JP4993521B2 - Axial force-induced torque limiter - Google Patents

Axial force-induced torque limiter Download PDF

Info

Publication number
JP4993521B2
JP4993521B2 JP2009286706A JP2009286706A JP4993521B2 JP 4993521 B2 JP4993521 B2 JP 4993521B2 JP 2009286706 A JP2009286706 A JP 2009286706A JP 2009286706 A JP2009286706 A JP 2009286706A JP 4993521 B2 JP4993521 B2 JP 4993521B2
Authority
JP
Japan
Prior art keywords
shaft portion
engagement
axial force
peripheral surface
external force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009286706A
Other languages
Japanese (ja)
Other versions
JP2011127691A (en
Inventor
隆康 松本
Original Assignee
有限会社マツモトエンジニアリング
隆康 松本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社マツモトエンジニアリング, 隆康 松本 filed Critical 有限会社マツモトエンジニアリング
Priority to JP2009286706A priority Critical patent/JP4993521B2/en
Publication of JP2011127691A publication Critical patent/JP2011127691A/en
Application granted granted Critical
Publication of JP4993521B2 publication Critical patent/JP4993521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Description

本発明は、軸力起因型トルクリミッタに関するものである。より詳しくは、軸力の増大に伴い限界伝達トルク(伝達可能な最大トルク)を低減させ得る機構を具えることにより、軸力そのものを所望値に精度よく制御できて繰り返し特性に優れる軸力起因型トルクリミッタに関するものである。   The present invention relates to an axial force-induced torque limiter. More specifically, by providing a mechanism that can reduce the limit transmission torque (maximum torque that can be transmitted) as the axial force increases, the axial force itself can be accurately controlled to the desired value, resulting in excellent axial characteristics. The present invention relates to a mold torque limiter.

回転要素の回転の動きをアキシャル方向の動きに変換して、負荷を引く或いは押す装置(以下、直線運動装置という)における、軸力の過負荷防止機構としては、従来、トルクリミッタが用いられている。   Conventionally, a torque limiter has been used as an overload prevention mechanism for an axial force in a device that pulls or pushes a load (hereinafter referred to as a linear motion device) by converting the rotational movement of a rotary element into an axial movement. Yes.

該トルクリミッタとしては、回転要素の駆動部に設けられることにより、設定トルクに達すると摩擦面がスリップすることによってそれ以上のトルク伝達を不能とするように構成されたものが提供されている。その一種として、例えば実開昭59−47127号公報や特開2001−107330号公報が開示するような摩擦面スリップ方式のトルクリミッタが提案されている。又、設定トルク値に達すると係合部材相互の係合が解除されてそれ以上のトルク伝達を不能とするように構成されたもの、例えば特開2004−176856号公報が開示するような、ボールと凹部や凹溝との係合解除によってトルク伝達が遮断されるように構成された係合解除方式のトルクリミッタが提供されている。   As the torque limiter, there is provided a torque limiter that is provided in the drive unit of the rotating element so that when the set torque is reached, the friction surface slips and further torque transmission is disabled. As one type, for example, a friction surface slip type torque limiter disclosed in Japanese Utility Model Laid-Open No. 59-47127 and Japanese Patent Application Laid-Open No. 2001-107330 has been proposed. Further, when the set torque value is reached, the engagement members are disengaged from each other, and further torque transmission is disabled. For example, a ball as disclosed in Japanese Patent Application Laid-Open No. 2004-176856 There is provided a disengagement type torque limiter configured such that torque transmission is interrupted by disengagement between the first and second recesses and the concave groove.

図26は、摩擦面スリップ方式のトルクリミッタAを直線運動装置Bに組み付けたトルクリミッタ付き直線運動装置aを示すものであり、図示しない手段により回り止めされたナットbが、図示しない軸受により回転自在に支持されたネジ軸cに螺合されている。該ナットbは、該ネジ軸cの回転の動きを該ネジ軸cの軸線方向の動きに変換する要素の一例である。   FIG. 26 shows a linear motion device a with a torque limiter in which a friction surface slip type torque limiter A is assembled to a linear motion device B. A nut b which is prevented from rotating by means not shown is rotated by a bearing not shown. The screw shaft c is screwed to a freely supported screw shaft c. The nut b is an example of an element that converts the rotational movement of the screw shaft c into the axial movement of the screw shaft c.

そして該ネジ軸cの基端部分dに、円筒部eの一端にフランジfが周設されたハブgが固設されると共に、該円筒部eの先側部分は、外周面に雄ネジ部jが設けられてなるネジ筒部kとされている。又、該ネジ筒部kには付勢力調整ナットmが螺合されており、該円筒部eには、該付勢力調整ナットmと前記フランジfとの間で、ブッシュnを介して平歯車状の入力ギアpが回転自在に取り付けられている。該入力ギアpは、図示しないモータにより正逆回転せしめられる。そして、該入力ギアpの中央部分qがその内外から摩擦板r,rで挾持されると共に、前記付勢力調整ナットmと前記外の摩擦板rとの間に皿バネsが介装されており、該付勢力調整ナットmを所要に締め付けることにより該両摩擦板r,rによる挾持力が発生しこの挾持力によってトルクリミッタAの最大伝達トルク値が所要に設定されるようになされている。   A hub g having a flange f around one end of the cylindrical portion e is fixed to the base end portion d of the screw shaft c, and the front side portion of the cylindrical portion e has a male screw portion on the outer peripheral surface. The threaded cylinder portion k is provided with j. Further, an urging force adjusting nut m is screwed into the screw cylinder portion k, and a spur gear is connected to the cylindrical portion e via the bush n between the urging force adjusting nut m and the flange f. A shaped input gear p is rotatably attached. The input gear p is rotated forward and backward by a motor (not shown). A central portion q of the input gear p is held by friction plates r, r from inside and outside, and a disc spring s is interposed between the biasing force adjusting nut m and the outside friction plate r. When the urging force adjusting nut m is tightened as required, a holding force is generated by the friction plates r and r, and the maximum transmission torque value of the torque limiter A is set as required by the holding force. .

然して、前記ナットbに作用する負荷が過大なときは、前記直線運動装置Bのネジ軸cの軸力が増大するに伴ってトルクリミッタAの伝達トルクが増大していきトルク伝達余力(トルクリミッタAの最大伝達トルクと、前記直線運動装置Bの軸力に応じたトルクとの差)が減少していく。そしてトルクリミッタAは、ついにはトルクを伝達できなくなり、前記入力ギアpが周方向にスリップ回転する。これによって、負荷側及び駆動側の装置を保護できるのである。   However, when the load acting on the nut b is excessive, the transmission torque of the torque limiter A increases as the axial force of the screw shaft c of the linear motion device B increases, and the torque transmission remaining force (torque limiter) A difference between the maximum transmission torque of A and the torque according to the axial force of the linear motion device B) decreases. Then, the torque limiter A finally cannot transmit torque, and the input gear p slips and rotates in the circumferential direction. As a result, the load side and drive side devices can be protected.

ところで、この種のトルクリミッタの前記最大伝達トルクの内、直線運動装置の軸力の発生に有効利用されるのはその一部分であり、ネジ軸cの支持部の損失トルクや、ナットbの螺合部の摩擦損失力に対応するトルクの他、加速度運動時(ネジ軸cの回転始動時)の回転部分の慣性モーメントに起因するトルク等で消費される部分も多かった。このように種々の消費トルク要因が存し、しかもこれらにバラツキが生ずることから、前記軸力の発生に有効利用されるトルクは実際には変化し易いものであった。   By the way, a part of the maximum transmission torque of this type of torque limiter is effectively used for generating the axial force of the linear motion device, and the loss torque of the support portion of the screw shaft c and the screw of the nut b are screwed. In addition to the torque corresponding to the frictional loss force at the joint, there are many parts consumed by torque or the like due to the moment of inertia of the rotating part during acceleration motion (when the screw shaft c starts rotating). In this way, there are various consumption torque factors, and variations occur in these factors. Therefore, the torque effectively used for generating the axial force is actually easy to change.

そして、この種のトルクリミッタを含め従来のトルクリミッタは、限界伝達トルク(伝達可能な最大トルク)が軸力と無関係に一定であるために、負荷が限界伝達トルク値の手前近傍の状態において、トルク差(トルクリミッタの限界伝達トルク値と負荷トルクとの差)が小さく、又、負荷トルクが限界伝達トルク値を超えた近傍の状態において、トルク差が小さかった。しかも、前記のように軸力の発生に有効利用されるトルクが変化し易いことから、所望の軸力よりも小さい軸力でトルク伝達が遮断されてしまったり、逆に、所望の軸力よりも大きい軸力に達してもトルク伝達を遮断できない場合が生ずる等、精度の良いトルク遮断を行なうのが難しい問題があった。   The conventional torque limiter including this type of torque limiter has a limit transmission torque (maximum torque that can be transmitted) that is constant irrespective of the axial force, so that the load is in the vicinity of the limit transmission torque value. The torque difference (the difference between the limit transmission torque value of the torque limiter and the load torque) was small, and the torque difference was small in the vicinity of the load torque exceeding the limit transmission torque value. Moreover, as described above, since the torque that is effectively used for generating the axial force is likely to change, the torque transmission is interrupted with an axial force smaller than the desired axial force. However, there is a problem that it is difficult to perform torque interruption with high accuracy, for example, torque transmission cannot be interrupted even when a large axial force is reached.

なお、直線運動装置に必要とされる軸力に達する前にトルク伝達が遮断されるのを防止するために、限界伝達トルクを高めに設定することも行なわれていた。しかしながら、限界伝達トルクをこのように高めに設定すると、結果的に、遮断時の軸力が所望軸力よりも相当高い値になってしまうことが生じた。   In order to prevent the torque transmission from being interrupted before reaching the axial force required for the linear motion device, the limit transmission torque is also set higher. However, when the limit transmission torque is set so high, as a result, the axial force at the time of interruption may become a value considerably higher than the desired axial force.

かかるトルク伝達の遮断は、本来は、直線運動装置の軸力が、該直線運動装置が必要とする軸力値を越えた時に速やかに行われるのが好ましいのであるが、従来のトルクリミッタにあっては、軸力が増すにつれてトルクも増大するであろうとの観点から、簡便に、トルクを利用して軸力を制御することがなされていたのである。   This torque transmission interruption is preferably performed promptly when the axial force of the linear motion device exceeds the axial force value required by the linear motion device. From the viewpoint that the torque will increase as the axial force increases, the axial force is simply controlled using the torque.

以上要するに従来のトルクリミッタは、限界伝達トルクが必ずしも直線運動装置の所望軸力と精度よく対応しておらず、軸力を精度よく制御することができない問題があったのである。   In short, the conventional torque limiter has a problem that the limit transmission torque does not necessarily correspond accurately with the desired axial force of the linear motion device, and the axial force cannot be controlled with high accuracy.

実開昭59−47127号公報Japanese Utility Model Publication No.59-47127 特開2001−107330号公報JP 2001-107330 A 特開2004−176856号公報JP 2004-176856 A

本発明は、かかる従来のトルクリミッタの問題点に鑑みて開発されたものであり、軸力そのものを所望値に精度よく制御でき繰り返し特性に優れる軸力起因型のトルクリミッタの提供を課題とするものである。   The present invention has been developed in view of the problems of the conventional torque limiter, and it is an object of the present invention to provide an axial force-derived torque limiter that can accurately control the axial force itself to a desired value and has excellent repeatability. Is.

前記問題点に鑑み、本発明は以下の手段を採用する。
即ち本発明に係る軸力起因型トルクリミッタ(以下トルクリミッタという)の一つの態様は、収容孔が設けられてなる保持器と、該収容孔内に収容され且つ軸線回りに回転し得る軸部とを具え、該軸部は、断面円形の係合軸部の、軸線方向で見た一端に挿入軸部が同心に連設されてなり、該係合軸部とは別体の係合子が、前記保持器の周壁部にその周方向に等角度で複数個設けられた係止孔部の夫々に嵌め入れられ、該係合子が、付勢手段を介して該係合軸部の外周面に弾性的に押圧される如くなされており、且つ該係合子は、前記係止孔部の内周面の、前記軸線方向で見た対向部の何れか一方である係合内周面部と当接可能となされている。又、前記挿入軸部が、前記軸部とは別体の円形リング状を呈する支持リング部材の中心部に設けられた挿通孔に遊挿されており、該支持リング部材の外周部の前記係合子との対向側には、該係合子と点状接触し得る支持部が設けられてなり、又、前記挿入軸部の先端に一体に設けられた受部と前記支持リング部材の、対向する側面間に、スラスト軸受が介在されており、該受部は、前記支持リング部材に対して前記軸部の軸線回りに相対回転が可能となされている。そして、前記軸部がその軸線方向で引張され或いはその軸線方向で圧縮されて該軸部の軸力が増大することにより、前記係合子が前記支持リング部材で支持されるようになされている。該軸力が増大するに伴い、該係合子が該支持リング部材から受ける外力が増大していき、該係合子が前記係合軸部の外周面から受ける外力が減少するようになされており、該係合子が前記外周面から受ける外力が所望外力値にまで減少した状態乃至該外力がゼロになって、前記軸力が所望遮断軸力値に達した状態で、前記軸部は、前記スラスト軸受を介し前記支持リング部材に対して軸線回りに相対回転でき、その軸力を保持手段で保持し得ることを特徴とするものである。
In view of the above problems, the present invention employs the following means.
That is, one aspect of the axial force-induced torque limiter (hereinafter referred to as torque limiter) according to the present invention includes a cage provided with an accommodation hole, and a shaft portion that is accommodated in the accommodation hole and can rotate around the axis. The shaft portion has an insertion shaft portion concentrically connected to one end of the engagement shaft portion having a circular cross section as viewed in the axial direction, and an engagement element separate from the engagement shaft portion. A plurality of locking hole portions provided at equal angles in the circumferential direction on the peripheral wall portion of the cage, and the engagement element is connected to the outer peripheral surface of the engagement shaft portion via a biasing means. And the engagement element is in contact with the engagement inner peripheral surface portion which is one of the opposed portions of the inner peripheral surface of the locking hole portion as viewed in the axial direction. It is possible to contact. Further, the insertion shaft portion is loosely inserted into an insertion hole provided in a central portion of a support ring member having a circular ring shape separate from the shaft portion, and the engagement portion of the outer peripheral portion of the support ring member is inserted. A support portion that can be point-contacted with the engagement element is provided on the opposite side of the coupling element, and the receiving part integrally provided at the distal end of the insertion shaft portion and the support ring member are opposed to each other. A thrust bearing is interposed between the side surfaces, and the receiving portion can rotate relative to the support ring member around the axis of the shaft portion. The shaft portion is pulled in the axial direction or compressed in the axial direction to increase the axial force of the shaft portion, whereby the engaging element is supported by the support ring member. As the axial force increases, the external force that the engaging element receives from the support ring member increases, and the external force that the engaging element receives from the outer peripheral surface of the engaging shaft portion decreases. In a state where the external force received by the engagement element from the outer peripheral surface is reduced to a desired external force value or in a state where the external force becomes zero and the axial force reaches a desired cutoff axial force value, the shaft portion It can rotate relative to the support ring member around the axis via a bearing, and the axial force can be held by holding means.

本発明に係るトルクリミッタの他の態様は、収容孔が設けられてなる保持器と、該収容孔内に収容され且つ軸線回りに回転し得る軸部とを具え、該軸部は、断面円形の係合軸部の、軸線方向で見た両端に挿入軸部が同心に連設されてなり、該係合軸部とは別体の係合子が、前記保持器の周壁部にその周方向に等角度で複数個設けられた係止孔部の夫々に嵌め入れられ、該係合子が、該付勢手段を介して該係合軸部の外周面に弾性的に押圧される如くなされており、且つ該係合子は、前記係止孔部の内周面の、前記軸線方向で見た対向部の何れか一方である係合内周面部と当接可能となされている。又、前記各挿入軸部が、前記軸部とは別体の円形リング状を呈する支持リング部材の中心部に設けられた挿通孔に遊挿されており、該支持リング部材の外周部の前記係合子との対向側には、該係合子と点状接触し得る支持部が設けられてなり、又、前記挿入軸部の先端に一体に設けられた受部と前記支持リング部材の、対向する側面間に、スラスト軸受が介在されており、該受部は、前記支持リング部材に対して前記軸部の軸線回りに相対回転が可能となされている。そして、前記軸部がその軸線方向で引張され或いはその軸線方向で圧縮されて該軸部材の軸力が増大することにより、前記係合子が前記支持リング部材で支持されるようになされており、該軸力が増大するに伴い、該係合子が該支持リング部材から受ける外力が増大していき、該係合子が前記係合軸部の外周面から受ける外力が減少するようになされており、該係合子が前記外周面から受ける外力が所望外力値にまで減少した状態乃至該外力がゼロになって、前記軸力が所望遮断軸力値に達した状態で、前記軸部は、前記スラスト軸受を介し前記支持リング部材に対して軸線回りに相対回転でき、その軸力を保持手段で保持し得ることを特徴とするものである。   Another aspect of the torque limiter according to the present invention includes a cage provided with an accommodation hole, and a shaft portion that is accommodated in the accommodation hole and can rotate about an axis, and the shaft portion has a circular cross section. An insertion shaft portion is concentrically connected to both ends of the engagement shaft portion as viewed in the axial direction, and an engagement element separate from the engagement shaft portion is provided on the peripheral wall portion of the retainer in the circumferential direction. Are fitted into each of a plurality of locking holes provided at equal angles, and the engaging member is elastically pressed against the outer peripheral surface of the engaging shaft portion via the biasing means. In addition, the engaging element can be brought into contact with the engaging inner peripheral surface portion which is one of the facing portions of the inner peripheral surface of the locking hole portion as viewed in the axial direction. Each of the insertion shaft portions is loosely inserted into an insertion hole provided in a center portion of a support ring member having a circular ring shape separate from the shaft portion, and the outer peripheral portion of the support ring member On the opposite side of the engagement element, a support part capable of making point contact with the engagement element is provided, and the receiving part integrally provided at the distal end of the insertion shaft part and the support ring member are opposed to each other. A thrust bearing is interposed between the side surfaces, and the receiving portion can rotate relative to the support ring member around the axis of the shaft portion. And, the shaft is pulled in the axial direction or compressed in the axial direction to increase the axial force of the shaft member, so that the engagement element is supported by the support ring member, As the axial force increases, the external force that the engaging element receives from the support ring member increases, and the external force that the engaging element receives from the outer peripheral surface of the engaging shaft portion decreases. In a state where the external force received by the engagement element from the outer peripheral surface is reduced to a desired external force value or in a state where the external force becomes zero and the axial force reaches a desired cutoff axial force value, the shaft portion It can rotate relative to the support ring member around the axis via a bearing, and the axial force can be held by holding means.

前記各トルクリミッタにおいて、前記支持部は、直線状の傾斜支持面として形成するのが好ましい。   In each of the torque limiters, it is preferable that the support portion is formed as a linear inclined support surface.

本発明は以下の如き優れた効果を奏する。
(1) 本発明に係るトルクリミッタによるときは、軸力の増大に伴い、係合子が支持リング部材から受ける外力が増大していき、該係合子が前記係合軸部の外周面から受ける外力が減少する。換言すれば、軸力の増大に伴い限界伝達トルク(伝達可能な最大トルク)を低減させることができる。
The present invention has the following excellent effects.
(1) When using the torque limiter according to the present invention, as the axial force increases, the external force received by the engagement element from the support ring member increases, and the external force received by the engagement element from the outer peripheral surface of the engagement shaft portion Decrease. In other words, the limit transmission torque (maximum torque that can be transmitted) can be reduced as the axial force increases.

かかることから、限界伝達トルクが軸力と無関係に一定であった従来のトルクリミッタとは異なり、所望軸力よりも小さい軸力でトルク伝達が遮断されてしまったり、逆に、所望軸力よりも大きい軸力に達してもトルク伝達を遮断できない場合が生ずる等の従来の問題点を解消できる。又、従来の摩擦面スリップ方式のトルクリミッタにおけるような、ネジ軸の支持部の損失トルクを低減でき、加速度運動時の回転部分の慣性モーメントに起因するトルクの影響を大きく低減できる。   Therefore, unlike the conventional torque limiter where the limit transmission torque is constant regardless of the axial force, the torque transmission is interrupted with an axial force smaller than the desired axial force. The conventional problems such as the case where torque transmission cannot be interrupted even when the axial force reaches a large value can be solved. Further, the loss torque of the support portion of the screw shaft as in the conventional friction surface slip type torque limiter can be reduced, and the influence of torque caused by the moment of inertia of the rotating portion during acceleration motion can be greatly reduced.

それ故本発明によるときは、軸力そのものを所望値に精度よく制御でき、繰り返し特性に優れる軸力起因型のトルクリミッタを提供できることとなる。   Therefore, according to the present invention, the axial force itself can be accurately controlled to a desired value, and an axial force-derived torque limiter having excellent repetition characteristics can be provided.

(2) 本発明に係るトルクリミッタにおいて、前記所望遮断軸力値は、前記軸部に必要とされる軸力を考慮して設定されるものであるが、該所望遮断軸力値を設定するための主要要素として、前記係合軸部の外周面に弾性的に押圧される前記係合子の個数と、付勢手段の付勢力の大小と、前記支持リング部材の前記支持部に対する前記係合子の接触点における力の方向即ち法線方向と、前記軸線とのなす角度の大小がある。 (2) In the torque limiter according to the present invention, the desired breaking axial force value is set in consideration of the axial force required for the shaft portion, and the desired breaking axial force value is set. As main elements for the above, the number of the engagement members elastically pressed against the outer peripheral surface of the engagement shaft portion, the magnitude of the urging force of the urging means, and the engagement member with respect to the support portion of the support ring member There is a magnitude of the angle between the direction of the force at the contact point, that is, the normal direction, and the axis.

従って、これらの要素を適宜に設定することによって、前記設定遮断軸力値を容易且つ確実に設定できることとなる。例えば、前記角度に関して言えば、該角度が小さい程、該支持部から受ける外力のラジアル方向成分が小さくなるため、前記係合子が前記外周面から受ける外力の減少をより小さくできることとなり、前記限界伝達トルクをより大きく設定でき、従って、前記所望遮断軸力値をより大きく設定できることになる。逆に、前記角度が大きい程、前記支持部から受ける外力のラジアル方向成分が大きくなるため、前記係合子が前記外周面から受ける外力の減少をより大きく設定できることとなり、前記限界伝達トルクをより小さく設定でき、従って、前記所望遮断軸力値をより小さく設定できることになる。このように前記角度を変えることによって、所望遮断軸力値を、前記軸部材に必要とされる軸力を考慮して容易且つ確実に設定できることとなるのである。   Therefore, the set cutoff axial force value can be easily and reliably set by appropriately setting these elements. For example, with regard to the angle, the smaller the angle, the smaller the radial component of the external force received from the support portion, so that the decrease in the external force received by the engagement element from the outer peripheral surface can be further reduced. The torque can be set larger, and therefore the desired cutoff axial force value can be set larger. Conversely, as the angle increases, the radial component of the external force received from the support portion increases, so that the reduction of the external force received by the engagement element from the outer peripheral surface can be set larger, and the limit transmission torque becomes smaller. Therefore, the desired cutoff axial force value can be set smaller. Thus, by changing the angle, the desired cutoff axial force value can be easily and reliably set in consideration of the axial force required for the shaft member.

(3) 本発明に係るトルクリミッタを、前記係合軸部の軸線方向で見た両端に挿入軸部を設け、各挿入軸部を、支持リング部材の中心部に設けられた挿通孔に遊挿されたものとして構成するときは、該トルクリミッタを、負荷を引く場合と負荷を押す場合の双方に利用可能である。そして、負荷を引くときの軸力と負荷を押すときの軸力を個別に設定できて軸力の制御を多様化できる利点もある。 (3) The torque limiter according to the present invention is provided with insertion shaft portions at both ends when viewed in the axial direction of the engagement shaft portion, and each insertion shaft portion is loosely inserted into an insertion hole provided at the center portion of the support ring member. When configured as being inserted, the torque limiter can be used both when pulling the load and when pushing the load. Also, there is an advantage that the axial force when pulling the load and the axial force when pushing the load can be individually set, and the control of the axial force can be diversified.

(4) 前記支持部を、直線状の傾斜支持面として構成したときは、前記角度の設定が容易となるため、前記支持リング部材の製作を容易化し得る。 (4) When the support portion is configured as a linear inclined support surface, the setting of the angle becomes easy, and therefore the manufacture of the support ring member can be facilitated.

本発明に係るトルクリミッタを示す断面図である。It is sectional drawing which shows the torque limiter which concerns on this invention. その部分拡大図である。FIG. 本発明に係るトルクリミッタを示す分解斜視図である。It is a disassembled perspective view which shows the torque limiter which concerns on this invention. 係合子が受ける外力の状態を説明する説明図である。It is explanatory drawing explaining the state of the external force which an engagement child receives. 所望遮断軸力値を設定する要素の一つである傾斜支持面との関係に基づく角度条件を説明する説明図である。It is explanatory drawing explaining the angle condition based on the relationship with the inclination support surface which is one of the elements which set a desired interruption | blocking axial force value. 本発明に係るトルクリミッタの他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the torque limiter which concerns on this invention. その部分拡大図である。FIG. そのトルクリミッタを説明する分解斜視図である。It is a disassembled perspective view explaining the torque limiter. そのトルクリミッタにおける外力の作用状態を説明する説明図である。It is explanatory drawing explaining the action state of the external force in the torque limiter. 所望遮断軸力値を設定する要素の一つである傾斜支持面との関係に基づく角度条件を説明する説明図である。It is explanatory drawing explaining the angle condition based on the relationship with the inclination support surface which is one of the elements which set a desired interruption | blocking axial force value. 負荷を引く場合と負荷を押す場合の双方に利用可能に構成されたトルクリミッタを示す断面図である。It is sectional drawing which shows the torque limiter comprised so that utilization of both the case where a load was pulled and the case where a load was pushed is carried out. その保持手段を例示する一部断面正面図である。It is a partial cross section front view which illustrates the holding means. 負荷を引く場合と負荷を押す場合の双方に利用可能に構成されたトルクリミッタの他の使用態様を示す一部断面正面図である。It is a partial cross section front view which shows the other usage condition of the torque limiter comprised so that it can utilize both when the load is pulled and the load is pushed. 係合子の他の態様を示す斜視図と断面図である。It is the perspective view and sectional drawing which show the other aspect of an engaging element. 付勢手段を構成する円筒状のリング状バネ部材の他の態様を示す分解斜視図と断面図である。It is the disassembled perspective view and sectional drawing which show the other aspect of the cylindrical ring-shaped spring member which comprises a biasing means. リング状バネ部材の他の態様を示す斜視図である。It is a perspective view which shows the other aspect of a ring-shaped spring member. 圧縮バネを用いる付勢手段の他の態様を示す一部断面正面図である。It is a partial cross section front view which shows the other aspect of the biasing means using a compression spring. 湾曲面として構成された傾斜支持面を示す断面図である。It is sectional drawing which shows the inclination support surface comprised as a curved surface. 係合軸部の外周面に荷重分散周溝を設けた態様を外力の作用状態と共に示す説明図である。It is explanatory drawing which shows the aspect which provided the load distribution circumferential groove in the outer peripheral surface of the engaging shaft part with the action state of external force. 係合軸部の外周面に荷重分散凹部を設けた態様を外力の作用状態と共に示す説明図である。It is explanatory drawing which shows the aspect which provided the load dispersion | distribution recessed part in the outer peripheral surface of an engaging shaft part with the action state of external force. その場合における外力の変化を説明する説明図である。It is explanatory drawing explaining the change of the external force in that case. 荷重分散周溝に荷重分散凹部を併せて設けた場合を示す説明図である。It is explanatory drawing which shows the case where a load distribution recessed part is provided in the load distribution peripheral groove together. 係合軸部の外周面に荷重分散周溝を設け、傾斜支持面に荷重分散直線状溝を設け、リング状バネ部材の内周面に荷重分散周溝を設けた場合を示す断面図と斜視図である。Sectional view and perspective view showing a case where a load distribution circumferential groove is provided on the outer peripheral surface of the engagement shaft portion, a load distribution linear groove is provided on the inclined support surface, and a load distribution peripheral groove is provided on the inner peripheral surface of the ring-shaped spring member FIG. リング状バネ部材の内周面に荷重分散凹部を設けた場合を示す部分斜視図である。It is a fragmentary perspective view which shows the case where a load distribution recessed part is provided in the internal peripheral surface of a ring-shaped spring member. 荷重分散周溝を断面V字状に構成した場合を示す断面図である。It is sectional drawing which shows the case where a load dispersion | distribution circumferential groove is comprised in the cross-section V shape. 従来のトルクリミッタを説明する説明図である。It is explanatory drawing explaining the conventional torque limiter.

図1〜3において本発明に係るトルクリミッタ1は、負荷を引く装置、例えば、ベルトやチェーン、ワイヤ等を引くことで緊張させる緊張装置2aとしての直線運動装置2に応用されており、例えば円形孔からなる収容孔3が設けられてなる保持器4と、該収容孔3に収容され且つ軸線回りに回転し得る軸部5が設けられた軸部材6とを具えている。   1-3, the torque limiter 1 according to the present invention is applied to a device that pulls a load, for example, a linear motion device 2 as a tensioning device 2a that tensions by pulling a belt, a chain, a wire, or the like. A cage 4 provided with an accommodation hole 3 made of a hole, and a shaft member 6 provided with a shaft portion 5 accommodated in the accommodation hole 3 and capable of rotating around an axis.

前記保持器4は、本実施例においては図3に示すように、上下端7,9が平坦に形成され且つ左右側面10,11が円弧面に形成された基板部12の一端面13に、段差15を介して円筒状部16が突設されており、該円筒状部16及び該基板部12に亘って、該円筒状部16と同心に、同径の円形の前記収容孔3が設けられている。又、該基板部12の他端面17に、該円筒状部16と同心に連結ネジ軸19が突設されている。該連結ネジ軸19は、負荷に繋がる前記緊張装置2aの端部に設けられたネジ孔21に螺合されることにより、前記保持器4が前記緊張装置2aに連結された状態となっている。   In the present embodiment, as shown in FIG. 3, the retainer 4 is formed on one end surface 13 of the substrate portion 12 in which upper and lower ends 7 and 9 are formed flat and left and right side surfaces 10 and 11 are formed in arcuate surfaces. A cylindrical portion 16 protrudes through a step 15, and the circular accommodating hole 3 having the same diameter is provided concentrically with the cylindrical portion 16 across the cylindrical portion 16 and the substrate portion 12. It has been. A connecting screw shaft 19 projects from the other end surface 17 of the substrate portion 12 concentrically with the cylindrical portion 16. The connecting screw shaft 19 is screwed into a screw hole 21 provided at an end of the tensioning device 2a connected to a load, so that the retainer 4 is connected to the tensioning device 2a. .

そして前記円筒状部16の周壁部22には、図2〜3に示すように、周方向に90度の角度で4個の係止孔部23,23,23,23が、夫々、該円筒状部16の半径方向に貫設されており、該係止孔部23の夫々には、該係止孔部23の内径に略等しい径を有する球形状の係合子(本実施例においては球体25aとしての係合子)25が嵌め入れられている。   As shown in FIGS. 2 to 3, the peripheral wall portion 22 of the cylindrical portion 16 has four locking hole portions 23, 23, 23, 23 at an angle of 90 degrees in the circumferential direction. Each of the locking holes 23 has a spherical engagement element (in this embodiment, a spherical body) having a diameter substantially equal to the inner diameter of the locking hole 23. The engagement element 25) 25 is fitted.

又、図2〜3に示すように、前記円筒状部16の外周面26の収容孔開放端27寄り部位に嵌着周溝29が設けられており、該嵌着周溝29には、該円筒状部16が略密接状態で挿入される円形挿通孔30を有するストッパリング31の外側面32を外側から支持するスナップリング33が嵌着されている。そして、前記段差15と該ストッパリング31の内側面35との間に、前記係合子25を前記円筒状部16の半径方向に押圧するための、バネ性に富む金属素材からなる円筒状のリング状バネ部材36aとしての付勢手段36が、前記周壁部22を取り囲むように装着されており、該リング状バネ部材36aが該周壁部22から脱落するのを前記ストッパリング31が阻止している。   Further, as shown in FIGS. 2 to 3, a fitting circumferential groove 29 is provided near the accommodation hole open end 27 of the outer circumferential surface 26 of the cylindrical portion 16. A snap ring 33 that supports the outer surface 32 of the stopper ring 31 having a circular insertion hole 30 into which the cylindrical portion 16 is inserted in a substantially close state is fitted from the outside. A cylindrical ring made of a metal material having a high spring property for pressing the engaging element 25 in the radial direction of the cylindrical portion 16 between the step 15 and the inner side surface 35 of the stopper ring 31. An urging means 36 as a ring-shaped spring member 36 a is mounted so as to surround the peripheral wall portion 22, and the stopper ring 31 prevents the ring-shaped spring member 36 a from dropping from the peripheral wall portion 22. .

前記軸部材6は丸軸状に形成されており、前記保持器4の前記収容孔3に収容される前記軸部5の外側面37に、該軸部5の軸線L方向に延長するネジ軸部39が連設されている。該ネジ軸部39は、図1、図3に示すように、その先側の部分40が、基台41に立設された軸受立壁42に設けられた円形挿通孔43に挿通せしめられ、該軸受立壁42から突出したネジ軸部分45に、保持手段46を構成するナット46aが螺合されている。   The shaft member 6 is formed in a round shaft shape, and a screw shaft extending in the direction of the axis L of the shaft portion 5 on the outer surface 37 of the shaft portion 5 housed in the housing hole 3 of the retainer 4. The part 39 is continuously provided. As shown in FIGS. 1 and 3, the screw shaft portion 39 is inserted into a circular insertion hole 43 provided on a bearing standing wall 42 erected on a base 41 at a tip portion 40 thereof. A nut 46 a constituting the holding means 46 is screwed onto the screw shaft portion 45 protruding from the bearing standing wall 42.

又前記軸部5は、図2〜3に示すように、前記収容孔開放端27側に存する大径の円板状の端軸部47の内側面(前記収容孔3の底面49側の面)に、傾斜段差50を介して、断面円形の係合軸部51が同心に連設されると共に、該係合軸部51の先端面(内側面)52に、前記軸部5の軸線Lと直角をなす段差面53を介して、より小径の円柱状の挿入軸部55が同心に連設されている。   As shown in FIGS. 2 to 3, the shaft portion 5 has an inner surface (a surface on the bottom surface 49 side of the housing hole 3) of a large-diameter disk-shaped end shaft portion 47 existing on the housing hole open end 27 side. ), An engaging shaft portion 51 having a circular cross section is concentrically connected via an inclined step 50, and the axis L of the shaft portion 5 is connected to the distal end surface (inner surface) 52 of the engaging shaft portion 51. A cylindrical insertion shaft 55 having a smaller diameter is connected concentrically through a step surface 53 that forms a right angle with the step surface 53.

前記係止孔部23,23,23,23に嵌め入れられている前記係合子25,25,25,25は、図2に示すように、円筒状を呈する前記リング状バネ部材36aの内周面56で弾性押圧されて、前記係合軸部51の外周面57に弾性的に押圧される如くなされている。そして該係合子25は、前記係止孔部23の内周面59の内の、前記軸線L方向で見た対向部の何れか一方である係合内周面部(本実施例においては、前記収容孔3の開放端側の部分としての係合内周面部)60との係合によって、前記軸部5が前記収容孔3から抜け出る方向には移動が阻止されている。   As shown in FIG. 2, the engagement elements 25, 25, 25, 25 fitted in the locking holes 23, 23, 23, 23 are formed on the inner circumference of the ring-shaped spring member 36 a having a cylindrical shape. It is configured to be elastically pressed by the surface 56 and elastically pressed to the outer peripheral surface 57 of the engagement shaft portion 51. The engagement element 25 is an engagement inner peripheral surface portion (in the present embodiment, the inner peripheral surface portion of the engagement hole portion 23, which is one of the facing portions viewed in the direction of the axis L). Due to the engagement with the engagement inner peripheral surface portion 60 as a portion on the open end side of the accommodation hole 3, the movement of the shaft portion 5 is prevented in the direction of coming out of the accommodation hole 3.

又、前記挿入軸部55が、前記軸部材6とは別体の円形リング状を呈する支持リング部材61の中心部に設けられた挿通孔62に遊挿状態とされている。該支持リング部材61の外周部63の前記係合子25との対向側には、該係合子25の球面65と点状接触して該係合子25を支持し得る傾斜支持面66aとしての支持部66が、前記軸部5の先端方向に向けて周方向外側に傾斜するように設けられている。該傾斜支持面66aは、本実施例においては直線状の傾斜面として形成されており、前記軸線L方向に対する傾斜角度θ1は45度に設定されている。   Further, the insertion shaft portion 55 is loosely inserted into an insertion hole 62 provided in the center portion of a support ring member 61 that has a circular ring shape that is separate from the shaft member 6. On the opposite side of the outer peripheral portion 63 of the support ring member 61 to the engagement element 25, a support portion serving as an inclined support surface 66a that can support the engagement element 25 by making point contact with the spherical surface 65 of the engagement element 25. 66 is provided so as to be inclined outward in the circumferential direction toward the distal end direction of the shaft portion 5. In the present embodiment, the inclined support surface 66a is formed as a linear inclined surface, and the inclination angle θ1 with respect to the axis L direction is set to 45 degrees.

又、前記挿入軸部55の先端に一体に設けられた受部67と前記支持リング部材61の、対向する側面69,70間に、スラスト軸受(本実施例においてはスラストニードル軸受)71が介在されており、該受部67は、該スラスト軸受71を介して、前記支持リング部材61に対して周方向での相対回転が可能となされている。該受部67は、本実施例においては図2に示すように、円形リング部材72を以て構成されており、前記挿入軸部55の先側部分をなすネジ軸部73が該円形リング部材72のネジ孔部75に螺合されている。そして、該円形リング部材72の外周面部に螺合されて前記ネジ軸部73の外周面76を押圧する止着ネジ77の締め付けによって、該円形リング部材72が前記挿入軸部55に固定され、これによって前記受部67が構成されている。   In addition, a thrust bearing (in this embodiment, a thrust needle bearing) 71 is interposed between the opposing side surfaces 69 and 70 of the receiving portion 67 and the support ring member 61 that are integrally provided at the distal end of the insertion shaft portion 55. The receiving portion 67 can be rotated relative to the support ring member 61 in the circumferential direction via the thrust bearing 71. As shown in FIG. 2, the receiving portion 67 is configured with a circular ring member 72, and a screw shaft portion 73 that forms the front side portion of the insertion shaft portion 55 is formed on the circular ring member 72. Screwed into the screw hole 75. The circular ring member 72 is fixed to the insertion shaft portion 55 by tightening a fixing screw 77 that is screwed to the outer peripheral surface portion of the circular ring member 72 and presses the outer peripheral surface 76 of the screw shaft portion 73. Thus, the receiving portion 67 is configured.

そして、図1において前記ナット46aを締め付けるに伴い、前記軸部材6がその軸線方向で引張されてその軸力が増大するようになされている。又、前記のように、係合子25が支持リング部材61の前記傾斜支持面66aで点状接触状態で支持されるようになされている。かかることから、前記ナット46aの締め付けによって前記軸部材6の軸力が増大するに伴い、該係合子25が該傾斜支持面66aから受ける外力が増大し、これに伴い、該係合子25が前記係合軸部51の外周面57から受ける外力が減少する。そして、該係合子25が前記係合軸部51の外周面57から受ける外力が所望外力値にまで減少した状態乃至該外力がゼロになった状態、即ち、前記軸力が所望遮断軸力値に達した状態で、前記軸部材6は、前記スラスト軸受71を介し前記支持リング部材61に対して前記軸線L回りに回転できる。このときの軸力は、前記ナット46aを含む前記保持手段46で保持される。   As the nut 46a is tightened in FIG. 1, the shaft member 6 is pulled in the axial direction to increase the axial force. Further, as described above, the engagement element 25 is supported by the inclined support surface 66a of the support ring member 61 in a point contact state. For this reason, as the axial force of the shaft member 6 increases by tightening the nut 46a, the external force that the engaging element 25 receives from the inclined support surface 66a increases. The external force received from the outer peripheral surface 57 of the engagement shaft portion 51 is reduced. A state where the external force received by the engagement element 25 from the outer peripheral surface 57 of the engagement shaft portion 51 is reduced to a desired external force value or a state where the external force becomes zero, that is, the axial force is a desired cutoff axial force value. In this state, the shaft member 6 can rotate around the axis L with respect to the support ring member 61 via the thrust bearing 71. The axial force at this time is held by the holding means 46 including the nut 46a.

次に、かかる構成を有するトルクリミッタ1の作用をより詳しく説明する。今、前記ベルト等を所要に緊張させるに必要な緊張力が前記直線運動装置(緊張装置2a)2に要求される場合を考えると、この必要な緊張力は、負荷に繋がる直線運動装置2に連結されている前記トルクリミッタ1の前記軸部5の軸力を所望遮断軸力値にまで上昇させることによって確保することになる。   Next, the operation of the torque limiter 1 having such a configuration will be described in more detail. Considering the case where the linear motion device (tension device 2a) 2 is required to have a tension force required to tension the belt or the like, the necessary tension force is applied to the linear motion device 2 that leads to a load. This is ensured by increasing the axial force of the shaft portion 5 of the connected torque limiter 1 to a desired cutoff axial force value.

そのために先ず、前記軸部材6の軸力が所望遮断軸力値を取り得るように、前記4個の係合子25,25,25,25が前記係合軸部51の外周面57を弾性的に押圧することにより発生する摩擦力が所望値となるように、前記リング状バネ部材36aによる付勢力を所要に設定する。該摩擦力に起因して、前記係合子25と前記外周面57との間で、限界伝達トルク(伝達可能な最大トルク)が発生する。   For this purpose, first, the four engaging elements 25, 25, 25, 25 elastically move the outer peripheral surface 57 of the engaging shaft portion 51 so that the axial force of the shaft member 6 can take a desired cutoff axial force value. The urging force by the ring-shaped spring member 36a is set as required so that the frictional force generated by pressing to the desired value. Due to the frictional force, a limit transmission torque (maximum torque that can be transmitted) is generated between the engagement element 25 and the outer peripheral surface 57.

この状態で、前記緊張装置2aが前記ベルト等を所要の緊張状態とするために前記ナット46aを締め付ける。このナット46aの締め付けにより、前記軸部材6が図1において右方向Fに移動し、該軸部材6の軸力が増大していく。この間において前記係合子25が受ける外力の状態を、図4(A)(B)(C)に基づいて説明する。ここで、前記係合子25が前記リング状バネ部材36aから受ける外力(係合子の半径方向で受ける外力)を第1の外力F1とし、前記係合子25が前記係合軸部51の外周面57から受ける外力(係合子の半径方向で受ける外力)を第2の外力F2とし、前記係合子25が前記係止孔部23の前記係合内周面部60から受ける外力(係合子の半径方向で受ける外力)を第3の外力F3とし、前記係合子25が前記支持リング部材61の前記傾斜支持面66aから受ける外力(係合子の半径方向で受ける外力)を第4の外力F4とする。   In this state, the tension device 2a tightens the nut 46a in order to bring the belt or the like into a required tension state. By tightening the nut 46a, the shaft member 6 moves in the right direction F in FIG. 1, and the axial force of the shaft member 6 increases. The state of the external force received by the engagement element 25 during this period will be described based on FIGS. 4 (A), 4 (B), and 4 (C). Here, the external force received by the engagement element 25 from the ring-shaped spring member 36a (external force received in the radial direction of the engagement element) is the first external force F1, and the engagement element 25 is the outer peripheral surface 57 of the engagement shaft portion 51. The external force received from (the external force received in the radial direction of the engagement element) is the second external force F2, and the external force received by the engagement element 25 from the engagement inner peripheral surface portion 60 of the locking hole 23 (in the radial direction of the engagement element). The external force received) is the third external force F3, and the external force received by the engagement element 25 from the inclined support surface 66a of the support ring member 61 (the external force received in the radial direction of the engagement element) is the fourth external force F4.

図4(A)は、前記軸部材6の軸力がゼロのときの外力作用状態を示すものであり、前記係合子25が受ける外力は、リング状バネ部材36aから受ける第1の外力F1と、係合軸部51の外周面57から受ける第2の外力F2のみであり、このときにおける前記限界伝達トルクは最大である。   FIG. 4A shows an external force acting state when the axial force of the shaft member 6 is zero. The external force received by the engaging element 25 is the first external force F1 received from the ring-shaped spring member 36a. Only the second external force F2 received from the outer peripheral surface 57 of the engagement shaft portion 51, and the limit transmission torque at this time is the maximum.

図4(B)は、前記軸力が前記所望遮断軸力値よりも小さいときの外力作用状態を示すものであり、前記係合子25が受ける外力は、リング状バネ部材36aから受ける第1の外力F1と、係合軸部51の外周面57から受ける第2の外力F2と、前記係合内周面部60から受ける第3の外力F3と、前記傾斜支持面66aから受ける第4の外力F4である。該軸力が増大するに伴い、該係合子25が該傾斜支持面66aから受ける第4の外力F4が増大していき、該係合軸部51の外周面57から受ける第2の外力F2が減少していく。このように、軸力の増大によって第2の外力F2が減少していくに伴い、前記限界伝達トルクは低減していき、トルク伝達余力(限界伝達トルクと、トルクリミッタ1の前記軸力に応じた伝達トルクとの差)が減少していく。   FIG. 4B shows an external force acting state when the axial force is smaller than the desired cutoff axial force value. The external force received by the engagement element 25 is the first received by the ring-shaped spring member 36a. An external force F1, a second external force F2 received from the outer peripheral surface 57 of the engagement shaft portion 51, a third external force F3 received from the engagement inner peripheral surface portion 60, and a fourth external force F4 received from the inclined support surface 66a. It is. As the axial force increases, the fourth external force F4 received by the engaging element 25 from the inclined support surface 66a increases, and the second external force F2 received from the outer peripheral surface 57 of the engaging shaft portion 51 increases. Decrease. As described above, as the second external force F2 decreases due to the increase in the axial force, the limit transmission torque decreases, and the torque transmission surplus force (in accordance with the limit transmission torque and the axial force of the torque limiter 1). The difference with the transmitted torque) decreases.

図4(C)は、前記軸力が前記所望遮断軸力値に達したときの外力作用状態を示すものであり、前記係合子25が受ける外力は、リング状バネ部材36aから受ける第1の外力F1と、係合軸部51の外周面57から受ける第2の外力F2と、前記係合内周面部60から受ける第3の外力F3と、前記傾斜支持面66aから受ける第4の外力F4であるが、該係合子25が該傾斜支持面66aから受ける第4の外力F4が増大して、前記外周面57から受ける第2の外力F2は、所望外力値にまで減少した状態にあり乃至ゼロの状態にある。該状態では、前記トルク伝達余力はゼロである。該状態で、前記係合子25,25,25,25と前記支持リング部材61とが一体化している。前記のように挿入軸部55が、前記軸部材6とは別体の円形リング状を呈する支持リング部材61の中心部に設けられた挿通孔62に遊挿されているため、このように支持リング部材61が係合子25,25,25,25と一体化した状態においては、挿入軸部55が挿通孔62の内周面に接触していない。   FIG. 4C shows an external force acting state when the axial force reaches the desired cutoff axial force value. The external force received by the engagement element 25 is the first force received from the ring-shaped spring member 36a. An external force F1, a second external force F2 received from the outer peripheral surface 57 of the engagement shaft portion 51, a third external force F3 received from the engagement inner peripheral surface portion 60, and a fourth external force F4 received from the inclined support surface 66a. However, the fourth external force F4 received by the engaging element 25 from the inclined support surface 66a is increased, and the second external force F2 received from the outer peripheral surface 57 is reduced to a desired external force value. It is in the zero state. In this state, the torque transmission reserve is zero. In this state, the engagement elements 25, 25, 25, 25 and the support ring member 61 are integrated. As described above, the insertion shaft portion 55 is loosely inserted into the insertion hole 62 provided in the center portion of the support ring member 61 having a circular ring shape separate from the shaft member 6. In a state where the ring member 61 is integrated with the engagement elements 25, 25, 25, 25, the insertion shaft portion 55 is not in contact with the inner peripheral surface of the insertion hole 62.

そして図2に示すように、前記挿入軸部55の先端に一体に設けられた前記受部67と前記支持リング部材61の、対向する側面69,70間に、前記スラスト軸受71が介在されている。かかることから、該状態で、該受部67は、前記スラスト軸受71を介し前記支持リング部材61に対して前記軸線L回りに回転することになる。即ち、前記係合子25が受ける前記第2の外力F2が、所望外力値にまで減少した状態にあり乃至ゼロの状態にあることから、最早、前記ナット46aを前記ネジ軸部39に対して締め付けることができず、該ナット46aと該ネジ軸部39とが一体となって回転することになるのである。この回転は、目視又はセンサーで検知できる。   2, the thrust bearing 71 is interposed between the opposing side surfaces 69 and 70 of the receiving portion 67 and the support ring member 61 that are integrally provided at the distal end of the insertion shaft portion 55. Yes. For this reason, in this state, the receiving portion 67 rotates around the axis L with respect to the support ring member 61 via the thrust bearing 71. That is, the second external force F2 received by the engagement element 25 is in a state of being reduced to a desired external force value or in a state of zero, so that the nut 46a is fastened to the screw shaft portion 39 as soon as possible. Therefore, the nut 46a and the screw shaft portion 39 rotate together. This rotation can be detected visually or with a sensor.

これにより、前記緊張装置2aを介して前記ベルト等を所要に緊張させた状態が得られることになる。そして前記軸部5の設定軸力は、ナット46aとしての保持手段46で保持されることから、ベルト等の緊張状態がそのまま保持されることになる。
前記第4の外力F4は、前記係合子25が該傾斜支持面66aから受ける外力であり、該傾斜支持面66aに対して直交している。該第4の外力F4は、アキシャル方向成分(軸部材6の軸線L方向成分)とラジアル方向成分(軸部材6の軸線Lと直交する方向の成分)に分力される。本実施例においては、該傾斜支持面66aに点状接触状態となる係合子25の4個が、前記周壁部22の周方向に等角度(本実施例においては90度の角度)で配置されているため、各係合子25が受ける第4の外力F4の前記ラジアル方向成分は相殺される。従って、前記支持リング部材61はラジアル方向には移動できない。それ故、該支持リング部材61が前記挿入軸部55と接触しない。そして、各係合子25が受ける第4の外力F4の前記アキシャル方向成分は、前記スラスト軸受71に負荷されるため、該アキシャル方向成分は、軸部5と係合子25間の伝達トルクに影響を与えない。
As a result, a state in which the belt or the like is tensioned through the tensioning device 2a is obtained. Since the set axial force of the shaft portion 5 is held by the holding means 46 as the nut 46a, the tension state of the belt or the like is held as it is.
The fourth external force F4 is an external force that the engaging element 25 receives from the inclined support surface 66a, and is orthogonal to the inclined support surface 66a. The fourth external force F4 is divided into an axial direction component (component in the axis L direction of the shaft member 6) and a radial direction component (component in a direction orthogonal to the axis L of the shaft member 6). In the present embodiment, four of the engagement elements 25 that are in a point-like contact state with the inclined support surface 66a are arranged at an equal angle (90 degrees in the present embodiment) in the circumferential direction of the peripheral wall portion 22. Therefore, the radial direction component of the fourth external force F4 received by each engagement element 25 is canceled. Therefore, the support ring member 61 cannot move in the radial direction. Therefore, the support ring member 61 does not come into contact with the insertion shaft portion 55. The axial direction component of the fourth external force F4 received by each engagement element 25 is loaded on the thrust bearing 71, and thus the axial direction component affects the transmission torque between the shaft portion 5 and the engagement element 25. Don't give.

かかる構成のトルクリミッタ1によるときは、前記したように、前記軸部5の軸力の増大に伴い、係合子25が前記係合軸部51の外周面57から受ける外力が減少していく。即ち、限界伝達トルクが軸部材の軸力と無関係に一定であった従来のトルクリミッタとは異なり、限界伝達トルクが低減していくのである。かかることから、前記構成のトルクリミッタ1のトルク伝達余力は、遮断軸力値よりも小さい状態において、従来のトルクリミッタに比し大きいと言える。従って、該トルクリミッタ1は、軸力そのものを所望値に精度よく制御でき繰り返し特性に優れるのである。   When the torque limiter 1 having such a configuration is used, as described above, the external force that the engaging element 25 receives from the outer peripheral surface 57 of the engaging shaft portion 51 decreases as the axial force of the shaft portion 5 increases. That is, unlike the conventional torque limiter in which the limit transmission torque is constant regardless of the axial force of the shaft member, the limit transmission torque is reduced. Therefore, it can be said that the torque transmission surplus force of the torque limiter 1 having the above-described configuration is larger than that of the conventional torque limiter in a state where it is smaller than the cutoff axial force value. Therefore, the torque limiter 1 can accurately control the axial force itself to a desired value and has excellent repetition characteristics.

前記遮断軸力値を設定するための主要な要素は、前記係合軸部51の外周面57に弾性的に押圧される前記係合子25の個数と、前記付勢手段36による係合子25の押圧力と、前記傾斜支持面66aの傾斜角度がある。   The main elements for setting the cutoff axial force value are the number of the engagement elements 25 that are elastically pressed against the outer peripheral surface 57 of the engagement shaft part 51, and the engagement elements 25 by the urging means 36. There is a pressing force and an inclination angle of the inclined support surface 66a.

前記所望遮断軸力値は、前記軸部5に必要とされる所望の軸力を考慮して設定されるものであるが、ここで、その設定手段について説明する。該所望遮断軸力値を設定するための主要要素は、前記係合軸部51の外周面57に弾性的に押圧される前記係合子25の個数と、付勢手段の一種である前記リング状バネ部材36aを介しての係合子25の押圧力の大小と、図5に示す、該傾斜支持面66aに対する前記係合子25の接触点79と該係合子25の中心64とを結んだ直線が軸線Lとなす角度θ2の大小である。本実施例においては、前記傾斜支持面66aの前記軸線Lに対する傾斜角度θ1(図3)の大小である。   The desired cutoff axial force value is set in consideration of a desired axial force required for the shaft portion 5, and the setting means will be described here. The main elements for setting the desired cutoff axial force value are the number of the engagement elements 25 that are elastically pressed against the outer peripheral surface 57 of the engagement shaft portion 51 and the ring shape that is a kind of urging means. The magnitude of the pressing force of the engaging element 25 via the spring member 36a and a straight line connecting the contact point 79 of the engaging element 25 with the inclined support surface 66a and the center 64 of the engaging element 25 shown in FIG. The angle θ2 formed with the axis L is large or small. In this embodiment, the inclination angle θ1 (FIG. 3) of the inclined support surface 66a with respect to the axis L is large or small.

これらについてより具体的に説明すれば、該係合子25の配設個数を増やすほど遮断軸力値を大きくできる。この個数は前記係合軸部51の直径とも関係し、直径が大きいほど係合子25の配設個数を増やすことができる。   More specifically, the breaking axial force value can be increased as the number of the engagement elements 25 is increased. This number is also related to the diameter of the engagement shaft portion 51. The larger the diameter, the larger the number of engagement elements 25 provided.

又、前記リング状バネ部材36aの付勢力が大きい程、前記係合子25が前記外周面57から受ける前記第2の外力F2をより大きく設定できる。これによって前記限界伝達トルクをより大きく設定でき、前記所望遮断軸力値をより大きく設定できることとなる。逆に、該付勢力が小さい程、該第2の外力F2をより小さく設定できる。これによって前記限界伝達トルクをより小さく設定でき、前記所望遮断軸力値を小さく設定できることとなる。   Further, the greater the biasing force of the ring-shaped spring member 36a, the larger the second external force F2 that the engaging element 25 receives from the outer peripheral surface 57 can be set. As a result, the limit transmission torque can be set larger, and the desired cutoff axial force value can be set larger. Conversely, the second external force F2 can be set smaller as the biasing force is smaller. Thus, the limit transmission torque can be set smaller, and the desired cutoff axial force value can be set smaller.

又、前記傾斜支持面66aの傾斜角度θ1が大きい程、該傾斜支持面66aから受ける外力F4のラジアル方向成分が小さくなるため、前記係合子25が前記外周面57から受ける外力の減少をより小さくでき、前記限界伝達トルクをより大きく設定できる。従って、前記所望遮断軸力値をより大きく設定できることになる。逆に、前記傾斜角度θ1が小さい程、前記傾斜支持面66aから受ける外力F4のラジアル方向成分が大きくなるため、前記係合子25が前記外周面57から受ける外力の減少をより大きく設定でき、前記限界伝達トルクをより小さく設定できる。従って、前記所望遮断軸力値をより小さく設定できることになる。   Further, since the radial component of the external force F4 received from the inclined support surface 66a decreases as the inclination angle θ1 of the inclined support surface 66a increases, the decrease in the external force received from the outer peripheral surface 57 by the engagement element 25 becomes smaller. The limit transmission torque can be set larger. Therefore, the desired cutoff axial force value can be set larger. Conversely, as the inclination angle θ1 is smaller, the radial direction component of the external force F4 received from the inclined support surface 66a is larger, so that the reduction of the external force received by the engagement element 25 from the outer peripheral surface 57 can be set larger. The limit transmission torque can be set smaller. Therefore, the desired cutoff axial force value can be set smaller.

図6〜8は、本発明に係るトルクリミッタ1の他の実施例を示すもので、負荷を押す装置(例えば、ベルトやチェーン、ワイヤ等を押すことで緊張させる押圧装置2bとしての直線運動装置2)に応用されており、例えば円形孔からなる収容孔3が設けられてなる保持器4と、該収容孔3に収容され且つ軸線L回りに回転し得る軸部5が設けられた軸部材6を具えている。   6 to 8 show another embodiment of the torque limiter 1 according to the present invention, and a linear motion device as a pressing device 2b that presses a load (for example, a pressing device 2b that tensions a belt, chain, wire, or the like). 2), for example, a retainer 4 provided with a receiving hole 3 formed of a circular hole, and a shaft member provided with a shaft portion 5 that is received in the receiving hole 3 and can rotate around the axis L 6 is provided.

前記保持器4は、本実施例においては図7〜8に示すように、上下端7,9が平坦に形成され且つ左右側面10,11が円弧面に形成された基板部12の一端面13に、段差15を介して円筒状部16が突設されており、該円筒状部16及び該基板部12に亘って、該円筒状部16と同心に、同径の円形の前記収容孔3が設けられている。又、該基板部12の他端面17に、該円筒状部16と同心に連結ネジ軸19が突設されている。該連結ネジ軸19は、負荷に繋がる前記押圧装置2bの端部に設けられたネジ孔21に螺合されることにより、前記保持器4が前記押圧装置2bに連結された状態となっている。   7 to 8, in the present embodiment, the retainer 4 has one end surface 13 of a substrate portion 12 in which upper and lower ends 7, 9 are formed flat and left and right side surfaces 10, 11 are formed in arcuate surfaces. Further, a cylindrical portion 16 is provided so as to protrude through a step 15, and the circular accommodating hole 3 having the same diameter and concentric with the cylindrical portion 16 extends over the cylindrical portion 16 and the substrate portion 12. Is provided. A connecting screw shaft 19 projects from the other end surface 17 of the substrate portion 12 concentrically with the cylindrical portion 16. The connecting screw shaft 19 is screwed into a screw hole 21 provided at an end of the pressing device 2b connected to a load, so that the retainer 4 is connected to the pressing device 2b. .

そして図7〜8に示すように、前記円筒状部16の周壁部22には、周方向に90度の角度で4個の係止孔部23,23,23,23が、夫々、該円筒状部16の半径方向に貫設されており、該係止孔部23の夫々には、該係止孔部23の内径に略等しい径を有する球形状の係合子(本実施例においては球体25aとしての係合子)25が嵌め入れられるようになされている。   7-8, the peripheral wall portion 22 of the cylindrical portion 16 has four locking hole portions 23, 23, 23, 23 at an angle of 90 degrees in the circumferential direction, respectively. Each of the locking holes 23 has a spherical engagement element (in this embodiment, a spherical body) having a diameter substantially equal to the inner diameter of the locking hole 23. The engaging element 25) is adapted to be fitted.

又、図7〜8に示すように、前記円筒状部16の外周面26の収容孔開放端27寄り部位に嵌着周溝29が設けられており、該嵌着周溝29には、該円筒状部16が略密接状態で挿入される円形挿通孔30を有するストッパリング31の外側面32を外側から支持するスナップリング33が嵌着されている。そして、前記段差15と該ストッパリング31の内側面35との間に、前記係合子25を前記円筒状部16の半径方向に押圧するための、バネ性に富む金属素材からなる円筒状のリング状バネ部材36aとしての付勢手段36が、前記周壁部22を取り囲むように装着されており、該リング状バネ部材36aが該周壁部22から脱落するのを前記ストッパリング31が阻止している。   Further, as shown in FIGS. 7 to 8, a fitting circumferential groove 29 is provided near the accommodation hole open end 27 of the outer circumferential surface 26 of the cylindrical portion 16. A snap ring 33 that supports the outer surface 32 of the stopper ring 31 having a circular insertion hole 30 into which the cylindrical portion 16 is inserted in a substantially close state is fitted from the outside. A cylindrical ring made of a metal material having a high spring property for pressing the engaging element 25 in the radial direction of the cylindrical portion 16 between the step 15 and the inner side surface 35 of the stopper ring 31. An urging means 36 as a ring-shaped spring member 36 a is mounted so as to surround the peripheral wall portion 22, and the stopper ring 31 prevents the ring-shaped spring member 36 a from dropping from the peripheral wall portion 22. .

前記軸部材6は丸軸状に形成されており、前記保持器4の前記収容孔3に収容される前記軸部5の外側面37に、該軸部5の軸線L方向に延長するネジ軸部39が連設されている。そして該ネジ軸部39は、図6、図8に示すように、その先側の部分40が、基台41に立設された軸受立壁42に設けられた円形挿通孔43に挿通せしめられ、該軸受立壁42の内側に存するネジ軸部分81に、保持手段46を構成するナット46bが螺合されている。   The shaft member 6 is formed in a round shaft shape, and a screw shaft extending in the direction of the axis L of the shaft portion 5 on the outer surface 37 of the shaft portion 5 housed in the housing hole 3 of the retainer 4. The part 39 is continuously provided. As shown in FIGS. 6 and 8, the screw shaft portion 39 is inserted into a circular insertion hole 43 provided on a bearing standing wall 42 standing on a base 41 at a tip portion 40 thereof, A nut 46 b constituting the holding means 46 is screwed into a screw shaft portion 81 existing inside the bearing standing wall 42.

そして前記軸部5は、図7〜8に示すように、断面円形の係合軸部51の内側面(前記収容孔3の底面82側の面)に、傾斜段差83を介して、円板状の端軸部85が同心に連設されると共に、該係合軸部51の外側面(前記収容孔開放端27側の面)に、前記軸部5の軸線Lと直角をなす段差面86を介して、より小径の挿入軸部55が同心に連設されている。そして該挿入軸部55の外端に、円板状の受部67が同心に一体に設けられ、該受部67の内側面87は、前記軸線Lと直交する面として形成されている。   As shown in FIGS. 7 to 8, the shaft portion 5 is a disc on the inner side surface (the surface on the bottom surface 82 side of the receiving hole 3) of the engagement shaft portion 51 having a circular cross section via an inclined step 83. And a stepped surface that is perpendicular to the axis L of the shaft portion 5 on the outer surface of the engagement shaft portion 51 (the surface on the receiving hole open end 27 side). A smaller-diameter insertion shaft portion 55 is concentrically connected via 86. A disc-shaped receiving portion 67 is provided concentrically and integrally on the outer end of the insertion shaft portion 55, and an inner side surface 87 of the receiving portion 67 is formed as a surface orthogonal to the axis L.

前記受部67は、本実施例においては図7〜8に示すように、挿入軸部55の端部に同心に設けられた円板状部90を以て構成されており、該円板状部90の軸線Lに沿って、該円板状部90の内側面91で開口するネジ孔部92が設けられている。そして、前記挿入軸部55の外端に連設されたネジ軸93が該ネジ孔部92に螺合され、該螺合状態で、該円板状部90の外周面で螺合されて前記ネジ軸93の外周面95を押圧する止着ネジ96の締め付けによって、該円板状部90が前記挿入軸部55に固定され、これによって、該係合軸部51の外端に、円板状の受部67が同心に一体に設けられた構成となっている。   In this embodiment, as shown in FIGS. 7 to 8, the receiving portion 67 includes a disc-like portion 90 provided concentrically at the end of the insertion shaft portion 55, and the disc-like portion 90. A screw hole 92 that opens at the inner surface 91 of the disk-shaped portion 90 is provided along the axis L of the disk. Then, a screw shaft 93 connected to the outer end of the insertion shaft portion 55 is screwed into the screw hole portion 92. In the screwed state, the screw shaft 93 is screwed on the outer peripheral surface of the disk-shaped portion 90, and By tightening a fixing screw 96 that presses the outer peripheral surface 95 of the screw shaft 93, the disk-shaped portion 90 is fixed to the insertion shaft portion 55, so that a disk is attached to the outer end of the engagement shaft portion 51. The shape receiving part 67 is configured to be provided concentrically and integrally.

そして、前記係止孔部23,23,23,23に嵌め入れられている前記係合子25,25,25,25は、図7に示すように、前記リング状バネ部材36aを介して、前記係合軸部51の外周面57に弾性的に押圧される如くなされている。該係合子25は、前記係止孔部23の内周面59の内の、前記軸線L方向で見た対向部の何れか一方である係合内周面部(本実施例においては、前記収容孔3の底面82側の部分としての係合内周面部)60との係合によって、前記軸部5が前記底面82に向けて移動する方向には移動が阻止されるようになされている。   And as shown in FIG. 7, the said engaging elements 25, 25, 25, 25 currently fitted by the said locking hole parts 23, 23, 23, 23 are the said through the said ring-shaped spring members 36a. The outer peripheral surface 57 of the engagement shaft portion 51 is elastically pressed. The engagement element 25 is an engagement inner peripheral surface portion (in the present embodiment, the housing) that is one of the opposing portions of the inner peripheral surface 59 of the locking hole portion 23 as viewed in the direction of the axis L. By engagement with the engagement inner peripheral surface portion 60 as a portion of the hole 3 on the bottom surface 82 side, the movement of the shaft portion 5 in the direction of moving toward the bottom surface 82 is prevented.

又、前記挿入軸部55が、前記軸部材6とは別体の円形リング状を呈する支持リング部材61の中心部に設けられた挿通孔62に遊挿状態とされている。該支持リング部材61の外周部63の前記係合子25との対向側には、該係合子25の球面と点状接触して該係合子25を支持し得る傾斜支持面66aが、前記軸部5の先端方向に向けて周方向外側に傾斜するように設けられている。該傾斜支持面66aは、本実施例においては直線状の傾斜面として形成されており、前記軸線L方向に対する傾斜角度θ1は45度に設定されている。又、前記挿入軸部55の先端に一体に設けられた受部67と前記支持リング部材61との対向する側面69,70間にスラスト軸受(本実施例においてはスラストニードル軸受)71が介在されており、該受部67は、前記支持リング部材61に対して周方向での相対回転が可能となされている。   Further, the insertion shaft portion 55 is loosely inserted into an insertion hole 62 provided in the center portion of a support ring member 61 that has a circular ring shape that is separate from the shaft member 6. On the opposite side of the outer peripheral portion 63 of the support ring member 61 to the engagement element 25, an inclined support surface 66a capable of supporting the engagement element 25 by making point contact with the spherical surface of the engagement element 25 is provided on the shaft portion. 5 is provided so as to incline outward in the circumferential direction toward the tip direction. In the present embodiment, the inclined support surface 66a is formed as a linear inclined surface, and the inclination angle θ1 with respect to the axis L direction is set to 45 degrees. A thrust bearing (in this embodiment, a thrust needle bearing) 71 is interposed between side surfaces 69 and 70 facing the receiving portion 67 and the support ring member 61 that are integrally provided at the distal end of the insertion shaft portion 55. The receiving portion 67 can rotate relative to the support ring member 61 in the circumferential direction.

なお、前記挿入軸部55の遊挿及び、前記スラスト軸受71の介在は、前記ネジ軸93を前記ネジ孔部92に螺合する前に行われる。   The loose insertion of the insertion shaft portion 55 and the intervention of the thrust bearing 71 are performed before the screw shaft 93 is screwed into the screw hole portion 92.

然して、かかる構成を有するトルクリミッタ1によるときは、前記ナット46bの締め付けによって前記軸部材6がその軸線L方向で圧縮され、該軸部材6の軸力が増大することにより、前記係合子25が前記支持リング部材61の前記傾斜支持面66aで支持される。そして実施例1で説明したところと同様にして、該軸力が増大するに伴い、該係合子25が該傾斜支持面66aから受ける第4の外力F4が増大していき、該係合軸部51の外周面57から受ける第2の外力F2が減少していく。このように、軸力の増大によって第2の外力F2が減少していくに伴い、前記限界伝達トルクは低減していき、トルク伝達余力(限界伝達トルクと、トルクリミッタ1の前記軸力に応じた伝達トルクとの差)が減少していく。   However, when the torque limiter 1 having such a configuration is used, the shaft member 6 is compressed in the direction of the axis L by tightening the nut 46b, and the axial force of the shaft member 6 increases, so that the engagement element 25 is The support ring member 61 is supported by the inclined support surface 66a. In the same manner as described in the first embodiment, as the axial force increases, the fourth external force F4 received by the engaging element 25 from the inclined support surface 66a increases, and the engaging shaft portion The second external force F2 received from the outer peripheral surface 57 of 51 decreases. As described above, as the second external force F2 decreases due to the increase in the axial force, the limit transmission torque decreases, and the torque transmission surplus force (in accordance with the limit transmission torque and the axial force of the torque limiter 1). The difference with the transmitted torque) decreases.

図9は、前記軸力が前記所望遮断軸力値に達したときの外力作用状態を示すものであり、前記係合子25が受ける外力は、リング状バネ部材36aから受ける第1の外力F1と、係合軸部51の外周面57から受ける第2の外力F2と、前記係合内周面部60から受ける第3の外力F3と、前記傾斜支持面66aから受ける第4の外力F4であるが、該係合子25が該傾斜支持面66aから受ける第4の外力F4が増大して、前記外周面57から受ける第2の外力F2は、所望外力値にまで減少した状態にあり乃至ゼロの状態にある。該状態では、前記トルク伝達余力はゼロである。該状態で、前記係合子25,25,25,25と前記支持リング部材61とが一体化している。前記のように挿入軸部55が、前記軸部材6とは別体の円形リング状を呈する支持リング部材61の中心部に設けられた挿通孔62に遊挿されているため、このように支持リング部材61が係合子25,25,25,25と一体化した状態においては、挿入軸部55が挿通孔62の内周面に接触していない。   FIG. 9 shows an external force acting state when the axial force reaches the desired cutoff axial force value. The external force received by the engagement element 25 is the first external force F1 received from the ring-shaped spring member 36a. The second external force F2 received from the outer peripheral surface 57 of the engagement shaft portion 51, the third external force F3 received from the engagement inner peripheral surface portion 60, and the fourth external force F4 received from the inclined support surface 66a. The fourth external force F4 received by the engaging element 25 from the inclined support surface 66a is increased, and the second external force F2 received from the outer peripheral surface 57 is reduced to a desired external force value or is in a zero state. It is in. In this state, the torque transmission reserve is zero. In this state, the engagement elements 25, 25, 25, 25 and the support ring member 61 are integrated. As described above, the insertion shaft portion 55 is loosely inserted into the insertion hole 62 provided in the center portion of the support ring member 61 having a circular ring shape separate from the shaft member 6. In a state where the ring member 61 is integrated with the engagement elements 25, 25, 25, 25, the insertion shaft portion 55 is not in contact with the inner peripheral surface of the insertion hole 62.

そして、前記挿入軸部55の先端に一体に設けられた前記受部67と前記支持リング部材61との、対向する側面69,70間に、前記スラスト軸受71が介在されている。かかることから、該状態で、該受部67は、前記スラスト軸受71を介し前記支持リング部材61に対して前記軸線L回りに回転することになる。即ち、前記係合子25が受ける前記第2の外力F2が所望外力値にまで減少した状態にあり乃至ゼロの状態にあることから、最早、前記ナット46bを前記ネジ軸部81に対して締め付けることができず、該ナット46bが該ネジ軸部81と一体化して回転することになるのである。この回転は、目視又はセンサーで検知できる。   The thrust bearing 71 is interposed between the opposing side surfaces 69 and 70 of the receiving portion 67 and the support ring member 61 that are integrally provided at the distal end of the insertion shaft portion 55. For this reason, in this state, the receiving portion 67 rotates around the axis L with respect to the support ring member 61 via the thrust bearing 71. That is, since the second external force F2 received by the engagement element 25 is in a state of being reduced to a desired external force value or is in a zero state, the nut 46b is fastened to the screw shaft portion 81 as soon as possible. Thus, the nut 46b rotates integrally with the screw shaft portion 81. This rotation can be detected visually or with a sensor.

これにより、前記押圧装置2bを介して前記ベルト等を所要に緊張させた状態が得られることになる。そして前記軸部材6の所望軸力は、ナット46bとしての保持手段46で保持されることから、ベルト等の緊張状態がそのまま保持されることになる。   As a result, a state in which the belt or the like is tensioned through the pressing device 2b is obtained. And since the desired axial force of the said shaft member 6 is hold | maintained by the holding means 46 as the nut 46b, the tension | tensile_strength state of a belt etc. will be hold | maintained as it is.

前記第4の外力F4は、前記係合子25が該傾斜支持面66aから受ける外力であり、該傾斜支持面66aに対して直交している。該第4の外力F4は、アキシャル方向成分(軸部材6の軸線L方向成分)とラジアル方向成分(軸部材6の軸線Lと直交する方向の成分)に分力される。本実施例においては、該傾斜支持面66aに点状接触状態となる係合子25の4個が、前記周壁部22の周方向に等角度(本実施例においては90度の角度)で配置されているため、各係合子25が受ける第4の外力F4の前記ラジアル方向成分は相殺される。従って、前記支持リング部材61はラジアル方向には移動できない。それ故、該支持リング部材61が前記挿入軸部55と接触しない。そして、各係合子25が受ける第4の外力F4の前記アキシャル方向成分は、前記スラスト軸受71に負荷されるため、該アキシャル方向成分は、軸部5と係合子25間の伝達トルクに影響を与えない。   The fourth external force F4 is an external force that the engaging element 25 receives from the inclined support surface 66a, and is orthogonal to the inclined support surface 66a. The fourth external force F4 is divided into an axial direction component (component in the axis L direction of the shaft member 6) and a radial direction component (component in a direction orthogonal to the axis L of the shaft member 6). In the present embodiment, four of the engagement elements 25 that are in a point-like contact state with the inclined support surface 66a are arranged at an equal angle (90 degrees in the present embodiment) in the circumferential direction of the peripheral wall portion 22. Therefore, the radial direction component of the fourth external force F4 received by each engagement element 25 is canceled. Therefore, the support ring member 61 cannot move in the radial direction. Therefore, the support ring member 61 does not come into contact with the insertion shaft portion 55. The axial direction component of the fourth external force F4 received by each engagement element 25 is loaded on the thrust bearing 71, and thus the axial direction component affects the transmission torque between the shaft portion 5 and the engagement element 25. Don't give.

かかる構成のトルクリミッタ1によるときは、前記したように、前記軸部材6の軸力の増大に伴い、係合子25が前記係合軸部51の外周面57から受ける外力が減少していく。即ち、限界伝達トルクが軸部材の軸力と無関係に一定であった従来のトルクリミッタとは異なり、限界伝達トルクが低減していくのである。かかることから、前記構成のトルクリミッタ1のトルク伝達余力は、遮断軸力値よりも小さい状態において、従来のトルクリミッタに比し大きいと言える。従って、該トルクリミッタ1は、軸力そのものを所望値に精度よく制御でき繰り返し特性に優れるのである。   When the torque limiter 1 having such a configuration is used, as described above, the external force that the engaging element 25 receives from the outer peripheral surface 57 of the engaging shaft portion 51 decreases as the axial force of the shaft member 6 increases. That is, unlike the conventional torque limiter in which the limit transmission torque is constant regardless of the axial force of the shaft member, the limit transmission torque is reduced. Therefore, it can be said that the torque transmission surplus force of the torque limiter 1 having the above-described configuration is larger than that of the conventional torque limiter in a state where it is smaller than the cutoff axial force value. Therefore, the torque limiter 1 can accurately control the axial force itself to a desired value and has excellent repetition characteristics.

そして、該第2の外力F2が所望外力値に減少した状態乃至該第2の外力F2がゼロになって前記軸力が所望遮断軸力値に達した状態で、前記軸部5は、前記スラスト軸受71を介して前記支持リング部材61に対して該軸部材6の軸線L回りに回転できる。そしてこのときの軸力が、前記ナット46bとしての保持手段46で保持される。   Then, in a state where the second external force F2 is reduced to a desired external force value or in a state where the second external force F2 is zero and the axial force reaches a desired cutoff axial force value, the shaft portion 5 is It can rotate around the axis L of the shaft member 6 with respect to the support ring member 61 via a thrust bearing 71. The axial force at this time is held by holding means 46 as the nut 46b.

なお前記所望遮断軸力値は、前記と同様に、前記係合軸部51の外周面57に弾性的に押圧される前記係合子25の個数や、付勢手段の一種である前記リング状バネ部材36aを介しての係合子25の押圧力の大小で設定できる。又、図10に示すように、該傾斜支持面66aに対する前記係合子25の接触点79と該係合子25の中心64とを結んだ直線が前記軸線Lとなす角度θ2の大小で設定できる。本実施例においては、前記傾斜支持面66aの前記軸線Lに対する傾斜角度θ1の大小で設定できる。   Note that the desired cutoff axial force value is the number of the engagement elements 25 that are elastically pressed against the outer peripheral surface 57 of the engagement shaft portion 51 and the ring-shaped spring that is a kind of urging means. It can be set by the magnitude of the pressing force of the engaging element 25 through the member 36a. Further, as shown in FIG. 10, the angle θ2 formed by the straight line connecting the contact point 79 of the engagement element 25 with the inclined support surface 66a and the center 64 of the engagement element 25 with the axis L can be set. In the present embodiment, the inclination angle θ1 with respect to the axis L of the inclined support surface 66a can be set to be large or small.

図11〜12は、本発明に係るトルクリミッタ1のその他の実施例を示すものであり、負荷を引く場合(例えば、緊張装置2aとしての直線運動装置2に応用された場合)、と負荷を押す場合(例えば、押圧装置2bとしての直線運動装置2に応用された場合)の双方に利用可能に構成されており、前記実施例1と前記実施例2における2つの機能を兼ね備える如く構成されている。   FIGS. 11 to 12 show another embodiment of the torque limiter 1 according to the present invention. When the load is pulled (for example, applied to the linear motion device 2 as the tensioning device 2a), the load is reduced. It is configured so that it can be used for both pressing (for example, when applied to the linear motion device 2 as the pressing device 2b), and is configured to have the two functions in the first embodiment and the second embodiment. Yes.

トルクリミッタ1は、より具体的には、負荷に繋がる直線運動装置2に連結され且つ例えば円形孔からなる収容孔3が設けられてなる保持器4と、該収容孔3内に収容され且つ軸線L回りに回転し得る軸部5を具えており、該軸部5は、断面円形の係合軸部51の、軸線L方向で見た左右端に、挿入軸部55,55が同心に連設されている。そして、各挿入軸部55,55が、前記軸部5とは別体の円形リング状を呈する支持リング部材61,61の中心部に設けられた挿通孔62,62に遊挿されている。   More specifically, the torque limiter 1 is connected to a linear motion device 2 that is connected to a load and is provided with a retainer 4 provided with an accommodation hole 3 made of, for example, a circular hole, and accommodated in the accommodation hole 3 and is axial The shaft portion 5 is capable of rotating around L, and the shaft portion 5 is concentrically connected to the left and right ends of the engagement shaft portion 51 having a circular cross section when viewed in the direction of the axis L. It is installed. The insertion shaft portions 55 and 55 are loosely inserted into insertion holes 62 and 62 provided at the center of the support ring members 61 and 61 having a circular ring shape separate from the shaft portion 5.

前記保持器4の構成、前記係合子25の構成、該係合子25の保持器4の周壁部22に対する取り付けの構成、前記付勢手段36の構成、前記支持リング部材61の構成、前記受部67の構成は、実施例1及び実施例2における場合と同様であるため、同様の構成部分には、前記と同一の符号を付して具体的な説明を省略している。   Configuration of the cage 4, Configuration of the engagement element 25, Configuration of attachment of the engagement element 25 to the peripheral wall portion 22 of the cage 4, Configuration of the urging means 36, Configuration of the support ring member 61, and the receiving portion Since the configuration of 67 is the same as that in the first and second embodiments, the same components are denoted by the same reference numerals as those described above, and the detailed description thereof is omitted.

トルクリミッタ1をこのように構成する場合は、図12(A)に示すように、前記ナット46aを締め付けるに伴い、前記軸部材6がその軸線L方向で引張されてその軸力が増大するようになされている。そして前記のように、係合子25が、左側の支持リング部材61aの前記傾斜支持面66aで点状接触状態で支持されるようになされている。一方、図12(B)に示すように、前記ナット46bを締め付けるに伴い、前記軸部材6がその軸線L方向で圧縮されてその軸力が増大するようになされている。そして前記のように、係合子25が、右側の支持リング部材61bの前記傾斜支持面66aで点状接触状態で支持されるようになされている。   When the torque limiter 1 is configured in this way, as shown in FIG. 12A, as the nut 46a is tightened, the shaft member 6 is pulled in the direction of the axis L so that the axial force increases. Has been made. As described above, the engaging element 25 is supported in a point-contact state by the inclined support surface 66a of the left support ring member 61a. On the other hand, as shown in FIG. 12B, as the nut 46b is tightened, the shaft member 6 is compressed in the direction of the axis L, and the axial force is increased. As described above, the engagement element 25 is supported in the point-like contact state by the inclined support surface 66a of the right support ring member 61b.

かかることから、前記実施例1、実施例2で詳述したように、前記軸部材6がその軸線L方向に引張され或いはその軸線L方向で圧縮されて前記軸部5の軸力が増大することによって、前記係合子25が前記支持リング部材61,61の何れか一方で支持されるようになされており、該軸力が増大することよって、該係合子25が該支持リング部材61から受ける前記第4の外力F4が増大して、該係合子25が前記係合軸部51の外周面57から受ける前記第2の外力F2が減少するようになされている。   Therefore, as described in detail in the first and second embodiments, the shaft member 6 is pulled in the axis L direction or compressed in the axis L direction, and the axial force of the shaft portion 5 increases. Thus, the engagement element 25 is supported by one of the support ring members 61, 61, and the engagement element 25 receives from the support ring member 61 as the axial force increases. The fourth external force F4 increases, and the second external force F2 received by the engagement element 25 from the outer peripheral surface 57 of the engagement shaft portion 51 decreases.

このように構成されたトルクリミッタ1によるときは、負荷を引くときの軸力(図12(A)において矢印P1方向に引くとき)と、負荷を押すとき(図12(B)において矢印P2方向に押すとき)の軸力を個別に設定できる利点がある。例えば、押すときは所望遮断軸力値を大きくし、引くときは所望遮断軸力値を小さくする。   When the torque limiter 1 configured in this way is used, the axial force when pulling the load (when pulling in the direction of the arrow P1 in FIG. 12A) and when pushing the load (in the direction of the arrow P2 in FIG. 12B) There is an advantage that the axial force can be set individually. For example, when pushing, the desired breaking axial force value is increased, and when pulling, the desired breaking axial force value is reduced.

なお前記所望遮断軸力値は、前記と同様に、前記係合軸部51の外周面57に弾性的に押圧される前記係合子25の個数や、付勢手段の一種である前記リング状バネ部材36aを介しての係合子25の押圧力の大小、前記傾斜支持面66aの前記軸線Lに対する傾斜角度θ1の大小等によって設定できる。   Note that the desired cutoff axial force value is the number of the engagement elements 25 that are elastically pressed against the outer peripheral surface 57 of the engagement shaft portion 51 and the ring-shaped spring that is a kind of urging means. It can be set by the magnitude of the pressing force of the engagement element 25 through the member 36a, the magnitude of the inclination angle θ1 with respect to the axis L of the inclined support surface 66a, and the like.

図13は、負荷を引く場合と負荷を押す場合の双方に利用可能に構成されたトルクリミッタ1の他の使用態様を示すものであり、前記軸部5に同心に駆動ネジ軸94が連設されている。又、前記保持器4の前記基板部12に、該駆動ネジ軸94と同心に駆動軸部98が突設されている。そして該駆動軸部98を、図示しない駆動装置を介して図示しないモータで正逆回転させると、前記係合子25と前記係合軸部51の外周面57との間で発生する摩擦力による伝達トルクによって、トルクリミッタ1と共に前記駆動ネジ軸94を回転させ得るようになされている。   FIG. 13 shows another mode of use of the torque limiter 1 configured to be usable both when pulling a load and when pushing the load. A drive screw shaft 94 is concentrically connected to the shaft portion 5. Has been. In addition, a drive shaft portion 98 is provided on the base plate portion 12 of the cage 4 so as to be concentric with the drive screw shaft 94. When the drive shaft portion 98 is rotated forward and backward by a motor (not shown) via a drive device (not shown), transmission by frictional force generated between the engagement element 25 and the outer peripheral surface 57 of the engagement shaft portion 51 is achieved. The drive screw shaft 94 can be rotated together with the torque limiter 1 by torque.

そして、前記駆動ネジ軸94には駆動ナット104が螺合されており、該駆動ナット104は、該駆動ネジ軸94の回転の動きを該駆動ネジ軸94の軸線方向の動きに変換するものである。本実施例においては、該駆動ナット104は、該駆動ネジ軸94の該駆動ナット104より先側の部分108を収容するための筒体114の内部の下端部分118に内挿状態となされ該下端部分118に固定されている。該駆動ナット104と該筒体114とは、前記直線運動装置2の構成要素の一部分である。   A drive nut 104 is screwed onto the drive screw shaft 94, and the drive nut 104 converts a rotational movement of the drive screw shaft 94 into an axial movement of the drive screw shaft 94. is there. In this embodiment, the drive nut 104 is inserted into a lower end portion 118 inside the cylindrical body 114 for accommodating the portion 108 of the drive screw shaft 94 on the front side of the drive nut 104. It is fixed to the portion 118. The drive nut 104 and the cylindrical body 114 are a part of the components of the linear motion device 2.

前記駆動ネジ軸94の正逆回転に伴う前記筒体114の直線運動によって、トルクリミッタ1を、負荷を引く場合にも負荷を押す場合にも利用できる。   The torque limiter 1 can be used both when pulling the load and when pushing the load by the linear motion of the cylindrical body 114 accompanying the forward and reverse rotation of the drive screw shaft 94.

然して、前記駆動ネジ軸94がその軸線方向に引張され或いはその軸線方向で圧縮されて前記軸部5の軸力が増大することによって、前記係合子25が前記支持リング部材61,61の何れか一方で支持される。該軸力が増大することによって、該係合子25が該支持リング部材61から受ける前記第4の外力F4が増大し、該係合子25が前記係合軸部51の外周面57から受ける前記第2の外力F2が減少する。そして、該第2の外力F2が所望外力値にまで減少した状態となり乃至ゼロの状態になると、前記駆動軸部98が回転し続けても(従って、前記保持器4と前記支持リング部材61とが前記係合子25を介して一体となって軸線回りに回転し続けても)、前記スラスト軸受71の作用によって、支持リング部材61は回転状態にあっても前記受部67は停止状態となり、前記駆動ネジ軸94の回転は停止することになる。そして、このときの軸力は、前記駆動ナット104を含む保持手段46で保持される。   However, when the drive screw shaft 94 is pulled in the axial direction or compressed in the axial direction and the axial force of the shaft portion 5 is increased, the engagement element 25 is either one of the support ring members 61, 61. On the other hand, it is supported. As the axial force increases, the fourth external force F4 received by the engaging element 25 from the support ring member 61 increases, and the engaging element 25 receives the outer peripheral surface 57 of the engaging shaft portion 51. 2 external force F2 decreases. When the second external force F2 is reduced to the desired external force value or becomes zero, the drive shaft 98 continues to rotate (therefore, the cage 4 and the support ring member 61). Even if the support ring member 61 is in a rotating state, the receiving portion 67 is stopped by the action of the thrust bearing 71. The rotation of the drive screw shaft 94 is stopped. The axial force at this time is held by holding means 46 including the drive nut 104.

本発明は、前記実施例で示したものに限定されるものでは決してなく、「特許請求の範囲」の記載内で種々の設計変更が可能であることはいうまでもない。その一例を挙げれば次のようである。   The present invention is by no means limited to those shown in the above-described embodiments, and it goes without saying that various design changes can be made within the scope of the claims. One example is as follows.

(1) 前記遮断軸力値を設定するための要素の一つとしては、前記のように、前記係合軸部51の外周面57に弾性的に押圧される前記係合子25の個数がある。該係合子25の個数は複数個であればよいのであるが、該係合子25を、前記のような球体25aとして構成するのではなく、例えば図14に示すような、対向部が平行するカット面97,97として形成された樽形球体25bとして構成するときは、該樽形球体25bのカット面97,97間の距離を前記球体25aの直径よりも小さくできる。従って、前記球体25aと該樽形球体25bを、同一直径を有する前記周壁部22に配置する場合の取り付け個数で比較すれば、樽形球体を取り付ける場合の方が、より多くの係合子25を配置できることになる。該係合子25は、前記軸力が増大するに伴い前記支持リング部材61から受ける外力が増大していき係合子25が前記係合軸部51の外周面57から受ける外力が減少する限り、円板状等に構成することもできる。 (1) One of the elements for setting the cutoff axial force value is the number of the engagement elements 25 that are elastically pressed against the outer peripheral surface 57 of the engagement shaft portion 51 as described above. . The number of the engagement elements 25 may be plural, but the engagement element 25 is not configured as the spherical body 25a as described above, but is a cut in which the opposing portions are parallel as shown in FIG. When configured as the barrel sphere 25b formed as the surfaces 97, 97, the distance between the cut surfaces 97, 97 of the barrel sphere 25b can be made smaller than the diameter of the sphere 25a. Therefore, if the spherical body 25a and the barrel-shaped sphere 25b are compared in terms of the number of mountings when they are arranged on the peripheral wall portion 22 having the same diameter, a larger number of engagement elements 25 can be obtained when the barrel-shaped sphere is mounted. It can be arranged. As long as the axial force increases, the engagement element 25 increases as the external force received from the support ring member 61 increases, and as long as the external force received by the engagement element 25 from the outer peripheral surface 57 of the engagement shaft portion 51 decreases. It can also be configured in a plate shape or the like.

(2) 図15は、前記付勢手段36を構成する円筒状のリング状バネ部材36aの他の態様を示すものであり、その内周面56の一端側の部分は、軸線方向で見た一端99から他端100に向けて小径となるテーパ状面部101に形成されている。該テーパ状面部101は、前記係合子25を前記係合軸部51の外周面57に弾性的に押圧する。そして、該内周面56の他端側の部分は、雌ネジ内周面部102とされている。
そして該雌ネジ内周面部102は、図15に示すように、前記周壁部22の外周面の収容孔開放端27側の部分に設けられた雄ネジ外周面部103に螺合するように構成されている。そして、該雄ネジ外周面部103に対する該雌ネジ内周面部102のネジ込み量が大きくなるにつれて、前記テーパ状面部101による、前記係合軸部51の外周面57に対する係合子25の弾性的な押圧力を大きくすることができる。これによって、リング状バネ部材36aによる該外周面57に対しての係合子25の弾性的な押圧力を所要に調節することができるのである。この調節状態は、前記リング状バネ部材36aの他端部分に設けられた鍔部120に設けたネジ孔121に螺合する止着ネジ122を締め付けて該止着ネジ122の先端123を前記雄ネジ外周面部103に押圧状態とすることにより保持される。
(2) FIG. 15 shows another embodiment of a cylindrical ring-shaped spring member 36a constituting the biasing means 36, and a portion on one end side of the inner peripheral surface 56 is seen in the axial direction. A tapered surface portion 101 having a small diameter from one end 99 to the other end 100 is formed. The tapered surface portion 101 elastically presses the engaging element 25 against the outer peripheral surface 57 of the engaging shaft portion 51. A portion on the other end side of the inner peripheral surface 56 is a female screw inner peripheral surface portion 102.
As shown in FIG. 15, the female thread inner peripheral surface portion 102 is configured to be screwed into a male screw outer peripheral surface portion 103 provided in a portion of the outer peripheral surface of the peripheral wall portion 22 on the accommodation hole open end 27 side. ing. Then, as the screwing amount of the female screw inner peripheral surface portion 102 with respect to the male screw outer peripheral surface portion 103 increases, the elastic force of the engagement element 25 with respect to the outer peripheral surface 57 of the engagement shaft portion 51 by the tapered surface portion 101 is increased. The pressing force can be increased. Thereby, the elastic pressing force of the engagement element 25 against the outer peripheral surface 57 by the ring-shaped spring member 36a can be adjusted as necessary. In this adjustment state, a fixing screw 122 that is screwed into a screw hole 121 provided in the flange 120 provided at the other end portion of the ring-shaped spring member 36a is tightened, and the tip 123 of the fixing screw 122 is moved to the male screw. The screw is held by being pressed on the outer peripheral surface portion 103 of the screw.

(3) 前記付勢手段36は、前記した、周方向に閉じた円筒状を呈するリング状バネ部材36aを以て構成することの他、図16に示すように、周面部に割溝105が設けられた割溝付きリング状バネ部材36bを以て構成されることもある。
又、図17に示すように、前記係止孔部23に嵌め入れられた係合子25を、該係止孔部23に嵌め入れた圧縮バネ(コイルバネや板バネ等)117で所要に押圧するように構成することもできる。この場合、例えば図17に示すように、該係止孔部23の外端側の部分に設けた雌ネジ部106に調節ネジ107を螺合し、該調節ネジ107のねじ込み量を調整することによって、前記外周面57に対しての係合子25の弾性的な押圧力を所要に調節することができる。このように構成する場合、周方向に設けられた複数個の係止孔部23に螺合されている調節ネジ107の夫々を同時に同量分だけねじ込み操作できるように、一括ねじ込み手段を付設することもできる。
(3) The biasing means 36 is constituted by the above-described ring-shaped spring member 36a having a cylindrical shape closed in the circumferential direction, and as shown in FIG. 16, a split groove 105 is provided in the peripheral surface portion. A ring-shaped spring member 36b with a split groove may be used.
In addition, as shown in FIG. 17, the engaging element 25 fitted in the locking hole 23 is pressed as required by a compression spring (coil spring, leaf spring, etc.) 117 fitted in the locking hole 23. It can also be configured as follows. In this case, for example, as shown in FIG. 17, the adjustment screw 107 is screwed into the female screw portion 106 provided in the outer end side portion of the locking hole portion 23, and the screwing amount of the adjustment screw 107 is adjusted. Thus, the elastic pressing force of the engaging element 25 against the outer peripheral surface 57 can be adjusted as necessary. In the case of such a configuration, a collective screwing means is provided so that the adjustment screws 107 screwed into the plurality of locking holes 23 provided in the circumferential direction can be simultaneously screwed by the same amount. You can also.

その他、前記付勢手段36は、エア圧や油圧等の流体圧を利用して構成したり、電磁弁を用いて構成して、該係合子25を外周面57に対して弾性的に押圧でき且つその押圧力を調整するようになすこともできる。要は、何らかの手段で係合子25を外周面57に対して弾性的に押圧でき且つその押圧力を調整できるものであればよい。
又、前記付勢手段36を、前記リング状バネ部材36aや割溝付きリング状バネ部材36bを以て構成する場合、これらを、金属とゴムとの複合素材を用いて構成することもできる。
In addition, the biasing means 36 can be configured using fluid pressure such as air pressure or hydraulic pressure, or can be configured using an electromagnetic valve, and can elastically press the engaging element 25 against the outer peripheral surface 57. In addition, the pressing force can be adjusted. In short, any means can be used as long as it can elastically press the engaging element 25 against the outer peripheral surface 57 and adjust the pressing force by some means.
Further, when the urging means 36 is constituted by the ring-shaped spring member 36a or the ring-shaped spring member 36b with a split groove, these can be constituted by using a composite material of metal and rubber.

(4) 前記支持リング部材61に設けられている前記傾斜支持面66aは、前記した直線状の傾斜面として形成されることの他、例えば図18に示すような湾曲面として構成されることもある。この場合も、係合子25は、湾曲面からなる該傾斜支持面66aに点状接触する。又前記支持部66は、前記係合子25と点状接触し得る限り、前記傾斜支持面66aとしての他、点状乃至線状等を呈するものであってもよい。 (4) The inclined support surface 66a provided on the support ring member 61 may be formed as a curved surface as shown in FIG. 18, for example, in addition to the linear inclined surface described above. is there. Also in this case, the engagement element 25 makes point contact with the inclined support surface 66a formed of a curved surface. Further, the support portion 66 may have a point shape or a line shape in addition to the inclined support surface 66a as long as the support portion 66 can make point contact with the engagement element 25.

(5) 前記軸部5をその軸線回りに回転させると共に、該軸部5の軸力を保持手段46で保持する構成は、前記のように、通常のネジ軸39と通常のナット46a,46bとの組み合わせで構成することの他、ボールネジとボールネジナットとの組み合わせで構成することもできる。又、軸体と、該軸体の軸線に対して傾く軸線を有する一対のローラとの組み合わせで構成され、該一対のローラを回転させることによって該軸体を回転させ得るように構成されたものの他、磁気ネジを用いて構成することもできる。 (5) The configuration in which the shaft portion 5 is rotated about its axis and the axial force of the shaft portion 5 is held by the holding means 46, as described above, is the normal screw shaft 39 and the normal nuts 46a and 46b. In addition to a combination with the ball screw, a combination of a ball screw and a ball screw nut can also be used. Further, it is composed of a combination of a shaft body and a pair of rollers having an axis inclined with respect to the axis of the shaft body, and is configured so that the shaft body can be rotated by rotating the pair of rollers. In addition, a magnetic screw can be used.

(6) 前記スラスト軸受71は、スラストニードル軸受の他、スラスト玉軸受、スラストころ軸受、各種の素材からなる板状の軸受であってもよい。 (6) The thrust bearing 71 may be a thrust ball bearing, a thrust roller bearing, or a plate-shaped bearing made of various materials.

(7) 図19は、前記係合軸部51の外周面57に、前記係合子25の球面部分109を嵌め入れるための断面円弧状の浅い荷重分散周溝110を周方向に連続して設けた場合を示している。溝深さは、例えば0.2〜0.3mm程度に設定される。このように構成する場合は、トルクリミッタの使用条件によって、より大きな軸力が要求されるために前記係合軸部51の外周面57に対する係合子25による押圧力が大なるときも、前記した点状接触状態における場合とは異なり、該係合子25が該荷重分散周溝110に円弧状の線状接触状態となって荷重を分散させることができる。従って、所望遮断軸力値を大きく確保するために前記押圧力を大きくしたときも、該外周面57に過大な応力が作用して係合軸部51が損傷されるのを防止できることになる。そして、このように周溝として構成する場合は、前記周壁部22の周方向に配置する係合子25の位置関係によらず、該係合子25を該荷重分散周溝110に嵌め入れることができる。 (7) FIG. 19 shows that the outer circumferential surface 57 of the engaging shaft portion 51 is provided with a shallow load distribution circumferential groove 110 having a circular arc cross section for fitting the spherical portion 109 of the engaging element 25 in the circumferential direction. Shows the case. The groove depth is set to, for example, about 0.2 to 0.3 mm. In the case of such a configuration, since a larger axial force is required depending on the use condition of the torque limiter, the pressing force by the engagement element 25 against the outer peripheral surface 57 of the engagement shaft portion 51 is increased as described above. Unlike the case of the point-like contact state, the engagement element 25 becomes an arc-like linear contact state in the load distribution circumferential groove 110 and can distribute the load. Therefore, even when the pressing force is increased in order to ensure a large desired breaking axial force value, it is possible to prevent the engagement shaft portion 51 from being damaged due to excessive stress acting on the outer peripheral surface 57. When configured as a circumferential groove in this way, the engagement element 25 can be fitted into the load distribution circumferential groove 110 regardless of the positional relationship of the engagement elements 25 arranged in the circumferential direction of the circumferential wall portion 22. .

図19には、荷重分散周溝110が設けられている場合における第1の外力F1、第2の外力F2、第3の外力F3、第4の外力F4の作用状態が併せて示されている。この状態で、前記ナット46aや前記ナット46bの締め付けによって前記軸部材6の軸力が増大する。更にナット46aやナット46bを締め付けることにより、前記係合子25が前記係合軸部51の外周面57から受ける外力が減少し、前記軸部材6の軸力が所望遮断軸力値に達する。   FIG. 19 also shows the action states of the first external force F1, the second external force F2, the third external force F3, and the fourth external force F4 when the load distribution circumferential groove 110 is provided. . In this state, the axial force of the shaft member 6 is increased by tightening the nut 46a and the nut 46b. Further, by tightening the nut 46a and the nut 46b, the external force received by the engagement element 25 from the outer peripheral surface 57 of the engagement shaft portion 51 is reduced, and the axial force of the shaft member 6 reaches a desired cutoff axial force value.

図20は、同様の目的で、該係合軸部51の外周面57に、球面状の浅い荷重分散凹部113を前記係合子25の配置に併せて設けた場合を示している。荷重分散凹部113の深さは、例えば0.2〜0.3mm程度に設定される。このように構成するときは、該係合子25が該荷重分散凹部113に球面接触状態となって荷重を分散させることができる。図20には、荷重分散凹部113が設けられている場合における第1の外力F1、第2の外力F2、第3の外力F3、第4の外力F4の作用状態が併せて示されている。図21(A)は、前記第2の外力F2がゼロではあるが、前記係合子25が前記荷重分散凹部113に収まった状態を示している。この状態で前記ナット46aや前記ナット46bを更に締め付けることにより、図21(B)に示すように、該係合子25が該荷重分散凹部113から脱した状態となる。このとき前記係合子25が、前記リング状バネ部材36aを、ラジアル方向外側へ微小変位させ、該係合子25が荷重分散凹部113から脱出し、前記軸部材6の軸力が所望遮断軸力値に達した状態となり得る。   FIG. 20 shows a case where a spherical shallow load distribution recess 113 is provided on the outer peripheral surface 57 of the engagement shaft portion 51 together with the arrangement of the engagement element 25 for the same purpose. The depth of the load distribution recess 113 is set to about 0.2 to 0.3 mm, for example. When configured in this manner, the engagement element 25 can be in a spherical contact state with the load dispersion recess 113 to disperse the load. FIG. 20 also shows the action states of the first external force F1, the second external force F2, the third external force F3, and the fourth external force F4 when the load distribution recess 113 is provided. FIG. 21A shows a state where the second external force F2 is zero, but the engagement element 25 is housed in the load distribution recess 113. FIG. When the nut 46a and the nut 46b are further tightened in this state, the engagement element 25 is detached from the load distribution recess 113 as shown in FIG. At this time, the engagement element 25 slightly displaces the ring-shaped spring member 36a outward in the radial direction, the engagement element 25 escapes from the load distribution recess 113, and the axial force of the shaft member 6 is a desired cutoff axial force value. Can be reached.

図22は、前記荷重分散周溝110の溝底部分111に更に、球面状の浅い荷重分散凹部113を、前記係合子25の配置に合わせて設けた場合を示している。   FIG. 22 shows a case where a shallow spherical load distribution recess 113 is further provided in the groove bottom portion 111 of the load distribution circumferential groove 110 in accordance with the arrangement of the engagement elements 25.

又図23(A)(B)は、荷重分散によって前記傾斜支持面66aを保護するために、該傾斜支持面66aの傾斜方向に沿って、断面円弧状で直線状を呈する浅い荷重分散直線状溝115を設けた場合を示している。   23 (A) and 23 (B) show a shallow load distribution linear shape that is linear in a circular arc shape along the inclination direction of the inclined support surface 66a in order to protect the inclined support surface 66a by load distribution. The case where the groove | channel 115 was provided is shown.

又図23(A)(C)は、前記付勢手段36を前記リング状バネ部材36aや前記割溝付きリング状バネ部材36bを以て構成する場合、荷重分散によってこれらを保護するために、該リング状バネ部材36aや該リング状バネ部材36bの内周面56に、係合子25を嵌め入れる、断面円弧状の浅い荷重分散周溝116を設けた場合を示している。又図24は、同様の目的で、該内周面56に、球面状の浅い荷重分散凹部117を周方向に所要角度で設けた場合を示している。   23 (A) and 23 (C) show that when the urging means 36 includes the ring-shaped spring member 36a and the ring-shaped spring member 36b with a split groove, the ring is protected in order to protect them by load distribution. A case is shown in which a shallow load distribution circumferential groove 116 having an arcuate cross section into which the engagement element 25 is fitted is provided on the inner peripheral surface 56 of the ring-shaped spring member 36a or the ring-shaped spring member 36b. FIG. 24 shows a case where a spherical shallow load distribution recess 117 is provided on the inner circumferential surface 56 at a required angle in the circumferential direction for the same purpose.

図25は、前記係合軸部51の外周面57に設けられた、断面V字状を呈する荷重分散周溝110を示すものであり、又、前記傾斜支持面66aにも、断面V字状を呈する荷重分散直線状溝を設けることができる。   FIG. 25 shows a load distribution circumferential groove 110 having a V-shaped cross section provided on the outer peripheral surface 57 of the engaging shaft portion 51. Further, the inclined support surface 66a also has a V-shaped cross section. It is possible to provide a load-distributed linear groove exhibiting

(8) 前記収容孔3は、図1や図6等で示すような有底でなく、貫通孔として構成されることもある。 (8) The accommodation hole 3 may be configured as a through-hole instead of a bottomed one as shown in FIGS.

1 トルクリミッタ
2 直線運動装置
2a 緊張装置
3 収容孔
4 保持器
5 軸部
6 軸部材
12 基板部
16 円筒状部
22 円筒状部の周壁部
23 係止孔部
25 係合子
37 軸部の外側面
39 ネジ軸部
46 保持手段
46a ナット
46b ナット
47 端軸部
51 係合軸部
55 挿入軸部
57 係合軸部の外周面
59 係止孔部の内周面
60 係合内周面部
61 支持リング部材
62 挿通孔
66 支持部
66a 傾斜支持面
67 受部
71 スラスト軸受
110 荷重分散周溝
113 荷重分散凹部
117 荷重分散凹部
DESCRIPTION OF SYMBOLS 1 Torque limiter 2 Linear motion apparatus 2a Tension apparatus 3 Accommodating hole 4 Cage 5 Shaft part 6 Shaft member 12 Substrate part 16 Cylindrical part 22 Peripheral wall part of cylindrical part 23 Locking hole part 25 Engagement element 37 Outer surface of axial part 39 Screw shaft portion 46 Holding means 46a Nut 46b Nut 47 End shaft portion 51 Engagement shaft portion 55 Insertion shaft portion 57 Outer peripheral surface of engagement shaft portion 59 Inner peripheral surface of locking hole 60 Engagement inner peripheral surface portion 61 Support ring Member 62 Insertion hole 66 Support portion 66a Inclined support surface 67 Receiving portion 71 Thrust bearing 110 Load distribution circumferential groove 113 Load distribution recess 117 Load distribution recess

Claims (3)

収容孔が設けられてなる保持器と、該収容孔内に収容され且つ軸線回りに回転し得る軸部とを具え、該軸部は、断面円形の係合軸部の、軸線方向で見た一端に挿入軸部が同心に連設されてなり、該係合軸部とは別体の係合子が、前記保持器の周壁部にその周方向に等角度で複数個設けられた係止孔部の夫々に嵌め入れられ、該係合子が、付勢手段を介して該係合軸部の外周面に弾性的に押圧される如くなされており、且つ該係合子は、前記係止孔部の内周面の、前記軸線方向で見た対向部の何れか一方である係合内周面部と当接可能となされており、
又、前記挿入軸部が、前記軸部とは別体の円形リング状を呈する支持リング部材の中心部に設けられた挿通孔に遊挿されており、該支持リング部材の外周部の前記係合子との対向側には、該係合子と点状接触し得る支持部が設けられてなり、
又、前記挿入軸部の先端に一体に設けられた受部と前記支持リング部材の、対向する側面間に、スラスト軸受が介在されており、該受部は、前記支持リング部材に対して前記軸部の軸線回りに相対回転が可能となされており、
前記軸部がその軸線方向で引張され或いはその軸線方向で圧縮されて該軸部の軸力が増大することにより、前記係合子が前記支持リング部材で支持されるようになされており、
該軸力が増大するに伴い、該係合子が該支持リング部材から受ける外力が増大していき、該係合子が前記係合軸部の外周面から受ける外力が減少するようになされており、
該係合子が前記外周面から受ける外力が所望外力値にまで減少した状態乃至該外力がゼロになって、前記軸力が所望遮断軸力値に達した状態で、前記軸部は、前記スラスト軸受を介し前記支持リング部材に対して軸線回りに相対回転でき、その軸力を保持手段で保持し得ることを特徴とする軸力起因型トルクリミッタ。
A cage having a housing hole and a shaft portion that is housed in the housing hole and can rotate around the axis line, the shaft portion of the engagement shaft portion having a circular cross section as viewed in the axial direction. A locking hole in which an insertion shaft portion is concentrically connected to one end, and a plurality of engaging members separate from the engaging shaft portion are provided at equal angles in the circumferential direction of the peripheral wall portion of the cage. And the engagement element is elastically pressed against the outer peripheral surface of the engagement shaft portion via the urging means, and the engagement element is formed in the engagement hole portion. Of the inner peripheral surface of the inner peripheral surface of the engagement inner peripheral surface portion that is any one of the opposing portions seen in the axial direction,
Further, the insertion shaft portion is loosely inserted into an insertion hole provided in a central portion of a support ring member having a circular ring shape separate from the shaft portion, and the engagement portion of the outer peripheral portion of the support ring member is inserted. On the opposite side of the coupling, a support portion that can come into point contact with the engagement element is provided,
In addition, a thrust bearing is interposed between the opposing side surfaces of the receiving portion integrally provided at the tip of the insertion shaft portion and the supporting ring member, and the receiving portion is in contact with the supporting ring member. Relative rotation is possible around the axis of the shaft,
The engagement portion is configured to be supported by the support ring member when the shaft portion is pulled or compressed in the axial direction to increase the axial force of the shaft portion.
As the axial force increases, the external force that the engaging element receives from the support ring member increases, and the external force that the engaging element receives from the outer peripheral surface of the engaging shaft portion decreases.
In a state where the external force received by the engagement element from the outer peripheral surface is reduced to a desired external force value or in a state where the external force becomes zero and the axial force reaches a desired cutoff axial force value, the shaft portion An axial force-induced torque limiter that is capable of rotating relative to the support ring member about an axis via a bearing and capable of holding the axial force by holding means.
収容孔が設けられてなる保持器と、該収容孔内に収容され且つ軸線回りに回転し得る軸部とを具え、該軸部は、断面円形の係合軸部の、軸線方向で見た両端に挿入軸部が同心に連設されてなり、該係合軸部とは別体の係合子が、前記保持器の周壁部にその周方向に等角度で複数個設けられた係止孔部の夫々に嵌め入れられ、該係合子が、付勢手段を介して該係合軸部の外周面に弾性的に押圧される如くなされており、且つ該係合子は、前記係止孔部の内周面の、前記軸線方向で見た対向部の何れか一方である係合内周面部と当接可能となされており、
又、前記各挿入軸部が、前記軸部とは別体の円形リング状を呈する支持リング部材の中心部に設けられた挿通孔に遊挿されており、該支持リング部材の外周部の前記係合子との対向側には、該係合子と点状接触し得る支持部が設けられてなり、
又、前記挿入軸部の先端に一体に設けられた受部と前記支持リング部材の、対向する側面間に、スラスト軸受が介在されており、該受部は、前記支持リング部材に対して前記軸部の軸線回りに相対回転が可能となされており、
前記軸部がその軸線方向で引張され或いはその軸線方向で圧縮されて該軸部材の軸力が増大することにより、前記係合子が前記支持リング部材で支持されるようになされており、
該軸力が増大するに伴い、該係合子が該支持リング部材から受ける外力が増大していき、該係合子が前記係合軸部の外周面から受ける外力が減少するようになされており、
該係合子が前記外周面から受ける外力が所望外力値にまで減少した状態乃至該外力がゼロになって、前記軸力が所望遮断軸力値に達した状態で、前記軸部は、前記スラスト軸受を介し前記支持リング部材に対して軸線回りに相対回転でき、その軸力を保持手段で保持し得ることを特徴とする軸力起因型トルクリミッタ。
A cage having a housing hole and a shaft portion that is housed in the housing hole and can rotate around the axis line, the shaft portion of the engagement shaft portion having a circular cross section as viewed in the axial direction. Insertion shafts are concentrically connected to both ends, and a plurality of engaging holes separate from the engagement shafts are provided in the circumferential wall of the retainer at equal angles in the circumferential direction. And the engagement element is elastically pressed against the outer peripheral surface of the engagement shaft portion via the urging means, and the engagement element is formed in the engagement hole portion. Of the inner peripheral surface of the inner peripheral surface of the engagement inner peripheral surface portion that is any one of the opposing portions seen in the axial direction,
Each of the insertion shaft portions is loosely inserted into an insertion hole provided in a center portion of a support ring member having a circular ring shape separate from the shaft portion, and the outer peripheral portion of the support ring member On the opposite side of the engagement element, a support portion that can come into point contact with the engagement element is provided,
In addition, a thrust bearing is interposed between the opposing side surfaces of the receiving portion integrally provided at the tip of the insertion shaft portion and the supporting ring member, and the receiving portion is in contact with the supporting ring member. Relative rotation is possible around the axis of the shaft,
When the shaft portion is pulled in the axial direction or compressed in the axial direction to increase the axial force of the shaft member, the engagement element is supported by the support ring member,
As the axial force increases, the external force that the engaging element receives from the support ring member increases, and the external force that the engaging element receives from the outer peripheral surface of the engaging shaft portion decreases.
In a state where the external force received by the engagement element from the outer peripheral surface is reduced to a desired external force value or in a state where the external force becomes zero and the axial force reaches a desired cutoff axial force value, the shaft portion An axial force-induced torque limiter that is capable of rotating relative to the support ring member about an axis via a bearing and capable of holding the axial force by holding means.
前記支持部が直線状の傾斜支持面であることを特徴とする請求項1又は2記載の軸力起因型トルクリミッタ。   The axial force-induced torque limiter according to claim 1, wherein the support portion is a linear inclined support surface.
JP2009286706A 2009-12-17 2009-12-17 Axial force-induced torque limiter Expired - Fee Related JP4993521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286706A JP4993521B2 (en) 2009-12-17 2009-12-17 Axial force-induced torque limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286706A JP4993521B2 (en) 2009-12-17 2009-12-17 Axial force-induced torque limiter

Publications (2)

Publication Number Publication Date
JP2011127691A JP2011127691A (en) 2011-06-30
JP4993521B2 true JP4993521B2 (en) 2012-08-08

Family

ID=44290485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286706A Expired - Fee Related JP4993521B2 (en) 2009-12-17 2009-12-17 Axial force-induced torque limiter

Country Status (1)

Country Link
JP (1) JP4993521B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182709B2 (en) * 2014-06-09 2017-08-23 有限会社マツモトエンジニアリング Axial force-induced torque transmission device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648188Y2 (en) * 1989-03-20 1994-12-12 株式会社椿本エマソン Overload clutch trip torque setting mechanism
JP3229434B2 (en) * 1993-05-21 2001-11-19 テイエチケー株式会社 Ball screw device
DE102006036961B4 (en) * 2006-08-08 2018-06-28 Chr. Mayr Gmbh & Co. Kg Backlash-free overload protection for spindle nuts
JP2009250294A (en) * 2008-04-03 2009-10-29 Jtekt Corp Ball screw device

Also Published As

Publication number Publication date
JP2011127691A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US8528687B2 (en) Worm gear for electric assisted steering apparatus and method controlling the movement of the worm shaft in a worm gearing
EP2770225B1 (en) Damping device
US5910692A (en) Ball-threaded shaft anti-slipout type linear actuator
US8585291B2 (en) Aircraft bearing assembly
US20140003914A1 (en) Lockable drive assembly for rotatable members
JP2013167549A (en) Slip load test method of rotational inertia mass damer and rotational inertia mass damper
JP4993521B2 (en) Axial force-induced torque limiter
JP2007139012A (en) Movable body supporting device and torque limiter
JP2017020612A (en) Reverse input cutoff clutch
WO2014132749A1 (en) V-belt type stepless transmission
CN107504045B (en) Method and apparatus for preventing loosening of threaded fasteners
WO2018079505A1 (en) Toroidal continuously variable transmission
JP6182709B2 (en) Axial force-induced torque transmission device
JP2010127370A (en) Pulley unit
WO2010061805A1 (en) Pulley unit
WO2003052295A1 (en) Tensioner
KR101764393B1 (en) Unload torque limiter
JP2011169397A (en) Pulley unit
JP2006250283A (en) Torque limiter
JP2013002513A (en) Rolling bearing mounting structure in rotating shaft device
JP2006057688A (en) Reverse input shutoff device
JP3664520B2 (en) One-way rolling bearing clutch with torque limiter function
KR20070037768A (en) Torque limiting overload coupling
JP5877404B2 (en) Roller clutch device
JP2016061306A (en) Damper pulley

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120327

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees