JP4925468B2 - High-efficiency formation mechanism of liquid crystal flow, high-efficiency formation method of liquid crystal flow, and high-efficiency object movement mechanism using liquid crystal flow - Google Patents

High-efficiency formation mechanism of liquid crystal flow, high-efficiency formation method of liquid crystal flow, and high-efficiency object movement mechanism using liquid crystal flow Download PDF

Info

Publication number
JP4925468B2
JP4925468B2 JP2008029597A JP2008029597A JP4925468B2 JP 4925468 B2 JP4925468 B2 JP 4925468B2 JP 2008029597 A JP2008029597 A JP 2008029597A JP 2008029597 A JP2008029597 A JP 2008029597A JP 4925468 B2 JP4925468 B2 JP 4925468B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
magnetic field
flow
crystal molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008029597A
Other languages
Japanese (ja)
Other versions
JP2009185994A (en
Inventor
成臣 蝶野
知宏 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi University of Technology
Original Assignee
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi University of Technology filed Critical Kochi University of Technology
Priority to JP2008029597A priority Critical patent/JP4925468B2/en
Publication of JP2009185994A publication Critical patent/JP2009185994A/en
Application granted granted Critical
Publication of JP4925468B2 publication Critical patent/JP4925468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液晶流動の高効率形成機構、液晶流動の高効率形成方法および液晶流動を用いた高効率物体移動機構に関する。液晶とは、流動性はあるが、光学的には異方性で、複屈折を示し、結晶のような性質をもつ状態又はそのような状態を示す物質をいう。この液晶に対して電界や磁界を加えると、全ての液晶分子は、その重心周りに回転し、その軸方向が電界や磁界の方向に対して液晶固有の角度に配向する。本発明は、かかる液晶の性質を利用した液晶流動を用いた高効率物体移動機構、液晶流動の高効率形成機構および液晶流動の高効率形成方法に関する。   The present invention relates to a liquid crystal flow high-efficiency formation mechanism, a liquid crystal flow high-efficiency formation method, and a liquid crystal flow high-efficiency object moving mechanism. A liquid crystal refers to a state that has fluidity but is optically anisotropic, exhibits birefringence, has crystal-like properties, or exhibits such a state. When an electric field or magnetic field is applied to the liquid crystal, all liquid crystal molecules rotate around the center of gravity, and the axial direction is oriented at an angle unique to the liquid crystal with respect to the direction of the electric field or magnetic field. The present invention relates to a high-efficiency object moving mechanism using liquid crystal flow utilizing the properties of liquid crystal, a high-efficiency formation mechanism of liquid crystal flow, and a high-efficiency formation method of liquid crystal flow.

従来から液晶は、液晶分子が配向することによってその光学的性質が変化するため、この性質を利用して液晶ディスプレー等の情報表示装置に使用されている。
また、液晶は、電界や磁界を加えて液晶分子の配向方向を変化させるとその粘性が変化する。つまり、液晶は、電気粘性流体としての性質も有しているので、この性質を利用した軸受やダンパー等が開発されている。
Conventionally, liquid crystals have been used in information display devices such as liquid crystal displays because their optical properties change as liquid crystal molecules are aligned.
The viscosity of the liquid crystal changes when the orientation direction of the liquid crystal molecules is changed by applying an electric field or a magnetic field. That is, since the liquid crystal also has a property as an electrorheological fluid, bearings, dampers, and the like using this property have been developed.

一方、液晶分子が配向するときに、液晶流動が発生することが知られており、かかる液晶流動を工業的に利用する技術も開発されている(特許文献1)。
特許文献1には、対向する一対の壁面を有する流路と、この流路の壁面と交わる面内で液晶分子を回転させる液晶分子回転手段と、一対の壁面に設けられた一対の配向膜とを備えた液晶流動機構が開示されている。この液晶流動機構では、一対の壁面に設けられた一対の配向膜に同じ向きにラビング処理が施されており、一対の壁面間で液晶分子がツイストしている。
このため、液晶分子回転手段によって液晶分子を回転させれば、流路内に流量が0とならない液晶流動を発生させることができるから、この液晶流動を、物体を移動させる装置やセンサ、アクチュエータなどに利用することができる。
On the other hand, it is known that liquid crystal flow occurs when liquid crystal molecules are aligned, and a technique for industrially utilizing such liquid crystal flow has also been developed (Patent Document 1).
Patent Document 1 discloses a channel having a pair of opposed wall surfaces, liquid crystal molecule rotating means for rotating liquid crystal molecules in a plane intersecting the wall surface of the channel, and a pair of alignment films provided on the pair of wall surfaces. A liquid crystal flow mechanism comprising: In this liquid crystal flow mechanism, a pair of alignment films provided on a pair of wall surfaces are rubbed in the same direction, and liquid crystal molecules are twisted between the pair of wall surfaces.
For this reason, if the liquid crystal molecules are rotated by the liquid crystal molecule rotating means, a liquid crystal flow in which the flow rate does not become zero can be generated in the flow path. Can be used.

ところで、上記特許文献1の技術は、工業的に利用可能な液晶流動を発生させることができる点で有効な技術であるが、液晶流動の工業的な利用価値を高める上では、液晶流動の流量が大きい方が好ましく、液晶流動の流量を増加させる技術の開発が望まれている。   By the way, although the technique of the said patent document 1 is a technique effective in the point which can generate the liquid crystal flow which can be utilized industrially, in order to raise the industrial utility value of a liquid crystal flow, the flow volume of a liquid crystal flow. Is preferred, and development of a technique for increasing the flow rate of liquid crystal flow is desired.

特許第3586734号Japanese Patent No. 3586734

本発明はかかる事情に鑑み、工業的に利用可能な液晶流動を形成することができ、しかも、その流量や運動量を増加させることができる液晶流動の高効率形成機構および液晶流動の高効率形成方法、および液晶流動を用いた高効率物体移動機構を提供することを目的とする。   In view of such circumstances, the present invention can form an industrially usable liquid crystal flow, and can increase the flow rate and momentum of the liquid crystal flow with high efficiency formation mechanism and liquid crystal flow high efficiency formation method. And a high-efficiency object moving mechanism using liquid crystal flow.

請求項1の液晶流動の高効率形成機構は、流路と、該流路の壁面に沿って移動可能に設けられた液晶と、該液晶の液晶分子に対して電界または磁界を加えて、該液晶の液晶分子を前記流路の壁面と交わる面内で回転させる液晶分子回転手段とからなり、前記液晶分子回転手段が、前記流路の一の壁面と交差する方向から、該液晶の液晶分子に対して電界または磁界を加える回転手段と、該回転手段が前記液晶の液晶分子に対して電界または磁界を加える方向と交差する方向から、該液晶の液晶分子に対して電界または磁界を加える復帰手段とを備えていることを特徴とする。
請求項2の液晶流動を用いた高効率物体移動機構は、移動が固定された固定部材と、該固定部材と対向するように配置され、該固定部材に対して相対的に移動可能に設けられた移動部材と、該移動部材における前記固定部材と対向する移動側対向面と、前記固定部材における前記移動部材と対向する固定側対向面との間に配置された液晶と、前記液晶の液晶分子に対して電界または磁界を加えて、該液晶の液晶分子を、前記移動部材の移動側対向面または前記固定部材の固定側対向面と交わる面内において回転させる液晶分子回転手段とからなり、前記液晶分子回転手段が、前記移動部材の移動側対向面または前記固定部材の固定側対向面と交差する方向から、該液晶の液晶分子に対して電界または磁界を加える回転手段と、該回転手段が前記液晶の液晶分子に対して電界または磁界を加える方向と交差する方向から、該液晶の液晶分子に対して電界または磁界を加える復帰手段とを備えていることを特徴とする。
請求項3の液晶流動の高効率形成方法は、液晶を流路内に配置し、前記液晶に対して、前記流路の一の壁面と交わる方向に沿って電界または磁界を加えることができる回転手段と、前記回転手段が前記液晶の液晶分子に対して電界または磁界を加える方向と交差する方向から、該液晶の液晶分子に対して電界または磁界を加えることができる復帰手段とによって、交互に電界または磁界を前記液晶に加えることを特徴とする。
The high-efficiency formation mechanism of the liquid crystal flow according to claim 1 is characterized in that an electric field or a magnetic field is applied to the flow channel, the liquid crystal provided movably along the wall surface of the flow channel, and the liquid crystal molecules of the liquid crystal, Liquid crystal molecule rotating means for rotating the liquid crystal molecules of the liquid crystal in a plane intersecting the wall surface of the flow path, and the liquid crystal molecule rotating means from the direction intersecting one wall surface of the flow path A rotating means for applying an electric field or a magnetic field to the liquid crystal, and a return from which the rotating means applies an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal from a direction intersecting the direction of applying the electric field or magnetic field to the liquid crystal molecules of the liquid crystal Means.
The high-efficiency object moving mechanism using liquid crystal flow according to claim 2 is disposed so as to be opposed to the fixing member, the movement of which is fixed, and to be movable relative to the fixing member. A liquid crystal disposed between the moving member, a moving-side facing surface of the moving member facing the fixed member, a fixed-side facing surface of the fixed member facing the moving member, and liquid crystal molecules of the liquid crystal A liquid crystal molecule rotating means for applying an electric field or a magnetic field to the liquid crystal molecules to rotate the liquid crystal molecules of the liquid crystal in a plane crossing the moving side facing surface of the moving member or the fixed side facing surface of the fixing member, Rotating means for applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal from a direction intersecting the moving side facing surface of the moving member or the fixed side facing surface of the fixed member, and the rotating means in front The direction intersecting with the direction of application of an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal, characterized in that it comprises a return means for applying an electric field or magnetic field to the liquid crystal molecules of the liquid crystal.
According to a third aspect of the present invention, there is provided a method for forming a liquid crystal flow with high efficiency, wherein the liquid crystal is disposed in a flow path, and an electric field or a magnetic field can be applied to the liquid crystal along a direction intersecting one wall surface of the flow path. And a return means capable of applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal from a direction intersecting a direction in which the rotating means applies an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal. An electric field or a magnetic field is applied to the liquid crystal.

第1発明によれば、回転手段と復帰手段から交互に液晶に対して電界または磁界を加えれば、各液晶分子を、その重心周りに揺動させることができ、液晶分子の揺動に起因する液晶流動を発生させることができる。そして、各手段から電界または磁界を加えるタイミング時間を制御すれば、発生する液晶流動の流量や流動方向をコントロールすることができるから、液晶流動をより工業的に利用しやすくすることができる。
第2発明によれば、回転手段と復帰手段から交互に液晶に対して電界または磁界を加えれば、各液晶分子を、その重心周りに揺動させることができる。すると、液晶分子の揺動に起因する液晶流動を発生させることができるから、移動部材を、固定部材に対して液晶流動の方向に移動させることができる。よって、液晶の流動を部材の移動に利用することができるので、液晶を利用した搬送装置等に応用することができる。そして、各手段から電界または磁界を加えるタイミング時間を制御すれば、発生する液晶流動の流量や流動方向をコントロールすることができるから、移動部材の移動量や移動方向を制御することができる。
第3発明によれば、回転手段と復帰手段から交互に液晶に対して電界または磁界を加えれば、各液晶分子を、その重心周りに揺動させることができ、液晶分子の揺動に起因する液晶流動を発生させることができる。そして、各手段から電界または磁界を加えるタイミング時間を制御すれば、発生する液晶流動の流量や流動方向をコントロールすることができるから、液晶流動をより工業的に利用しやすくすることができる。
According to the first invention, when an electric field or a magnetic field is alternately applied to the liquid crystal from the rotating means and the returning means, each liquid crystal molecule can be swung around its center of gravity, resulting from the rocking of the liquid crystal molecule. Liquid crystal flow can be generated. By controlling the timing of applying an electric field or magnetic field from each means, the flow rate and flow direction of the generated liquid crystal flow can be controlled, making it easier to use the liquid crystal flow industrially.
According to the second invention, if an electric field or a magnetic field is alternately applied to the liquid crystal from the rotating means and the returning means, each liquid crystal molecule can be swung around its center of gravity. Then, since the liquid crystal flow resulting from the oscillation of the liquid crystal molecules can be generated, the moving member can be moved in the liquid crystal flow direction with respect to the fixed member. Therefore, since the flow of the liquid crystal can be used for the movement of the member, it can be applied to a transport device using liquid crystal. By controlling the timing of applying an electric field or magnetic field from each means, it is possible to control the flow rate and flow direction of the generated liquid crystal flow, so that the movement amount and movement direction of the moving member can be controlled.
According to the third aspect of the invention, if an electric field or a magnetic field is alternately applied to the liquid crystal from the rotating means and the returning means, each liquid crystal molecule can be swung around its center of gravity, resulting from the rocking of the liquid crystal molecule. Liquid crystal flow can be generated. By controlling the timing of applying an electric field or magnetic field from each means, the flow rate and flow direction of the generated liquid crystal flow can be controlled, making it easier to use the liquid crystal flow industrially.

つぎに、本発明の実施形態を図面に基づき説明する。
まず、本発明の液晶流動の高効率形成機構を説明する前に、液晶に電界や磁界を加えたときに、液晶流動が発生する原理を説明する。
なお、液晶は、電界や磁界を加えたときに、電界や磁界の方向に対して液晶分子の軸方向が液晶固有の角度に配向するが、以下には、電界や磁界を加えたときに、液晶分子の軸方向が電界や磁界の方向と平行になるような液晶について説明する。
また、液晶分子は、電界、磁界いずれを加えた場合でも配向するので、以下には電界を加える場合のみを説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.
First, before explaining the high-efficiency formation mechanism of liquid crystal flow according to the present invention, the principle of liquid crystal flow occurring when an electric field or magnetic field is applied to the liquid crystal will be described.
In addition, when an electric field or a magnetic field is applied to the liquid crystal, the axial direction of the liquid crystal molecules is aligned at an angle unique to the liquid crystal with respect to the direction of the electric field or the magnetic field. A liquid crystal in which the axial direction of liquid crystal molecules is parallel to the direction of an electric field or magnetic field will be described.
In addition, since the liquid crystal molecules are aligned when an electric field or a magnetic field is applied, only the case where an electric field is applied will be described below.

図3は電界が加えられたときにおける液晶分子mの動きの説明図である。図4は平行板P上に載せられた液晶LCに電界が加えられたときにおける液晶分子mの動きの説明図である。
なお、図4において、液晶分子mが重心周りに回転したときに、液晶分子mは平行板Pの表面に沿って移動(並進移動)するのであるが、説明を分かりやすくするために並進移動をさせない状態で記載している。
FIG. 3 is an explanatory diagram of the movement of the liquid crystal molecules m when an electric field is applied. FIG. 4 is an explanatory diagram of the movement of the liquid crystal molecules m when an electric field is applied to the liquid crystal LC placed on the parallel plate P.
In FIG. 4, when the liquid crystal molecules m rotate around the center of gravity, the liquid crystal molecules m move (translate) along the surface of the parallel plate P. It is described in a state where it is not allowed.

図3に示すように、液晶LCに、その液晶分子mの軸方向と交差するように電界efを加えると、液晶分子mは、その回転角度が小さくなる方向(図3(A) では矢印の方向)に、その軸方向が電界efと一致するまで回転する(図3(B) )。すると、各液晶分子mの周囲には速度勾配が発生するので、液晶流動が発生するのである(図3(C) )。   As shown in FIG. 3, when an electric field ef is applied to the liquid crystal LC so as to intersect the axial direction of the liquid crystal molecule m, the liquid crystal molecule m has a direction in which the rotation angle decreases (in FIG. Direction) until the axial direction coincides with the electric field ef (FIG. 3B). Then, since a velocity gradient is generated around each liquid crystal molecule m, a liquid crystal flow is generated (FIG. 3C).

ここで、図4 に示すように、平板P等に接触している液晶LCでは、平行板P等の壁面近傍に位置する液晶分子mは、壁面と液晶分子mとの間に生じる分子間相互作用の影響により、壁面から離れて位置する液晶分子mに比べてその重心周りの回転や並進移動が若干制限される。すると、電界efを加えても、平行板Pの近傍に位置する液晶分子mは、その軸方向が電界efと一致するまで回転することができず、回転量が小さくなり、液晶分子mの回転によってその周囲に形成される速度勾配も小さくなる(図4(B)、(C) )。
したがって、平板P等に接触するように配置された液晶LCでは、電界efを加えたときに、液晶LC内に、図4(D)に示すような速度分布を有する液晶分子mの流れが発生するのである。
Here, as shown in FIG. 4, in the liquid crystal LC in contact with the flat plate P or the like, the liquid crystal molecules m located near the wall surface of the parallel plate P or the like are intermolecularly generated between the wall surface and the liquid crystal molecule m. Due to the influence of the action, the rotation and translation around the center of gravity are slightly limited as compared with the liquid crystal molecules m located away from the wall surface. Then, even if the electric field ef is applied, the liquid crystal molecules m located in the vicinity of the parallel plate P cannot rotate until the axial direction thereof coincides with the electric field ef, and the rotation amount becomes small, and the rotation of the liquid crystal molecules m. As a result, the velocity gradient formed in the surroundings is also reduced (FIGS. 4B and 4C).
Therefore, in the liquid crystal LC arranged so as to be in contact with the flat plate P or the like, a flow of liquid crystal molecules m having a velocity distribution as shown in FIG. 4D is generated in the liquid crystal LC when the electric field ef is applied. To do.

さて、本発明の液晶流動の高効率形成機構を説明する。
図1は本発明の液晶流動の高効率形成機構の概略説明図であり、(A) は電界efを加える前の液晶分子mの状態を示したYZ断面図であり、(B) はYZ断面図において電界efを加えたときにおける液晶分子の配列を示した図であり、(C) は流路Lが筒状の流路である場合の概略説明図である。図2は本発明の液晶流動の高効率形成機構の概略説明図であり、(A) は電界efの印加をやめたときにおける液晶分子の配列を示した図でありYZ断面図であり、(B) はYZ断面図において磁界bfを加えたときにおける液晶分子の配列を示した図であり、(C) はYZ断面図において磁界bfを加えたときに一対の壁面B,B間に発生する液晶の速度分布を示した図である。
なお、図1(B)、図2(B)では、図面を分かり易くするために、コイルCLは省略している。
Now, the highly efficient formation mechanism of the liquid crystal flow of the present invention will be described.
FIG. 1 is a schematic explanatory view of a high-efficiency formation mechanism of liquid crystal flow according to the present invention, (A) is a YZ sectional view showing a state of liquid crystal molecules m before applying an electric field ef, and (B) is a YZ sectional view. In the figure, it is the figure which showed the arrangement | sequence of the liquid crystal molecule when the electric field ef is applied, (C) is a schematic explanatory drawing in case the flow path L is a cylindrical flow path. FIG. 2 is a schematic explanatory view of the high-efficiency formation mechanism of the liquid crystal flow of the present invention, (A) is a diagram showing the arrangement of liquid crystal molecules when the application of the electric field ef is stopped, and is a YZ sectional view, ) Is a diagram showing the arrangement of liquid crystal molecules when a magnetic field bf is applied in the YZ sectional view, and (C) is a liquid crystal generated between the pair of wall surfaces B and B when the magnetic field bf is applied in the YZ sectional view. It is the figure which showed the velocity distribution.
In FIGS. 1B and 2B, the coil CL is omitted for easy understanding of the drawings.

図1において、符号Lは、後述する液晶LCが流動する流路を示している。この流路Lは、対向する一対の壁面B,Bを備えている。この一対の壁面B,Bは、互いに平行かつ、いずれの壁面Bも平坦面に形成されている。この一対の壁面B,Bには、配向膜が設けられておらず、また、ラビングレス処理もされていない。
なお、対向する一対の壁面B,Bは平行でなくてもよく、一方の壁面Bに対して他方の壁面Bが傾斜していてもよい。
さらになお、各壁面Bは平坦面でなくてもよい。例えば一方の壁面Bが平坦面であって他方の壁面Bが凹凸を有する面でもよいし、いずれの壁面Bも凹凸を有する面であってもよい。
In FIG. 1, a symbol L indicates a flow path in which a liquid crystal LC to be described later flows. The flow path L includes a pair of opposing wall surfaces B and B. The pair of wall surfaces B and B are parallel to each other, and both wall surfaces B are formed as flat surfaces. The pair of wall surfaces B and B are not provided with an alignment film and are not subjected to rubbing-less treatment.
Note that the pair of opposing wall surfaces B and B may not be parallel, and the other wall surface B may be inclined with respect to the one wall surface B.
Furthermore, each wall surface B may not be a flat surface. For example, one wall surface B may be a flat surface and the other wall surface B may be a surface having unevenness, or any wall surface B may be a surface having unevenness.

前記流路Lの一対の壁面B,B間には、液晶LCが入れられている。この液晶LCは、例えばネマティック液晶やスメクティック液晶、コレステリック液晶、ディスコティック液晶等であるが、電界を加えたときに、液晶分子が回転する液晶であれば、特に限定はない。   A liquid crystal LC is inserted between the pair of wall surfaces B of the flow path L. The liquid crystal LC is, for example, a nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, a discotic liquid crystal, or the like, but is not particularly limited as long as the liquid crystal molecules rotate when an electric field is applied.

図1に示すように、流路Lの内部において、前記一対の壁面B ,Bの内面には、それぞれ一対の電極E,Eが設けられている。この一対の電極E,Eは、両者を結ぶ線が一対の壁面B ,Bと垂直になるように配設されている。
さらに、流路Lの一対の壁面B,Bの外方には、コイルCLが設けられている。このコイルCLは、その軸方向が電界efの方向と交差するように配設されている。具体的には、コイルCLは、その軸方向が、電界efの方向に対して直交しないように配設されている。
As shown in FIG. 1, inside the flow path L, a pair of electrodes E and E are provided on the inner surfaces of the pair of wall surfaces B 1 and B 2, respectively. The pair of electrodes E and E are arranged so that a line connecting them is perpendicular to the pair of wall surfaces B 1 and B 2.
Furthermore, a coil CL is provided outside the pair of wall surfaces B of the flow path L. The coil CL is arranged such that its axial direction intersects the direction of the electric field ef. Specifically, the coil CL is disposed such that its axial direction is not orthogonal to the direction of the electric field ef.

そして、前記一対の電極E,EおよびコイルCLは、いずれも制御装置Dに接続されている。この制御装置Dは、一対の電極E,Eに電圧を供給するタイミングや電圧値を制御しており、また、コイルCLに電流を供給するタイミングやその電流値を制御している。   The pair of electrodes E, E and the coil CL are all connected to the control device D. The control device D controls the timing and voltage value for supplying voltage to the pair of electrodes E and E, and also controls the timing and current value for supplying current to the coil CL.

このため、制御装置Dによって一対の電極E,Eに電圧を加えれば、一対の壁面B,B間に、一対の壁面B,Bと垂直な電界efを形成することができる(図1(B))。
また、制御装置DによってコイルCLに電流を流せば、コイルCLの周囲にその軸方向に沿った磁界bfを形成することができる。つまり、電界efの方向と交差する磁界bfを形成することができるのである(図2(B))。
この一対の電極E,E、コイルCLおよび制御装置Dが液晶分子回転手段CBを構成しており、一対の電極E,Eが特許請求の範囲にいう回転手段に相当し、コイルCLが特許請求の範囲にいう復帰手段に相当する。
Therefore, if a voltage is applied to the pair of electrodes E, E by the control device D, an electric field ef perpendicular to the pair of wall surfaces B, B can be formed between the pair of wall surfaces B, B (FIG. 1B )).
Further, when a current is passed through the coil CL by the control device D, a magnetic field bf along the axial direction can be formed around the coil CL. That is, a magnetic field bf that intersects the direction of the electric field ef can be formed (FIG. 2B).
The pair of electrodes E, E, the coil CL, and the control device D constitute the liquid crystal molecule rotating means CB. The pair of electrodes E, E correspond to the rotating means in the claims, and the coil CL is claimed. This corresponds to the return means in the range.

つぎに、本実施形態の液晶流動の高効率形成機構の作用と効果を説明する。
まず、制御装置Dによって一対の電極E,E間に電圧を加えると、流路L内の一対の壁面B,B間に、一対の壁面B,Bと垂直な方向の電界efが発生する。すると、液晶LCの全ての液晶分子mは、その軸方向が電界efと平行になるように各液晶分子mの重心周りに回転する(図1(A)、(B))。
このとき、一対の壁面B,Bには配向膜がなくまたラビングレス処理をしていないので、電界efが印加されるまでは流路L内の液晶分子mの方向はばらばらであり、流路L内には特定の方向への液晶流動は発生しない。
Next, the operation and effect of the high-efficiency formation mechanism for liquid crystal flow according to this embodiment will be described.
First, when a voltage is applied between the pair of electrodes E, E by the control device D, an electric field ef in a direction perpendicular to the pair of wall surfaces B, B is generated between the pair of wall surfaces B, B in the flow path L. Then, all the liquid crystal molecules m of the liquid crystal LC rotate around the center of gravity of each liquid crystal molecule m so that the axial direction is parallel to the electric field ef (FIGS. 1A and 1B).
At this time, since the pair of wall surfaces B and B have no alignment film and are not subjected to rubbing-less treatment, the directions of the liquid crystal molecules m in the flow path L are different until the electric field ef is applied. In L, liquid crystal flow in a specific direction does not occur.

液晶LCの全ての液晶分子mが電界efと平行となると、一対の電極E,E間への電圧の印加をやめる。しかし、一対の壁面B,Bには配向膜がなくまたラビングレス処理をしていないので、全ての液晶分子mが電界efと平行なままで維持される。   When all the liquid crystal molecules m of the liquid crystal LC are parallel to the electric field ef, the voltage application between the pair of electrodes E and E is stopped. However, since there is no alignment film on the pair of wall surfaces B and B and no rubbing treatment is performed, all the liquid crystal molecules m are maintained in parallel with the electric field ef.

ついで、制御装置DによってコイルCLに電流を流せば、コイルCLの周囲にその軸方向に沿った磁界bfが形成されるから、全ての液晶分子mは、磁界bfの方向を向くように各液晶分子mの重心周りに回転する(図2(A)、(B))。   Next, when a current is passed through the coil CL by the control device D, a magnetic field bf along the axial direction is formed around the coil CL, so that all the liquid crystal molecules m are directed to the direction of the magnetic field bf. It rotates around the center of gravity of the molecule m (FIGS. 2A and 2B).

ここで、コイルCLは、その軸方向が、電界efの方向に対して直交しないように配設されているので、全ての液晶分子mは、磁界bfの方向を向くときにその回転量が少なくなる方向に回転する。つまり、図1(B)であれば、反時計回りに回転する。
すると、流路L内には、磁界efの方向と電界efの方向の両方を含む面内に図2(C) に示した速度分布が形成され、左向きの液晶流動が発生する。
Here, since the axial direction of the coil CL is arranged so as not to be orthogonal to the direction of the electric field ef, all the liquid crystal molecules m have a small amount of rotation when facing the direction of the magnetic field bf. Rotate in the direction That is, in FIG. 1B, it rotates counterclockwise.
Then, in the flow path L, the velocity distribution shown in FIG. 2C is formed in a plane including both the direction of the magnetic field ef and the direction of the electric field ef, and a liquid crystal flow in the left direction is generated.

ついで、コイルCLへの電流の供給を停止するが、このときも、一対の壁面B,Bには配向膜がなくまたラビングレス処理をしていないので、全ての液晶分子mが磁界bfと平行なままで維持される。
その状態から制御装置Dによって一対の電極E,E間に電圧を加えて電界efを発生させれば、全ての液晶分子mは、電界efの方向を向くときにその回転量が少なくなる方向に回転する。つまり、電界efの方向を向いていた状態から磁界bfの方向を向くときにおける回転方向と逆方向に回転する。図2(B)であれば、時計回りに回転する。
すると、流路L内には、磁界efの方向と電界efの方向の両方を含む面内に、図2(C) に示した速度分布とy軸に対して逆向きの速度分布が形成され、右向きの液晶流動が発生する。
Next, the supply of current to the coil CL is stopped. At this time, too, since the pair of wall surfaces B and B have no alignment film and are not subjected to rubbing-less treatment, all liquid crystal molecules m are parallel to the magnetic field bf. Maintained.
If a voltage is applied between the pair of electrodes E, E by the control device D to generate an electric field ef from that state, all the liquid crystal molecules m are rotated in a direction that reduces the amount of rotation when facing the direction of the electric field ef. Rotate. That is, it rotates in the direction opposite to the rotation direction when it faces the direction of the magnetic field bf from the state where it faces the direction of the electric field ef. In FIG. 2 (B), it rotates clockwise.
Then, in the flow path L, the velocity distribution shown in FIG. 2C and the velocity distribution opposite to the y-axis are formed in a plane including both the direction of the magnetic field ef and the direction of the electric field ef. , Rightward liquid crystal flow occurs.

つまり、液晶分子mに対して、一対の電極E,E間による電界efの印加と、コイルCLによる磁界bfの印加を交互に行えば、各液晶分子mをその重心周りに揺動させることができるから、磁界efの方向と電界efの方向の両方を含む面に沿った液晶流動、つまり、図1および図2における右方向への液晶流動と左方向への液晶流動を、流路L内に交互に発生させることができる。
すると、右方向への液晶流動の流量(以下、印加時流量という)と左方向への液晶流動の流量(以下、復帰時流量という)に差があれば、その差の分だけ右向きまたは左向きの流量を有する液晶流動を流路L内に発生するのである。
That is, if the application of the electric field ef between the pair of electrodes E and E and the application of the magnetic field bf by the coil CL are alternately performed on the liquid crystal molecule m, each liquid crystal molecule m can be swung around its center of gravity. Therefore, the liquid crystal flow along the plane including both the direction of the magnetic field ef and the direction of the electric field ef, that is, the liquid crystal flow in the right direction and the liquid crystal flow in the left direction in FIGS. Can be generated alternately.
Then, if there is a difference between the flow rate of the liquid crystal flow to the right (hereinafter referred to as the flow rate at the time of application) and the flow rate of the liquid crystal flow to the left direction (hereinafter referred to as the flow rate at the time of restoration), A liquid crystal flow having a flow rate is generated in the flow path L.

そして、電界efの強さや磁界bfの強さ、また、電界efや磁界bfを印加するタイミングを調整すれば、流路L内に発生する液晶流動の流量や流動方向をコントロールすることができるから、液晶流動をより工業的に利用しやすくすることができる。
しかも、液晶分子mの回転や移動の抵抗となる配向膜等がないので、配向膜等を設けている場合に比べて、流路L内に発生する液晶流動、つまり、流路L内に発生する流量を大きくすることができる。
Then, by adjusting the strength of the electric field ef and the strength of the magnetic field bf and the timing of applying the electric field ef and the magnetic field bf, the flow rate and flow direction of the liquid crystal flow generated in the flow path L can be controlled. The liquid crystal flow can be more industrially utilized.
Moreover, since there is no alignment film or the like that resists rotation or movement of the liquid crystal molecules m, liquid crystal flow generated in the flow path L, that is, generated in the flow path L, compared to the case where an alignment film or the like is provided. The flow rate to be increased can be increased.

なお、一対の電極E,Eは、両者を結ぶ線が一対の壁面B ,Bと垂直になるように配設しなくてもよく、一対の電極E,Eに形成される電界efによって液晶LCの液晶分子mをいずれか一方の壁面Bと交わる面内で回転するように配設すればよい。
また、一対の電極E,Eを前記流路Lの外面に取り付けてもよい。この場合、流路Lの素材を導電体や電界が透過できる素材とすれば、一対の壁面B,B間に電界efを形成することができる。
さらに、流路Lの素材を導電体とした場合、制御装置Dを直接流路Lに接続し、制御装置Dによって流路Lに電圧を加えれば、一対の壁面B,B間に電界efを発生させることができる。
そして、一対の電極E,Eに代えて、一対の壁面B,B間に磁界bfを形成できるものを一対の壁面B,Bに磁界発生部材を設けてもよいのは、いうまでもない。
Note that the pair of electrodes E and E need not be arranged so that the line connecting them is perpendicular to the pair of wall surfaces B and B, and the liquid crystal LC is generated by the electric field ef formed on the pair of electrodes E and E. The liquid crystal molecules m may be arranged so as to rotate in a plane intersecting one of the wall surfaces B.
A pair of electrodes E, E may be attached to the outer surface of the flow path L. In this case, the electric field ef can be formed between the pair of wall surfaces B and B if the material of the flow path L is a material that can transmit a conductor or an electric field.
Furthermore, when the material of the flow path L is a conductor, if the control device D is directly connected to the flow path L and a voltage is applied to the flow path L by the control device D, an electric field ef is generated between the pair of wall surfaces B and B. Can be generated.
And it cannot be overemphasized that instead of a pair of electrodes E and E, a magnetic field generating member may be provided on a pair of wall surfaces B and B that can form a magnetic field bf between the pair of wall surfaces B and B.

そして、図1(C)に示すように、本実施形態の液晶流動の高効率形成機構の流路Lが、筒状の流路である場合には、コイルCL内に流路Lが位置するようにすれば、コイルCL内を通る磁界bfを液晶分子mに対して加えることができる。すると、液晶分子mに対して加える磁界bfの調整が容易になるし、磁束密度が高くなるので好ましい。
また、流路L内に配置される液晶LCが光配向性液晶の場合には、レーザ光を液晶に照射し得るレーザ光源も復帰手段として採用することができる。
As shown in FIG. 1C, when the flow path L of the liquid crystal flow high efficiency forming mechanism of the present embodiment is a cylindrical flow path, the flow path L is located in the coil CL. By doing so, the magnetic field bf passing through the coil CL can be applied to the liquid crystal molecules m. Then, adjustment of the magnetic field bf applied to the liquid crystal molecules m is facilitated, and the magnetic flux density is increased, which is preferable.
Further, when the liquid crystal LC arranged in the flow path L is a photo-alignment liquid crystal, a laser light source that can irradiate the liquid crystal with laser light can also be employed as the return means.

なお、壁面Bには、ウィークアンカリング処理を行ってもよい。この場合には、液晶分子mの配向方向を若干整えることができる。そして、通常の配向膜を設けたりラビングレス処理を行う場合に比べて壁面B近傍の液晶分子mを拘束する力が弱いので、壁面B近傍の液晶分子mは、ある程度自由に重心周りの回転や壁面Bに沿った移動(並進移動)を行うことができる。
また、壁面Bは、その近傍の液晶分子mがある程度自由に重心周りの回転や並進移動を行うことができる状態であって壁面Bの影響によって液晶分子mが拘束されない状態であればよく、かかる状態とすることができるのであれば、壁面Bに対して何の処理も行わなくてもよい。しかし、壁面Bが液晶分子mの配向方向に与える影響を除去する処理を行っておけば、より確実に壁面B近傍の液晶分子mが、自由に重心周りの回転や壁面Bに沿った移動をできるので、好適である。
The wall B may be subjected to a weak anchoring process. In this case, the alignment direction of the liquid crystal molecules m can be slightly adjusted. Since the force for restraining the liquid crystal molecules m in the vicinity of the wall surface B is weaker than that in the case where a normal alignment film is provided or the rubbing-less process is performed, the liquid crystal molecules m in the vicinity of the wall surface B can freely rotate around the center of gravity. Movement along the wall surface B (translational movement) can be performed.
Further, the wall surface B may be in a state where the liquid crystal molecules m in the vicinity thereof can freely rotate and translate around the center of gravity to some extent and the liquid crystal molecules m are not restrained by the influence of the wall surface B. If it can be set in the state, no processing may be performed on the wall surface B. However, if the process of removing the influence of the wall surface B on the alignment direction of the liquid crystal molecules m is performed, the liquid crystal molecules m in the vicinity of the wall surface B can freely rotate around the center of gravity or move along the wall surface B. This is preferable because it is possible.

つぎに、本発明の液晶流動を用いた高効率物体移動機構について説明する。
本発明の液晶流動を用いた高効率物体移動機構は、上述した液晶流動の高効率形成機構を物体の移動に適用したものである。よって、上記液晶流動の高効率形成機構で説明した事項と重複する内容については、簡単に説明する。
Next, a highly efficient object moving mechanism using liquid crystal flow according to the present invention will be described.
The high-efficiency object moving mechanism using liquid crystal flow according to the present invention is obtained by applying the above-described high-efficiency forming mechanism of liquid crystal flow to moving an object. Therefore, the contents overlapping with those described in the high-efficiency formation mechanism for liquid crystal flow will be briefly described.

図5は本実施形態の液晶流動を用いた高効率物体移動機構の説明図である。同図において、符号Pは一対の部材を示している。この一対の部材P ,Pは、互いに平行かつ、いずれの部材Pの対向する壁面も平坦面に形成されている。この一対の部材P ,Pのうち、一方の部材P(図5では下方の部材P)は固定されているが、他方の部材P(図5では上方の部材P)は一方の部材Pに対して相対的に移動可能に設けられている。   FIG. 5 is an explanatory diagram of a high-efficiency object moving mechanism using liquid crystal flow according to the present embodiment. In the same figure, the code | symbol P has shown a pair of member. The pair of members P 1 and P 2 are parallel to each other, and the opposing wall surfaces of either member P are formed as flat surfaces. Of the pair of members P 1 and P 2, one member P (lower member P in FIG. 5) is fixed, but the other member P (upper member P in FIG. 5) is in relation to one member P. Are relatively movable.

この一対の部材P ,Pにおいて、上方の部材Pの下面(移動側対向面)と下方の部材Pの上面(固定側対向面)との間には、液晶LCが入れられており、移動側対向面および固定側対向面には、いずれにも配向膜は設けられておらず、いずれにもラビングレス処理は行われていない。   In the pair of members P 1 and P 2, the liquid crystal LC is placed between the lower surface (moving side facing surface) of the upper member P and the upper surface (fixing side facing surface) of the lower member P, and the moving side No alignment film is provided on the opposing surface and the fixed-side opposing surface, and neither is a rubbing-less treatment.

また、前記上下一対の部材P ,Pの固定側対向面および移動側対向面には、それぞれ一対の電極E,Eが設けられており、図示しない制御装置によって一対の電極E,Eに電圧を加えたときに、一対の部材P ,Pの固定側対向面および移動側対向面と垂直な電界efを形成することができるように配置されている。
そして、流路Lの一対の壁面B,Bの外方には、コイルCLが設けられており、その軸方向が電界efの方向と交差するように配設されており、このコイルCLに電流を供給する図示しない制御装置に接続されている。
A pair of electrodes E, E are provided on the fixed side facing surface and the moving side facing surface of the pair of upper and lower members P 1, 2 P, respectively, and a voltage is applied to the pair of electrodes E, E by a control device (not shown). When added, they are arranged so that an electric field ef perpendicular to the fixed side facing surface and the moving side facing surface of the pair of members P 1 and P 2 can be formed.
A coil CL is provided outside the pair of wall surfaces B, B of the flow path L, and the axial direction of the coil CL intersects the direction of the electric field ef. Is connected to a control device (not shown) for supplying

このため、一対の電極E,E間による電界efの印加と、コイルCLによる磁界bfの印加を交互に行えば、右方向への液晶流動と左方向への液晶流動を、流路L内に交互に発生させることができる。すると、下方の部材Pは固定されているのに対し、上方の部材Pは下方の部材Pに対して相対的に移動可能であるから、液晶LCの流れの方向、つまり、上方の部材PをコイルCLの軸方向に沿って移動させることができる。
なお、図5(B) には、電界efを印加したときに発生する液晶流動と、上方の部材Pの移動を示している。
Therefore, if the application of the electric field ef between the pair of electrodes E and E and the application of the magnetic field bf by the coil CL are alternately performed, the liquid crystal flow in the right direction and the liquid crystal flow in the left direction are caused to flow into the flow path L. It can be generated alternately. Then, while the lower member P is fixed, the upper member P is movable relative to the lower member P. Therefore, the flow direction of the liquid crystal LC, that is, the upper member P is changed. It can be moved along the axial direction of the coil CL.
FIG. 5B shows the liquid crystal flow generated when the electric field ef is applied and the movement of the upper member P.

なお、対向する一対の部材P,Pは平行でなくてもよく、例えば下方の部材Pの固定側対向面に対して上方の部材Pの移動側対向面が傾斜していてもよい。この場合、移動側対向面に沿って、上方の部材Pを移動させることができる。つまり、下方の部材Pに対して上方の部材Pを3次元的に移動させることができる。   Note that the pair of opposing members P and P may not be parallel. For example, the moving-side facing surface of the upper member P may be inclined with respect to the fixed-side facing surface of the lower member P. In this case, the upper member P can be moved along the moving-side facing surface. That is, the upper member P can be moved three-dimensionally with respect to the lower member P.

そして、本実施形態の高効率物体移動機構を応用すれば、液晶を利用した搬送装置を作ることができる。このような搬送装置等は、非常にコンパクトに作ることができ、しかも微弱な電力などによって駆動させることができるので、例えばマイクロマシーンに付随する作業機械等に適用可能である。   And if the highly efficient object moving mechanism of this embodiment is applied, the conveyance apparatus using a liquid crystal can be made. Such a transport device or the like can be made very compact and can be driven by a weak electric power, and therefore can be applied to a work machine associated with a micromachine, for example.

また、本実施形態の高効率物体移動機構は、微弱な電力によって液晶流動を発生させることができるので、微弱な電流が流れたときに発生する磁界や電界を感知して、作動するセンサなどにも応用可能である。   In addition, since the high-efficiency object moving mechanism of the present embodiment can generate liquid crystal flow with weak electric power, it can be used as a sensor that operates by detecting a magnetic field or electric field generated when a weak current flows. Is also applicable.

本発明の液晶流動の高効率形成機構の概略説明図であり、(A) は電界efを加える前の液晶分子mの状態を示したYZ断面図であり、(B) はYZ断面図において電界efを加えたときにおける液晶分子の配列を示した図であり、(C) は流路Lが筒状の流路である場合の概略説明図である。It is a schematic explanatory drawing of the highly efficient formation mechanism of the liquid crystal flow of the present invention, (A) is a YZ sectional view showing the state of liquid crystal molecules m before applying electric field ef, and (B) is an electric field in the YZ sectional view. It is the figure which showed the arrangement | sequence of the liquid crystal molecule when adding ef, (C) is a schematic explanatory drawing in case the flow path L is a cylindrical flow path. 本発明の液晶流動の高効率形成機構の概略説明図であり、(A) は電界efの印加をやめたときにおける液晶分子の配列を示した図でありYZ断面図であり、(B) はYZ断面図において磁界bfを加えたときにおける液晶分子の配列を示した図であり、(C) はYZ断面図において磁界bfを加えたときに一対の壁面B,B間に発生する液晶の速度分布を示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic explanatory drawing of the highly efficient formation mechanism of the liquid crystal flow of this invention, (A) is a figure which showed the arrangement | sequence of a liquid crystal molecule when the application of the electric field ef is stopped, (B) is YZ sectional drawing. It is the figure which showed the arrangement | sequence of the liquid crystal molecule when the magnetic field bf is added in sectional drawing, (C) is the velocity distribution of the liquid crystal which generate | occur | produces between a pair of wall surfaces B and B when applying the magnetic field bf in YZ sectional drawing. FIG. 電界が加えられたときにおける液晶分子mの動きの説明図である。It is explanatory drawing of a motion of the liquid crystal molecule m when an electric field is applied. 平行板P上に載せられた液晶LCに電界が加えられたときにおける液晶分子mの動きの説明図である。It is explanatory drawing of a motion of the liquid crystal molecule m when an electric field is applied to the liquid crystal LC mounted on the parallel plate P. 本実施形態の液晶流動を用いた高効率物体移動機構の説明図である。It is explanatory drawing of the highly efficient object moving mechanism using the liquid-crystal flow of this embodiment.

符号の説明Explanation of symbols

L 流路
B 壁面
CL コイル
LC 液晶
m 液晶分子
ef 電界
bf 磁界
L channel B wall surface CL coil LC liquid crystal m liquid crystal molecule ef electric field bf magnetic field

Claims (3)

流路と、
該流路の壁面に沿って移動可能に設けられた液晶と、
該液晶の液晶分子に対して電界または磁界を加えて、該液晶の液晶分子を前記流路の壁面と交わる面内で回転させる液晶分子回転手段とからなり、
前記液晶分子回転手段が、
前記流路の一の壁面と交差する方向から、該液晶の液晶分子に対して電界または磁界を加える回転手段と、
該回転手段が前記液晶の液晶分子に対して電界または磁界を加える方向と交差する方向から、該液晶の液晶分子に対して電界または磁界を加える復帰手段とを備えている
ことを特徴とする液晶流動の高効率形成機構。
A flow path;
A liquid crystal provided movably along the wall surface of the flow path;
A liquid crystal molecule rotating means for applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal and rotating the liquid crystal molecules of the liquid crystal in a plane intersecting the wall surface of the flow path;
The liquid crystal molecule rotating means comprises:
Rotating means for applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal from a direction intersecting one wall surface of the flow path;
A liquid crystal comprising: the rotating means including a returning means for applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal from a direction crossing a direction of applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal Highly efficient formation mechanism of flow.
移動が固定された固定部材と、
該固定部材と対向するように配置され、該固定部材に対して相対的に移動可能に設けられた移動部材と、
該移動部材における前記固定部材と対向する移動側対向面と、前記固定部材における前記移動部材と対向する固定側対向面との間に配置された液晶と、
前記液晶の液晶分子に対して電界または磁界を加えて、該液晶の液晶分子を、前記移動部材の移動側対向面または前記固定部材の固定側対向面と交わる面内において回転させる液晶分子回転手段とからなり、
前記液晶分子回転手段が、
前記移動部材の移動側対向面または前記固定部材の固定側対向面と交差する方向から、該液晶の液晶分子に対して電界または磁界を加える回転手段と、
該回転手段が前記液晶の液晶分子に対して電界または磁界を加える方向と交差する方向から、該液晶の液晶分子に対して電界または磁界を加える復帰手段とを備えている
ことを特徴とする液晶流動を用いた高効率物体移動機構。
A fixed member with fixed movement;
A moving member that is disposed so as to face the fixing member and is movable relative to the fixing member;
A liquid crystal disposed between a moving-side facing surface of the moving member facing the fixed member and a fixed-side facing surface of the fixed member facing the moving member;
Liquid crystal molecule rotating means for applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal to rotate the liquid crystal molecules of the liquid crystal in a plane that intersects the moving side facing surface of the moving member or the fixed side facing surface of the fixing member. And consist of
The liquid crystal molecule rotating means comprises:
Rotating means for applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal from a direction intersecting the moving side facing surface of the moving member or the fixed side facing surface of the fixing member;
A liquid crystal comprising: the rotating means including a returning means for applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal from a direction crossing a direction of applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal High-efficiency object movement mechanism using flow.
液晶を流路内に配置し、
前記液晶に対して、前記流路の一の壁面と交わる方向に沿って電界または磁界を加えることができる回転手段と、
前記回転手段が前記液晶の液晶分子に対して電界または磁界を加える方向と交差する方向から、該液晶の液晶分子に対して電界または磁界を加えることができる復帰手段とによって、交互に電界または磁界を前記液晶に加える
ことを特徴とする液晶流動の高効率形成方法。
Place the liquid crystal in the flow path,
Rotating means capable of applying an electric field or a magnetic field to the liquid crystal along a direction intersecting one wall surface of the flow path;
An electric field or a magnetic field is alternately provided by a returning means capable of applying an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal from a direction intersecting a direction in which the rotating means applies an electric field or a magnetic field to the liquid crystal molecules of the liquid crystal. Is added to the liquid crystal. A method for forming liquid crystal flow with high efficiency.
JP2008029597A 2008-02-08 2008-02-08 High-efficiency formation mechanism of liquid crystal flow, high-efficiency formation method of liquid crystal flow, and high-efficiency object movement mechanism using liquid crystal flow Expired - Fee Related JP4925468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029597A JP4925468B2 (en) 2008-02-08 2008-02-08 High-efficiency formation mechanism of liquid crystal flow, high-efficiency formation method of liquid crystal flow, and high-efficiency object movement mechanism using liquid crystal flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029597A JP4925468B2 (en) 2008-02-08 2008-02-08 High-efficiency formation mechanism of liquid crystal flow, high-efficiency formation method of liquid crystal flow, and high-efficiency object movement mechanism using liquid crystal flow

Publications (2)

Publication Number Publication Date
JP2009185994A JP2009185994A (en) 2009-08-20
JP4925468B2 true JP4925468B2 (en) 2012-04-25

Family

ID=41069432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029597A Expired - Fee Related JP4925468B2 (en) 2008-02-08 2008-02-08 High-efficiency formation mechanism of liquid crystal flow, high-efficiency formation method of liquid crystal flow, and high-efficiency object movement mechanism using liquid crystal flow

Country Status (1)

Country Link
JP (1) JP4925468B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846600B2 (en) * 2010-09-01 2016-01-20 高知県公立大学法人 Object selection mechanism and object selection method using phase transition between liquid and liquid crystal
JP5880999B2 (en) * 2010-09-01 2016-03-09 高知県公立大学法人 Object moving mechanism and object moving method by interaction between liquid-liquid crystal phase transition and liquid crystal defects
WO2014082662A1 (en) * 2012-11-27 2014-06-05 Cnr - Consiglio Nazionale Delle Ricerche Light driven liquid crystal elastomer actuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223178A (en) * 1998-02-06 1999-08-17 Japan Energy Corp Liquid crystal system power generator
JP2001260100A (en) * 2000-03-23 2001-09-25 Canon Inc Driving method for minute object driving device
JP3586734B2 (en) * 2001-10-01 2004-11-10 学校法人高知工科大学 Liquid crystal flow forming mechanism, liquid crystal flow forming method, and object moving mechanism using liquid crystal flow
JP4480510B2 (en) * 2004-08-05 2010-06-16 トヨタ自動車株式会社 Object moving device using liquid crystal flow phenomenon

Also Published As

Publication number Publication date
JP2009185994A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US8363172B2 (en) Liquid crystal motor making use of flow of liquid crystal
JP2003113814A5 (en)
Shen et al. Dynamics of electrically driven solitons in nematic and cholesteric liquid crystals
JP4925468B2 (en) High-efficiency formation mechanism of liquid crystal flow, high-efficiency formation method of liquid crystal flow, and high-efficiency object movement mechanism using liquid crystal flow
Li et al. Three-dimensional solitary waves with electrically tunable direction of propagation in nematics
Shojaei-Zadeh et al. Role of surface anchoring and geometric confinement on focal conic textures in smectic-A liquid crystals
Piccirillo et al. Orbital and spin photon angular momentum transfer in liquid crystals
Baik et al. Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field
Murazawa et al. Control of the Molecular Alignment Inside Liquid‐Crystal Droplets by Use of Laser Tweezers
JP5142142B2 (en) Hybrid liquid crystal flow forming mechanism, hybrid liquid crystal flow forming method, and hybrid object moving mechanism using liquid crystal flow
JP4997528B2 (en) Power generation mechanism using liquid crystal flow
JP5451986B2 (en) Liquid crystal lens and vision correction device using the same
Hernàndez-Navarro et al. Nematic colloidal swarms assembled and transported on photosensitive surfaces
JP5099809B2 (en) Movement control mechanism of liquid crystal immersion object using liquid crystal flow
US7324182B2 (en) Object rotating mechanism using liquid crystal flow
JP5370971B2 (en) Soft actuator using liquid crystal
JP5370972B2 (en) Object moving mechanism using liquid crystal
JP5099810B2 (en) Movement control mechanism of liquid crystal contact object using liquid crystal flow
JP6192049B2 (en) Horizontal electric field type liquid crystal flow formation mechanism and horizontal electric field type object movement mechanism using liquid crystal flow
JP6928942B2 (en) Liquid crystal drop actuator using the flow in the liquid crystal
JP2009282410A (en) Polarization switching element, projector using polarization switching element, and television
Sluijter Ray-optics analysis of inhomogeneous optically anisotropic media
Lim et al. Maximizing electro‐optic performances in the fringe‐field switching liquid crystal mode with negative dielectric anisotropic liquid crystal
JP2016149821A (en) High-performance power generation mechanism using liquid crystal flow
JP2010183754A (en) Multipole liquid crystal motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees