JP2001234253A - Heating control method of magnesium alloy stock, and heating furnace - Google Patents

Heating control method of magnesium alloy stock, and heating furnace

Info

Publication number
JP2001234253A
JP2001234253A JP2000046691A JP2000046691A JP2001234253A JP 2001234253 A JP2001234253 A JP 2001234253A JP 2000046691 A JP2000046691 A JP 2000046691A JP 2000046691 A JP2000046691 A JP 2000046691A JP 2001234253 A JP2001234253 A JP 2001234253A
Authority
JP
Japan
Prior art keywords
temperature
heating furnace
heating
inert gas
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000046691A
Other languages
Japanese (ja)
Other versions
JP4993237B2 (en
Inventor
Motohide Nishio
元秀 西尾
Hiroshi Watanabe
洋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000046691A priority Critical patent/JP4993237B2/en
Publication of JP2001234253A publication Critical patent/JP2001234253A/en
Application granted granted Critical
Publication of JP4993237B2 publication Critical patent/JP4993237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the combustion of a magnesium alloy stock charged in a heating furnace caused by the ignition when the temperature in the furnace reaches an abnormal temperature exceeding the target value. SOLUTION: When the temperature in the heating furnace reaches the temperature T1 higher than the preset target temperature T0, the heating of the heating furnace is stopped, and when the temperature in the heating furnace reaches the preset temperature T2 which is higher than the temperature T1 and lower than the ignition point of the alloy after the heating is stopped, the inert gas is injected in the heating furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マグネシウム合金
あるいはマグネシウム合金からなる素材に鍛造やプレス
成形あるいは熱処理を行うために所定の温度に加熱する
ときに、発火による燃焼を未然に防止することができる
加熱制御方法および加熱炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can prevent combustion by ignition when a magnesium alloy or a material made of a magnesium alloy is heated to a predetermined temperature for forging, press molding or heat treatment. The present invention relates to a heating control method and a heating furnace.

【0002】[0002]

【従来の技術】マグネシウム合金あるいはマグネシウム
合金からなる素材(以下、総称してマグネシウム合金製
素材という)、例えば鋳造した素材や圧延材等に、鍛造
成形、プレス成形あるいは熱処理を行うときに、これら
のマグネシウム合金製素材を加熱炉あるいは熱処理炉に
装入して、所定の目標温度、例えば300〜450℃に
加熱することが行われている。これらの加熱炉において
は、加熱炉内に加熱ヒータ等の加熱手段と加熱炉内の温
度を検出するための温度センサ、例えば熱電対などを設
置し、この温度センサで検出した温度に基づいて、制御
装置は加熱炉内の温度が目標の温度範囲内になるように
加熱ヒータの通電を制御している。しかし、何らかの不
具合により、加熱炉内の温度が目標とする温度範囲を大
きく超えた場合には、加熱する素材の品質の低下、加熱
炉の損傷、加熱炉の火災、爆発等の危険性が生じる。特
にマグネシウム合金製素材は高温で酸素と反応し易いた
めに、500℃を超えると発火し燃焼する危険性があ
る。加熱炉においては、上記のような不具合を発生させ
ないために、種々の安全対策が提案されている。
2. Description of the Related Art When forging, pressing or heat-treating a magnesium alloy or a material made of a magnesium alloy (hereinafter collectively referred to as a magnesium alloy material), for example, a cast material or a rolled material, these materials are used. A magnesium alloy material is charged into a heating furnace or a heat treatment furnace and heated to a predetermined target temperature, for example, 300 to 450 ° C. In these heating furnaces, a heating means such as a heater and a temperature sensor for detecting the temperature in the heating furnace, such as a thermocouple, are installed in the heating furnace, and based on the temperature detected by the temperature sensor, The controller controls energization of the heater so that the temperature in the heating furnace falls within a target temperature range. However, if the temperature inside the heating furnace greatly exceeds the target temperature range due to some problem, there is a risk that the quality of the material to be heated deteriorates, the heating furnace is damaged, the heating furnace fires, explosions, etc. . Particularly, a magnesium alloy material easily reacts with oxygen at a high temperature. Therefore, if the temperature exceeds 500 ° C., there is a risk of ignition and burning. In the heating furnace, various safety measures have been proposed in order to prevent the above-mentioned problems from occurring.

【0003】例えば、特開平1−287224号公報に
は、バーナを使用した金属ストリップ用熱処理炉におい
て、炉内温度が許容範囲を上回った場合には冷却ガス
(空気または雰囲気ガス)を炉内に吹き込むことが開示
されている。特開平6−147774号公報には、シー
ムレス鋼管用連続式加熱炉において、雰囲気温度が予め
設定した温度より所定の温度ほど上乗せした温度まで上
昇すると、自動消火機能が作動して、燃料ガスに換わっ
てNガスを供給することが開示されている。特開平1
0−79351号公報にはCVD装置等の処理炉におい
て、複数個の温度センサを設置し、温度異常を制御不良
に起因した異常と温度センサの異常とを判別できる温度
管理を目的とし、検出温度の異常を呈した熱電対の数が
多ければ加熱ヒータへの給電を停止することが開示され
ている。
[0003] For example, Japanese Patent Application Laid-Open No. 1-287224 discloses that in a heat treatment furnace for metal strip using a burner, when the temperature inside the furnace exceeds an allowable range, a cooling gas (air or atmosphere gas) is introduced into the furnace. It is disclosed to blow. JP-A-6-147774 discloses that, in a continuous heating furnace for seamless steel pipes, when the ambient temperature rises to a temperature that is higher than a preset temperature by a predetermined temperature, an automatic fire extinguishing function is activated to switch to fuel gas. It is disclosed that the N 2 gas is supplied by using the above method. JP 1
Japanese Patent Application Publication No. 0-79351 discloses a temperature control system in which a plurality of temperature sensors are installed in a processing furnace such as a CVD apparatus, and the temperature control is performed so that the temperature abnormality can be distinguished from the abnormality caused by poor control and the temperature sensor abnormality. It is disclosed that the power supply to the heater is stopped when the number of thermocouples exhibiting the above abnormality is large.

【0004】[0004]

【発明が解決しようとする課題】マグネシウム合金製素
材の加熱においては、マグネシウム合金製素材は容易に
酸化し易い材質であり500℃を超えると発火し燃焼す
る危険性がある。従って、マグネシウム合金製素材を加
熱する時には、加熱炉内の温度が目標温度を超えて異常
な温度範囲に達した場合には、マグネシウム合金製素材
が発火して燃焼する温度に達する前に安全対策を行うこ
とが重要となる。また、加熱炉内の温度を検出する温度
センサに異常が発生した場合でも、確実に安全対策を実
施することができる制御方式を採用することが不可欠で
ある。本発明の目的は、加熱を行うために炉内に装入し
たマグネシウム合金製素材が、炉内の温度が目標温度を
超えて異常温度になった場合に、このマグネシウム合金
製素材の発火による燃焼を事前に防止することができる
マグネシウム合金製素材の加熱制御方法および加熱炉を
提供することにある。
When heating a magnesium alloy material, the magnesium alloy material is easily oxidized. If the temperature exceeds 500 ° C., there is a risk of ignition and burning. Therefore, when heating the magnesium alloy material, if the temperature in the heating furnace exceeds the target temperature and reaches an abnormal temperature range, safety measures must be taken before the temperature reaches the temperature at which the magnesium alloy material ignites and burns. It is important to do In addition, it is indispensable to adopt a control method capable of securely implementing a safety measure even when an abnormality occurs in the temperature sensor for detecting the temperature in the heating furnace. An object of the present invention is to provide a magnesium alloy material charged into a furnace for heating, when the temperature in the furnace becomes abnormal temperature exceeding a target temperature, the combustion of the magnesium alloy material by ignition. It is an object of the present invention to provide a method for controlling heating of a magnesium alloy material and a heating furnace which can prevent the occurrence of the heating in advance.

【0005】[0005]

【課題を解決するための手段】本発明は、加熱炉内に装
入されたマグネシウム合金製素材の加熱制御方法におい
て、加熱炉内の温度が予め設定した目標温度T0より高
い温度T1となると加熱炉の加熱を停止させ、加熱を停
止させた後に加熱炉内の温度が前記温度T1より高くか
つ前記合金の発火温度より低い予め設定した温度T2と
なると、加熱炉内に不活性ガスを噴射することを特徴と
するマグネシウム合金製素材の加熱制御方法である。
According to the present invention, there is provided a method of controlling heating of a magnesium alloy material charged in a heating furnace, wherein the heating is performed when the temperature in the heating furnace reaches a temperature T1 higher than a preset target temperature T0. When the heating of the furnace is stopped and the temperature in the heating furnace reaches a predetermined temperature T2 higher than the temperature T1 and lower than the ignition temperature of the alloy after the heating is stopped, an inert gas is injected into the heating furnace. A heating control method for a magnesium alloy material, characterized in that:

【0006】また本発明は、装入されたマグネシウム合
金製素材を加熱する加熱炉であって、加熱炉内の温度を
検出すべく設置された温度センサと、加熱炉内に不活性
ガスを噴射することができる不活性ガス噴射装置と、温
度センサの温度情報を受け、予め設定した目標温度T0
より高い異常温度T1となると加熱手段に加熱停止指令
を出し、前記異常温度T1より高くかつ前記合金の発火
温度より低い予め設定した異常温度T2となると不活性
ガス噴射装置に不活性ガスを噴射するように指令を出す
論理部を有する制御装置とを備えたことを特徴としてい
る。前記加熱炉においては、温度センサを複数個マグネ
シウム合金製素材の近傍に位置するように設置すること
が望ましい。また、前記加熱炉内の温度監視用温度セン
サとは別個に加熱手段の制御用温度センサを設けてもよ
い。また、不活性ガス噴射装置には、不活性ガスを貯蔵
する容器と加熱炉内とを結ぶ配管に制御装置の指令によ
り開閉する流体圧駆動弁を設けるとよい。また、流体圧
駆動弁の流体は、窒素ガスを貯蔵する容器から供給され
る窒素ガスとするとよいが、突発的に圧力変動が生じな
いように供給されれば限定されず、圧縮空気、アルゴン
ガスでもよい。また、不活性ガスはアルゴンガスが好ま
しいが、炭酸ガスでもよい。
The present invention also relates to a heating furnace for heating a magnesium alloy material charged therein, comprising a temperature sensor installed to detect the temperature in the heating furnace, and injecting an inert gas into the heating furnace. Receiving the temperature information of the inert gas injection device and the temperature sensor, and setting a preset target temperature T0
When the abnormal temperature T1 becomes higher, a heating stop command is issued to the heating means, and when the abnormal temperature T2 becomes higher than the abnormal temperature T1 and lower than the ignition temperature of the alloy, the inert gas is injected into the inert gas injector. And a control device having a logic unit for issuing a command as described above. In the heating furnace, it is desirable to install a plurality of temperature sensors so as to be located near the magnesium alloy material. Further, a temperature sensor for controlling the heating means may be provided separately from the temperature sensor for monitoring the temperature in the heating furnace. Further, in the inert gas injection device, it is preferable to provide a fluid pressure drive valve that opens and closes according to a command from a control device in a pipe connecting the container storing the inert gas and the inside of the heating furnace. Further, the fluid of the fluid pressure driven valve may be nitrogen gas supplied from a container storing nitrogen gas, but is not limited as long as it is supplied so as not to cause sudden pressure fluctuation, and may be compressed air, argon gas. May be. The inert gas is preferably an argon gas, but may be a carbon dioxide gas.

【0007】[0007]

【発明の実施の形態】以下本発明の実施の形態について
説明する。図1は本発明の加熱炉の一実施形態を示す横
断面図である。図1において、加熱炉1は、横長の炉体
2を有し、炉体1の内部には、所定の速度で進行するチ
ェンコンベア3等の搬送装置が設置されている。チェン
コンベア3には搬送プレート4が所定の間隔で載置され
ている。搬送プレート4上には加熱されるマグネシウム
合金製素材5(以下、ワーク5という)が積載されてい
る。炉体2の上部には、加熱炉1内を目標温度T0に加
熱するための加熱ヒータ6が所定の間隔を置いて設置さ
れている。さらに、炉体2には、炉体2内の温度を測定
するための制御用温度センサ7a、監視用温度センサ7
bが炉体2の長手方向に所定の間隔をおいて複数個設置
されている。制御用温度センサ7aは、炉体2内を目標
温度T0に制御するために使用され、監視用温度センサ
7bは、炉体2内の温度を監視するために使用される。
これら複数の温度センサ7a、7bとしては熱電対が使
用できる。また、これらの温度センサ7a、7bは、加
熱炉1の制御装置(図2に示す制御装置10)に接続さ
れ、その検出温度は制御装置10に入力される。
Embodiments of the present invention will be described below. FIG. 1 is a cross-sectional view showing one embodiment of the heating furnace of the present invention. In FIG. 1, a heating furnace 1 has a horizontally long furnace body 2, and a transfer device such as a chain conveyor 3 that moves at a predetermined speed is installed inside the furnace body 1. Transport plates 4 are placed on the chain conveyor 3 at predetermined intervals. A magnesium alloy material 5 (hereinafter, referred to as a work 5) to be heated is loaded on the transport plate 4. A heater 6 for heating the inside of the heating furnace 1 to a target temperature T0 is provided at a predetermined interval above the furnace body 2. Further, the furnace body 2 has a control temperature sensor 7a for measuring the temperature inside the furnace body 2 and a monitoring temperature sensor 7a.
A plurality of b are provided at predetermined intervals in the longitudinal direction of the furnace body 2. The control temperature sensor 7a is used to control the inside of the furnace body 2 to the target temperature T0, and the monitoring temperature sensor 7b is used to monitor the temperature inside the furnace body 2.
Thermocouples can be used as the plurality of temperature sensors 7a and 7b. The temperature sensors 7a and 7b are connected to a control device (the control device 10 shown in FIG. 2) of the heating furnace 1, and the detected temperatures are input to the control device 10.

【0008】この複数の温度センサ7a、7bは、炉体
2の上壁に設置され、その温度検出部である先端部は、
ワーク5の上方部の近傍、望ましくはワーク5から20
〜50mm離れた位置に配置し、ワーク5の直ぐ近くの
温度が検出できるようにする。炉体2の底部には、炉体
2内に不活性ガス、好ましくはアルゴンガスを噴射する
ためのノズル8が所定の間隔を置いて炉体2の長手方向
に複数個設置されている。このノズル8は、径の小さい
配管を使用すればよい。9は、加熱ヒータ6からの熱を
直接ワーク5に伝えずに、ワーク5を均一に加熱するた
めに設けたカバーであり、ステンレス鋼等からなる耐熱
薄板材を使用する。なお、図示していないが、横長の炉
体2の前方部には装入口、後方部には排出口を設けそれ
ぞれに開閉扉が設置されている。
[0008] The plurality of temperature sensors 7a and 7b are installed on the upper wall of the furnace body 2, and the distal end portion, which is a temperature detecting unit, is:
In the vicinity of the upper part of the work 5, preferably, the work 5 to 20
It is arranged at a position 〜50 mm away from the work 5 so that the temperature in the immediate vicinity of the work 5 can be detected. At the bottom of the furnace body 2, a plurality of nozzles 8 for injecting an inert gas, preferably argon gas, into the furnace body 2 are provided at predetermined intervals in the longitudinal direction of the furnace body 2. The nozzle 8 may use a small-diameter pipe. Reference numeral 9 denotes a cover provided to uniformly heat the work 5 without directly transmitting heat from the heater 6 to the work 5, and uses a heat-resistant thin plate made of stainless steel or the like. Although not shown, a charging port is provided at a front portion of the horizontally long furnace body 2 and a discharge port is provided at a rear portion thereof, and an opening / closing door is provided for each.

【0009】図2は、本発明を実施するために必要な加
熱炉1の制御系統図と配管経路図の一例を示すものであ
る。図2において、10は加熱炉1の運転を制御する制
御装置であり、シーケンスコントローラまたはマイクロ
コンピュータから構成されている。制御装置10が制御
する内容としては、制御用温度センサ7aの検出温度に
基づいて加熱ヒータ6の通電の制御、監視用温度センサ
7bの検出温度に基づいて流体圧駆動弁11の弁の開閉
制御、およびチェンコンベア3の駆動制御、炉体2の装
入口、排出口の開閉扉の開閉等がある。12は電磁弁、
13は高圧のアルゴンガスを貯蔵している容器、14は
流体圧駆動弁11の弁を開閉するための窒素ガスを電磁
弁12へ供給する高圧の窒素ガスを貯蔵する容器であ
る。15a、15bはアルゴンガスを供給するための配
管、16は窒素ガスを供給するための配管である。高圧
アルゴンガスの貯蔵容器13、高圧窒素ガスの貯蔵容器
14、流体圧駆動弁11、電磁弁12、ノズル8、配管
14a、配管14bは不活性ガス噴射装置を構成する。
FIG. 2 shows an example of a control system diagram and a piping route diagram of the heating furnace 1 necessary for carrying out the present invention. In FIG. 2, reference numeral 10 denotes a control device for controlling the operation of the heating furnace 1, which is constituted by a sequence controller or a microcomputer. The control device 10 controls the energization of the heater 6 based on the temperature detected by the control temperature sensor 7a and the opening / closing control of the fluid pressure drive valve 11 based on the temperature detected by the monitoring temperature sensor 7b. And control of the drive of the chain conveyor 3, the opening and closing of the opening and closing doors of the furnace body 2 for loading and discharging. 12 is a solenoid valve,
Reference numeral 13 denotes a container storing high-pressure argon gas, and reference numeral 14 denotes a container storing high-pressure nitrogen gas for supplying nitrogen gas for opening and closing the valve of the fluid pressure drive valve 11 to the electromagnetic valve 12. 15a and 15b are pipes for supplying an argon gas, and 16 is a pipe for supplying a nitrogen gas. The high-pressure argon gas storage container 13, the high-pressure nitrogen gas storage container 14, the fluid pressure drive valve 11, the solenoid valve 12, the nozzle 8, the pipe 14a, and the pipe 14b constitute an inert gas injection device.

【0010】続いて本発明の加熱炉の加熱制御方法につ
いて説明する。まず、制御装置10の制御指令により加
熱ヒータ6に通電し、加熱炉1内の温度を目標温度T
0、例えば鍛造成形する場合には300〜450℃の範
囲に加熱する。制御装置10は加熱炉1内を目標温度T
0に制御するために、制御用温度センサ7aの検出温度
に基づいて加熱ヒータ6の通電の制御を行う。続いて、
加熱炉1の前工程に設置されているハンドリングロボッ
ト等により、ワーク5を搬送プレート4に所定の個数ほ
ど積載する。次に、制御装置10の制御指令により加熱
炉1の装入口の開閉扉を開き、チェンコンベア3を駆動
させてワーク5を積載した搬送プレート4を加熱炉1内
に装入する。このワーク5を積載した搬送プレート4の
装入作業は、所定の時間間隔で行われるように制御し加
熱炉1内には複数個の搬送プレート4が装入される。加
熱炉1に装入されたワーク5は、目標温度T0に加熱さ
れた加熱炉1内で所定の時間ほど加熱された後、制御装
置10の制御指令により排出口から搬送プレート4とと
もに排出され、次工程の鍛造、あるいはプレス成形工程
に搬送される。なお、加熱炉1内に装入されたワーク5
の酸化と発火を防止するために、別途、図示していない
アルゴンガス供給装置から加熱炉1内にアルゴンガスを
供給し、加熱炉1内はアルゴンガスの濃度が1〜5%の
雰囲気にするとよい。
Next, the heating control method of the heating furnace according to the present invention will be described. First, the heater 6 is energized in accordance with a control command from the control device 10, and the temperature in the heating furnace 1 is set to the target temperature T.
0, for example, in the case of forging, heating to the range of 300 to 450 ° C. The controller 10 sets the target temperature T in the heating furnace 1.
In order to control the temperature to 0, the energization of the heater 6 is controlled based on the temperature detected by the control temperature sensor 7a. continue,
A predetermined number of workpieces 5 are stacked on the transport plate 4 by a handling robot or the like installed in a previous process of the heating furnace 1. Next, the opening / closing door of the loading opening of the heating furnace 1 is opened by the control command of the control device 10, and the chain conveyor 3 is driven to load the transport plate 4 on which the work 5 is loaded into the heating furnace 1. The loading operation of the transport plate 4 on which the work 5 is loaded is controlled so as to be performed at predetermined time intervals, and a plurality of transport plates 4 are loaded into the heating furnace 1. After the work 5 charged into the heating furnace 1 is heated for a predetermined time in the heating furnace 1 heated to the target temperature T0, the work 5 is discharged together with the transport plate 4 from the discharge port by a control command of the control device 10, It is conveyed to the next forging or press molding process. In addition, the work 5 charged in the heating furnace 1
In order to prevent oxidation and ignition of the gas, an argon gas is separately supplied into the heating furnace 1 from an argon gas supply device (not shown), and the inside of the heating furnace 1 is set to an atmosphere having an argon gas concentration of 1 to 5%. Good.

【0011】続いて、加熱炉1内でワーク5を加熱して
いるときに何らかの不具合により、加熱炉1内の温度が
目標温度T0より上昇して異常温度に達したときの制御
方法について説明する。制御装置10は複数の監視用温
度センサ7bで検出した温度値を所定の時間間隔(例え
ば0.1秒)で入力することにより、加熱炉1内の温度
を常時監視している。そして、制御装置10は、複数個
の監視用温度センサ7bの少なくとも1個の検出温度が
目標温度T0より高い予め設定した異常温度T1(例え
ば460℃)を検出すると、直ちにすべての加熱ヒータ
6の通電を停止、すなわち加熱を停止する指令を出すと
ともに警報装置を作動させる。この異常温度T1の値
は、目標とする加熱温度の上限値より10〜20℃程度
高い温度であり、かつこのT1温度ではワーク5の品質
が低下しない温度にするとよい。このように、監視用温
度センサ7bが目標とする加熱温度T0より10〜20
℃程度高い異常温度T1を検出すると、加熱ヒータ6の
加熱を停止することにより、加熱炉1内の温度異常を早
期に検出することが可能になる。また、監視用温度セン
サ7bの不具合により異常温度T1を誤検出する場合も
ありうるが、少なくとも1個の監視用温度センサ7bが
異常温度T1を検出すると、加熱ヒータ6の加熱を停止
して警報装置を作動させ、加熱炉1の異常を人間でチェ
ックした方がより安全な稼動ができる。また、監視用温
度センサ7bが異常温度T1を検出したことにより、加
熱ヒータ6の通電が停止された場合でも、加熱炉1内の
温度が急激に低下することはないので、ワーク5の品質
が低下する恐れはない。
Next, a description will be given of a control method when the temperature in the heating furnace 1 rises from the target temperature T0 and reaches an abnormal temperature due to some trouble while the work 5 is being heated in the heating furnace 1. . The controller 10 constantly monitors the temperature in the heating furnace 1 by inputting the temperature values detected by the plurality of monitoring temperature sensors 7b at predetermined time intervals (for example, 0.1 seconds). Then, when at least one detected temperature of the plurality of monitoring temperature sensors 7b detects a preset abnormal temperature T1 (for example, 460 ° C.) higher than the target temperature T0, the control device 10 immediately turns on all the heaters 6. The power supply is stopped, that is, a command to stop the heating is issued, and the alarm device is operated. The value of the abnormal temperature T1 is a temperature that is higher than the target upper limit of the heating temperature by about 10 to 20 ° C., and the temperature of the T1 temperature should not decrease the quality of the work 5. As described above, the monitoring temperature sensor 7b sets the target heating temperature T0 by 10 to 20 from the target heating temperature T0.
When the abnormal temperature T1 which is higher by about ° C. is detected, the heating of the heater 6 is stopped, whereby the temperature abnormality in the heating furnace 1 can be detected at an early stage. Further, the abnormal temperature T1 may be erroneously detected due to a malfunction of the monitoring temperature sensor 7b. However, when at least one monitoring temperature sensor 7b detects the abnormal temperature T1, the heating of the heater 6 is stopped and an alarm is issued. It is safer to operate the apparatus and check for abnormalities in the heating furnace 1 by humans. In addition, even when the power supply to the heater 6 is stopped due to the detection of the abnormal temperature T1 by the monitoring temperature sensor 7b, the temperature in the heating furnace 1 does not suddenly decrease. There is no danger of falling.

【0012】上記のようにして制御装置10がすべての
加熱ヒータ6の通電を停止する指令を出した後に、監視
用温度センサ7bの少なくとも1個が加熱炉1内の温度
が異常温度T1より高い予め設定した異常温度T2(例
えば480℃)を検出すると、制御装置10は電磁バル
ブ12を、それまでの「開」から「閉」にする制御指令
を出す。すると、今まで高圧窒素ガスの貯蔵容器14か
ら電磁バルブ12を通過して、流体圧駆動弁11の駆動
室に流入し、流体圧駆動弁11の弁を「閉」にしていた
窒素ガスが遮断され、流体圧駆動弁11の弁が「開」に
なる。流体圧駆動弁11の弁が「開」になると、高圧ア
ルゴンガスの貯蔵容器13からアルゴンガスが配管15
a、15bを経由し、複数のノズル8から加熱炉1内に
一気に噴射される。このようにしてアルゴンガスを加熱
炉1内に短時間に噴射させることにより、加熱炉1内は
酸欠状態になり、加熱炉1内の温度が異常温度T2に達
した場合でも、ワーク5の発火を防止することができ
る。この異常温度T2としては、ワーク5の発火温度よ
り低い温度、望ましくはこのワーク5の発火温度より少
なくとも20〜30℃低い温度に設定する。なお、上記
アルゴンガスの供給圧力は2MPa程度あれば良い。
After the control device 10 issues a command to stop energizing all the heaters 6 as described above, at least one of the monitoring temperature sensors 7b determines that the temperature in the heating furnace 1 is higher than the abnormal temperature T1. When detecting the preset abnormal temperature T2 (for example, 480 ° C.), the control device 10 issues a control command to turn the electromagnetic valve 12 from “open” to “close”. Then, the nitrogen gas, which has passed from the high-pressure nitrogen gas storage container 14 through the electromagnetic valve 12 to the driving chamber of the fluid pressure driving valve 11 and the valve of the fluid pressure driving valve 11 has been closed, is shut off. Then, the valve of the fluid pressure drive valve 11 is opened. When the valve of the fluid pressure drive valve 11 is opened, the argon gas is supplied from the high pressure argon gas storage container 13 to the pipe 15.
Through the nozzles a and 15b, the fuel is injected into the heating furnace 1 from the plurality of nozzles 8 at once. By injecting the argon gas into the heating furnace 1 in a short time in this way, the inside of the heating furnace 1 becomes oxygen-deficient, and even if the temperature in the heating furnace 1 reaches the abnormal temperature T2, the work 5 Ignition can be prevented. The abnormal temperature T2 is set at a temperature lower than the ignition temperature of the work 5, preferably at least 20 to 30 ° C. lower than the ignition temperature of the work 5. Note that the supply pressure of the argon gas may be about 2 MPa.

【0013】上記のように、流体圧駆動弁11を駆動さ
せるための駆動源として高圧窒素ガスを使用する理由
は、高圧窒素ガスを使用すれば、工場の圧縮空気と違
い、圧力変動の発生もなく、確実に流体圧駆動弁を作動
させることができるからである。また、上記のような流
体圧駆動弁開閉方式とすることにより、万一制御装置が
故障した場合には電磁弁12は「閉」となり、アルゴン
ガスが供給されるので、安全である。なお、窒素ガスの
供給圧力は約0.5MPa程度あれば良い。
As described above, the reason for using high-pressure nitrogen gas as a drive source for driving the fluid pressure drive valve 11 is that if high-pressure nitrogen gas is used, pressure fluctuations occur unlike compressed air in a factory. This is because the fluid pressure driven valve can be reliably operated. Further, by adopting the above-described fluid pressure driven valve opening / closing method, in the event that the control device fails, the solenoid valve 12 is closed and the argon gas is supplied, which is safe. The supply pressure of the nitrogen gas may be about 0.5 MPa.

【0014】以上に説明した本発明の実施の形態は、マ
グネシウム合金製素材の加熱について説明したが、本発
明はマグネシウム合金製素材の熱処理、可燃性金属およ
びその合金素材の加熱や熱処理にも適用できる。
Although the above-described embodiment of the present invention has been described with respect to heating of a magnesium alloy material, the present invention is also applicable to heat treatment of a magnesium alloy material, heating and heat treatment of a combustible metal and its alloy material. it can.

【0015】[0015]

【発明の効果】以上に説明した本発明は次の効果を有し
ている。1)マグネシウム合金製素材の加熱温度が目標
温度を超えた場合でも、発火温度より低い異常温度T1
で加熱ヒータの加熱停止させ、さらにこの異常温度T1
より高く発火温度より低い異常温度T2に達すると加熱
炉内にアルゴンガス等の不活性ガスを噴射するという2
段階の安全制御を行っているので、マグネシウム合金製
素材の発火による燃焼を確実に防止することができる。
2)加熱炉内に、加熱温度を制御するための温度センサ
と、加熱温度の異常を監視するための温度センサを各々
複数個設置することにより、加熱炉の温度制御と操業の
安全制御の信頼性を向上させることができる。
The present invention described above has the following effects. 1) Even if the heating temperature of the magnesium alloy material exceeds the target temperature, the abnormal temperature T1 lower than the ignition temperature
To stop the heating of the heater, and furthermore, the abnormal temperature T1
When an abnormal temperature T2 higher than the ignition temperature is reached, an inert gas such as argon gas is injected into the heating furnace.
Since the stepwise safety control is performed, combustion due to ignition of the magnesium alloy material can be reliably prevented.
2) By installing a plurality of temperature sensors for controlling the heating temperature and a plurality of temperature sensors for monitoring abnormalities of the heating temperature in the heating furnace, the reliability of the temperature control of the heating furnace and the safety control of the operation are ensured. Performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の加熱炉の一実施形態を示す横断面図で
ある。
FIG. 1 is a cross-sectional view showing one embodiment of a heating furnace of the present invention.

【図2】本発明の加熱炉の制御系統図および配管経路図
の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a control system diagram and a piping route diagram of the heating furnace of the present invention.

【符号の説明】[Explanation of symbols]

1 :加熱炉 2 :炉体 3 :チェンコンベア 4 :搬送プレー
ト 5 :マグネシウム合金製素材 6 :加熱ヒータ 7a:制御用温度センサ 7b:監視用温度
センサ 8 :ノズル 9 :カバー 10:制御装置 11:流体圧駆動
弁 12:電磁弁 13:不活性ガス
貯蔵容器 14:窒素ガス貯蔵容器 15a、15b:
配管 16:配管
1: heating furnace 2: furnace body 3: chain conveyor 4: transport plate 5: magnesium alloy material 6: heating heater 7a: control temperature sensor 7b: monitoring temperature sensor 8: nozzle 9: cover 10: control device 11: Fluid pressure drive valve 12: solenoid valve 13: inert gas storage container 14: nitrogen gas storage container 15a, 15b:
Piping 16: Piping

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉内に装入されたマグネシウム合金
製素材の加熱制御方法において、加熱炉内の温度が予め
設定した目標温度T0より高い温度T1となると加熱炉
の加熱を停止させ、加熱を停止させた後に加熱炉内の温
度が前記温度T1より高くかつ前記合金の発火温度より
低い予め設定した温度T2となると、加熱炉内に不活性
ガスを噴射することを特徴とするマグネシウム製素材合
金の加熱制御方法。
In a heating control method for a magnesium alloy material charged in a heating furnace, when the temperature in the heating furnace reaches a temperature T1 higher than a preset target temperature T0, the heating of the heating furnace is stopped and the heating is stopped. When the temperature in the heating furnace reaches a predetermined temperature T2 higher than the temperature T1 and lower than the ignition temperature of the alloy after stopping the heating, an inert gas is injected into the heating furnace. Heat control method for alloy.
【請求項2】 装入されたマグネシウム合金製素材を加
熱する加熱炉であって、加熱炉内の温度を検出すべく設
置された温度センサと、加熱炉内に不活性ガスを噴射す
ることができる不活性ガス噴射装置と、温度センサの温
度情報を受け、予め設定した目標温度T0より高い異常
温度T1となると加熱手段に加熱停止指令を出し、前記
異常温度T1より高くかつ前記合金の発火温度より低い
予め設定した異常温度T2となると不活性ガス噴射装置
に不活性ガスを噴射するように指令を出す論理部を有す
る制御装置とを備えたことを特徴とする加熱炉。
2. A heating furnace for heating a charged magnesium alloy material, wherein a temperature sensor installed to detect a temperature in the heating furnace and an inert gas are injected into the heating furnace. When the temperature information of the inert gas injection device and the temperature sensor is received and the abnormal temperature T1 becomes higher than the preset target temperature T0, a heating stop command is issued to the heating means to raise the ignition temperature of the alloy higher than the abnormal temperature T1. A heating furnace, comprising: a control device having a logic unit that issues a command to inject an inert gas into the inert gas injection device when the preset abnormal temperature T2 becomes lower.
【請求項3】 温度センサを複数個マグネシウム合金製
素材の近傍に位置するように設置したことを特徴とする
と請求項2に記載の加熱炉。
3. The heating furnace according to claim 2, wherein a plurality of temperature sensors are installed near the magnesium alloy material.
【請求項4】 不活性ガス噴射装置には、不活性ガスを
貯蔵する容器と加熱炉内とを結ぶ配管に制御装置の指令
により開閉する流体圧駆動弁を設けたことを特徴とする
請求項2又は3記載の加熱炉。
4. The inert gas injection device is provided with a fluid pressure drive valve that opens and closes in response to a command from a control device in a pipe connecting the container storing the inert gas and the inside of the heating furnace. The heating furnace according to 2 or 3.
【請求項5】 流体圧駆動弁の流体は、窒素ガスを貯蔵
する容器から供給される窒素ガスであることを特徴とす
る請求項4記載の加熱炉。
5. The heating furnace according to claim 4, wherein the fluid of the fluid pressure driven valve is nitrogen gas supplied from a container storing nitrogen gas.
【請求項6】 不活性ガスはアルゴンガスであることを
特徴とする請求項2乃至5の何れかに記載の加熱炉。
6. The heating furnace according to claim 2, wherein the inert gas is an argon gas.
JP2000046691A 2000-02-24 2000-02-24 Magnesium alloy material heating control method and heating furnace Expired - Fee Related JP4993237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046691A JP4993237B2 (en) 2000-02-24 2000-02-24 Magnesium alloy material heating control method and heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046691A JP4993237B2 (en) 2000-02-24 2000-02-24 Magnesium alloy material heating control method and heating furnace

Publications (2)

Publication Number Publication Date
JP2001234253A true JP2001234253A (en) 2001-08-28
JP4993237B2 JP4993237B2 (en) 2012-08-08

Family

ID=18569060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046691A Expired - Fee Related JP4993237B2 (en) 2000-02-24 2000-02-24 Magnesium alloy material heating control method and heating furnace

Country Status (1)

Country Link
JP (1) JP4993237B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271167A (en) * 2006-03-31 2007-10-18 Central Res Inst Of Electric Power Ind Heat treatment apparatus and heat treatment method
CN110029298A (en) * 2019-03-19 2019-07-19 中国科学院合肥物质科学研究院 Nb3Sn coil heat-treating atmosphere protects system and control and detection method
CN112642844A (en) * 2021-01-21 2021-04-13 洛阳炬星窑炉有限公司 Filler recovery device and recovery method for thermosetting plastic waste
CN114054520A (en) * 2021-10-22 2022-02-18 山东莱钢永锋钢铁有限公司 Automatic control production interval control device for head, top and tail of rolling line

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189100U (en) * 1983-06-02 1984-12-14 三菱電機株式会社 furnace
JPH01287224A (en) * 1988-05-12 1989-11-17 Kawasaki Steel Corp In-furnace temperature control method for continuous heat treatment furnace
JPH0681089A (en) * 1992-09-02 1994-03-22 Sumitomo Metal Ind Ltd Method for hot-working magnesium alloy
JPH06147774A (en) * 1992-11-05 1994-05-27 Nkk Corp Operating method at stoppage of extraction of continuous type heating furnace
JPH09263871A (en) * 1996-03-29 1997-10-07 Mitsui Mining & Smelting Co Ltd Hot forged product made of high strength magnesium alloy and its production
JPH10267254A (en) * 1997-03-27 1998-10-09 S D Furness Kk Explosion-proof type smoke consumer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189100U (en) * 1983-06-02 1984-12-14 三菱電機株式会社 furnace
JPH01287224A (en) * 1988-05-12 1989-11-17 Kawasaki Steel Corp In-furnace temperature control method for continuous heat treatment furnace
JPH0681089A (en) * 1992-09-02 1994-03-22 Sumitomo Metal Ind Ltd Method for hot-working magnesium alloy
JPH06147774A (en) * 1992-11-05 1994-05-27 Nkk Corp Operating method at stoppage of extraction of continuous type heating furnace
JPH09263871A (en) * 1996-03-29 1997-10-07 Mitsui Mining & Smelting Co Ltd Hot forged product made of high strength magnesium alloy and its production
JPH10267254A (en) * 1997-03-27 1998-10-09 S D Furness Kk Explosion-proof type smoke consumer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271167A (en) * 2006-03-31 2007-10-18 Central Res Inst Of Electric Power Ind Heat treatment apparatus and heat treatment method
CN110029298A (en) * 2019-03-19 2019-07-19 中国科学院合肥物质科学研究院 Nb3Sn coil heat-treating atmosphere protects system and control and detection method
CN112642844A (en) * 2021-01-21 2021-04-13 洛阳炬星窑炉有限公司 Filler recovery device and recovery method for thermosetting plastic waste
CN114054520A (en) * 2021-10-22 2022-02-18 山东莱钢永锋钢铁有限公司 Automatic control production interval control device for head, top and tail of rolling line

Also Published As

Publication number Publication date
JP4993237B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US4135053A (en) Heating assembly for a heat treating furnace
US8985472B2 (en) Wireless temperature sensing and control system for metal kiln and method of using the same
US20060283193A1 (en) Fuel injection system and purging method
JP4993237B2 (en) Magnesium alloy material heating control method and heating furnace
KR101675646B1 (en) Burner apparatus of heating furnace
KR20100116119A (en) Regenerative burner
JP5113075B2 (en) In-furnace material detection system for metal production lances
KR101523648B1 (en) Charging apparatus and method
CN116697757A (en) Roasting furnace of mould shell sintering device
KR102441323B1 (en) Heating method and apparatus
JP2008000558A (en) Automatic fire extinguishing mechanism of medical waste disposal apparatus
KR100828154B1 (en) Cooling Device for hot blast line
CN210823895U (en) Stacking unit and stacking machine
US3396951A (en) Emergency atmosphere annealing furnace and method
JP3289437B2 (en) Combustion method of heating furnace using regenerative burner
RU2772842C2 (en) Injection of technological fluid into shaft furnace with checking current state of injector
USRE28168E (en) Emergency atmosphere annealing furnace and method
KR101492955B1 (en) Apparatus of preventing fire disaster for direct quenching system
JP3594720B2 (en) Combustion control method for regenerative burner device group and combustion control device for regenerative burner device
JPH07286725A (en) Furnace pressure controller for baking furnace
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
CN110641889A (en) Stacking unit, stacker crane and control method of stacker crane
JP3928118B2 (en) Auxiliary burner device
JP2023169682A (en) Method that provides guidance on state of intrusion air into furnace
JP2002022152A (en) Combustion control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees