JP4993237B2 - Magnesium alloy material heating control method and heating furnace - Google Patents

Magnesium alloy material heating control method and heating furnace Download PDF

Info

Publication number
JP4993237B2
JP4993237B2 JP2000046691A JP2000046691A JP4993237B2 JP 4993237 B2 JP4993237 B2 JP 4993237B2 JP 2000046691 A JP2000046691 A JP 2000046691A JP 2000046691 A JP2000046691 A JP 2000046691A JP 4993237 B2 JP4993237 B2 JP 4993237B2
Authority
JP
Japan
Prior art keywords
temperature
heating furnace
heating
inert gas
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000046691A
Other languages
Japanese (ja)
Other versions
JP2001234253A (en
Inventor
元秀 西尾
洋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000046691A priority Critical patent/JP4993237B2/en
Publication of JP2001234253A publication Critical patent/JP2001234253A/en
Application granted granted Critical
Publication of JP4993237B2 publication Critical patent/JP4993237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マグネシウム合金あるいはマグネシウム合金からなる素材に鍛造やプレス成形あるいは熱処理を行うために所定の温度に加熱するときに、発火による燃焼を未然に防止することができる加熱制御方法および加熱炉に関するものである。
【0002】
【従来の技術】
マグネシウム合金あるいはマグネシウム合金からなる素材(以下、総称してマグネシウム合金製素材という)、例えば鋳造した素材や圧延材等に、鍛造成形、プレス成形あるいは熱処理を行うときに、これらのマグネシウム合金製素材を加熱炉あるいは熱処理炉に装入して、所定の目標温度、例えば300〜450℃に加熱することが行われている。これらの加熱炉においては、加熱炉内に加熱ヒータ等の加熱手段と加熱炉内の温度を検出するための温度センサ、例えば熱電対などを設置し、この温度センサで検出した温度に基づいて、制御装置は加熱炉内の温度が目標の温度範囲内になるように加熱ヒータの通電を制御している。しかし、何らかの不具合により、加熱炉内の温度が目標とする温度範囲を大きく超えた場合には、加熱する素材の品質の低下、加熱炉の損傷、加熱炉の火災、爆発等の危険性が生じる。特にマグネシウム合金製素材は高温で酸素と反応し易いために、500℃を超えると発火し燃焼する危険性がある。加熱炉においては、上記のような不具合を発生させないために、種々の安全対策が提案されている。
【0003】
例えば、特開平1−287224号公報には、バーナを使用した金属ストリップ用熱処理炉において、炉内温度が許容範囲を上回った場合には冷却ガス(空気または雰囲気ガス)を炉内に吹き込むことが開示されている。特開平6−147774号公報には、シームレス鋼管用連続式加熱炉において、雰囲気温度が予め設定した温度より所定の温度ほど上乗せした温度まで上昇すると、自動消火機能が作動して、燃料ガスに換わってNガスを供給することが開示されている。特開平10−79351号公報にはCVD装置等の処理炉において、複数個の温度センサを設置し、温度異常を制御不良に起因した異常と温度センサの異常とを判別できる温度管理を目的とし、検出温度の異常を呈した熱電対の数が多ければ加熱ヒータへの給電を停止することが開示されている。
【0004】
【発明が解決しようとする課題】
マグネシウム合金製素材の加熱においては、マグネシウム合金製素材は容易に酸化し易い材質であり500℃を超えると発火し燃焼する危険性がある。従って、マグネシウム合金製素材を加熱する時には、加熱炉内の温度が目標温度を超えて異常な温度範囲に達した場合には、マグネシウム合金製素材が発火して燃焼する温度に達する前に安全対策を行うことが重要となる。また、加熱炉内の温度を検出する温度センサに異常が発生した場合でも、確実に安全対策を実施することができる制御方式を採用することが不可欠である。
本発明の目的は、加熱を行うために炉内に装入したマグネシウム合金製素材が、炉内の温度が目標温度を超えて異常温度になった場合に、このマグネシウム合金製素材の発火による燃焼を事前に防止することができるマグネシウム合金製素材の加熱制御方法および加熱炉を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、加熱炉内に装入されたマグネシウム合金製素材の加熱制御方法において、加熱炉内の温度が鍛造やプレス成形あるいは熱処理を行うために予め設定した目標温度T0より10〜20℃高い異常温度T1となると加熱炉の加熱を停止させ、加熱を停止させた後に加熱炉内の温度が前記異常温度T1より高くかつ前記合金の発火温度より20〜30℃低い予め設定した異常温度T2となると、加熱炉内に不活性ガスを噴射することを特徴とするマグネシウム合金製素材の加熱制御方法である。
【0006】
また本発明は、装入されたマグネシウム合金製素材を加熱する加熱炉であって、加熱炉内の温度を検出すべく設置された温度センサと、加熱炉内に不活性ガスを噴射することができる不活性ガス噴射装置と、温度センサの温度情報を受け、鍛造やプレス成形あるいは熱処理を行うために予め設定した目標温度T0より10〜20℃高い異常温度T1となると加熱手段に加熱停止指令を出し、前記異常温度T1より高くかつ前記合金の発火温度より20〜30℃低い予め設定した異常温度T2となると不活性ガス噴射装置に不活性ガスを噴射するように指令を出す論理部を有する制御装置とを備えたことを特徴としている。
前記加熱炉においては、温度センサを複数個マグネシウム合金製素材から20〜50mm離れて位置するように設置することが望ましい。また、前記加熱炉内の温度監視用温度センサとは別個に加熱手段の制御用温度センサを設けてもよい。また、不活性ガス噴射装置には、不活性ガスを貯蔵する容器と加熱炉内とを結ぶ配管に制御装置の指令により開閉する流体圧駆動弁を設けるとよい。また、流体圧駆動弁の流体は、窒素ガスを貯蔵する容器から供給される窒素ガスとするとよいが、突発的に圧力変動が生じないように供給されれば限定されず、圧縮空気、アルゴンガスでもよい。また、不活性ガスはアルゴンガスが好ましいが、炭酸ガスでもよい。
【0007】
【発明の実施の形態】
以下本発明の実施の形態について説明する。図1は本発明の加熱炉の一実施形態を示す横断面図である。図1において、加熱炉1は、横長の炉体2を有し、炉体1の内部には、所定の速度で進行するチェンコンベア3等の搬送装置が設置されている。チェンコンベア3には搬送プレート4が所定の間隔で載置されている。搬送プレート4上には加熱されるマグネシウム合金製素材5(以下、ワーク5という)が積載されている。炉体2の上部には、加熱炉1内を目標温度T0に加熱するための加熱ヒータ6が所定の間隔を置いて設置されている。さらに、炉体2には、炉体2内の温度を測定するための制御用温度センサ7a、監視用温度センサ7bが炉体2の長手方向に所定の間隔をおいて複数個設置されている。制御用温度センサ7aは、炉体2内を目標温度T0に制御するために使用され、監視用温度センサ7bは、炉体2内の温度を監視するために使用される。これら複数の温度センサ7a、7bとしては熱電対が使用できる。また、これらの温度センサ7a、7bは、加熱炉1の制御装置(図2に示す制御装置10)に接続され、その検出温度は制御装置10に入力される。
【0008】
この複数の温度センサ7a、7bは、炉体2の上壁に設置され、その温度検出部である先端部は、ワーク5の上方部の近傍、望ましくはワーク5から20〜50mm離れた位置に配置し、ワーク5の直ぐ近くの温度が検出できるようにする。炉体2の底部には、炉体2内に不活性ガス、好ましくはアルゴンガスを噴射するためのノズル8が所定の間隔を置いて炉体2の長手方向に複数個設置されている。このノズル8は、径の小さい配管を使用すればよい。9は、加熱ヒータ6からの熱を直接ワーク5に伝えずに、ワーク5を均一に加熱するために設けたカバーであり、ステンレス鋼等からなる耐熱薄板材を使用する。なお、図示していないが、横長の炉体2の前方部には装入口、後方部には排出口を設けそれぞれに開閉扉が設置されている。
【0009】
図2は、本発明を実施するために必要な加熱炉1の制御系統図と配管経路図の一例を示すものである。図2において、10は加熱炉1の運転を制御する制御装置であり、シーケンスコントローラまたはマイクロコンピュータから構成されている。制御装置10が制御する内容としては、制御用温度センサ7aの検出温度に基づいて加熱ヒータ6の通電の制御、監視用温度センサ7bの検出温度に基づいて流体圧駆動弁11の弁の開閉制御、およびチェンコンベア3の駆動制御、炉体2の装入口、排出口の開閉扉の開閉等がある。12は電磁弁、13は高圧のアルゴンガスを貯蔵している容器、14は流体圧駆動弁11の弁を開閉するための窒素ガスを電磁弁12へ供給する高圧の窒素ガスを貯蔵する容器である。15a、15bはアルゴンガスを供給するための配管、16は窒素ガスを供給するための配管である。高圧アルゴンガスの貯蔵容器13、高圧窒素ガスの貯蔵容器14、流体圧駆動弁11、電磁弁12、ノズル8、配管14a、配管14bは不活性ガス噴射装置を構成する。
【0010】
続いて本発明の加熱炉の加熱制御方法について説明する。まず、制御装置10の制御指令により加熱ヒータ6に通電し、加熱炉1内の温度を目標温度T0、例えば鍛造成形する場合には300〜450℃の範囲に加熱する。制御装置10は加熱炉1内を目標温度T0に制御するために、制御用温度センサ7aの検出温度に基づいて加熱ヒータ6の通電の制御を行う。続いて、加熱炉1の前工程に設置されているハンドリングロボット等により、ワーク5を搬送プレート4に所定の個数ほど積載する。次に、制御装置10の制御指令により加熱炉1の装入口の開閉扉を開き、チェンコンベア3を駆動させてワーク5を積載した搬送プレート4を加熱炉1内に装入する。このワーク5を積載した搬送プレート4の装入作業は、所定の時間間隔で行われるように制御し加熱炉1内には複数個の搬送プレート4が装入される。加熱炉1に装入されたワーク5は、目標温度T0に加熱された加熱炉1内で所定の時間ほど加熱された後、制御装置10の制御指令により排出口から搬送プレート4とともに排出され、次工程の鍛造、あるいはプレス成形工程に搬送される。なお、加熱炉1内に装入されたワーク5の酸化と発火を防止するために、別途、図示していないアルゴンガス供給装置から加熱炉1内にアルゴンガスを供給し、加熱炉1内はアルゴンガスの濃度が1〜5%の雰囲気にするとよい。
【0011】
続いて、加熱炉1内でワーク5を加熱しているときに何らかの不具合により、加熱炉1内の温度が目標温度T0より上昇して異常温度に達したときの制御方法について説明する。制御装置10は複数の監視用温度センサ7bで検出した温度値を所定の時間間隔(例えば0.1秒)で入力することにより、加熱炉1内の温度を常時監視している。そして、制御装置10は、複数個の監視用温度センサ7bの少なくとも1個の検出温度が目標温度T0より高い予め設定した異常温度T1(例えば460℃)を検出すると、直ちにすべての加熱ヒータ6の通電を停止、すなわち加熱を停止する指令を出すとともに警報装置を作動させる。この異常温度T1の値は、目標とする加熱温度の上限値より10〜20℃程度高い温度であり、かつこのT1温度ではワーク5の品質が低下しない温度にするとよい。このように、監視用温度センサ7bが目標とする加熱温度T0より10〜20℃程度高い異常温度T1を検出すると、加熱ヒータ6の加熱を停止することにより、加熱炉1内の温度異常を早期に検出することが可能になる。また、監視用温度センサ7bの不具合により異常温度T1を誤検出する場合もありうるが、少なくとも1個の監視用温度センサ7bが異常温度T1を検出すると、加熱ヒータ6の加熱を停止して警報装置を作動させ、加熱炉1の異常を人間でチェックした方がより安全な稼動ができる。また、監視用温度センサ7bが異常温度T1を検出したことにより、加熱ヒータ6の通電が停止された場合でも、加熱炉1内の温度が急激に低下することはないので、ワーク5の品質が低下する恐れはない。
【0012】
上記のようにして制御装置10がすべての加熱ヒータ6の通電を停止する指令を出した後に、監視用温度センサ7bの少なくとも1個が加熱炉1内の温度が異常温度T1より高い予め設定した異常温度T2(例えば480℃)を検出すると、制御装置10は電磁バルブ12を、それまでの「開」から「閉」にする制御指令を出す。すると、今まで高圧窒素ガスの貯蔵容器14から電磁バルブ12を通過して、流体圧駆動弁11の駆動室に流入し、流体圧駆動弁11の弁を「閉」にしていた窒素ガスが遮断され、流体圧駆動弁11の弁が「開」になる。流体圧駆動弁11の弁が「開」になると、高圧アルゴンガスの貯蔵容器13からアルゴンガスが配管15a、15bを経由し、複数のノズル8から加熱炉1内に一気に噴射される。このようにしてアルゴンガスを加熱炉1内に短時間に噴射させることにより、加熱炉1内は酸欠状態になり、加熱炉1内の温度が異常温度T2に達した場合でも、ワーク5の発火を防止することができる。この異常温度T2としては、ワーク5の発火温度より低い温度、望ましくはこのワーク5の発火温度より少なくとも20〜30℃低い温度に設定する。なお、上記アルゴンガスの供給圧力は2MPa程度あれば良い。
【0013】
上記のように、流体圧駆動弁11を駆動させるための駆動源として高圧窒素ガスを使用する理由は、高圧窒素ガスを使用すれば、工場の圧縮空気と違い、圧力変動の発生もなく、確実に流体圧駆動弁を作動させることができるからである。また、上記のような流体圧駆動弁開閉方式とすることにより、万一制御装置が故障した場合には電磁弁12は「閉」となり、アルゴンガスが供給されるので、安全である。なお、窒素ガスの供給圧力は約0.5MPa程度あれば良い。
【0014】
以上に説明した本発明の実施の形態は、マグネシウム合金製素材の加熱について説明したが、本発明はマグネシウム合金製素材の熱処理、可燃性金属およびその合金素材の加熱や熱処理にも適用できる。
【0015】
【発明の効果】
以上に説明した本発明は次の効果を有している。
マグネシウム合金製素材の加熱温度が目標温度を超えた場合でも、発火温度より低い異常温度T1で加熱ヒータの加熱停止させ、さらにこの異常温度T1より高く発火温度より低い異常温度T2に達すると加熱炉内にアルゴンガス等の不活性ガスを噴射するという2段階の安全制御を行っているので、マグネシウム合金製素材の発火による燃焼を確実に防止することができる
【図面の簡単な説明】
【図1】本発明の加熱炉の一実施形態を示す横断面図である。
【図2】本発明の加熱炉の制御系統図および配管経路図の一例を示す説明図である。
【符号の説明】
1 :加熱炉 2 :炉体
3 :チェンコンベア 4 :搬送プレート
5 :マグネシウム合金製素材 6 :加熱ヒータ
7a:制御用温度センサ 7b:監視用温度センサ
8 :ノズル 9 :カバー
10:制御装置 11:流体圧駆動弁
12:電磁弁 13:不活性ガス貯蔵容器
14:窒素ガス貯蔵容器 15a、15b:配管
16:配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating control method and a heating furnace capable of preventing combustion due to ignition in advance when a magnesium alloy or a material made of a magnesium alloy is heated to a predetermined temperature in order to perform forging, press molding, or heat treatment. Is.
[0002]
[Prior art]
When magnesium alloy or magnesium alloy materials (hereinafter collectively referred to as magnesium alloy materials), such as cast materials and rolled materials, are subjected to forging, press forming or heat treatment, these magnesium alloy materials A heating furnace or a heat treatment furnace is charged and heated to a predetermined target temperature, for example, 300 to 450 ° C. In these heating furnaces, a heating means such as a heater and a temperature sensor for detecting the temperature in the heating furnace, such as a thermocouple, are installed in the heating furnace, and based on the temperature detected by this temperature sensor, The control device controls energization of the heater so that the temperature in the heating furnace falls within the target temperature range. However, if the temperature inside the heating furnace greatly exceeds the target temperature range due to some problem, there is a risk of deterioration of the quality of the material to be heated, damage to the heating furnace, fire of the heating furnace, explosion, etc. . In particular, since a magnesium alloy material easily reacts with oxygen at high temperatures, there is a risk of ignition and combustion when the temperature exceeds 500 ° C. In the heating furnace, various safety measures have been proposed in order not to cause the above problems.
[0003]
For example, in Japanese Patent Laid-Open No. 1-287224, in a heat treatment furnace for a metal strip using a burner, a cooling gas (air or atmospheric gas) is blown into the furnace when the furnace temperature exceeds an allowable range. It is disclosed. In Japanese Patent Laid-Open No. 6-147774, in a continuous heating furnace for seamless steel pipes, when the ambient temperature rises to a temperature higher than a preset temperature by a predetermined temperature, the automatic fire extinguishing function is activated to switch to fuel gas. Supplying N 2 gas. In JP-A-10-79351, a plurality of temperature sensors are installed in a processing furnace such as a CVD apparatus, for the purpose of temperature management capable of discriminating between abnormalities caused by poor control and abnormalities in temperature sensors. It is disclosed that power supply to the heater is stopped when the number of thermocouples exhibiting an abnormality in the detected temperature is large.
[0004]
[Problems to be solved by the invention]
In heating a magnesium alloy material, the magnesium alloy material is a material that easily oxidizes, and if it exceeds 500 ° C., there is a risk of ignition and combustion. Therefore, when heating a magnesium alloy material, if the temperature in the furnace exceeds the target temperature and reaches an abnormal temperature range, safety measures will be taken before the magnesium alloy material ignites and burns. It is important to do. In addition, it is indispensable to adopt a control method that can reliably implement safety measures even when an abnormality occurs in a temperature sensor that detects the temperature in the heating furnace.
The object of the present invention is to burn the magnesium alloy material by ignition when the magnesium alloy material charged into the furnace for heating becomes an abnormal temperature exceeding the target temperature in the furnace. It is in providing the heating control method and heating furnace of the magnesium alloy raw material which can prevent in advance.
[0005]
[Means for Solving the Problems]
The present invention relates to a method for controlling the heating of a magnesium alloy material charged in a heating furnace, and the temperature in the heating furnace is 10 to 20 ° C. higher than a target temperature T0 set in advance for performing forging, press molding or heat treatment. When the abnormal temperature T1 is reached, heating of the heating furnace is stopped, and after the heating is stopped, the temperature in the heating furnace is higher than the abnormal temperature T1 and 20-30 ° C. lower than the ignition temperature of the alloy, and a preset abnormal temperature T2 If it becomes, it is a heating control method of the raw material made from a magnesium alloy characterized by injecting an inert gas in a heating furnace.
[0006]
Further, the present invention is a heating furnace for heating a charged magnesium alloy material, a temperature sensor installed to detect the temperature in the heating furnace, and injecting an inert gas into the heating furnace. When an abnormal temperature T1 that is 10 to 20 ° C. higher than a preset target temperature T0 for performing forging, press molding, or heat treatment is received by receiving the temperature information of an inert gas injection device and a temperature sensor, a heating stop command is issued to the heating means. A control unit having a logic unit that issues a command to inject an inert gas to an inert gas injection device when the temperature reaches a preset abnormal temperature T2 that is higher than the abnormal temperature T1 and lower by 20 to 30 ° C. than the ignition temperature of the alloy And a device.
In the heating furnace, it is desirable to install a plurality of temperature sensors so as to be located 20 to 50 mm away from the magnesium alloy material. Further, a temperature sensor for controlling the heating means may be provided separately from the temperature sensor for monitoring the temperature in the heating furnace. Further, the inert gas injection device may be provided with a fluid pressure driven valve that opens and closes according to a command from the control device in a pipe connecting the container for storing the inert gas and the inside of the heating furnace. Further, the fluid of the fluid pressure driven valve is preferably nitrogen gas supplied from a container for storing nitrogen gas, but is not limited as long as it is supplied so as not to cause a sudden pressure fluctuation, compressed air, argon gas But you can. The inert gas is preferably argon gas, but may be carbon dioxide gas.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a cross-sectional view showing an embodiment of a heating furnace of the present invention. In FIG. 1, the heating furnace 1 has a horizontally long furnace body 2, and inside the furnace body 1, a transfer device such as a chain conveyor 3 that proceeds at a predetermined speed is installed. A transfer plate 4 is placed on the chain conveyor 3 at a predetermined interval. A magnesium alloy material 5 to be heated (hereinafter referred to as a workpiece 5) is loaded on the transport plate 4. A heater 6 for heating the inside of the heating furnace 1 to the target temperature T0 is installed at a predetermined interval above the furnace body 2. Further, a plurality of control temperature sensors 7 a and monitoring temperature sensors 7 b for measuring the temperature in the furnace body 2 are installed in the furnace body 2 at predetermined intervals in the longitudinal direction of the furnace body 2. . The control temperature sensor 7a is used to control the inside of the furnace body 2 to the target temperature T0, and the monitoring temperature sensor 7b is used to monitor the temperature inside the furnace body 2. Thermocouples can be used as the plurality of temperature sensors 7a and 7b. Further, these temperature sensors 7 a and 7 b are connected to the control device (control device 10 shown in FIG. 2) of the heating furnace 1, and the detected temperature is input to the control device 10.
[0008]
The plurality of temperature sensors 7 a and 7 b are installed on the upper wall of the furnace body 2, and the temperature detection part has a tip part in the vicinity of the upper part of the work 5, preferably 20 to 50 mm away from the work 5. It is arranged so that the temperature in the immediate vicinity of the workpiece 5 can be detected. At the bottom of the furnace body 2, a plurality of nozzles 8 for injecting an inert gas, preferably argon gas, into the furnace body 2 are installed in the longitudinal direction of the furnace body 2 at a predetermined interval. The nozzle 8 may be a pipe having a small diameter. A cover 9 is provided for uniformly heating the work 5 without directly transferring the heat from the heater 6 to the work 5, and uses a heat-resistant thin plate made of stainless steel or the like. Although not shown in the figure, a loading port is provided in the front part of the horizontally long furnace body 2 and a discharge port is provided in the rear part, and an opening / closing door is provided in each.
[0009]
FIG. 2 shows an example of a control system diagram and a piping route diagram of the heating furnace 1 necessary for carrying out the present invention. In FIG. 2, reference numeral 10 denotes a control device that controls the operation of the heating furnace 1, and is composed of a sequence controller or a microcomputer. The control device 10 controls the energization control of the heater 6 based on the temperature detected by the control temperature sensor 7a, and the opening / closing control of the fluid pressure driven valve 11 based on the temperature detected by the monitoring temperature sensor 7b. , And drive control of the chain conveyor 3, loading / unloading of the furnace body 2, opening / closing of the opening / closing door of the discharge port, and the like. 12 is a solenoid valve, 13 is a container that stores high-pressure argon gas, and 14 is a container that stores high-pressure nitrogen gas that supplies the solenoid valve 12 with nitrogen gas for opening and closing the valve of the fluid pressure driven valve 11. is there. 15a and 15b are pipes for supplying argon gas, and 16 is a pipe for supplying nitrogen gas. The high pressure argon gas storage container 13, the high pressure nitrogen gas storage container 14, the fluid pressure drive valve 11, the electromagnetic valve 12, the nozzle 8, the pipe 14a, and the pipe 14b constitute an inert gas injection device.
[0010]
Then, the heating control method of the heating furnace of this invention is demonstrated. First, the heater 6 is energized in accordance with a control command from the control device 10, and the temperature in the heating furnace 1 is heated to a target temperature T0, for example, in the range of 300 to 450 ° C. when forging. In order to control the inside of the heating furnace 1 to the target temperature T0, the control device 10 controls energization of the heater 6 based on the temperature detected by the control temperature sensor 7a. Subsequently, a predetermined number of workpieces 5 are loaded on the transport plate 4 by a handling robot or the like installed in the previous process of the heating furnace 1. Next, according to a control command from the control device 10, the opening / closing door of the charging furnace 1 is opened, the chain conveyor 3 is driven, and the conveying plate 4 loaded with the work 5 is loaded into the heating furnace 1. The loading operation of the transfer plate 4 loaded with the work 5 is controlled to be performed at predetermined time intervals, and a plurality of transfer plates 4 are loaded in the heating furnace 1. The workpiece 5 charged in the heating furnace 1 is heated for a predetermined time in the heating furnace 1 heated to the target temperature T0, and then discharged together with the transport plate 4 from the discharge port according to a control command of the control device 10, It is conveyed to the next forging or press molding process. In order to prevent oxidation and ignition of the work 5 charged in the heating furnace 1, argon gas is separately supplied into the heating furnace 1 from an argon gas supply device (not shown). An atmosphere with an argon gas concentration of 1 to 5% is preferable.
[0011]
Next, a control method when the temperature in the heating furnace 1 rises from the target temperature T0 and reaches an abnormal temperature due to some trouble when the workpiece 5 is heated in the heating furnace 1 will be described. The control device 10 constantly monitors the temperature in the heating furnace 1 by inputting the temperature values detected by the plurality of monitoring temperature sensors 7b at predetermined time intervals (for example, 0.1 seconds). When the controller 10 detects a preset abnormal temperature T1 (eg, 460 ° C.) in which at least one detected temperature of the plurality of monitoring temperature sensors 7b is higher than the target temperature T0, the controller 10 immediately Stops energization, that is, issues a command to stop heating and activates the alarm device. The value of the abnormal temperature T1 is preferably a temperature that is about 10 to 20 ° C. higher than the target upper limit value of the heating temperature, and the temperature at which the quality of the workpiece 5 does not deteriorate at this T1 temperature. As described above, when the monitoring temperature sensor 7b detects the abnormal temperature T1 that is higher by about 10 to 20 ° C. than the target heating temperature T0, the heating of the heater 6 is stopped, so that the temperature abnormality in the heating furnace 1 is accelerated. Can be detected. Although the abnormal temperature T1 may be erroneously detected due to a malfunction of the monitoring temperature sensor 7b, when at least one monitoring temperature sensor 7b detects the abnormal temperature T1, the heating of the heater 6 is stopped and an alarm is issued. It is safer to operate the device and check for abnormalities in the furnace 1 by a human. Further, since the monitoring temperature sensor 7b detects the abnormal temperature T1, the temperature in the heating furnace 1 does not drop suddenly even when the energization of the heater 6 is stopped. There is no fear of decline.
[0012]
After the control device 10 issues a command to stop energization of all the heaters 6 as described above, at least one of the monitoring temperature sensors 7b has preset the temperature in the heating furnace 1 higher than the abnormal temperature T1. When the abnormal temperature T2 (for example, 480 ° C.) is detected, the control device 10 issues a control command for switching the electromagnetic valve 12 from “open” to “close”. Then, the nitrogen gas that has passed through the electromagnetic valve 12 from the high-pressure nitrogen gas storage container 14 and flows into the drive chamber of the fluid pressure drive valve 11 until now and has closed the valve of the fluid pressure drive valve 11 is shut off. Then, the valve of the fluid pressure driven valve 11 is “open”. When the valve of the fluid pressure driving valve 11 is “open”, argon gas is injected into the heating furnace 1 from the plurality of nozzles 8 through the pipes 15 a and 15 b from the high pressure argon gas storage container 13. By injecting argon gas into the heating furnace 1 in a short time in this way, the inside of the heating furnace 1 is in an oxygen deficient state, and even when the temperature in the heating furnace 1 reaches the abnormal temperature T2, the workpiece 5 Ignition can be prevented. The abnormal temperature T2 is set to a temperature lower than the ignition temperature of the workpiece 5, preferably at least 20 to 30 ° C. lower than the ignition temperature of the workpiece 5. The supply pressure of the argon gas may be about 2 MPa.
[0013]
As described above, the reason for using high-pressure nitrogen gas as a drive source for driving the fluid pressure driven valve 11 is that, if high-pressure nitrogen gas is used, unlike the compressed air in the factory, there is no occurrence of pressure fluctuation and This is because the fluid pressure drive valve can be operated. In addition, by adopting the fluid pressure driven valve opening / closing system as described above, the solenoid valve 12 is “closed” in the event of a malfunction of the control device, and argon gas is supplied, which is safe. In addition, the supply pressure of nitrogen gas should just be about 0.5 MPa.
[0014]
Although the embodiment of the present invention described above has been described with respect to heating of a magnesium alloy material, the present invention can also be applied to heat treatment of a magnesium alloy material, flammable metal and its alloy material.
[0015]
【Effect of the invention】
The present invention described above has the following effects.
Even when the heating temperature of the magnesium alloy material exceeds the target temperature, the heating heater is stopped at the abnormal temperature T1 lower than the ignition temperature, and when the abnormal temperature T2 higher than the abnormal temperature T1 and lower than the ignition temperature is reached, the heating furnace Since the two-stage safety control of injecting an inert gas such as argon gas into the inside is performed, combustion due to ignition of the magnesium alloy material can be reliably prevented .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a heating furnace of the present invention.
FIG. 2 is an explanatory diagram showing an example of a control system diagram and a piping route diagram of the heating furnace of the present invention.
[Explanation of symbols]
1: Heating furnace 2: Furnace 3: Chain conveyor 4: Transport plate 5: Magnesium alloy material 6: Heater 7a: Temperature sensor for control 7b: Temperature sensor for monitoring 8: Nozzle 9: Cover 10: Controller 11: Fluid pressure drive valve 12: Solenoid valve 13: Inert gas storage container 14: Nitrogen gas storage container 15a, 15b: Piping 16: Piping

Claims (6)

加熱炉内に装入されたマグネシウム合金製素材の加熱制御方法において、加熱炉内の温度が鍛造やプレス成形あるいは熱処理を行うために予め設定した目標温度T0より10〜20℃高い異常温度T1となると加熱炉の加熱を停止させ、加熱を停止させた後に加熱炉内の温度が前記異常温度T1より高くかつ前記合金の発火温度より20〜30℃低い予め設定した異常温度T2となると、加熱炉内に不活性ガスを噴射することを特徴とするマグネシウム合金製素材の加熱制御方法。In the heating control method of the magnesium alloy material charged in the heating furnace, an abnormal temperature T1 in which the temperature in the heating furnace is 10 to 20 ° C. higher than a target temperature T0 set in advance for performing forging, press molding or heat treatment ; the stops the heating of the heating furnace, the temperature in the heating furnace after stopping the heating becomes abnormal temperature T2 set 20 to 30 ° C. lower advance than the ignition temperature of higher and the alloy than the abnormal temperature T1, the furnace A method for controlling the heating of a magnesium alloy material, wherein an inert gas is injected into the inside. 装入されたマグネシウム合金製素材を加熱する加熱炉であって、加熱炉内の温度を検出すべく設置された温度センサと、加熱炉内に不活性ガスを噴射することができる不活性ガス噴射装置と、温度センサの温度情報を受け、鍛造やプレス成形あるいは熱処理を行うために予め設定した目標温度T0より10〜20℃高い異常温度T1となると加熱手段に加熱停止指令を出し、前記異常温度T1より高くかつ前記合金の発火温度より20〜30℃低い予め設定した異常温度T2となると不活性ガス噴射装置に不活性ガスを噴射するように指令を出す論理部を有する制御装置とを備えたことを特徴とする加熱炉。A heating furnace for heating a charged magnesium alloy material, a temperature sensor installed to detect the temperature in the heating furnace, and an inert gas injection capable of injecting an inert gas into the heating furnace a device, receives the temperature information of the temperature sensor, the heating means than the target temperature T0 becomes 10 to 20 ° C. higher abnormal temperature T1 set in advance in order to perform the forging or press forming or heat treatment issues a heating stop command, the abnormal temperature And a control device having a logic unit that issues a command to inject the inert gas into the inert gas injection device when the preset abnormal temperature T2 is higher than T1 and lower by 20 to 30 ° C. than the ignition temperature of the alloy. A heating furnace characterized by that. 温度センサを複数個マグネシウム合金製素材から20〜50mm離れて位置するように設置したことを特徴とすると請求項2に記載の加熱炉。  The heating furnace according to claim 2, wherein a plurality of temperature sensors are installed so as to be located 20 to 50 mm away from the magnesium alloy material. 不活性ガス噴射装置には、不活性ガスを貯蔵する容器と加熱炉内とを結ぶ配管に制御装置の指令により開閉する流体圧駆動弁を設けたことを特徴とする請求項2又は3記載の加熱炉。  4. The inert gas injection device according to claim 2, further comprising: a fluid pressure driven valve that opens and closes according to a command from a control device in a pipe that connects the container for storing the inert gas and the inside of the heating furnace. heating furnace. 流体圧駆動弁の流体は、窒素ガスを貯蔵する容器から供給される窒素ガスであることを特徴とする請求項4記載の加熱炉。  The heating furnace according to claim 4, wherein the fluid of the fluid pressure driven valve is nitrogen gas supplied from a container for storing nitrogen gas. 不活性ガスはアルゴンガスであることを特徴とする請求項2乃至5の何れかに記載の加熱炉。  The heating furnace according to any one of claims 2 to 5, wherein the inert gas is argon gas.
JP2000046691A 2000-02-24 2000-02-24 Magnesium alloy material heating control method and heating furnace Expired - Fee Related JP4993237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046691A JP4993237B2 (en) 2000-02-24 2000-02-24 Magnesium alloy material heating control method and heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046691A JP4993237B2 (en) 2000-02-24 2000-02-24 Magnesium alloy material heating control method and heating furnace

Publications (2)

Publication Number Publication Date
JP2001234253A JP2001234253A (en) 2001-08-28
JP4993237B2 true JP4993237B2 (en) 2012-08-08

Family

ID=18569060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046691A Expired - Fee Related JP4993237B2 (en) 2000-02-24 2000-02-24 Magnesium alloy material heating control method and heating furnace

Country Status (1)

Country Link
JP (1) JP4993237B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339319B2 (en) * 2006-03-31 2013-11-13 一般財団法人電力中央研究所 Heat treatment apparatus and heat treatment method
CN110029298A (en) * 2019-03-19 2019-07-19 中国科学院合肥物质科学研究院 Nb3Sn coil heat-treating atmosphere protects system and control and detection method
CN112642844A (en) * 2021-01-21 2021-04-13 洛阳炬星窑炉有限公司 Filler recovery device and recovery method for thermosetting plastic waste
CN114054520A (en) * 2021-10-22 2022-02-18 山东莱钢永锋钢铁有限公司 Automatic control production interval control device for head, top and tail of rolling line

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189100U (en) * 1983-06-02 1984-12-14 三菱電機株式会社 furnace
JPH01287224A (en) * 1988-05-12 1989-11-17 Kawasaki Steel Corp In-furnace temperature control method for continuous heat treatment furnace
JPH0681089A (en) * 1992-09-02 1994-03-22 Sumitomo Metal Ind Ltd Method for hot-working magnesium alloy
JPH06147774A (en) * 1992-11-05 1994-05-27 Nkk Corp Operating method at stoppage of extraction of continuous type heating furnace
JP3664333B2 (en) * 1996-03-29 2005-06-22 三井金属鉱業株式会社 Hot forged product made of high strength magnesium alloy and its manufacturing method
JPH10267254A (en) * 1997-03-27 1998-10-09 S D Furness Kk Explosion-proof type smoke consumer

Also Published As

Publication number Publication date
JP2001234253A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP4993237B2 (en) Magnesium alloy material heating control method and heating furnace
US5362031A (en) Method and apparatus for the automatic monitoring of operating safety and for controlling the progress of the process in a vacuum heat-treatment oven
WO1996017215A1 (en) Non-oxidizing heating method and apparatus therefor
US8985472B2 (en) Wireless temperature sensing and control system for metal kiln and method of using the same
KR20130050827A (en) Discharge apparatus of coke of belt conveyor
EP2199677A2 (en) Combustion control method for regenerative-combustion heat treat furnace
CN101460770A (en) Seal structure for cooling treatment apparatus or multichamber heat treatment apparatus, and for the seal structure, method of pressure regulation and method of operating
KR101675646B1 (en) Burner apparatus of heating furnace
KR20100116119A (en) Regenerative burner
US3852026A (en) Method of heating goods and a heating furnace
KR101523648B1 (en) Charging apparatus and method
KR100828154B1 (en) Cooling Device for hot blast line
KR102441323B1 (en) Heating method and apparatus
CN210823895U (en) Stacking unit and stacking machine
KR101436599B1 (en) Raw material processing apparatus and the processing method thereof
KR102381603B1 (en) Supply gas control system and method of thermal spray maintenance burner device
JP2008000558A (en) Automatic fire extinguishing mechanism of medical waste disposal apparatus
CN116697757A (en) Roasting furnace of mould shell sintering device
KR101492955B1 (en) Apparatus of preventing fire disaster for direct quenching system
JP7242983B2 (en) heat treatment furnace
USRE28168E (en) Emergency atmosphere annealing furnace and method
US3396951A (en) Emergency atmosphere annealing furnace and method
WO2007086173A1 (en) Gas atmosphere heat treating apparatus and method
CN214168062U (en) System for protecting workpiece by filling inert gas into heat treatment furnace
JP3594720B2 (en) Combustion control method for regenerative burner device group and combustion control device for regenerative burner device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees