であってもよい。つまり、移動壁MPの移動速度と固定壁SPの移動速度とを比較したときに、固定壁SPの対向面と平行な速度成分が異なっていればよい。「速度成分が異なる」とは、速度成分の絶対値の相違だけでなく、方向の相違をも含む概念である。
Note that the moving wall MP does not need to move in parallel with the facing surface of the fixed wall SP, and the velocity component in the direction along the facing surface of the fixed wall SP, in other words, the speed component parallel to the facing surface of the fixed wall SP. What is necessary is just to be able to move so that it may have.
Furthermore, the movement of the fixed wall SP does not necessarily have to be completely fixed, and the movement may be fixed relative to the moving wall MP. That is, when the moving speed of the moving wall MP and the moving speed of the fixed wall SP are compared, the speed components parallel to the facing surface of the fixed wall SP may be different. “Velocity components are different” is a concept including not only differences in absolute values of velocity components but also differences in direction.

図1に示すように、固定壁SPおよび移動壁MPの対向面には、導電性材料からなる一対の電極E,Eがそれぞれ設けられており、この電極E,Eには、出力端子Aが接続されている。   As shown in FIG. 1, a pair of electrodes E and E made of a conductive material are provided on opposing surfaces of the fixed wall SP and the moving wall MP, respectively, and an output terminal A is provided on the electrodes E and E. It is connected.

また、この一対の電極E,Eの表面には、ポリイミド等からなる一対の配向膜F,Fが設けられている。
固定壁SPの対向面に設けられている配向膜Fには、この配向膜F近傍に位置する液晶分子mの回転を固定する回転固定処理が行われている。この回転固定処理とは通常のラビング処理であり、この回転固定処理によって固定壁SPの対向面近傍の液晶分子mは配向膜Fにアンカリングされる。
A pair of alignment films F, F made of polyimide or the like are provided on the surfaces of the pair of electrodes E, E.
The alignment film F provided on the opposite surface of the fixed wall SP is subjected to a rotation fixing process for fixing the rotation of the liquid crystal molecules m located in the vicinity of the alignment film F. This rotation fixing process is a normal rubbing process, and the liquid crystal molecules m in the vicinity of the opposing surface of the fixed wall SP are anchored to the alignment film F by this rotation fixing process.

一方、移動壁MPに設けられている配向膜Fには、液晶分子mを回転可能に拘束する拘束処理が行われている。この拘束処理とは、配向膜Fと接する液晶分子mがその重心まわりの回転や揺動は可能であるが、移動壁MPが移動すると移動壁MPとともに移動するように拘束する処理である。この拘束処理によって移動壁MPの対向面近傍の液晶分子mは配向膜Fにウィークアンカリングされるのである。この拘束処理は、例えば、ローラなどを利用してラビング処理を行う場合であれば配向膜Fへのローラの押し付け力やローラの回転速度を調整することにより行うことができる。具体的には、配向膜Fへのローラの押し付け力を弱くしたり、ローラの回転速度を通常よりも遅くする等すれば、液晶分子mを配向膜Fにウィークアンカリングする拘束処理を行うことができる。   On the other hand, the alignment film F provided on the moving wall MP is subjected to a restraining process for restraining the liquid crystal molecules m to rotate. The restraining process is a process of restraining the liquid crystal molecules m in contact with the alignment film F so as to move together with the moving wall MP when the moving wall MP moves, although the liquid crystal molecules m can rotate and swing around the center of gravity. The liquid crystal molecules m in the vicinity of the facing surface of the moving wall MP are weakly anchored to the alignment film F by this restraining process. For example, when the rubbing process is performed using a roller or the like, the constraint process can be performed by adjusting the pressing force of the roller against the alignment film F or the rotation speed of the roller. Specifically, if the pressing force of the roller to the alignment film F is weakened or the rotation speed of the roller is made slower than usual, a restraining process for weakly anchoring the liquid crystal molecules m to the alignment film F is performed. Can do.

なお、固定壁SPと移動壁MPとの間に位置する液晶LCの液晶分子mが回転する方向は、一対の配向膜F,Fによって固定壁SPと垂直かつ移動壁MPの移動方向と平行な面内(図1では紙面と平行な面内)に拘束されている。
さらになお、一対の配向膜F,Fに行う処理は、液晶分子mをアンカリング(拘束)する強さ(アンカリング強度)が両配向膜F間で異なるように処理が行われていればよく、必ずしも固定壁SP側の配向膜Fのアンカリング強度がその配向膜F近傍に位置する液晶分子mの回転を完全に固定する強さとなるようにラビング処理を行わなくてもよい。具体的には、固定壁SP側の対向面に設けられる配向膜Fのアンカリング強度が、移動壁MP側の対向面に設けられる配向膜Fのアンカリング強度よりも強くなるように両配向膜Fにラビング処理をしておけばよい。
さらになお、配向膜Fは、移動壁MP側の対向面には設けず、固定壁SP側の対向面、つまり、液晶分子mの回転を固定したり強く拘束したりする側の対向面だけに設けてもよい。すると、移動壁MP側の対向面近傍の液晶分子mは自由に移動できるので、当然にその重心まわりの回転や揺動は可能である。
The direction in which the liquid crystal molecules m of the liquid crystal LC positioned between the fixed wall SP and the moving wall MP rotate is perpendicular to the fixed wall SP by the pair of alignment films F and F and parallel to the moving direction of the moving wall MP. It is constrained within the plane (in the plane parallel to the paper surface in FIG. 1).
Furthermore, the treatment performed on the pair of alignment films F and F only needs to be performed so that the strength (anchoring strength) for anchoring (restraining) the liquid crystal molecules m differs between the alignment films F. The rubbing process may not be performed so that the anchoring strength of the alignment film F on the fixed wall SP side is sufficiently strong to fix the rotation of the liquid crystal molecules m positioned in the vicinity of the alignment film F. Specifically, the two alignment films are set so that the anchoring strength of the alignment film F provided on the facing surface on the fixed wall SP side is stronger than the anchoring strength of the alignment film F provided on the facing surface on the moving wall MP side. F should be rubbed.
Furthermore, the alignment film F is not provided on the facing surface on the moving wall MP side, but only on the facing surface on the fixed wall SP side, that is, the facing surface on the side that fixes or strongly restricts the rotation of the liquid crystal molecules m. It may be provided. Then, since the liquid crystal molecules m in the vicinity of the facing surface on the moving wall MP side can freely move, it is naturally possible to rotate and swing around the center of gravity.

以上のごとき構成であるから、移動壁MPを固定壁SPに対し左右方向に移動させれば、両壁MP,SP間の液晶分子mは回転または揺動する。このとき、固定壁SPに接触している液晶分子mだけは回転も揺動もしないので、移動壁MPに接している液晶分子mと固定壁SPに接している液晶分子mの軸方向のなす角θ(図3,図5参照)が変化する。すると、そのなす角θに応じた電位差が固定壁SPと移動壁MP間に発生するので、出力端子Aから、その電位差に対応する電力を取り出すことができるのである。   Since the configuration is as described above, when the moving wall MP is moved in the left-right direction with respect to the fixed wall SP, the liquid crystal molecules m between the walls MP and SP rotate or swing. At this time, since only the liquid crystal molecules m in contact with the fixed wall SP do not rotate or swing, the liquid crystal molecules m in contact with the moving wall MP and the liquid crystal molecules m in contact with the fixed wall SP are formed in the axial direction. The angle θ (see FIGS. 3 and 5) changes. As a result, a potential difference corresponding to the angle θ formed is generated between the fixed wall SP and the moving wall MP, so that electric power corresponding to the potential difference can be taken out from the output terminal A.

また、固定壁SP近傍の液晶分子mが回転可能となっている場合でも、一対の配向膜F,Fのアンカリング強度が異なっていれば各対向面近傍に位置する液晶分子m同士が相対的に異なる回転速度で回転する。すると、移動壁MPに接している液晶分子mと固定壁SPに接している液晶分子mの軸方向のなす角θが変化するから、なす角θの変化量および変化速度に応じた電位差を固定壁SPと移動壁MP間に発生させることができる。   Even when the liquid crystal molecules m in the vicinity of the fixed wall SP are rotatable, the liquid crystal molecules m located in the vicinity of the opposing surfaces are relatively relative to each other if the anchoring strengths of the pair of alignment films F and F are different. Rotate at different rotational speeds. Then, the angle θ between the liquid crystal molecules m in contact with the moving wall MP and the liquid crystal molecules m in contact with the fixed wall SP changes, so that the potential difference corresponding to the amount of change and the change speed of the angle θ is fixed. It can be generated between the wall SP and the moving wall MP.

本発明の発電機機構において使用する液晶LCとしては、タンブリング液晶又はアライニング液晶が適しており、以下、タンブリング液晶LCTとアライニング液晶LCAを利用した発電機構について説明する。   As the liquid crystal LC used in the generator mechanism of the present invention, a tumbling liquid crystal or an aligning liquid crystal is suitable. Hereinafter, a power generation mechanism using the tumbling liquid crystal LCT and the aligning liquid crystal LCA will be described.

まず、タンブリング液晶LCTを利用した発電機構について説明する。
図2はタンブリング液晶LCTを使用する場合において、発電時における液晶分子mの動きを説明した図である。同図において移動壁MPは固定壁SPに対して連続して同一方向、例えば、図2では右方に移動可能に設けられた壁である。この移動壁MPは、固定壁SPに対して同一方向に連続して移動しつつも、固定壁SPとの間にはタンブリング液晶LCTを挟んだ状態を維持できるように構成されている。
First, a power generation mechanism using the tumbling liquid crystal LCT will be described.
FIG. 2 is a diagram for explaining the movement of the liquid crystal molecules m during power generation when the tumbling liquid crystal LCT is used. In the figure, the moving wall MP is a wall provided so as to be movable in the same direction, for example, to the right in FIG. 2, with respect to the fixed wall SP. The moving wall MP is configured to maintain a state in which the tumbling liquid crystal LCT is sandwiched between the moving wall MP and the fixed wall SP while moving continuously in the same direction with respect to the fixed wall SP.

そして、移動壁MPを連続して移動させると連続して発電させることができるのであるが、発電中の液晶分子mの動きを図2に基づいて説明する。
なお、固定壁SPに接している液晶分子m以外の液晶分子mは移動壁MPとともに右方に移動しながら回転しており、領域Bで同一の液晶分子mが回転しているのではないが、図2には、視点を固定壁SPにおける領域Bの位置に固定し、この領域B内に液晶分子mが一列に並んだときにおける液晶分子mの状態だけを示している。
Then, if the moving wall MP is continuously moved, power can be generated continuously. The movement of the liquid crystal molecules m during power generation will be described with reference to FIG.
The liquid crystal molecules m other than the liquid crystal molecules m in contact with the fixed wall SP rotate while moving to the right together with the moving wall MP, and the same liquid crystal molecules m are not rotating in the region B. FIG. 2 shows only the state of the liquid crystal molecules m when the viewpoint is fixed at the position of the region B on the fixed wall SP and the liquid crystal molecules m are arranged in a row in the region B.

図2(A)に示すように、移動壁MPが移動を開始する前は、全ての液晶分子mの軸方向が固定壁SPの表面と平行かつ移動壁Mの移動方向と平行に配置されているとする。この状態から移動壁MPを右方に移動させると、固定壁SPに接している液晶分子m1は移動しないが、その他の液晶分子m2は移動壁MPとともに移動する。   As shown in FIG. 2A, before the moving wall MP starts moving, the axial directions of all the liquid crystal molecules m are arranged parallel to the surface of the fixed wall SP and parallel to the moving direction of the moving wall M. Suppose that When the moving wall MP is moved to the right from this state, the liquid crystal molecules m1 in contact with the fixed wall SP do not move, but the other liquid crystal molecules m2 move together with the moving wall MP.

このとき、液晶LCがタンブリング液晶であるから、液晶分子mは移動壁MPの移動方向に向かって回転(図2では時計回り)しながら移動する(図2(B))。この回転速度は、移動壁MPの移動速度が大きいほど速くなり、移動壁MPに近いほど速くなる。   At this time, since the liquid crystal LC is a tumbling liquid crystal, the liquid crystal molecules m move while rotating in the moving direction of the moving wall MP (clockwise in FIG. 2) (FIG. 2B). The rotational speed increases as the moving speed of the moving wall MP increases, and increases as the moving wall MP approaches the moving wall MP.

すると、図2に示すように、固定壁SPに接している液晶分子m1は回転しないので、固定壁SPの軸方向と、移動壁MP近傍で回転しながら移動する液晶分子m2の軸方向とがなす角θは、液晶分子m2の回転にともなって連続的に変化する(図3(A))。このため、図3(B)に示すように、一対の壁SP,MP間には、液晶分子m1と液晶分子m2とのなす角θの時間変動に応じた電位差が発生する。   Then, as shown in FIG. 2, since the liquid crystal molecules m1 in contact with the fixed wall SP do not rotate, the axial direction of the fixed wall SP and the axial direction of the liquid crystal molecules m2 that move while rotating in the vicinity of the moving wall MP are obtained. The formed angle θ changes continuously with the rotation of the liquid crystal molecules m2 (FIG. 3A). For this reason, as shown in FIG. 3B, a potential difference is generated between the pair of walls SP and MP according to the time variation of the angle θ formed by the liquid crystal molecules m1 and the liquid crystal molecules m2.

よって、移動壁MPを連続して移動させれば、一対の壁SP,MP間では、図3(C)に示すような電位差の変動が発生するのである。
そして、一対の壁SP,MP間の電位差を端子Aから取り出せば、外部に連続して電力を供給できるのである。
Therefore, if the moving wall MP is continuously moved, a potential difference fluctuation as shown in FIG. 3C occurs between the pair of walls SP and MP.
If the potential difference between the pair of walls SP and MP is taken out from the terminal A, power can be continuously supplied to the outside.

なお、一対の壁SP,MP間に発生する最大の電位差は、例えば、一対の壁SP,MP移動速度や液晶の種類、一対の壁SP,MPの対向面間の間隔等によって決定される。具体的には、一対の壁SP,MPの相対的な移動速度差が大きくなると液晶分子mの回転が速くなるので、図3であれば単位時間当たりにおける液晶分子m1と液晶分子m2とのなす角θの変化量が大きくなり一対の壁SP,MP間に発生する最大の電位差も大きくなる。また、一対の壁SP,MPの相対的な移動速度差が同じでも、一対の壁SP,MPの対向面間隔が狭くなると単位時間当たりにおける液晶分子m1と液晶分子m2とのなす角θの変化量が大きくなるので最大の電位差も大きくなる。   Note that the maximum potential difference generated between the pair of walls SP and MP is determined by, for example, the pair of walls SP and MP moving speed, the type of liquid crystal, the distance between the opposing surfaces of the pair of walls SP and MP, and the like. Specifically, when the relative movement speed difference between the pair of walls SP and MP increases, the rotation of the liquid crystal molecules m becomes faster. Therefore, in FIG. 3, the liquid crystal molecules m1 and m2 per unit time are formed. The amount of change in the angle θ increases and the maximum potential difference generated between the pair of walls SP and MP also increases. Further, even if the relative movement speed difference between the pair of walls SP and MP is the same, the change in the angle θ between the liquid crystal molecules m1 and the liquid crystal molecules m2 per unit time when the distance between the opposing surfaces of the pair of walls SP and MP becomes narrower. Since the amount increases, the maximum potential difference also increases.

上記のごとく、移動壁MPを固定壁SPに対して同一方向に連続して移動させつつ、固定壁SPとの間にはタンブリング液晶LCTを挟んだ状態を維持できる構成としては、例えば、図6(A)や図6(B)のような構成が挙げられる。
図6(A)に示すように、円筒状の空間を有する外部部材OPの内部に、この外部部材OPの円筒状の空間の中心軸(以下、単に中心軸という)周りに回転可能な軸部材APを設け、両者の間に液晶LCを配置する。そして、外部部材OPの内面および軸部材APの外面に配向膜F、電極Eを設け、配向膜Fには、液晶分子mの軸方向が、中心軸を中心とする円周の接線方向を向くように配向処理を行う。すると、外部部材OP、軸部材APのいずれか一方、例えば外部部材OPを固定し、軸部材APを中心軸周りに同一方向に連続的に回転させれば、この軸部材APの外面は、外部部材OPに対して同一方向に連続して移動しつつも、外部部材OPの内面との間には液晶LCを挟んだ状態を維持できる。
また、図6(B)に示すように、互いに対向し同じ軸(以下、単に中心軸という)上に中心を有する一対の円盤部材UP,LPを、その一対の円盤部材UP,LPが互いに対向する面同士を平行に維持したままその軸周りに回転できるように配置し、両者の間に液晶LCを配置する。そして、一対の円盤部材の互いにおける対向する面に配向膜F、電極Eを設け、配向膜Fには、液晶分子mの軸方向が、中心軸を中心とする円周の接線方向を向くように配向処理を行う。すると、いずれか一方の円盤部材(例えば、円盤部材LP)を固定し、他方の円盤部材(例えば、円盤部材UP)を中心軸周りに同一方向に連続的に回転させれば、一対の円盤部材UP,LPにおける対向する面の間に液晶LCを挟んだ状態を維持できる。
なお、図6(A)や図6(B)のような構成の発電機構であっても、配向膜Fを対向する一方の面だけに設けてもよいのは、いうまでもない。
As described above, as a configuration that can maintain the state in which the tumbling liquid crystal LCT is sandwiched between the fixed wall SP while continuously moving the movable wall MP in the same direction with respect to the fixed wall SP, for example, FIG. Configurations such as those shown in FIG. 6A and FIG.
As shown in FIG. 6A, a shaft member that is rotatable around a central axis (hereinafter simply referred to as a central axis) of the cylindrical space of the external member OP inside the external member OP having a cylindrical space. AP is provided, and a liquid crystal LC is disposed between the two. An alignment film F and an electrode E are provided on the inner surface of the outer member OP and the outer surface of the shaft member AP. In the alignment film F, the axial direction of the liquid crystal molecules m faces the tangential direction of the circumference around the central axis. The orientation treatment is performed as described above. Then, if one of the external member OP and the shaft member AP, for example, the external member OP is fixed and the shaft member AP is continuously rotated around the central axis in the same direction, the outer surface of the shaft member AP becomes the external surface. While continuously moving in the same direction with respect to the member OP, it is possible to maintain a state in which the liquid crystal LC is sandwiched between the inner surface of the external member OP.
Further, as shown in FIG. 6B, a pair of disk members UP and LP which are opposed to each other and have a center on the same axis (hereinafter simply referred to as a central axis), and the pair of disk members UP and LP are opposed to each other. The liquid crystal LC is disposed between the two surfaces so that the surfaces to be rotated can be rotated around the axis while maintaining the surfaces in parallel. An alignment film F and an electrode E are provided on the opposing surfaces of the pair of disk members, and the axial direction of the liquid crystal molecules m faces the tangential direction of the circumference around the central axis. The alignment treatment is performed. Then, if one of the disk members (for example, disk member LP) is fixed and the other disk member (for example, disk member UP) is continuously rotated in the same direction around the central axis, a pair of disk members It is possible to maintain a state in which the liquid crystal LC is sandwiched between the opposing surfaces of UP and LP.
Needless to say, the alignment film F may be provided only on one of the opposing surfaces even in the power generation mechanism configured as shown in FIGS. 6A and 6B.

つぎに、アライニング液晶LCAを利用した発電機構について説明する。
図4はアライニング液晶LCAを使用する場合において、発電時における液晶分子mの動きを説明した図である。同図において移動壁MPは固定壁SPに対して連続して往復移動、例えば、図4(A)では左右方向に沿って往復移動可能に設けられた壁である。この移動壁MPは、固定壁SPに対して往復移動しつつも、固定壁SPとの間には液晶LCを挟んだ状態を維持できるように構成されている。
例えば、図6(A)のような構成を有する発電機構であれば、軸部材APまたは外部部材OPを中心軸周りに正転逆転させれば、上記のごとき状態を実現することができる。また、図6(B)のような構成を有する発電機構でも、一対の円盤部材UP,LPを中心軸周りに正転逆転させれば、上記のごとき状態を実現することができる。
Next, a power generation mechanism using the aligning liquid crystal LCA will be described.
FIG. 4 is a diagram for explaining the movement of the liquid crystal molecules m during power generation when the aligning liquid crystal LCA is used. In the figure, the moving wall MP is a wall provided so as to be continuously reciprocated with respect to the fixed wall SP, for example, reciprocating along the left-right direction in FIG. The moving wall MP is configured to maintain a state in which the liquid crystal LC is sandwiched between the moving wall MP and the fixed wall SP while reciprocating with respect to the fixed wall SP.
For example, in the case of the power generation mechanism having the configuration as shown in FIG. 6A, the state as described above can be realized by rotating the shaft member AP or the external member OP forward and backward around the central axis. Further, even in the power generation mechanism having the configuration as shown in FIG. 6B, the above-described state can be realized by rotating the pair of disk members UP and LP forward and backward around the central axis.

図4(A)に示すように、この移動壁MPと固定壁SPの間には、アライニング液晶LCAが配置されており、移動壁MPを移動させると、連続して発電させることができる。
以下、発電中の液晶分子mの動きを図4に基づいて説明する。
なお、固定壁SPに接している液晶分子m以外の液晶分子mは移動壁MPとともに右方に移動しながら揺動しており、領域Bで同一の液晶分子mが揺動しているのではないが、図4には、視点を固定壁SPにおける領域Bの位置に固定し、この領域B内に液晶分子mが一列に並んだときにおける液晶分子mの状態だけを示している。
As shown in FIG. 4A, an aligning liquid crystal LCA is disposed between the moving wall MP and the fixed wall SP. When the moving wall MP is moved, power can be generated continuously.
Hereinafter, the movement of the liquid crystal molecules m during power generation will be described with reference to FIG.
The liquid crystal molecules m other than the liquid crystal molecules m in contact with the fixed wall SP are swung while moving to the right together with the moving wall MP, and the same liquid crystal molecules m are swung in the region B. Although not shown in FIG. 4, only the state of the liquid crystal molecules m when the viewpoint is fixed at the position of the region B on the fixed wall SP and the liquid crystal molecules m are arranged in a line in the region B is shown.

図4(A)に示すように、移動壁MPが移動を開始する前は、全ての液晶分子mの軸方向が固定壁SPの表面と平行かつ移動壁Mの移動方向と平行に配置されているとする。この状態から移動壁MPを右方に移動させると、固定壁SPに接している液晶分子m1は移動しないが、その他の液晶分子m2は移動壁MPとともに移動する。   As shown in FIG. 4A, before the moving wall MP starts to move, the axial directions of all the liquid crystal molecules m are arranged in parallel with the surface of the fixed wall SP and in parallel with the moving direction of the moving wall M. Suppose that When the moving wall MP is moved to the right from this state, the liquid crystal molecules m1 in contact with the fixed wall SP do not move, but the other liquid crystal molecules m2 move together with the moving wall MP.

このとき、液晶LCがアライニング液晶LCAであるから、液晶分子mは移動壁MPの移動方向に向かって回転(図4(B)では時計回り)しながら移動する。この回転速度は、移動壁MPの移動速度が大きいほど速くなり、移動壁MPに移動壁MPに近いほど速くなる。   At this time, since the liquid crystal LC is the aligning liquid crystal LCA, the liquid crystal molecules m move while rotating in the moving direction of the moving wall MP (clockwise in FIG. 4B). The rotational speed increases as the moving speed of the moving wall MP increases, and increases as the moving wall MP is closer to the moving wall MP.

すると、図4(B)に示すように、固定壁SPに接している液晶分子m1は回転しないので、固定壁SPの軸方向と、移動壁MP近傍で回転しながら移動する液晶分子m2の軸方向とがなす角θは、液晶分子m2の回転にともなって連続的に変化する(図5(A))。   Then, as shown in FIG. 4B, since the liquid crystal molecules m1 in contact with the fixed wall SP do not rotate, the axis direction of the fixed wall SP and the axis of the liquid crystal molecules m2 that move while rotating in the vicinity of the moving wall MP. The angle θ formed by the direction continuously changes as the liquid crystal molecules m2 rotate (FIG. 5A).

ここで、アライニング液晶LCAの場合、タンブリング液晶LCTと異なり、液晶分子m2が90度以上回転できない。このため、移動壁MPに最も近い液晶分子m2が90度となるまで移動すると、移動壁MPの右方への移動を停止し、左方への移動に移動方向を転換させる。すると、液晶分子mは、今度は、左方に移動しながら反時計周りに回転する。そして、移動壁MPが元の位置まで戻ると、液晶分子mは元の状態、つまり、その軸方向が固定壁SPの表面と平行な状態になる(図4(C))。   Here, in the case of the aligning liquid crystal LCA, unlike the tumbling liquid crystal LCT, the liquid crystal molecules m2 cannot rotate 90 degrees or more. For this reason, when the liquid crystal molecules m2 closest to the moving wall MP move to 90 degrees, the movement of the moving wall MP to the right is stopped and the movement direction is changed to the left movement. Then, the liquid crystal molecules m are rotated counterclockwise while moving leftward. When the moving wall MP returns to the original position, the liquid crystal molecules m are in the original state, that is, the axial direction thereof is parallel to the surface of the fixed wall SP (FIG. 4C).

移動壁MPが元の位置まで戻ってからもさらに移動壁MPが左方に移動すると、液晶分子mの反時計周りの回転は継続する。そして、移動壁MPに最も近い液晶分子m2が90度となるまで移動壁MPが移動すると(図4(D))、移動壁MPの左方への移動を停止し、右方への移動に移動方向が転換させる。すると、液晶分子mは、再び、右方に移動しながら時計周りに回転する。   Even when the moving wall MP returns to the original position, when the moving wall MP further moves to the left, the counterclockwise rotation of the liquid crystal molecules m continues. When the moving wall MP moves until the liquid crystal molecule m2 closest to the moving wall MP reaches 90 degrees (FIG. 4D), the moving wall MP stops moving to the left and moved to the right. Change the direction of movement. Then, the liquid crystal molecules m again rotate clockwise while moving to the right.

上記のごとく、移動壁MPが左右に往復移動を繰り返すと、固定壁SPの軸方向と、移動壁MP近傍で回転しながら移動する液晶分子m2の軸方向とがなす角θが、液晶分子m1の回転にともなって連続的に変化する(図5(A))。このため、タンブリング液晶LCTの場合と同様に、一対の壁SP,MP間には、液晶分子m1と液晶分子m2とのなす角θに応じた電位差が発生する(図5(B))。
よって、移動壁MPを連続して往復移動させれば、一対の壁SP,MP間では、図5(C)に示すような電位差の変動が発生するのである。
そして、一対の壁SP,MP間の電位差を端子Aから取り出せば、外部に連続して電力を供給できるのである。
As described above, when the moving wall MP repeats reciprocating left and right, the angle θ formed by the axial direction of the fixed wall SP and the axial direction of the liquid crystal molecules m2 that move while rotating in the vicinity of the moving wall MP is the liquid crystal molecule m1. Changes continuously with the rotation of (Fig. 5A). For this reason, as in the case of the tumbling liquid crystal LCT, a potential difference corresponding to the angle θ formed between the liquid crystal molecules m1 and the liquid crystal molecules m2 is generated between the pair of walls SP and MP (FIG. 5B).
Therefore, if the moving wall MP is continuously reciprocated, a potential difference fluctuation as shown in FIG. 5C occurs between the pair of walls SP and MP.
If the potential difference between the pair of walls SP and MP is taken out from the terminal A, power can be continuously supplied to the outside.

なお、一対の壁SP,MP間に発生する最大の電位差は、タンブリング液晶の場合と同様に、一対の壁SP,MPの移動速度や液晶の種類、一対の壁SP,MPの対向面間隔等によって、決定される。具体的には、一対の壁SPの振動数が大きくなると液晶分子mの回転が速くなるので、図3であれば単位時間当たりにおける液晶分子m1と液晶分子m2とのなす角θの変化量が大きくなるので最大の電位差も大きくなる。また、一対の壁SPの振動数が同じでも、一対の壁SP,MPの対向面間隔が狭くなると単位時間当たりにおける液晶分子m1と液晶分子m2とのなす角θの変化量が大きくなるので最大の電位差も大きくなる。   Note that the maximum potential difference generated between the pair of walls SP and MP is similar to the case of the tumbling liquid crystal, such as the moving speed of the pair of walls SP and MP, the type of liquid crystal, the distance between the opposing surfaces of the pair of walls SP and MP, and the like. Determined by. Specifically, since the rotation of the liquid crystal molecules m increases as the frequency of the pair of walls SP increases, the amount of change in the angle θ between the liquid crystal molecules m1 and the liquid crystal molecules m2 per unit time is shown in FIG. Since it increases, the maximum potential difference also increases. Even if the frequency of the pair of walls SP is the same, the amount of change in the angle θ between the liquid crystal molecules m1 and the liquid crystal molecules m2 per unit time increases as the facing distance between the pair of walls SP and MP decreases. The potential difference becomes larger.

また、発電機構は、以下のごとき構成としてもよい。
図8に示すように、一対の壁SP,SPをいずれも移動が固定された固定壁とし、両者の間に液晶LCを流す、つまり、一対の壁P,P間に液晶流動を発生させた場合でも、流動する液晶と一対の壁P,Pとの干渉によって液晶分子mが回転する。すると、一対の配向膜F,Fのアンカリング強度が異なっていれば、一対の壁P,P近傍に位置する液晶分子mの回転速度に差ができるから、一対の壁P,P間に電位差を発生させることができる。この場合、液晶流動の速度を変化させれば発生する電位差を変化させることができ、流速が速くなると発生する電位差が大きくなり、流速が遅くなると発生する電位差が小さくなる。
なお、液晶流動を発生させる方法はとくに限定されず、どのような手段を用いてもよい。例えば、ポンプ等の使用して流動を発生させてもよい。
Further, the power generation mechanism may be configured as follows.
As shown in FIG. 8, the pair of walls SP and SP are both fixed walls with fixed movement, and the liquid crystal LC flows between them, that is, the liquid crystal flow is generated between the pair of walls P and P. Even in this case, the liquid crystal molecules m rotate due to the interference between the flowing liquid crystal and the pair of walls P and P. Then, if the anchoring strengths of the pair of alignment films F and F are different, the rotational speed of the liquid crystal molecules m located in the vicinity of the pair of walls P and P can be different. Can be generated. In this case, the generated potential difference can be changed by changing the flow rate of the liquid crystal, and the generated potential difference increases as the flow rate increases, and the generated potential difference decreases as the flow rate decreases.
The method for generating the liquid crystal flow is not particularly limited, and any means may be used. For example, a flow may be generated using a pump or the like.

液晶流動を利用した発電機構は、回転運動や往復運動を行う機構を利用して電力を発生させる発電機、とくに、非常に微小な機構から微小な電力を発生させる発電機等に適している。   The power generation mechanism using the liquid crystal flow is suitable for a generator that generates electric power using a mechanism that performs a rotational motion and a reciprocating motion, in particular, a generator that generates minute electric power from a very small mechanism.

本実施形態の液晶流動を利用した発電機構10の概略説明図である。It is a schematic explanatory drawing of the electric power generation mechanism 10 using the liquid crystal flow of this embodiment. タンブリング液晶LCTを使用する場合において、発電時における液晶分子mの動きを説明した図である。It is the figure explaining the movement of the liquid crystal molecule m at the time of electric power generation, when using tumbling liquid crystal LCT. (A)は発電時のタンブリング液晶LCTの動きと発電電圧の関係を示した図であり、(B)は発電電圧と両壁近傍の液晶分子mがなす角度の関係を示した図であり、(C)は発電電圧の時間変動を示した図である。(A) is a diagram showing the relationship between the movement of the tumbling liquid crystal LCT during power generation and the power generation voltage, and (B) is a diagram showing the relationship between the power generation voltage and the angle formed by the liquid crystal molecules m near both walls. (C) is the figure which showed the time fluctuation of the generated voltage. アライニング液晶LCAを使用する場合において、発電時における液晶分子mの動きを説明した図である。It is a figure explaining movement of liquid crystal molecule m at the time of power generation in the case of using aligning liquid crystal LCA. (A)は発電時のアライニング液晶LCAの動きと発電電圧の関係を示した図であり、(B)は発電電圧と両壁近傍の液晶分子mがなす角度の関係を示した図であり、(C)は発電電圧の時間変動を示した図である。(A) is a diagram showing the relationship between the movement of the aligning liquid crystal LCA during power generation and the power generation voltage, and (B) is a diagram showing the relationship between the power generation voltage and the angle formed by the liquid crystal molecules m near both walls. (C) is the figure which showed the time fluctuation of the generated voltage. 移動壁MPと固定壁SPを備えた発電機構の実施例の概略説明図である。It is a schematic explanatory drawing of the Example of the electric power generation mechanism provided with the movement wall MP and the fixed wall SP. フレクソエレクトリック効果の説明図であり、(A)はくさび形分子の場合であり、(B)はバナナ形分子の場合である。It is explanatory drawing of a flexoelectric effect, (A) is a case of a wedge-shaped molecule | numerator, (B) is a case of a banana-shaped molecule | numerator. 別の実施形態の液晶流動を利用した発電機構10の概略説明図である。It is a schematic explanatory drawing of the electric power generation mechanism 10 using the liquid crystal flow of another embodiment.

LC 液晶
LCA アライニング液晶
LCT タンブリング液晶
m 液晶分子
MP 移動壁
SP 固定壁
A 出力端子
LC liquid crystal LCA aligning liquid crystal LCT tumbling liquid crystal m liquid crystal molecule MP moving wall SP fixed wall A output terminal

Claims (4)

液晶と、
互いに対向する対向面を有する一対の壁を備え、該一対の壁が一対の対向面間に前記液晶を挟むように配置された液晶収容部材と、
該液晶収容部材における一対の壁に接続された出力端子と、
前記液晶の液晶分子を回転させる液晶分子回転手段と、
前記一対の対向面近傍に位置する液晶分子の運動を拘束する液晶拘束手段とからなり、
該液晶拘束手段は、
該液晶分子回転手段によって液晶分子が回転されたときに、各面近傍に位置する液晶分子同士が相対的に異なる回転速度で回転するように液晶分子を拘束するものであり、
前記液晶分子回転手段は、
前記一対の対向面のうち、一の対向面に沿った方向に相対的に移動可能に設けられた前記液晶収容部材の一対の壁と、
該一対の壁を、前記一対の対向面間に前記液晶を挟んだ状態を保持しつつ、該一対の対向面に沿った方向における相対的な移動速度が異なるように移動させる移動機構とからなり、
前記液晶収容部材における一対の壁は、
一方の壁が、その移動が固定された固定壁であり、
他方の壁が、移動可能に設けられた移動壁であり、
前記液晶がタンブリング液晶であり、
前記移動機構によって、前記移動壁を一方向に連続して移動させる
ことを特徴とする液晶流動を利用した発電機構。
Liquid crystal,
A liquid crystal containing member provided with a pair of walls having opposing surfaces facing each other, the pair of walls being disposed so as to sandwich the liquid crystal between the pair of opposing surfaces;
An output terminal connected to a pair of walls in the liquid crystal housing member;
Liquid crystal molecule rotating means for rotating the liquid crystal molecules of the liquid crystal;
The liquid crystal restraining means for restraining the movement of the liquid crystal molecules located in the vicinity of the pair of opposed surfaces,
The liquid crystal restraining means is
When the liquid crystal molecules are rotated by the liquid crystal molecules rotation means state, and are not constraining the liquid crystal molecules to rotate the liquid crystal molecules are relatively different rotational speeds, located on each side near the
The liquid crystal molecule rotating means includes:
Of the pair of facing surfaces, a pair of walls of the liquid crystal housing member provided to be relatively movable in a direction along one facing surface;
And a moving mechanism that moves the pair of walls so that the relative moving speeds in the directions along the pair of facing surfaces are different while holding the liquid crystal sandwiched between the pair of facing surfaces. ,
The pair of walls in the liquid crystal housing member are
One wall is a fixed wall whose movement is fixed,
The other wall is a movable wall provided movably,
The liquid crystal is a tumbling liquid crystal;
A power generation mechanism using liquid crystal flow, wherein the moving mechanism moves the moving wall continuously in one direction .
液晶と、  Liquid crystal,
互いに対向する対向面を有する一対の壁を備え、該一対の壁が一対の対向面間に前記液晶を挟むように配置された液晶収容部材と、A liquid crystal containing member provided with a pair of walls having opposing surfaces facing each other, the pair of walls being disposed so as to sandwich the liquid crystal between the pair of opposing surfaces;
該液晶収容部材における一対の壁に接続された出力端子と、An output terminal connected to a pair of walls in the liquid crystal housing member;
前記液晶の液晶分子を回転させる液晶分子回転手段と、Liquid crystal molecule rotating means for rotating the liquid crystal molecules of the liquid crystal;
前記一対の対向面近傍に位置する液晶分子の運動を拘束する液晶拘束手段とからなり、The liquid crystal restraining means for restraining the movement of the liquid crystal molecules located in the vicinity of the pair of opposed surfaces,
該液晶拘束手段は、The liquid crystal restraining means is
該液晶分子回転手段によって液晶分子が回転されたときに、各面近傍に位置する液晶分子同士が相対的に異なる回転速度で回転するように液晶分子を拘束するものであり、When the liquid crystal molecules are rotated by the liquid crystal molecule rotating means, the liquid crystal molecules are constrained so that the liquid crystal molecules located in the vicinity of each surface rotate at relatively different rotational speeds,
前記液晶分子回転手段は、The liquid crystal molecule rotating means includes:
前記一対の対向面のうち、一の対向面に沿った方向に相対的に移動可能に設けられた前記液晶収容部材の一対の壁と、Of the pair of facing surfaces, a pair of walls of the liquid crystal housing member provided to be relatively movable in a direction along one facing surface;
該一対の壁を、前記一対の対向面間に前記液晶を挟んだ状態を保持しつつ、該一対の対向面に沿った方向における相対的な移動速度が異なるように移動させる移動機構とからなり、And a moving mechanism that moves the pair of walls so that the relative moving speeds in the directions along the pair of facing surfaces are different while holding the liquid crystal sandwiched between the pair of facing surfaces. ,
前記液晶収容部材における一対の壁は、The pair of walls in the liquid crystal housing member are
一方の壁が、その移動が固定された固定壁であり、One wall is a fixed wall whose movement is fixed,
他方の壁が、移動可能に設けられた移動壁であり、The other wall is a movable wall provided movably,
前記液晶がアライニング液晶であり、The liquid crystal is an aligning liquid crystal;
前記移動機構によって、前記移動壁を連続して往復移動させるThe moving wall is continuously reciprocated by the moving mechanism.
ことを特徴とする液晶流動を利用した発電機構。A power generation mechanism using liquid crystal flow.
前記一対の対向面において、
一方の面には、該面近傍に位置する液晶分子の回転を固定する回転固定処理が行われており、
他方の面には、該面近傍に位置する液晶分子を回転可能に拘束する拘束処理が行われている
ことを特徴とする請求項1または2記載の液晶流動を利用した発電機構。
In the pair of facing surfaces,
One surface is subjected to a rotation fixing process for fixing rotation of liquid crystal molecules located in the vicinity of the surface,
3. The power generation mechanism using liquid crystal flow according to claim 1 , wherein the other surface is subjected to a restraining process in which liquid crystal molecules located in the vicinity of the surface are rotatably restrained.
液晶と、
互いに対向する対向面を有する一対の壁を備え、該一対の壁が一対の対向面間に前記液晶を挟むように配置された液晶収容部材と、
該液晶収容部材における一対の壁に接続された出力端子と、
前記液晶の液晶分子を回転させる液晶分子回転手段と、
前記一対の対向面近傍に位置する液晶分子の運動を拘束する液晶拘束手段とからなり、
該液晶拘束手段は、
該液晶分子回転手段によって液晶分子が回転されたときに、各面近傍に位置する液晶分子同士が相対的に異なる回転速度で回転するように液晶分子を拘束するものであり、
前記液晶分子回転手段が、
前記一対の対向面間に、該一対の対向面に沿った方向の速度成分を有する液晶流動を連続して発生させるものである
ことを特徴とする液晶流動を利用した発電機構。
Liquid crystal,
A liquid crystal containing member provided with a pair of walls having opposing surfaces facing each other, the pair of walls being disposed so as to sandwich the liquid crystal between the pair of opposing surfaces;
An output terminal connected to a pair of walls in the liquid crystal housing member;
Liquid crystal molecule rotating means for rotating the liquid crystal molecules of the liquid crystal;
The liquid crystal restraining means for restraining the movement of the liquid crystal molecules located in the vicinity of the pair of opposed surfaces,
The liquid crystal restraining means is
When the liquid crystal molecules are rotated by the liquid crystal molecule rotating means, the liquid crystal molecules are constrained so that the liquid crystal molecules located in the vicinity of each surface rotate at relatively different rotational speeds,
The liquid crystal molecule rotating means comprises:
It said pair of between the facing surfaces, power generation mechanism utilizing a liquid crystal flow you characterized in that to generate continuously a liquid crystal flow with a direction of the velocity components along the said pair of opposing faces.
JP2006240401A 2006-09-05 2006-09-05 Power generation mechanism using liquid crystal flow Expired - Fee Related JP4997528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240401A JP4997528B2 (en) 2006-09-05 2006-09-05 Power generation mechanism using liquid crystal flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240401A JP4997528B2 (en) 2006-09-05 2006-09-05 Power generation mechanism using liquid crystal flow

Publications (2)

Publication Number Publication Date
JP2008064866A JP2008064866A (en) 2008-03-21
JP4997528B2 true JP4997528B2 (en) 2012-08-08

Family

ID=39287658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240401A Expired - Fee Related JP4997528B2 (en) 2006-09-05 2006-09-05 Power generation mechanism using liquid crystal flow

Country Status (1)

Country Link
JP (1) JP4997528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129721A (en) * 2015-09-10 2015-12-09 上海理工大学 Micro actuator based on liquid crystal back flow effect, actuating device and dynamic performance measurement device of micro actuator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417157A (en) * 2011-09-21 2012-04-18 河南工业大学 Driving and control method of liquid crystal microfluid used for MEMS
JP2016149821A (en) * 2015-02-10 2016-08-18 高知県公立大学法人 High-performance power generation mechanism using liquid crystal flow
JPWO2023276941A1 (en) * 2021-06-29 2023-01-05

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803344B2 (en) * 2005-02-08 2011-10-26 公立大学法人高知工科大学 Liquid crystal molecular field distortion generation mechanism by liquid crystal flow, velocity / displacement sensor and strain velocity / distortion sensor using this mechanism
JP4621861B2 (en) * 2005-02-08 2011-01-26 公立大学法人高知工科大学 Switching memory device using liquid crystal flow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129721A (en) * 2015-09-10 2015-12-09 上海理工大学 Micro actuator based on liquid crystal back flow effect, actuating device and dynamic performance measurement device of micro actuator

Also Published As

Publication number Publication date
JP2008064866A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4997528B2 (en) Power generation mechanism using liquid crystal flow
JPS6359777A (en) Oscillation driving motor
JPS60210172A (en) Vibration wave motor
JP3586734B2 (en) Liquid crystal flow forming mechanism, liquid crystal flow forming method, and object moving mechanism using liquid crystal flow
CN102067435A (en) Vibration actuator
WO2011052106A1 (en) Power generator
JP4328412B2 (en) Vibration type actuator and vibration type drive device
JP2008099487A (en) Vibration actuator
JP2016149821A (en) High-performance power generation mechanism using liquid crystal flow
JP4925468B2 (en) High-efficiency formation mechanism of liquid crystal flow, high-efficiency formation method of liquid crystal flow, and high-efficiency object movement mechanism using liquid crystal flow
JP4803344B2 (en) Liquid crystal molecular field distortion generation mechanism by liquid crystal flow, velocity / displacement sensor and strain velocity / distortion sensor using this mechanism
JP2902712B2 (en) Ultrasonic motor
US7015623B2 (en) Vibration type drive unit
JP5099809B2 (en) Movement control mechanism of liquid crystal immersion object using liquid crystal flow
JP4621861B2 (en) Switching memory device using liquid crystal flow
JP4273341B2 (en) Object rotation mechanism using liquid crystal flow
JP5370971B2 (en) Soft actuator using liquid crystal
JP2009185993A (en) Mechanism and method for forming hybrid liquid crystal flow and hybrid object moving mechanism using liquid crystal flow
JP5370972B2 (en) Object moving mechanism using liquid crystal
JP5985004B2 (en) Vibration type motor and lens device having the same
JP5099810B2 (en) Movement control mechanism of liquid crystal contact object using liquid crystal flow
JP2008148440A (en) Oscillation driver
JPS62100179A (en) Piezoelectric motor
US5457351A (en) Ultrasonic motor
JP2015152028A (en) Lateral electric field type liquid crystal fluidization formation mechanism and lateral electric field type object movement mechanism utilizing liquid crystal fluidization

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

R150 Certificate of patent or registration of utility model

Ref document number: 4997528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees