JP4992154B2 - Optical scanning apparatus and image forming apparatus - Google Patents

Optical scanning apparatus and image forming apparatus Download PDF

Info

Publication number
JP4992154B2
JP4992154B2 JP2007315910A JP2007315910A JP4992154B2 JP 4992154 B2 JP4992154 B2 JP 4992154B2 JP 2007315910 A JP2007315910 A JP 2007315910A JP 2007315910 A JP2007315910 A JP 2007315910A JP 4992154 B2 JP4992154 B2 JP 4992154B2
Authority
JP
Japan
Prior art keywords
optical
optical path
scanning device
light
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007315910A
Other languages
Japanese (ja)
Other versions
JP2009139639A (en
Inventor
直人 渡辺
正典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007315910A priority Critical patent/JP4992154B2/en
Publication of JP2009139639A publication Critical patent/JP2009139639A/en
Application granted granted Critical
Publication of JP4992154B2 publication Critical patent/JP4992154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Liquid Crystal (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、電子写真方式の画像形成装置に具備される光走査装置、及び、その光走査装置を備えたレーザプリンタ、レーザプロッタ、デジタル複写機、普通紙ファクシミリ、あるいはこれらの複合機等の画像形成装置に関する。   The present invention relates to an optical scanning device provided in an electrophotographic image forming apparatus, and an image of a laser printer, a laser plotter, a digital copying machine, a plain paper facsimile, or a composite machine of these equipped with the optical scanning device. The present invention relates to a forming apparatus.

レーザプリンタ、レーザプロッタ、デジタル複写機、普通紙ファクシミリ、あるいはこれらの複合機等で用いられる電子写真方式の画像形成装置においては、近年、カラー化、高速化が進み、像担持体である感光体を複数(通常は4つ)有するタンデム方式対応の画像形成装置が普及してきている。このタンデム方式の画像形成装置では、記録材を搬送する転写ベルト(または中間転写ベルト)に沿って例えば4つの感光体を並設し、各感光体を帯電手段で帯電した後、書込ユニットで各感光体上に潜像を形成し、各感光体上の潜像を現像手段の色の異なる現像剤(例えば、イエロー、マゼンタ、シアン、ブラックの各色のトナー)で各々現像して顕像化し、この各色の顕像を転写ベルトで搬送される記録材(または中間転写ベルト)に重ね合わせて転写し、カラー画像を形成する。   In electrophotographic image forming apparatuses used in laser printers, laser plotters, digital copying machines, plain paper facsimiles, or multi-function machines of these types, in recent years, colorization and high speed have been advanced, and photoconductors that are image carriers. An image forming apparatus compatible with a tandem method having a plurality of (usually four) is widely used. In this tandem image forming apparatus, for example, four photoconductors are arranged side by side along a transfer belt (or intermediate transfer belt) that conveys a recording material, and each photoconductor is charged by a charging unit and then written by a writing unit. A latent image is formed on each photoconductor, and the latent image on each photoconductor is developed and visualized with developers of different colors (for example, yellow, magenta, cyan, and black toners) of the developing means. The color images are transferred onto a recording material (or an intermediate transfer belt) conveyed by a transfer belt so as to form a color image.

また、電子写真方式のカラー画像形成装置としては、感光体を1つのみ有し、色の数だけ感光体を回転して中間転写体に順次重ね合わせて転写し、中間転写体上にカラー画像を形成した後、記録材に一括して転写するという、所謂1ドラム−中間転写方式のものもあるが、この場合には、4色、1ドラムだと、1枚の画像形成毎に感光体を4回転する必要が有り、タンデム方式に比べて生産性が劣る。   The electrophotographic color image forming apparatus has only one photoconductor, rotates the photoconductor by the number of colors, and sequentially superimposes and transfers the image onto the intermediate transfer member. There is also a so-called one-drum-intermediate transfer method in which the image is formed and transferred onto the recording material in a lump. In this case, if there are four colors and one drum, the photoconductor is formed every time one image is formed. Must be rotated four times, and productivity is inferior compared to the tandem method.

このようにタンデム方式の画像形成装置では、1ドラム−中間転写方式に比べて高速化が図れ、カラー画像形成の生産性を向上することができるが、タンデム方式の画像形成装置の場合、光走査装置を用いた書込ユニットで複数の感光体に光書込みを行うために、どうしても光走査装置の光源数が増えてしまい(例えば感光体が4つの場合には、通常4つの光源が必要となる)、それに伴い、部品点数の増加、複数光源間の波長差に起因する色ずれ、コストアップ等の問題が生じてしまう。
また、書込ユニットの故障の原因として半導体レーザの劣化が挙げられている。このため光源数が多くなると、故障の確率が増える。
As described above, the tandem image forming apparatus can increase the speed and improve the productivity of color image formation as compared with the one-drum-intermediate transfer system. However, in the case of the tandem image forming apparatus, optical scanning is possible. In order to perform optical writing on a plurality of photoconductors by a writing unit using the apparatus, the number of light sources of the optical scanning device inevitably increases (for example, when there are four photoconductors, four light sources are usually required). As a result, problems such as an increase in the number of components, a color shift due to a wavelength difference between a plurality of light sources, and an increase in cost occur.
Further, deterioration of the semiconductor laser is cited as a cause of the failure of the writing unit. For this reason, as the number of light sources increases, the probability of failure increases.

そこで、タンデム方式の画像形成装置に用いる光走査装置で光源の数を増やさない工夫がなされた例がある。
例えば特許文献1(特開2006−284822号公報)に記載の発明では、共通の光源からのビームが異なる被走査面を走査する手段として、位相をずらして2段に重ねたポリゴンミラーを用いようとするものであるが、位相をずらしたポリゴンミラーは汎用品でなく、コストアップが懸念される。また、ポリゴンミラーの加工性も要求され、それぞれの段の面倒れが異なることや面精度も異なることから、画像品質の劣化が懸念される。
Therefore, there is an example in which the optical scanning device used in the tandem image forming apparatus is devised so as not to increase the number of light sources.
For example, in the invention described in Patent Document 1 (Japanese Patent Laid-Open No. 2006-284822), as means for scanning a surface to be scanned with different beams from a common light source, polygon mirrors stacked in two stages at different phases should be used. However, the polygon mirror whose phase is shifted is not a general-purpose product, and there is a concern about cost increase. In addition, the workability of the polygon mirror is also required, and the surface tilt of each step is different and the surface accuracy is different.

また、特許文献2(特開2007−060168号公報)に記載の発明では、1段のポリゴンミラーで位相をずらして入射させたビームが異なる被走査面を走査するようにし、さらなるコストダウンや、ポリゴンミラーの加工性の課題もクリアしたが、この方式においては、共通の光源からのビームパワーが約半分となるように分割して使用するため、光源パワーの実効率はロスし、複数の光源を用いる方式に比べて、倍以上のパワーが必要となる。しかし、パワーの増大はレーザ光源の劣化に繋がり、書込みユニットの故障の原因となる。   Further, in the invention described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-060168), a scanning surface with different incident beams is scanned by a single-stage polygon mirror so that the cost can be further reduced. The problem of polygon mirror processability was also cleared, but in this method, since the beam power from a common light source is divided so that it is about half, the actual efficiency of the light source power is lost, and multiple light sources Compared to the method using, power more than double is required. However, the increase in power leads to deterioration of the laser light source and causes a failure of the writing unit.

特開2006−284822号公報JP 2006-284822 A 特開2007−060168号公報JP 2007-060168 A

本発明は上記事情に鑑みなされたものであり、光源数を減らしながらも、ビームパワーのロスがなく、高速な画像出力を可能にすることができ、かつ、低コスト、高画質対応の光走査装置を提供することを目的とし、さらには、その光走査装置を備えた高画質で多色対応の画像形成装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can reduce the number of light sources, reduce the beam power, enable high-speed image output, and achieve low-cost, high-quality optical scanning. An object of the present invention is to provide an image forming apparatus, and further to provide an image forming apparatus having high image quality and corresponding to multiple colors provided with the optical scanning device.

上述の目的を達成するため、本発明では以下のような解決手段を採っている。
本発明の第1の手段は、変調駆動される光源と、多面の反射面を有する偏向手段と、前記偏向手段により偏向走査されたビームを被走査面に導く走査光学系を有する光走査装置において、
前記光源と前記偏向手段の間に光路切り換え手段を具備し、該光路切り換え手段では第1の光路と第2の光路に切り換え可能であり、前記第1の光路の前記偏向手段への入射光路と前記第2の光路の入射光路とが略π/2の開き角を有しており、かつ前記偏向手段が4面の反射面を有し、前記第1の光路を通るビームと前記第2の光路を通るビームは異なる被走査面に導かれることを特徴とする。
In order to achieve the above object, the present invention employs the following solutions.
According to a first aspect of the present invention, there is provided an optical scanning apparatus including a light source to be modulated and driven, a deflection unit having a multi-surface reflection surface, and a scanning optical system for guiding a beam deflected and scanned by the deflection unit to a surface to be scanned. ,
An optical path switching unit is provided between the light source and the deflecting unit, and the optical path switching unit can switch between a first optical path and a second optical path, and an incident optical path of the first optical path to the deflecting unit wherein it is second and the incident light path of the optical path has an opening angle of approximately [pi / 2, and has a reflecting surface of the deflection means 4 side, the beam and the second passing through the first optical path The beam passing through the optical path is guided to different scanning surfaces .

本発明の第2の手段は、第1の手段の光走査装置において、前記光路切り換え手段と前記偏向手段の間の前記第1の光路上および前記第2の光路上に各々入射ミラーを備え、前記第1の光路の入射ミラーから前記偏向手段までの光路と前記第2の光路の入射ミラーから前記偏向手段までの光路とは略π/2の開き角を有することを特徴とする。
本発明の第の手段は、第1または第2の手段の光走査装置において、前記光路切り換え手段は、回折光学素子と、該回折光学素子に電界印加が可能な電界印加手段を具備してなることを特徴とする。
また、本発明の第の手段は、第の手段の光走査装置において、前記光路切り換え手段をなす前記回折光学素子は、非重合性液晶からなる領域と等方性媒質からなる領域の周期的な構造からなり、前記非重合性液晶からなる領域の特定の偏光方向に対する屈折率が電界印加により変化し、電界印加に応じて前記特定の偏光方向の光を透過または回折することを特徴とする。
さらに本発明の第の手段は、第または第の手段の光走査装置において、前記光路切り換え手段をなす前記回折光学素子は、主にポリマーから成る領域と主に非重合性液晶から成る領域との周期的な相分離構造を形成したポリマー分散型液晶ホログラム素子であることを特徴とする。
According to a second means of the present invention, in the optical scanning device of the first means, an incident mirror is provided on each of the first optical path and the second optical path between the optical path switching means and the deflecting means, The optical path from the incident mirror of the first optical path to the deflecting means and the optical path from the incident mirror of the second optical path to the deflecting means have an opening angle of approximately π / 2 .
According to a third means of the present invention, in the optical scanning device of the first or second means, the optical path switching means comprises a diffractive optical element and an electric field applying means capable of applying an electric field to the diffractive optical element. It is characterized by becoming.
According to a fourth means of the present invention, in the optical scanning device of the third means, the diffractive optical element constituting the optical path switching means has a period of a region made of non-polymerizable liquid crystal and a region made of an isotropic medium. The refractive index with respect to a specific polarization direction of the region composed of the non-polymerizable liquid crystal is changed by applying an electric field, and the light having the specific polarization direction is transmitted or diffracted according to the applied electric field. To do.
Further, according to a fifth means of the present invention, in the optical scanning device of the third or fourth means, the diffractive optical element constituting the optical path switching means is mainly composed of a region made of a polymer and mainly a non-polymerizable liquid crystal. It is a polymer dispersion type liquid crystal hologram element in which a periodic phase separation structure with a region is formed.

本発明の第の手段は、変調駆動される光源と、多面の反射面を有する偏向手段と、前記偏向手段により走査されたビームを被走査面に導く走査光学系を有する光走査装置において、
前記光源と前記偏向手段との間に、偏光方向が切り換え可能な偏光切り換え手段と、互いに直交する偏光成分を分離する偏光分離手段からなる光路切り換え手段を具備し、該光路切り換え手段では第1の光路と第2の光路に切り換え可能であり、前記第1の光路の前記偏向手段への入射光路と前記第2の光路の入射光路とが略π/2の開き角を有しており、かつ前記偏向手段が4面の反射面を有し、前記第1の光路を通るビームと前記第2の光路を通るビームは異なる被走査面に導かれることを特徴とする。
According to a sixth means of the present invention, there is provided an optical scanning apparatus comprising: a light source that is modulated and driven; a deflecting unit having a multi-surface reflecting surface; and a scanning optical system that guides a beam scanned by the deflecting unit to a surface to be scanned.
Between the light source and the deflecting means, there is provided an optical path switching means comprising a polarization switching means capable of switching the polarization direction, and a polarization separation means for separating polarized light components orthogonal to each other . And an incident optical path of the first optical path to the deflecting means and an incident optical path of the second optical path have an opening angle of approximately π / 2, The deflecting means has four reflecting surfaces, and the beam passing through the first optical path and the beam passing through the second optical path are guided to different scanning surfaces .

本発明の第7の手段は、第6の手段の光走査装置において、前記光路切り換え手段と前記偏向手段の間の前記第1の光路上および前記第2の光路上に各々入射ミラーを備え、前記第1の光路の入射ミラーから前記偏向手段までの光路と前記第2の光路の入射ミラーから前記偏向手段までの光路とは略π/2の開き角を有することを特徴とする。
本発明の第の手段は、第6または第7の手段の光走査装置において、前記偏光分離手段は、回折光学素子からなり、該回折光学素子は、光学異方性を示す領域と光学等方性を示す領域からなる周期的な構造を有し、透過および回折により、互いに直交する偏光成分を分離することを特徴とする。
また、本発明の第の手段は、第の手段の光走査装置において、前記偏光切り換え手段は、一対の透明基板と、前記基板の内面側に設けられた配向膜と、前記配向膜によりホモジニアス配向をなすキラルスメクチックC相よりなる液晶層と、前記透明基板面に対して略垂直方向に電界を印加する電界印加手段とからなり、電界強度に応じて特定の偏光方向を略90°回転することを特徴とする。
According to a seventh means of the present invention, in the optical scanning device of the sixth means, an incident mirror is provided on each of the first optical path and the second optical path between the optical path switching means and the deflecting means, The optical path from the incident mirror of the first optical path to the deflecting means and the optical path from the incident mirror of the second optical path to the deflecting means have an opening angle of approximately π / 2.
According to an eighth means of the present invention, in the optical scanning device of the sixth or seventh means, the polarization separation means comprises a diffractive optical element, and the diffractive optical element includes a region exhibiting optical anisotropy, an optical element, and the like. It has a periodic structure composed of regions exhibiting anisotropy, and is characterized by separating polarized light components orthogonal to each other by transmission and diffraction.
According to a ninth means of the present invention, in the optical scanning device of the eighth means, the polarization switching means comprises a pair of transparent substrates, an alignment film provided on the inner surface side of the substrate, and the alignment film. A liquid crystal layer composed of a chiral smectic C phase having homogeneous orientation and an electric field applying means for applying an electric field in a direction substantially perpendicular to the transparent substrate surface, and rotating a specific polarization direction by about 90 ° according to the electric field strength. It is characterized by doing.

本発明の第10の手段は、第1〜第のいずれか1つの手段の光走査装置において、温度調整手段を具備してなることを特徴とする。
また、本発明の第11の手段は、第1〜第10のいずれか1つの手段の光走査装置において、入射ビームを境として前記走査光学系と反対側に同期検知手段を配備することを特徴とする。
さらに本発明の第12の手段は、第1〜第11のいずれか1つの手段の光走査装置において、前記被走査面に形成される複数の走査線の副走査方向ピッチを調整するピッチ調整手段を前記光路切り換え手段と前記偏向手段の間に配置したことを特徴とする。
According to a tenth means of the present invention, in the optical scanning device of any one of the first to ninth means, a temperature adjusting means is provided.
According to an eleventh means of the present invention, in the optical scanning device of any one of the first to tenth means, a synchronization detecting means is arranged on the opposite side of the scanning optical system with the incident beam as a boundary. And
Further, the twelfth means of the present invention is a pitch adjusting means for adjusting a sub-scanning direction pitch of a plurality of scanning lines formed on the surface to be scanned in the optical scanning device of any one of the first to eleventh means. Is arranged between the optical path switching means and the deflection means.

本発明の第13の手段は、第1〜第12のいずれか1つの手段の光走査装置において、複数の光源を有し、該複数の光源が副走査方向に異なる位置に配置されていることを特徴とする。
また、本発明の第14の手段は、第1〜第13のいずれか1つの手段の光走査装置において、共通の光源が相異なる被走査面を走査する時に、それぞれの被走査面に対して互いに異なる光量を設定することを特徴とする。
さらに本発明の第15の手段は、第1〜第14のいずれか1つの手段の光走査装置において、前記光源に面発光レーザ(VCSEL(Vertical Cavity Surface Emitting LASER))を用いることを特徴とする。
According to a thirteenth means of the present invention, in the optical scanning device according to any one of the first to twelfth means, the optical scanning device has a plurality of light sources, and the plurality of light sources are arranged at different positions in the sub-scanning direction. It is characterized by.
According to a fourteenth aspect of the present invention, in the optical scanning device according to any one of the first to thirteenth means, when a common light source scans different scanned surfaces, each scanned surface is scanned. It is characterized in that different light amounts are set.
Further, the fifteenth means of the present invention is characterized in that, in the optical scanning device of any one of the first to fourteenth means, a surface emitting laser (VCSEL (Vertical Cavity Surface Emitting LASER)) is used as the light source. .

本発明の第16の手段は、光源からのビームを被走査面である像担持体に照射して潜像を形成する書込ユニットを備えた画像形成装置において、前記書込ユニットに第1〜第15のいずれか1つの手段の光走査装置を備えたことを特徴とする。
また、本発明の第17の手段は、第16の手段の画像形成装置において、前記像担持体を複数備え、前記書込ユニットで複数の像担持体にそれぞれ形成した潜像を色の異なる現像剤で現像して顕像化し、前記複数の像担持体に形成した各色の顕像を直接または中間転写体を介して記録材に重ね合せて転写して多色またはフルカラー画像を形成することを特徴とする。
According to a sixteenth aspect of the present invention, there is provided an image forming apparatus including a writing unit that forms a latent image by irradiating a beam from a light source onto an image carrier that is a surface to be scanned. An optical scanning device according to any one of the fifteenth means is provided.
According to a seventeenth aspect of the present invention, in the image forming apparatus according to the sixteenth aspect , the image forming apparatus includes a plurality of image carriers, and the latent images formed on the plurality of image carriers by the writing unit are developed in different colors. Developing with a developer to form a visible image, and forming a multicolor or full-color image by transferring the visible images of each color formed on the plurality of image carriers onto a recording material directly or via an intermediate transfer member. Features.

第1の手段の光走査装置では、光源と偏向手段の間にアクティブな光路切り換え手段を備えており、このアクティブな光路切り換え手段でビームを時分割で切り換えて利用することができるので、従来の光束分割方式に比べて、光源からのビームパワーを効率よく光走査に利用することができる。
第2の手段の光走査装置では、前記光路切り換え手段と前記偏向手段の間の前記第1の光路上および前記第2の光路上に各々入射ミラーを備え、前記第1の光路の入射ミラーから前記偏向手段までの光路と前記第2の光路の入射ミラーから前記偏向手段までの光路とは略π/2の開き角を有することで、第1の手段と同様に光源からのビームパワーを効率よく光走査に利用することができる。
の手段の光走査装置では、第1または第2の手段の構成及び効果に加え、光路切り換え手段として、回折光学素子と電界印加手段を用いることで、電界制御による光路の切り換えが可能となる。
の手段の光走査装置では、第の手段の構成及び効果に加え、非重合性液晶から成る領域と等方性媒質から成る領域の周期的な構造からなる回折光学素子を用いることで、電界制御により周期構造の屈折率差の有無が容易に実現でき、かつ、周期構造の屈折率差が大きくとれる。
の手段の光走査装置では、第または第の手段の構成及び効果に加え、干渉露光により作製する液晶ホログラム素子は原版複製が可能であるため、低コスト化が実現できる。また、電界駆動に対して応答性に優れている。
In the optical scanning device of the first means, an active optical path switching means is provided between the light source and the deflecting means, and the beam can be switched and used in a time division manner by this active optical path switching means. Compared with the beam splitting method, the beam power from the light source can be efficiently used for optical scanning.
In the optical scanning device of the second means, an incident mirror is provided on each of the first optical path and the second optical path between the optical path switching means and the deflecting means, and from the incident mirror of the first optical path. Since the optical path to the deflecting means and the optical path from the incident mirror of the second optical path to the deflecting means have an opening angle of approximately π / 2, the beam power from the light source can be efficiently used as in the first means. It can often be used for optical scanning.
In the optical scanning device of the third means, in addition to the configuration and effect of the first or second means, the optical path can be switched by electric field control by using a diffractive optical element and an electric field applying means as the optical path switching means. Become.
In the optical scanning device of the fourth means, in addition to the configuration and effect of the third means, a diffractive optical element having a periodic structure of a region made of non-polymerizable liquid crystal and a region made of an isotropic medium is used. The presence or absence of the refractive index difference of the periodic structure can be easily realized by controlling the electric field, and the refractive index difference of the periodic structure can be increased.
In the optical scanning device of the fifth means, in addition to the configuration and effects of the third or fourth means, the liquid crystal hologram element produced by interference exposure can be duplicated, so that the cost can be reduced. Moreover, it has excellent responsiveness to electric field driving.

の手段の光走査装置では、光路切り換え手段として偏光分離手段と偏光切り換え手段を備えているため、偏光切り換え手段により偏光方向を制御し、偏光分離手段により光路の切り換えが可能である。また、アクティブな光路の切り換えは、従来の光束分割方式に比べて、光源からのビームパワーを効率よく光走査に利用することができる。
第7の手段の光走査装置では、前記光路切り換え手段と前記偏向手段の間の前記第1の光路上および前記第2の光路上に各々入射ミラーを備え、前記第1の光路の入射ミラーから前記偏向手段までの光路と前記第2の光路の入射ミラーから前記偏向手段までの光路とは略π/2の開き角を有することで、第6の手段と同様に光源からのビームパワーを効率よく光走査に利用することができる。
の手段の光走査装置では、第6または第7の手段の構成及び効果に加え、偏光分離手段として、回折光学素子を用いた構成としていため、従来のミラー分割によるミラー面精度ばらつきの影響及び配置誤差の影響によるビームスポット径劣化の不具合がなく、高価なハーフミラープリズムに比べて低コスト化が実現できる。
の手段の光走査装置では、第の手段の構成及び効果に加え、偏光切り換え手段として、キラルスメクチックC相よりなる強誘電性液晶素子と電界印加手段を用いているため、光源の波長および偏光方向に対応して、液晶層の膜厚および配向方向を設定することで、偏光方向の切り換えが電界制御により容易に実現することができる。また、強誘電性液晶は応答性に優れているという効果もある。
Since the optical scanning device of the sixth means includes the polarization separation means and the polarization switching means as the optical path switching means, the polarization direction can be controlled by the polarization switching means and the optical path can be switched by the polarization separation means. Further, the switching of the active optical path can efficiently use the beam power from the light source for optical scanning as compared with the conventional beam splitting method.
In the optical scanning device of the seventh means, an incident mirror is provided on each of the first optical path and the second optical path between the optical path switching means and the deflecting means, and from the incident mirror of the first optical path. Since the optical path to the deflecting means and the optical path from the incident mirror of the second optical path to the deflecting means have an opening angle of approximately π / 2, the beam power from the light source is efficiently obtained as in the sixth means. It can often be used for optical scanning.
In the optical scanning device of the eighth means, in addition to the configuration and effect of the sixth or seventh means, a diffractive optical element is used as the polarization separation means, and therefore the influence of variations in mirror surface accuracy due to conventional mirror division is affected. In addition, there is no problem of beam spot diameter degradation due to the influence of the arrangement error, and the cost can be reduced as compared with an expensive half mirror prism.
In the optical scanning device of the ninth means, in addition to the configuration and effect of the eighth means, a ferroelectric liquid crystal element comprising a chiral smectic C phase and an electric field applying means are used as the polarization switching means. By setting the film thickness and orientation direction of the liquid crystal layer corresponding to the polarization direction, switching of the polarization direction can be easily realized by electric field control. In addition, the ferroelectric liquid crystal has an effect that the response is excellent.

10の手段の光走査装置では、第1〜第のいずれか1つの手段の構成及び効果に加え、温度調整手段を具備しているため、光路切り換えまたは偏光切り換えの応答性が安定した光走査装置を提供することができる。
11の手段の光走査装置では、第1〜第10のいずれか1つの手段の構成及び効果に加え、入射ビームを境として走査光学系と反対側に同期検知手段を配備することでレイアウト自由度が向上する。
12の手段の光走査装置では、第1〜第11のいずれか1つの手段の構成及び効果に加え、複数の走査線の副走査方向ピッチ調整手段を光束分割手段と偏向手段の間に配置することで被走査面上の副走査方向の走査線間隔を精度良く補正できる。
In the optical scanning device of the tenth means, in addition to the configuration and effect of any one of the first to ninth means, a temperature adjusting means is provided, so that the light whose switching path response or polarization switching response is stable. A scanning device can be provided.
In the optical scanning device of the eleventh means, in addition to the configuration and effect of any one of the first to tenth means, a layout detection freedom is provided by arranging a synchronous detection means on the opposite side of the scanning optical system with the incident beam as a boundary. The degree is improved.
In the optical scanning device of the twelfth means, in addition to the configuration and effect of any one of the first to eleventh means, a sub-scanning direction pitch adjusting means for a plurality of scanning lines is arranged between the light beam dividing means and the deflecting means. Thus, the scanning line interval in the sub-scanning direction on the surface to be scanned can be accurately corrected.

13の手段の光走査装置では、第1〜第12のいずれか1つの手段の構成及び効果に加え、複数の光源を副走査方向に異なる位置に配置することにより、副走査方向に異なる光束を一つの光路切り換え手段で時分割可能となり、コストダウンの達成が可能となる。
14の手段の光走査装置では、第1〜第13のいずれか1つの手段の構成及び効果に加え、光量調整により、それぞれの色の光量調整が可能となり、色再現性の優れた高品位な画像を出力することが可能となる。
15の手段の光走査装置では、第1〜第14のいずれか1つの手段の構成及び効果に加え、面発光レーザを用いることにより、高速な光走査装置を実現することができる。
In the optical scanning device of the thirteenth means, in addition to the configuration and effect of any one of the first to twelfth means, a plurality of light sources are arranged at different positions in the subscanning direction, so that the light fluxes differing in the subscanning direction Can be time-divided with a single optical path switching means, and cost reduction can be achieved.
In the optical scanning device of the fourteenth means, in addition to the configuration and effect of any one of the first to thirteenth means, the light quantity can be adjusted by adjusting the light quantity, and the high quality with excellent color reproducibility. It is possible to output a simple image.
In the optical scanning device of the fifteenth means, in addition to the configuration and effect of any one of the first to fourteenth means, a high-speed optical scanning device can be realized by using a surface emitting laser.

16の手段の画像形成装置では、書込ユニットに第1〜第15のいずれか1つの手段の光走査装置を備えたことにより、高速・高品位を維持しつつコストダウンが可能な画像形成装置を提供することができる。
17の手段の画像形成装置では、第16の手段の構成及び効果に加え、前記像担持体を複数備え、前記書込ユニットで複数の像担持体にそれぞれ形成した潜像を色の異なる現像剤で現像して顕像化し、前記複数の像担持体に形成した各色の顕像を直接または中間転写体を介して記録材に重ね合せて転写して多色またはフルカラー画像を形成することにより、高速・高品位を維持しつつコストダウンが可能なカラー画像形成装置を提供することができる。
In the image forming apparatus of the sixteenth means, the writing unit is provided with the optical scanning device of any one of the first to fifteen means, so that image formation capable of reducing cost while maintaining high speed and high quality is achieved. An apparatus can be provided.
In the image forming apparatus of the seventeenth means, in addition to the configuration and effects of the sixteenth means, a plurality of the image carriers are provided, and the latent images formed on the plurality of image carriers by the writing unit are developed in different colors. By developing with an agent to develop a visible image, each color developed image formed on the plurality of image carriers is superimposed on a recording material directly or via an intermediate transfer member and transferred to form a multicolor or full color image. Therefore, it is possible to provide a color image forming apparatus capable of reducing costs while maintaining high speed and high quality.

以下、本発明の構成、動作及び作用効果を、図面を参照して詳細に説明する。
図1は本発明の一実施形態を示す光走査装置の概略構成図である。同図において符号1、1' は光源としての半導体レーザ(LD)、2,2' は入射ミラー、3、3' はカップリングレンズ、4は光路切り換え手段、5(5c,5d)、5'(5a,5b)は2段に重ねたシリンドリカルレンズ、6は防音ガラス、7は偏向手段としての偏向器(例えば4つの偏向反射面(反射鏡)を有するポリゴンミラー)、8(8a,8b)は第1走査レンズ、9は光路折返し用のミラー、10(10a,10b)は第2走査レンズ、11(11a,11b)は被走査面としての感光体、12は開口絞り(アパーチャ)をそれぞれ示している。
Hereinafter, the configuration, operation, and effects of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an optical scanning device showing an embodiment of the present invention. In the figure, reference numerals 1 and 1 'are semiconductor lasers (LD) as light sources, 2, 2' are incident mirrors, 3 and 3 'are coupling lenses, 4 is an optical path switching means, 5 (5c, 5d) and 5'. (5a, 5b) are two-stage cylindrical lenses, 6 is a soundproof glass, 7 is a deflector as a deflecting means (for example, a polygon mirror having four deflecting reflecting surfaces (reflecting mirrors)), 8 (8a, 8b) Is a first scanning lens, 9 is an optical path folding mirror, 10 (10a, 10b) is a second scanning lens, 11 (11a, 11b) is a photosensitive member as a surface to be scanned, and 12 is an aperture stop (aperture). Show.

半導体レーザ1、1' から出射した各2本の発散光束はカップリングレンズ3、3' により、弱い収束光束、または平行光束、または弱い発散光束に変換される。カップリングレンズ3、3'を出たビームは被走査面上でのビーム径を安定させるための開口絞り12を通過し、光路切り換え手段4に入射する。光路切り換え手段4に入射した共通の光源からのビームはそれぞれ2つの方向に時分割される。この場合、光源1,1' の配置が副走査方向のみに異なるため、光路切り換え手段4は共通で使用でき、副走査方向に異なる2本のビームを2つの光路に時分割して切り換えることができる。なお、光路切り換え手段4の構成については以下で詳細に説明する。   The two divergent light beams emitted from the semiconductor lasers 1 and 1 ′ are converted into weak convergent light beams, parallel light beams, or weak divergent light beams by the coupling lenses 3 and 3 ′. The beams exiting the coupling lenses 3 and 3 ′ pass through the aperture stop 12 for stabilizing the beam diameter on the scanned surface and enter the optical path switching means 4. The beams from the common light source incident on the optical path switching means 4 are each time-divided in two directions. In this case, since the arrangement of the light sources 1 and 1 'differs only in the sub-scanning direction, the optical path switching means 4 can be used in common, and two beams that are different in the sub-scanning direction can be switched in time division to two optical paths. it can. The configuration of the optical path switching unit 4 will be described in detail below.

[第1の実施形態]
本発明の第1〜第の手段に対応する実施形態について図2〜図11を参照して説明する。
図2に光走査装置の一部を示す。この光走査装置は、レーザ光源1、カップリングレンズ3、光路切り換え手段4、入射ミラー2,2’、多面の反射鏡を有する偏向手段(例えばポリゴンミラー)7とで構成されている。なお、図2では開口絞り(アパーチャ)、シリンドリカルレンズ、被走査面への結像光学系等を省略している。
詳細は後述するが、光路切り換え手段4としては、図3に示すような電界印加手段を具備した回折光学素子50で構成されており、電界印加ON時と電界印加OFF時では異なる光路を通る。
[First Embodiment]
Embodiments corresponding to the first to fifth means of the present invention will be described with reference to FIGS.
FIG. 2 shows a part of the optical scanning device. This optical scanning device includes a laser light source 1, a coupling lens 3, an optical path switching unit 4, incident mirrors 2 and 2 ', and a deflecting unit (for example, a polygon mirror) 7 having a multi-surface reflecting mirror. In FIG. 2, an aperture stop (aperture), a cylindrical lens, an image forming optical system for a surface to be scanned, and the like are omitted.
As will be described in detail later, the optical path switching means 4 includes a diffractive optical element 50 having an electric field applying means as shown in FIG. 3, and passes through different optical paths when the electric field application is ON and when the electric field application is OFF.

ここで、光走査装置の動作について説明する。レーザ光源1から出射したビームは、前述の光路切り換え手段4における電界印加制御により、主走査方向にビーム光路が変更され、時分割で入射角が90°異なる状態でポリゴンミラー7にそれぞれ入射される。ここでは、電界印加制御において、電界印加ON時に光路1、電界印加OFF時に光路2を通過するようにしているが、電界印加ON時に光路2、電界印加OFF時に光路1を通過するような構成としてもよい。ポリゴンミラー7は、4面の偏向反射面(反射鏡)を用いた構成としている。   Here, the operation of the optical scanning device will be described. The beam emitted from the laser light source 1 is incident on the polygon mirror 7 in a state in which the beam optical path is changed in the main scanning direction by the electric field application control in the optical path switching means 4 and the incident angle is different by 90 ° in a time division manner. . Here, in the electric field application control, the optical path 1 is passed when the electric field application is ON, and the optical path 2 is passed when the electric field application is OFF, but the optical path 2 is passed when the electric field application is ON and the optical path 1 is passed when the electric field application is OFF. Also good. The polygon mirror 7 has a configuration using four deflecting reflecting surfaces (reflecting mirrors).

このような構成において、光路切り換え手段4における電界印加を制御することで、時分割で光路1 と光路2 の切り換えが実現でき、光路1 を選んでポリゴンミラー7へビームが入射して感光体面(被走査面)を走査しているときは、ビームは略光路1 のみを通過し、光路2 はほとんど通過しない。また、光路2 を選んでポリゴンミラー7へのビームが(光路1 に対して)90°異なる角度で入射して感光体面(被走査面)を走査しているときは、ビームは略光路2 のみを通過し、光路1 はほとんど通過しない動作が実現できる。すなわち、光源からのビーム光量のロスはなく、光源パワーを効率的に利用できる。そのため、光源の長寿命化や劣化確立の低減に繋がる。特に高密度化に有効な面発光レーザ(VCSEL)を光源として用いる場合、効果が大きくなる。   In such a configuration, by controlling the application of the electric field in the optical path switching means 4, switching between the optical path 1 and the optical path 2 can be realized in a time-sharing manner. When scanning the (scanned surface), the beam passes substantially only through the optical path 1 and hardly passes through the optical path 2. When the optical path 2 is selected and the beam to the polygon mirror 7 is incident at an angle different by 90 ° (relative to the optical path 1) and scans the photosensitive member surface (scanned surface), the beam is only in the optical path 2 only. An operation that passes through the optical path 1 and hardly passes through the optical path 1 can be realized. That is, there is no loss of the amount of beam from the light source, and the light source power can be used efficiently. As a result, the life of the light source is extended and the establishment of deterioration is reduced. In particular, when a surface emitting laser (VCSEL) effective for increasing the density is used as a light source, the effect is increased.

ここで、光路切り換え手段4について具体的に説明する。図4に光路切り換え手段4をなす回折光学素子50の概略を示す。
この回折光学素子50では、支持部材54により所定の間隙を隔てて対向した一対の基板51,52の一方側に格子形状53が形成されており、その格子間に液晶材料55が封入されて、非重合性液晶からなる領域と等方性媒質からなる領域の周期的な構造が形成されている。ここで、周期的構造の形成は、フォトリソグラフィーとエッチングまたは切削加工や成形技術等により一方の基板51に格子形状53を形成し、格子間に非重合性の液晶材料55を充填することにより実現できる。
Here, the optical path switching means 4 will be specifically described. FIG. 4 shows an outline of the diffractive optical element 50 constituting the optical path switching means 4.
In this diffractive optical element 50, a grating shape 53 is formed on one side of a pair of substrates 51, 52 facing each other with a predetermined gap by a support member 54, and a liquid crystal material 55 is sealed between the gratings, A periodic structure of a region made of non-polymerizable liquid crystal and a region made of an isotropic medium is formed. Here, the formation of the periodic structure is realized by forming a lattice shape 53 on one substrate 51 by photolithography and etching or cutting or molding technique, and filling a non-polymerizable liquid crystal material 55 between the lattices. it can.

回折光学素子の構成に関して、非重合性液晶としてはネマチック、コレステリック、スメクチックなど一般的な液晶タイプを使用することができ、等方性媒質としては、フォトポリマー等の透明樹脂や石英、青板、白板、BK7等の光学硝材が使用できるが、複屈折性を有さなければこれに限るものではない。また、図示しないが、作製時には液晶の配向方向を規制する電界が印加可能な電極を設け、液晶の複屈折性を効率よく利用するために配向膜、ラビング、光配向等の配向処理をすることが好ましい。   Regarding the configuration of the diffractive optical element, general liquid crystal types such as nematic, cholesteric, and smectic can be used as non-polymerizable liquid crystals, and transparent resins such as photopolymers, quartz, blue plates, An optical glass material such as a white plate or BK7 can be used, but is not limited to this as long as it does not have birefringence. Although not shown, an electrode capable of applying an electric field that regulates the alignment direction of the liquid crystal is provided at the time of manufacturing, and alignment processing such as alignment film, rubbing, and photo alignment is performed in order to efficiently use the birefringence of the liquid crystal. Is preferred.

ここで、図5、図6に光路切り換え手段4をなす回折光学素子50の機能動作を示す。
図5は基板面に対して略垂直配向となるように配向処理がされており、s偏光(紙面垂直方向)の光が入射する構成としている。
図5(a)のように電界印加OFF時において、液晶の常光成分屈折率no と等方性媒質の屈折率nが一致している場合、光は格子の影響を受けずに直進し、同図(b)の電界印加ON時において、液晶の異常光成分屈折率ne と等方性媒質の屈折率nが一致しない場合、光は格子の影響を受けて回折する。
Here, FIGS. 5 and 6 show functional operations of the diffractive optical element 50 constituting the optical path switching means 4.
FIG. 5 shows an arrangement in which alignment processing is performed so as to be substantially perpendicular to the substrate surface, and light of s-polarized light (perpendicular to the paper surface) is incident thereon.
As shown in FIG. 5A, when the electric field application is OFF and the ordinary light component refractive index no of the liquid crystal and the refractive index n of the isotropic medium match, the light travels straight without being influenced by the grating, When the electric field application is turned on in FIG. 5B, if the refractive index ne of the extraordinary light component of the liquid crystal does not match the refractive index n of the isotropic medium, the light is diffracted by the influence of the grating.

また、図6は基板面に対して略水平配向(格子の稜線方向)となるように配向処理がされており、s偏光(紙面垂直方向)の光が入射構成としている。
図6(a)のように電界印加OFF時において、液晶の異常光成分屈折率ne と等方性媒質の屈折率nが一致していない場合、光は格子の影響を受けて回折し、同図(b)の電界印加ON時において、液晶の常光成分屈折率no と等方性媒質の屈折率nが一致している場合、光は格子の影響を受けずに直進する。
In FIG. 6, the alignment treatment is performed so as to be substantially horizontal alignment (in the ridge line direction of the lattice) with respect to the substrate surface, and s-polarized light (perpendicular to the paper surface) is incident.
If the extraordinary light component refractive index ne of the liquid crystal and the refractive index n of the isotropic medium do not match when the electric field application is turned off as shown in FIG. 6A, the light is diffracted by the influence of the grating, and the same If the normal light component refractive index no of the liquid crystal coincides with the refractive index n of the isotropic medium when the electric field application is ON in FIG. 5B, the light travels straight without being affected by the grating.

このように前述した構成の回折光学素子50は、電界印加の制御により透過または回折の動作を示す。このような動作を有する回折光学素子50を用いることで、光路の切り換えが可能となる。また、図5、図6においては入射偏光をs偏光としているが、液晶の配向方向を図7(a)のように基板面に対して略水平配向で格子の稜線方向とは略垂直な方向とすることで、p偏光に対しても同様の動作が実現できる。   As described above, the diffractive optical element 50 having the above-described configuration exhibits transmission or diffraction operation by controlling electric field application. By using the diffractive optical element 50 having such an operation, the optical path can be switched. 5 and 6, the incident polarized light is s-polarized light, but the orientation direction of the liquid crystal is substantially horizontal with respect to the substrate surface as shown in FIG. 7A and is substantially perpendicular to the ridge line direction of the lattice. Thus, the same operation can be realized for p-polarized light.

回折機能に関して詳細な説明は省略するが、−1次光または+1次光の回折効率は略100%得られることが好ましく、回折光学素子としては格子ピッチに対して格子高さhが厚い体積位相型回折格子が好ましい。また、片側次数の回折光の効率を高くするには、ブラッグ回折条件を満たすように格子を傾けることが好ましい。格子の傾き調整は図7(b)のように格子形状53を傾斜させてもよいし、図8、図9のように回折光学素子自体を傾斜させてもよい。   Although a detailed description of the diffraction function is omitted, it is preferable that the diffraction efficiency of the −1st order light or the + 1st order light is approximately 100%. A type diffraction grating is preferred. In order to increase the efficiency of the one-sided diffracted light, it is preferable to tilt the grating so as to satisfy the Bragg diffraction condition. For the adjustment of the inclination of the grating, the grating shape 53 may be inclined as shown in FIG. 7B, or the diffractive optical element itself may be inclined as shown in FIGS.

ここで、光路切り替え手段4をなす回折光学素子50の作製及び動作確認について説明する。
厚さ約0.5mmのBK7基板にSiONを成膜し、フォトリソグラフィとエッチングにより、ピッチ約1μm、高さ約2.5μmの格子形状を形成し、図4のように格子形成基板51と平面基板52間にネマチック液晶55(メルク製ZLI−2248)を保持した。このとき平面基板52のみに配向膜をスピンコートで成膜した。基板間隔は一対の支持部材(例えばアルミ電極スペーサー)54で約6μmに設定し、アルミ電極は格子稜線方向に電界が印加可能なように配置した。この回折光学素子に電界強度4.5V/μm(100Hz)の電圧を印加し、青色LDの光を入射したところ、素子(格子)を12°傾斜させた配置において、+1次光にて70%の高い回折効率が得られた。この状態で電界印加をOFFしたところ、0次光にて、70%の透過率が得られた。このとき偏光方向は格子稜線方向(s偏光)に設定しており、図5に示す動作が確認できた。
Here, the production and operation check of the diffractive optical element 50 constituting the optical path switching means 4 will be described.
A SiON film is formed on a BK7 substrate having a thickness of about 0.5 mm, and a lattice shape having a pitch of about 1 μm and a height of about 2.5 μm is formed by photolithography and etching. As shown in FIG. A nematic liquid crystal 55 (Merck ZLI-2248) was held between the substrates 52. At this time, an alignment film was formed only on the flat substrate 52 by spin coating. The distance between the substrates was set to about 6 μm by a pair of support members (for example, aluminum electrode spacers) 54, and the aluminum electrodes were arranged so that an electric field could be applied in the lattice ridge line direction. When a voltage of electric field strength of 4.5 V / μm (100 Hz) was applied to the diffractive optical element and blue LD light was incident, 70% of the first-order light was obtained in an arrangement in which the element (grating) was inclined by 12 °. A high diffraction efficiency was obtained. When the electric field application was turned off in this state, a transmittance of 70% was obtained with zero-order light. At this time, the polarization direction was set to the lattice ridge line direction (s-polarized light), and the operation shown in FIG. 5 was confirmed.

ここで、光路切り換え手段4をなす体積位相型回折格子の一例として、ポリマー分散型液晶ホログラム素子について説明する。干渉露光前の液晶ホログラム素子の断面構成の概略を図10に示す。非重合性液晶分子と重合性モノマーあるいはプレポリマーと図示しない光重合開始剤とを均一に混合した組成物を透明電極(図示しない)が成膜された二枚の透明基板間に挟む。組成物の厚みは基板間隔を制御する図示しないスペーサー部材によって制御できる。この組成物は感光性を有するため、素子作製工程において感度を有する波長域の光を遮断した環境下で取り扱う。   Here, a polymer dispersion type liquid crystal hologram element will be described as an example of a volume phase type diffraction grating forming the optical path switching means 4. An outline of a cross-sectional configuration of the liquid crystal hologram element before the interference exposure is shown in FIG. A composition obtained by uniformly mixing non-polymerizable liquid crystal molecules, a polymerizable monomer or prepolymer, and a photopolymerization initiator (not shown) is sandwiched between two transparent substrates on which transparent electrodes (not shown) are formed. The thickness of the composition can be controlled by a spacer member (not shown) that controls the distance between the substrates. Since this composition has photosensitivity, it is handled in an environment in which light in a wavelength region having sensitivity is blocked in the device manufacturing process.

液晶ホログラム素子の構成に関して、スペーサー部材としては、液晶表示装置に用いられるような球形スペーサー、ファイバースペーサー、PETフィルム、マイラーフィルムなどを用いることができる。また、フォトリソグラフィーとエッチングあるいは成型技術などによって基板表面に突起形状(凹凸形状も含む)を加工しても良い。スペーサー部材はホログラム領域内に存在してもよいが、光散乱等の影響を考えるとホログラムの有効領域外に形成することがよい。スペーサー部材の高さは数μmから数十μmの範囲にて使用でき、回折光の波長とポリマー部と液晶部の屈折率差に応じて所望のホログラム層厚みとなるように適宜設定する。透明基板としては、液晶表示装置に用いられるようなガラス、プラスチック基板などを用いることができる。   Regarding the configuration of the liquid crystal hologram element, as the spacer member, a spherical spacer, a fiber spacer, a PET film, a mylar film, or the like used in a liquid crystal display device can be used. Further, a protrusion shape (including an uneven shape) may be processed on the surface of the substrate by photolithography and etching or a molding technique. The spacer member may exist in the hologram region, but it is preferable to form it outside the effective region of the hologram in consideration of the influence of light scattering and the like. The height of the spacer member can be used in the range of several μm to several tens of μm, and is appropriately set so as to have a desired hologram layer thickness according to the wavelength of the diffracted light and the refractive index difference between the polymer part and the liquid crystal part. As the transparent substrate, a glass, a plastic substrate, or the like used in a liquid crystal display device can be used.

組成物に関して、非重合性液晶としては屈折率異方性を有する液晶ならば一般的なものを使用できる。液晶材料を選択する時は、あるオーダーパラメーターの配向状態において、重合性モノマーあるいはプレポリマーの硬化層の屈折率とほぼ等しい屈折率となる液晶材料を選択してもよく、また、液晶材料を選択してから、その液晶のあるオーダーパラメーターの配向状態での屈折率とほぼ等しい屈折率になるように重合性モノマーあるいはプレポリマーを選択してもよい。
重合性モノマーまたはプレポリマーとしては、重合による硬化収縮が大きいものを用いることが好ましい。また、上記の他に熱重合禁止剤、可塑剤等が添加されても良い。
Regarding the composition, as the non-polymerizable liquid crystal, a general liquid crystal having refractive index anisotropy can be used. When selecting a liquid crystal material, it is possible to select a liquid crystal material having a refractive index substantially equal to the refractive index of the cured layer of the polymerizable monomer or prepolymer in an orientation state of a certain order parameter. Then, the polymerizable monomer or the prepolymer may be selected so that the refractive index of the liquid crystal is almost equal to the refractive index in an orientation state with a certain order parameter.
As the polymerizable monomer or prepolymer, it is preferable to use one having a large cure shrinkage due to polymerization. In addition to the above, a thermal polymerization inhibitor, a plasticizer, and the like may be added.

光重合開始剤としては、公知の材料を用いることができ、添加量は照射する光の波長に対する各材料の吸光度に依存するが、モノマーまたはプレポリマー全量に対して0.1重量%以上、10重量%以下がよく、さらに0.5重量%以上、3重量%以下が最良である。光重合開始剤の添加量に関しての詳細な説明は省略するが、添加量が少なすぎる場合にはポリマーと液晶の相分離が起こり難くなり、必要な露光時間が長くなってしまう。逆に、光重合開始剤が多すぎる場合にはポリマーと液晶の相分離が不十分な状態で硬化してしまうため、ポリマー中に多くの液晶分子が取り込まれ、偏光選択性が悪くなるという問題がある。同様にして、非重合性液晶材料と重合性モノマーあるいはプレポリマーの混合比率も相分離に大きく影響し、非重合液晶の混合比率が少なすぎる場合には、十分な複屈折(屈折率変調量)が得られず、多すぎる場合には、ポリマー中に多くの液晶分子が取り込まれ、偏光選択性が悪くなる。また、ポリマー中の液晶分子はドロップレット化し、散乱成分の原因となるため全体の透過率は低下する。混合比率としては、重合性モノマーあるいはプレポリマーの合計量100重量%に対して、非重合性液晶材料は10重量%〜30重量%の割合がよく。さらには20重量%〜25重量%の割合が最良である。この割合においては得られる複屈折と液晶による散乱成分とのバランスが良く、高透過率となる。   As the photopolymerization initiator, a known material can be used, and the addition amount depends on the absorbance of each material with respect to the wavelength of light to be irradiated, but is 0.1% by weight or more based on the total amount of the monomer or prepolymer. % By weight or less is good, and more preferably 0.5% by weight or more and 3% by weight or less. Although a detailed description of the addition amount of the photopolymerization initiator is omitted, if the addition amount is too small, phase separation between the polymer and the liquid crystal hardly occurs, and the necessary exposure time becomes long. On the other hand, when there are too many photopolymerization initiators, the polymer and the liquid crystal are cured with insufficient phase separation, so that many liquid crystal molecules are taken into the polymer, resulting in poor polarization selectivity. There is. Similarly, the mixing ratio of the non-polymerizable liquid crystal material and the polymerizable monomer or prepolymer also greatly affects the phase separation. If the mixing ratio of the non-polymerized liquid crystal is too small, sufficient birefringence (refractive index modulation amount) Is not obtained, and when the amount is too large, many liquid crystal molecules are taken into the polymer, resulting in poor polarization selectivity. In addition, the liquid crystal molecules in the polymer become droplets and cause scattering components, so that the overall transmittance decreases. As a mixing ratio, the ratio of the non-polymerizable liquid crystal material is preferably 10% by weight to 30% by weight with respect to 100% by weight of the total amount of the polymerizable monomer or prepolymer. Furthermore, the ratio of 20% by weight to 25% by weight is the best. At this ratio, the obtained birefringence and the scattering component by the liquid crystal are well balanced, resulting in high transmittance.

ここで、相分離によるホログラム形成過程について図11を用いて説明する。図示しない所望の波長のレーザ光源による二光束干渉露光を用いて、組成物中に露光を行うと、干渉縞の明部において重合性モノマーあるいはプレポリマーの光重合反応が始まる。この時、硬化収縮が起こって密度差が生じ、隣接する重合性モノマーあるいはプレポリマーが明部に移動し更に重合が進行する。それと同時に明部に存在していた非重合性液晶が暗部に向かって追い出されることで相分離が起こる。この時、液晶分子が移動して行く際にモノマーやポリマー鎖との相互作用で液晶分子長軸を移動方向に配向させようとする力が働くと考えられる。すなわち、相分離過程において干渉縞の間隔方向に液晶分子を配向させようとする力が働くと考えられる。最終的には図11の下段の図のように干渉縞の明暗のピッチに対応してポリマー層と非重合性液晶層の周期構造が形成され、液晶層部の配向ベクトルが干渉縞の間隔方向を向いた状態が得られると考えられる。この干渉露光および相分離過程において、試料を適当な温度に加熱保持しておくことがよく。温度によって相分離の速度が変化し、液晶分子の配向性に影響を及ぼすと考えられる。最適な加熱温度は使用する材料に依存するが概ね40℃から100℃程度である。   Here, a hologram forming process by phase separation will be described with reference to FIG. When the composition is exposed using two-beam interference exposure with a laser light source having a desired wavelength (not shown), the photopolymerization reaction of the polymerizable monomer or prepolymer starts in the bright part of the interference fringes. At this time, curing shrinkage occurs, resulting in a density difference, the adjacent polymerizable monomer or prepolymer moves to the bright part, and further polymerization proceeds. At the same time, phase separation occurs when the non-polymerizable liquid crystal present in the bright part is driven out toward the dark part. At this time, it is considered that when the liquid crystal molecules move, a force to align the major axis of the liquid crystal molecules in the moving direction by the interaction with the monomer or polymer chain is considered to work. That is, it is considered that a force for orienting liquid crystal molecules in the direction of the interference fringe acts in the phase separation process. Finally, as shown in the lower diagram of FIG. 11, the periodic structure of the polymer layer and the non-polymerizable liquid crystal layer is formed corresponding to the bright and dark pitch of the interference fringes, and the orientation vector of the liquid crystal layer portion is the distance direction of the interference fringes. It is thought that the state which turned to is obtained. In this interference exposure and phase separation process, the sample is preferably heated and held at an appropriate temperature. It is considered that the phase separation speed changes depending on the temperature and affects the orientation of the liquid crystal molecules. The optimum heating temperature depends on the material used, but is generally about 40 ° C to 100 ° C.

相分離によるポリマー層と非重合性液晶層の周期構造では、厳密にはポリマーと非重合性液晶が周期的に完全に分離することは困難であり、ここで言うポリマー層とはポリマー成分が多い領域であり液晶分子を含んでいても良い。また、非重合性液晶層とは非重合性液晶成分が多い領域でありポリマー成分を含んでいても良い。実際にはポリマー層と液晶層の界面は理想的な平面では無く凹凸状であると推測されるため、図11示したように界面での液晶分子長軸方向のバラツキは大きく、液晶層のオーダーパラメーターは若干小さい状態となっている。   Strictly speaking, it is difficult for the periodic structure of the polymer layer and the non-polymerizable liquid crystal layer by phase separation to completely separate the polymer and the non-polymerizable liquid crystal periodically, and the polymer layer here has many polymer components. The region may contain liquid crystal molecules. The non-polymerizable liquid crystal layer is a region having a large amount of non-polymerizable liquid crystal components and may contain a polymer component. In actuality, the interface between the polymer layer and the liquid crystal layer is assumed to be uneven rather than an ideal plane. Therefore, the variation in the major axis direction of the liquid crystal molecules at the interface is large as shown in FIG. The parameter is a little small.

作製する周期構造のピッチは所望の回折角や波長によって異なるが、概ね0.2μmから10μmの範囲である。例えば650nmの波長の入射光に対して40°の回折角を得るためには1.0μm程度のピッチ、780nmの波長の入射光に対しては1.2μm程度のピッチが必要となる。ポリマー層と液晶層界面の傾斜角は基板面に対して垂直方向を0°として0°から±20°程度が好ましい。露光量としては光重合開始剤の添加濃度や露光時の温度に依存するが、屈折率変調量が飽和安定した状態を得る0.5J/cmから30J/cmがよく、さらには安定した生産性を得るためには1J/cmから15J/cmがよい。 The pitch of the periodic structure to be produced varies depending on the desired diffraction angle and wavelength, but is generally in the range of 0.2 μm to 10 μm. For example, in order to obtain a diffraction angle of 40 ° with respect to incident light having a wavelength of 650 nm, a pitch of about 1.0 μm is required, and for incident light with a wavelength of 780 nm, a pitch of about 1.2 μm is required. The inclination angle of the interface between the polymer layer and the liquid crystal layer is preferably about 0 ° to ± 20 ° with the direction perpendicular to the substrate surface being 0 °. As the amount of exposure depends on the temperature during addition concentration and exposure of the photopolymerization initiator, the refractive index modulation is saturated stable state obtaining 0.5 J / cm 2 from 30 J / cm 2 C., more stable In order to obtain productivity, 1 J / cm 2 to 15 J / cm 2 is preferable.

このような干渉露光により作製する液晶ホログラム素子は原版複製が可能であるため、低コスト化が実現できる。また、ポリマーによる配向規制の関係から、格子形状に液晶を充填した回折光学素子と比較して、電界駆動に対して応答性に優れている。
ここで、光路切り替え手段4をなす液晶ホログラム素子の作製および動作確認について説明する。
Since the liquid crystal hologram element produced by such interference exposure can be duplicated in an original, cost reduction can be realized. In addition, due to the alignment restriction due to the polymer, it is superior in response to electric field driving as compared with a diffractive optical element in which a lattice shape is filled with liquid crystal.
Here, production and operation confirmation of the liquid crystal hologram element constituting the optical path switching means 4 will be described.

厚み0.7mmのガラス基板の片面に青色光および赤色光に対する反射防止膜を形成し、反射防止膜とは反対の面にはITO(Indium Tin Oxide)電極を成膜した。およそ8μm径のビーズスペーサーをそれぞれ混入したそれぞれの接着剤により前記のガラス基板を電極面が対向するように貼り合わせた。接着剤の塗布は反射防止膜形成面とは反対の面で、基板の縁2箇所に塗布した。   An antireflection film for blue light and red light was formed on one surface of a 0.7 mm thick glass substrate, and an ITO (Indium Tin Oxide) electrode was formed on the surface opposite to the antireflection film. The glass substrates were bonded to each other with respective adhesives mixed with beads spacers having a diameter of approximately 8 μm so that the electrode surfaces face each other. The adhesive was applied to two locations on the edge of the substrate on the surface opposite to the antireflection film forming surface.

次に以下の(1)〜(5)の材料の混合物からなる組成物を約65℃に加熱しながら毛管法によりセル中に注入し、厚み約8μmの組成物層を形成した。なお、この組成物は緑色より短波長の光に反応性を示すため赤色光を用いた暗室下で取り扱った。
(1)ネマチック液晶(メルク製TL216、Δε>0):25重量部
(2)フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(共栄社化学製AH600):75重量部
(3)ジメチロールトリシクロデカンジアクリレート(共栄社化学製DCP−A):10重量部
(4)2−ヒドロキシエチルメタクリレート(共栄社化学製HO):5重量部
(5)ビスアシルフォスフィンオキサイド系光重合開始剤(チバガイギー製イルガキュア819):1重量部
上記の(1)〜(5)の材料の混合物からなる組成物をセル中に注入後、この組成物は室温下において等方性を示した。
Next, a composition comprising a mixture of the following materials (1) to (5) was injected into the cell by the capillary method while being heated to about 65 ° C. to form a composition layer having a thickness of about 8 μm. In addition, since this composition was reactive to light having a shorter wavelength than green, it was handled in a dark room using red light.
(1) Nematic liquid crystal (TL216 manufactured by Merck, Δε> 0): 25 parts by weight (2) Phenylglycidyl ether acrylate hexamethylene diisocyanate urethane prepolymer (AH600 manufactured by Kyoeisha Chemical Co., Ltd.): 75 parts by weight (3) dimethylol tricyclodecandi Acrylate (DCP-A manufactured by Kyoeisha Chemical Co., Ltd.): 10 parts by weight (4) 2-hydroxyethyl methacrylate (HO manufactured by Kyoeisha Chemical Co., Ltd.): 5 parts by weight (5) Bisacylphosphine oxide photopolymerization initiator (Irgacure 819 manufactured by Ciba-Geigy) 1 part by weight After injecting into the cell a composition comprising a mixture of the above materials (1) to (5), this composition was isotropic at room temperature.

次に波長442nm、出力80mWのHe−Cdレーザによる二光束干渉露光系を作成した。レーザ光を分割、拡大して、1つの光束が約10mW/cm程度の平行光として、2光束の交差角度を28度に設定した。この波長と交差角度では二光束の交差領域に約1μm周期の干渉縞が生成される。セル基板を加熱装置に取り付け、約65℃に加熱した状態で、約1分間の二光束干渉露光を行い、液晶ホログラム素子を作製した。この時、基板面の垂直方向に対して+7度と+35度の方向から二光束が入射するように設定した。 Next, a two-beam interference exposure system using a He—Cd laser having a wavelength of 442 nm and an output of 80 mW was prepared. The laser beam was divided and expanded, so that one light beam was parallel light of about 10 mW / cm 2 , and the crossing angle of the two light beams was set to 28 degrees. At this wavelength and crossing angle, interference fringes with a period of about 1 μm are generated in the crossing region of the two light beams. With the cell substrate attached to a heating device and heated to about 65 ° C., two-beam interference exposure was performed for about 1 minute to produce a liquid crystal hologram element. At this time, the two light beams were set to enter from directions of +7 degrees and +35 degrees with respect to the direction perpendicular to the substrate surface.

液晶ホログラム素子の特性評価としては、作製した素子に波長633nmの直線偏光のレーザ光を照射して、入射光強度に対する0次光と+1次回折光強度を測定した。入射光強度は5mW程度になるようにNDフィルターを用いて調整し、入射光路中に直線偏光板と半波長板を配置し、半波長板の光軸を45度回転させることで、素子に入射する偏光方向(p偏光、s偏光)を切り換え可能な構成とした。このときのp偏光は干渉露光時の干渉縞と直交方向とし、s偏光は干渉縞の方向とした。入射偏光方向をp偏光に設定したところ、+1次光にて80%の高い回折効率(0次光は8%の透過率)が得られた。ここで、入射偏光方向をp偏光に固定し、基板間に電界強度40V/μm(100Hz)となる電圧を印加したところ、+1次光の回折効率は略0%となり、0次光にて88%の高い透過率が得られた。このときの応答速度を高速度カメラにて測定したところ、電界印加ON時は約100μsec、電界印加OFF時は約250μsecと一般的な液晶素子より2桁も高速応答性を示した。すなわち、この液晶ホログラム素子を図3に示す回折光学素子50とすることで、電界印加の制御により光路の切り換えが実現できる。   For evaluating the characteristics of the liquid crystal hologram element, the manufactured element was irradiated with linearly polarized laser light having a wavelength of 633 nm, and the 0th-order light and the + 1st-order diffracted light intensity with respect to the incident light intensity were measured. The incident light intensity is adjusted using an ND filter so that the incident light intensity is about 5 mW, a linearly polarizing plate and a half-wave plate are arranged in the incident light path, and the optical axis of the half-wave plate is rotated 45 degrees to enter the element. The polarization direction (p-polarized light, s-polarized light) can be switched. At this time, the p-polarized light was in a direction orthogonal to the interference fringes at the time of interference exposure, and the s-polarized light was in the direction of the interference fringes. When the incident polarization direction was set to p-polarized light, a high diffraction efficiency of 80% was obtained with + 1st order light (0th order light had a transmittance of 8%). Here, when the incident polarization direction is fixed to p-polarized light and a voltage with an electric field strength of 40 V / μm (100 Hz) is applied between the substrates, the diffraction efficiency of the + 1st order light is substantially 0%, and 88% for the 0th order light. % High transmittance was obtained. When the response speed at this time was measured with a high-speed camera, the response time was about 100 μsec when the electric field application was turned on and about 250 μsec when the electric field application was turned off. That is, by using the liquid crystal hologram element as the diffractive optical element 50 shown in FIG. 3, the optical path can be switched by controlling the electric field application.

[第2の実施形態]
次に、本発明の第〜第の手段に対応する実施形態について図12〜図16を参照して説明する。
図12に光走査装置の一部を示す。この光走査装置は、レーザ光源1、カップリングレンズ3、偏光切り換え手段13、偏光分離手段14、入射ミラー2,2’、多面の反射鏡を有する偏向手段(例えばポリゴンミラー)7とで構成されており、共通の光源1からのビームの光路切り換え手段として、偏光切り換え手段13と偏光分離手段14を組合わせた構成としたものである。
なお、図12では開口絞り(アパーチャ)、シリンドリカルレンズ、被走査面への結像光学系等を省略している。
[Second Embodiment]
Next, embodiments corresponding to the sixth to eighth means of the present invention will be described with reference to FIGS.
FIG. 12 shows a part of the optical scanning device. This optical scanning device includes a laser light source 1, a coupling lens 3, a polarization switching unit 13, a polarization separation unit 14, incident mirrors 2 and 2 ', and a deflection unit (for example, a polygon mirror) 7 having a multi-surface reflecting mirror. As a beam path switching unit for the beam from the common light source 1, the polarization switching unit 13 and the polarization separation unit 14 are combined.
In FIG. 12, an aperture stop (aperture), a cylindrical lens, an imaging optical system for a surface to be scanned, and the like are omitted.

ここで、偏光分離手段14としては、PBSプリズムや、回折光学素子があるが、PBSプリズムは高価であるため、図13のように回折光学素子60を組み合わせた構成の方が低コスト化に有利である。
図13ではs偏光は透過し、p偏光は回折する機能を有する回折光学素子60を偏光分離素子として用いた構成としているが、透過および回折により、互いに直交する偏光成分を分離する機能を有するものであれば問題ない。
Here, the polarization separating means 14 includes a PBS prism and a diffractive optical element. However, since the PBS prism is expensive, a configuration in which the diffractive optical element 60 is combined as shown in FIG. 13 is more advantageous for cost reduction. It is.
In FIG. 13, the diffractive optical element 60 having a function of transmitting s-polarized light and diffracting p-polarized light is used as a polarization separation element, but has a function of separating polarized light components orthogonal to each other by transmission and diffraction. If so, no problem.

ここで、回折光学素子を組み合わせた偏光分離手段の作製および動作確認について説明する。
厚み0.7mmのガラス基板の片面に青色光および赤色光に対する反射防止膜を形成し、およそ8μm径のビーズスペーサーをそれぞれ混入したそれぞれの接着剤により二枚のガラス基板を貼り合わせた。接着剤の塗布は反射防止膜形成面とは反対の面で、基板の縁2箇所に塗布した。
Here, the production and operation confirmation of the polarization separating means combined with the diffractive optical element will be described.
An antireflection film for blue light and red light was formed on one surface of a 0.7 mm thick glass substrate, and the two glass substrates were bonded together with respective adhesives mixed with bead spacers each having a diameter of about 8 μm. The adhesive was applied to two locations on the edge of the substrate on the surface opposite to the antireflection film forming surface.

次に以下の(1)〜(5)の材料の混合物からなる組成物を約65℃に加熱しながら毛管法によりセル中に注入し、厚み約8μmの組成物層を形成した。なお、この組成物は緑色より短波長の光に反応性を示すため赤色光を用いた暗室下で取り扱った。
(1)ネマチック液晶(メルク製TL216、Δε>0):25重量部
(2)フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(共栄社化学製AH600):75重量部
(3)ジメチロールトリシクロデカンジアクリレート(共栄社化学製DCP−A):10重量部
(4)2−ヒドロキシエチルメタクリレート(共栄社化学製HO):5重量部
(5)ビスアシルフォスフィンオキサイド系光重合開始剤(チバガイギー製イルガキュア819):1重量部
上記の(1)〜(5)の材料の混合物からなる組成物をセル中に注入後、この組成物は室温下において等方性を示した。
Next, a composition comprising a mixture of the following materials (1) to (5) was injected into the cell by the capillary method while being heated to about 65 ° C. to form a composition layer having a thickness of about 8 μm. In addition, since this composition was reactive to light having a shorter wavelength than green, it was handled in a dark room using red light.
(1) Nematic liquid crystal (TL216 manufactured by Merck, Δε> 0): 25 parts by weight (2) Phenylglycidyl ether acrylate hexamethylene diisocyanate urethane prepolymer (AH600 manufactured by Kyoeisha Chemical Co., Ltd.): 75 parts by weight (3) dimethylol tricyclodecandi Acrylate (DCP-A manufactured by Kyoeisha Chemical Co., Ltd.): 10 parts by weight (4) 2-hydroxyethyl methacrylate (HO manufactured by Kyoeisha Chemical Co., Ltd.): 5 parts by weight (5) Bisacylphosphine oxide photopolymerization initiator (Irgacure 819 manufactured by Ciba-Geigy) 1 part by weight After injecting into the cell a composition comprising a mixture of the above materials (1) to (5), this composition was isotropic at room temperature.

次に波長442nm、出力80mWのHe−Cdレーザによる二光束干渉露光系を作成した。レーザ光を分割、拡大して、1つの光束が約10mW/cm程度の平行光として、2光束の交差角度を28度に設定した。この波長と交差角度では二光束の交差領域に約1μm周期の干渉縞が生成される。セル基板を加熱装置に取り付け、約65℃に加熱した状態で、約1分間の二光束干渉露光を行い、液晶ホログラム素子を作製した。この時、基板面の垂直方向に対して+7度と+35度の方向から二光束が入射するように設定した。 Next, a two-beam interference exposure system using a He—Cd laser having a wavelength of 442 nm and an output of 80 mW was prepared. The laser beam was divided and expanded, so that one light beam was parallel light of about 10 mW / cm 2 , and the crossing angle of the two light beams was set to 28 degrees. At this wavelength and crossing angle, interference fringes with a period of about 1 μm are generated in the crossing region of the two light beams. With the cell substrate attached to a heating device and heated to about 65 ° C., two-beam interference exposure was performed for about 1 minute to produce a liquid crystal hologram element. At this time, the two light beams were set to enter from directions of +7 degrees and +35 degrees with respect to the direction perpendicular to the substrate surface.

液晶ホログラム素子の特性評価としては、作製した素子に波長633nmの直線偏光のレーザ光を照射して、入射光強度に対する0次光と+1次回折光強度を測定した。入射光強度は5mW程度になるようにNDフィルターを用いて調整し、入射光路中に直線偏光板と半波長板を配置し、半波長板の光軸を45度回転させることで、素子に入射する偏光方向(p偏光、s偏光)を切り換え可能な構成とした。このときのp偏光は干渉露光時の干渉縞と直交方向とし、s偏光は干渉縞の方向とした。p偏光入射時は+1次光にて89%の高い回折効率(0次光は9%の透過率)が得られており、s偏光入射時は0次光にて98%の高い透過率(+1次光は0%の回折効率)が得られた。   For evaluating the characteristics of the liquid crystal hologram element, the manufactured element was irradiated with linearly polarized laser light having a wavelength of 633 nm, and the 0th-order light and the + 1st-order diffracted light intensity with respect to the incident light intensity were measured. The incident light intensity is adjusted using an ND filter so that the incident light intensity is about 5 mW, a linearly polarizing plate and a half-wave plate are arranged in the incident light path, and the optical axis of the half-wave plate is rotated 45 degrees to enter the element. The polarization direction (p-polarized light, s-polarized light) can be switched. At this time, the p-polarized light was in a direction orthogonal to the interference fringes at the time of interference exposure, and the s-polarized light was in the direction of the interference fringes. When p-polarized light is incident, a high diffraction efficiency of 89% is obtained for the + 1st-order light (0th-order light is 9% transmittance), and when s-polarized light is incident, a high 98% transmittance is obtained for the 0th-order light ( A diffraction efficiency of 0% was obtained for the + 1st order light.

ここで、上記の液晶ホログラム素子を用いて、図13のように偏光分離素子を作製した。p偏光およびs偏光をそれぞれ入射して偏光方向に対する光利用効率を測定したところ、p偏光入射時の光利用効率は78%、s偏光入射時の光利用効率は94%であり、良好に偏光分離することができた。   Here, using the above liquid crystal hologram element, a polarization separation element was produced as shown in FIG. When the p-polarized light and the s-polarized light were respectively incident and the light utilization efficiency with respect to the polarization direction was measured, the light utilization efficiency when the p-polarized light was incident was 78%, and the light utilization efficiency when the s-polarized light was incident was 94%. Could be separated.

また、偏光切り換え手段13としては、電界印加により屈折率が変化する性質をもつ材料に、電界印加手段を具備した構成にて実現できる。例えば、LN等の強誘電体結晶や液晶素子などからなる構成があるが、前者は結晶基板を切り出してデバイス加工するため、小型化、高密度化に限界があり、非常に高価である。後者は表示用途に広く使用されているため、安価であるが、液晶素子として一般的なツイストネマチィック液晶は応答速度が数十msecで高速応答には向かない。そこで、比較的安価で高速応答性を示す強誘電性液晶による偏光切り換え素子が好ましい。   Further, the polarization switching unit 13 can be realized by a configuration in which an electric field applying unit is provided on a material having a property of changing a refractive index when an electric field is applied. For example, there is a configuration composed of a ferroelectric crystal such as LN, a liquid crystal element, etc., but the former has a limit in miniaturization and high density because it cuts out the crystal substrate and processes the device, and is very expensive. The latter is widely used for display applications and is inexpensive, but a twisted nematic liquid crystal generally used as a liquid crystal element has a response speed of several tens of milliseconds and is not suitable for a high-speed response. Therefore, a polarization switching element using a ferroelectric liquid crystal that is relatively inexpensive and exhibits high-speed response is preferable.

ここで、図12の光走査装置の動作としては、レーザ光源1から出射したビームは、前述の偏光切り換え手段13における電界制御により、ビームの偏光方向が切り換えられ、前述の偏光分離手段14により直交する偏光方向のそれぞれのビームは、主走査方向にビーム光路が時間分割で偏光され、位相差90°でポリゴンミラー7にそれぞれ入射される。ポリゴンミラー7は4面の偏向反射面(反射鏡)を用いた構成としている。   Here, as the operation of the optical scanning device of FIG. 12, the polarization direction of the beam emitted from the laser light source 1 is switched by the electric field control in the polarization switching means 13 and is orthogonalized by the polarization separation means 14. Each beam in the polarization direction is polarized in the main scanning direction by a time division of the beam optical path, and is incident on the polygon mirror 7 with a phase difference of 90 °. The polygon mirror 7 has a configuration using four deflecting reflecting surfaces (reflecting mirrors).

このような構成において、偏光切り換え手段13における電界を制御することで、時分割で光路1 と光路2 の切り換えが実現でき、光路1 を選んでポリゴンミラー7へビームが入射して感光体面(被走査面)を走査しているときは、ビームは略光路1 のみを通過し、光路2 はほとんど通過しない。また、光路2 を選んでポリゴンミラー7へのビームが(光路1 に対して)90°異なる角度で入射して感光体面(被走査面)を走査しているときは、ビームは略光路2 のみを通過し、光路1 はほとんど通過しない動作が実現でき、光源からのビーム光量をロスなく、効率的に利用できる。そのため、光源の長寿命化や劣化確立の低減に繋がる。特に高密度化に有効な面発光レーザ(VCSEL)アレイ(図17参照)を光源として用いる場合、効果が大きくなる。   In such a configuration, by controlling the electric field in the polarization switching means 13, switching between the optical path 1 and the optical path 2 can be realized in a time-sharing manner. The beam is incident on the polygon mirror 7 by selecting the optical path 1 and the surface of the photoconductor (covered surface). When scanning the scanning plane), the beam passes only through the optical path 1 and hardly passes through the optical path 2. When the optical path 2 is selected and the beam to the polygon mirror 7 is incident at an angle different by 90 ° (relative to the optical path 1) and scans the photosensitive member surface (scanned surface), the beam is only in the optical path 2 only. Can pass through the optical path 1 and hardly pass through the optical path 1, and the light quantity from the light source can be used efficiently without loss. As a result, the life of the light source is extended and the establishment of deterioration is reduced. In particular, when a surface emitting laser (VCSEL) array (see FIG. 17) effective for increasing the density is used as a light source, the effect is increased.

ここで、偏光切り換え手段13について具体的に説明する。図14に強誘電性液晶素子70を用いた偏光切り換え手段13の概略を示す。
この偏光切り換え手段は、一対の透明基板71,72と、図示しない配向膜と、ホモジニアス配向をなすキラルスメクチックC相よりなる強誘電性液晶層75と、前記透明基板面に対して略垂直方向に電界印加を可能とする一対の透明電極73,74とからなる強誘電性液晶素子70と、図示しない電界印加手段とからなる構成とされている。
Here, the polarization switching means 13 will be specifically described. FIG. 14 shows an outline of the polarization switching means 13 using the ferroelectric liquid crystal element 70.
The polarization switching means includes a pair of transparent substrates 71 and 72, an alignment film (not shown), a ferroelectric liquid crystal layer 75 composed of a chiral smectic C phase having homogeneous alignment, and a direction substantially perpendicular to the transparent substrate surface. The ferroelectric liquid crystal element 70 includes a pair of transparent electrodes 73 and 74 that can apply an electric field, and an electric field applying unit (not shown).

前述したように高速応答にはホモジニアス配向されたキラルスメクチックC相よりなる強誘電性液晶を用いることが好ましいが、それほど高速応答が必要ない用途によっては、ネマチック液晶も同様の構成で用いることができる。また、配向膜はTN液晶、STN液晶等に用いられるポリイミド等の通常の配向膜が利用でき、液晶ダイレクタの方向を強く規制するため、ラビング処理や光配向処理を別途施すことが好ましい。透明電極はITO等を用いる事ができる。   As described above, it is preferable to use a ferroelectric liquid crystal composed of a homogeneously oriented chiral smectic C phase for a high-speed response, but a nematic liquid crystal can also be used in a similar configuration depending on the application that does not require a high-speed response. . In addition, as the alignment film, a normal alignment film such as polyimide used for TN liquid crystal, STN liquid crystal, or the like can be used. In order to strongly restrict the direction of the liquid crystal director, it is preferable to separately perform a rubbing process or a photo alignment process. ITO or the like can be used for the transparent electrode.

図15は強誘電性液晶素子60のスイッチング動作を説明する模式図である。一般にキラルスメクチックC相よりなる強誘電性液晶層は螺旋構造を有しているが、その螺旋ピッチより薄いセルギャップd間に挟持すると、螺旋構造がほどけ、表面安定化強誘電性液晶層(SSFLC)となる。SSFLCは図15に示すように、液晶分子がスメクチック層法線に対して傾き角−θ(ここでは、θ=22.5°)だけ傾いて安定する配向状態と、逆方向にθだけ傾いて安定する配向状態とが混在する状態が実現できる。図15において、Wはスメクチック相の層法線、nは液晶分子の長軸方向(ダイレクタ)、白丸(○)内の小さな黒丸(●)の記号と、白丸(○)内の+の記号は自発分極の方向を表している。紙面に垂直な方向に電界を印加することにより、液晶分子とその自発分極の向きを一様に揃えることができ、その状態を保持しておくことができる。そして、印加する電界の極性を切り替えることによって、2つの状態間のスイッチングを行うことができる。すなわち、図15において−Eの電界を印加すると、スメクチック相の層法線方向Wから−θだけ傾いた配向状態1に、+Eの電界を印加すると、スメクチック相の層法線方向Wからθだけ傾いた配向状態2に安定化することができる。すなわち、θ=22.5°とする場合、配向状態1から45°傾いた配向状態2に安定させることができる。   FIG. 15 is a schematic diagram for explaining the switching operation of the ferroelectric liquid crystal element 60. In general, a ferroelectric liquid crystal layer composed of a chiral smectic C phase has a helical structure. However, when sandwiched between cell gaps d thinner than the helical pitch, the helical structure is unwound and a surface-stabilized ferroelectric liquid crystal layer (SSFLC). ) As shown in FIG. 15, the SSFLC has an orientation state in which the liquid crystal molecules are inclined and tilted with respect to the smectic layer normal by an inclination angle −θ (here, θ = 22.5 °), and tilted by θ in the opposite direction. A state in which a stable alignment state is mixed can be realized. In FIG. 15, W is the layer normal of the smectic phase, n is the long axis direction of the liquid crystal molecules (director), the small black circle (●) symbol in the white circle (◯), and the + symbol in the white circle (◯) are It represents the direction of spontaneous polarization. By applying an electric field in a direction perpendicular to the paper surface, the direction of liquid crystal molecules and their spontaneous polarization can be made uniform, and that state can be maintained. And switching between two states can be performed by switching the polarity of the electric field to apply. That is, when an electric field of −E is applied in FIG. 15, when an electric field of + E is applied to the orientation state 1 inclined by −θ from the layer normal direction W of the smectic phase, only θ from the layer normal direction W of the smectic phase is applied. The tilted orientation state 2 can be stabilized. That is, when θ = 22.5 °, the alignment state 2 tilted 45 ° from the alignment state 1 can be stabilized.

図16は、前述したSSFLCを用いた偏光切り換え手段の動作を示す模式図である。図16において、液晶層の厚さ(セルギャップ)dは入射光の波長λ(例えば650nmまたは780nm)と液晶材料の650nmまたは780nmにおける屈折率異方性Δnによって決まり、Δn×d=λ/2を満たすように(すなわち、半波長板条件を満たすように)決定する。   FIG. 16 is a schematic diagram showing the operation of the polarization switching means using the SSFLC described above. In FIG. 16, the thickness (cell gap) d of the liquid crystal layer is determined by the wavelength λ of incident light (for example, 650 nm or 780 nm) and the refractive index anisotropy Δn at 650 nm or 780 nm of the liquid crystal material, and Δn × d = λ / 2 (Ie, so as to satisfy the half-wave plate condition).

ここで、入射偏光方向は液晶層における液晶分子配向の2つの配向状態のうち、どちらか一方の配向状態における液晶分子の短軸方向または長軸方向と位置するように調整配置する必要がある(ここでは、−Eの電界を印加した時の配向状態1の短軸方向としている)。調整法としては、位相板の配置により偏光方向を調整することが可能である。また、ラビング等の配向処理により、液晶分子の初期配向を設定する、または液晶素子自体を回転調整しても可能である。   Here, the incident polarization direction needs to be adjusted and arranged so as to be positioned in the short axis direction or the long axis direction of the liquid crystal molecules in one of the two alignment states of the liquid crystal molecule alignment in the liquid crystal layer ( Here, the minor axis direction of the alignment state 1 when an -E electric field is applied). As an adjustment method, it is possible to adjust the polarization direction by arranging the phase plate. It is also possible to set the initial alignment of the liquid crystal molecules or to adjust the rotation of the liquid crystal element itself by an alignment process such as rubbing.

このような構成とすることで図16に示すように、透明電極間に−Eの電界を印加した場合、液晶分子はスメクチック相の層法線方向Wから−θだけ傾いた配向状態(配向状態1)をとり、入射偏光は、そのままの偏光方向を保持したまま出射する。一方、透明電極に+Eの電界を印加した場合、液晶分子はスメクチック相の層法線方向Wから+θだけ傾いた配向状態、(配向状態2)をとる。この場合、ここではθ=22.5°としているので、入射偏光に対して、液晶分子長軸方向(ダイレクタ)は2θ=45°傾いて配向する。その結果、半波長板条件が成立し、出射偏光は入射偏光から略90°回転した偏光方向となる。すなわち、電界制御により偏光切り換えが実現でき、強誘電性液晶を用いているため、偏光切り換えに有する応答速度は数十μsec〜数百μsecと高速応答である。   With such a configuration, as shown in FIG. 16, when an −E electric field is applied between the transparent electrodes, the liquid crystal molecules are aligned in an orientation state (alignment state) tilted by −θ from the layer normal direction W of the smectic phase. 1), the incident polarized light is emitted while maintaining the polarization direction as it is. On the other hand, when a + E electric field is applied to the transparent electrode, the liquid crystal molecules take an alignment state (alignment state 2) inclined by + θ from the layer normal direction W of the smectic phase. In this case, since θ = 22.5 °, the liquid crystal molecule major axis direction (director) is tilted by 2θ = 45 ° with respect to the incident polarized light. As a result, the half-wave plate condition is satisfied, and the outgoing polarized light has a polarization direction rotated by approximately 90 ° from the incident polarized light. That is, polarization switching can be realized by electric field control, and a ferroelectric liquid crystal is used. Therefore, the response speed for polarization switching is a high-speed response of several tens to several hundreds of μsec.

ここで、強誘電性液晶素子70を用いた偏光切り換え手段13の作製および動作確認について説明する。
厚さ1.1mmの無アルカリガラス基板にITO電極(膜厚1500Å)を成膜した。基板電極面に配向膜(AL3046 −R31 JSR 社製)をスピンコートにより約800Åの厚さに形成し、その基板表面を、ラビング法により配向処理を行った。前述したガラス基板を2枚用い、電極面を対向させて、基板間が約2.5μmになるようにビーズを混入した接着剤にて貼り合わせた。基板を90度に加熱した状態で2枚の基板間に液晶層として、強誘電性液晶(クラリアント製R5002、Δn=0.17、2θ=90度)を毛管法で注入し、70℃から55℃までを10V/μmの直流電圧を印加した状態で冷却後に封止し、図14のような液晶素子60を作製した。配向状態を光学顕微鏡により観察したところ、ほぼ均一な配向状態を確認した。この液晶素子60に周波数100Hz、±10V/μmの矩形波信号を入力し、クロスニコル下での明暗のスイッチング速度を測定した(液晶素子特性評価装置 大塚電子製)。図18に液晶素子の応答速度特性を示す。室温(25℃)付近における応答速度は約1msec、であり、一般的な液晶素子より1桁も高速応答性を示した。
Here, the production and operation check of the polarization switching means 13 using the ferroelectric liquid crystal element 70 will be described.
An ITO electrode (thickness: 1500 mm) was formed on a non-alkali glass substrate having a thickness of 1.1 mm. An alignment film (AL3046-R31 manufactured by JSR) was formed on the surface of the substrate electrode by spin coating to a thickness of about 800 mm, and the substrate surface was subjected to alignment treatment by rubbing. Two glass substrates as described above were used, and the electrodes were opposed to each other, and bonded together with an adhesive mixed with beads so that the distance between the substrates was about 2.5 μm. A ferroelectric liquid crystal (R5002, manufactured by Clariant, Δn = 0.17, 2θ = 90 degrees) is injected as a liquid crystal layer between the two substrates in a state where the substrate is heated to 90 degrees by a capillary method. A liquid crystal element 60 as shown in FIG. 14 was manufactured by cooling after cooling in a state where a DC voltage of 10 V / μm was applied. When the alignment state was observed with an optical microscope, a substantially uniform alignment state was confirmed. A rectangular wave signal having a frequency of 100 Hz and ± 10 V / μm was input to the liquid crystal element 60, and the switching speed between light and dark under crossed Nicols was measured (liquid crystal element characteristic evaluation apparatus, manufactured by Otsuka Electronics Co., Ltd.). FIG. 18 shows the response speed characteristics of the liquid crystal element. The response speed in the vicinity of room temperature (25 ° C.) is about 1 msec, which is one order of magnitude faster than a general liquid crystal element.

またここで、電界制御による偏光切り換えの動作に関しては、偏光切り換えを効率よく実現するには、図16に示すように強誘電性液晶のコーン角2θが45°であることが好ましいため、2θが45°である強誘電性液晶(クラリアント製FELIX018−100、Δn=0.17、2θ=45)を用いて、前述と同様にして液晶素子を作製評価した。評価方法は作製した液晶素子をλ/2板と、偏光板の間に配置し、入射時の偏光方向と出射時の偏光方向を評価した。光源は赤色LD(波長650nm)を用いた。まず、λ/2板にて入射偏光方向がラビング方向と略22.5°傾いた方向となるように設定した。次に、素子電極間に+10V/μmの電界を印加したところ、若干楕円偏光になっているが、入射時と出射時の偏光方向は略同じであった。更に、素子電極間に極性の異なる−10V/μmの電界を印加したところ、これも若干楕円偏光になっているが、入射時と出射時の偏光方向は略90度異なった方向となった。すなわち、電界印加の制御により偏光方向が90°切り換えることができた。出射偏光が楕円偏光になるのは、Δn×d=λ/2条件が最適化されていないためである。   Here, regarding the operation of switching polarization by electric field control, in order to efficiently realize polarization switching, it is preferable that the cone angle 2θ of the ferroelectric liquid crystal is 45 ° as shown in FIG. Using a ferroelectric liquid crystal (Clariant FELIX018-100, Δn = 0.17, 2θ = 45) at 45 °, a liquid crystal element was produced and evaluated in the same manner as described above. In the evaluation method, the produced liquid crystal element was placed between a λ / 2 plate and a polarizing plate, and the polarization direction at the time of incidence and the polarization direction at the time of emission were evaluated. A red LD (wavelength 650 nm) was used as a light source. First, the incident polarization direction was set so as to be inclined approximately 22.5 ° with respect to the rubbing direction on the λ / 2 plate. Next, when an electric field of +10 V / μm was applied between the device electrodes, it was slightly elliptically polarized, but the polarization directions at the time of incidence and at the time of emission were substantially the same. Furthermore, when an electric field of −10 V / μm having different polarities was applied between the device electrodes, this was also slightly elliptically polarized, but the polarization directions at the time of incidence and at the time of emission differed by approximately 90 degrees. That is, the polarization direction could be switched by 90 ° by controlling the electric field application. The outgoing polarized light becomes elliptically polarized light because the condition Δn × d = λ / 2 is not optimized.

[第3の実施形態]
次に、本発明の第10の手段に対応する実施形態について説明する。
前述した第1の実施形態または第2の実施形態の光走査装置において、光源1からのビームをロスすることなく、時間分割でポリゴンミラー7に90°の位相差をつけてそれぞれ入射するためには、光路切り換えの応答速度が重要となる。前述したように、光路の切り換えは、光路切り替え手段4(アクティブな回折光学素子40)あるいは偏光切り換え手段13(強誘電性液晶素子からなる偏光切り替え素子60))の電界制御によりなされる。そこで、安価な素子を実現するために液晶を用いた構成としている。液晶材料は一般的に温度依存性を示し、温度が高くなるに従い、粘性が低くなり、応答速度が速くなる性質をもつ(図18参照)。そこで、光路切り換えを高速化するための温度調整手段を設けることが好ましい。
[Third Embodiment]
Next, an embodiment corresponding to the tenth means of the present invention will be described.
In the optical scanning device of the first embodiment or the second embodiment described above, in order to enter the polygon mirror 7 with a 90 ° phase difference in a time division manner without losing the beam from the light source 1, respectively. The response speed of the optical path switching is important. As described above, the optical path is switched by controlling the electric field of the optical path switching means 4 (active diffractive optical element 40) or the polarization switching means 13 (polarization switching element 60 made of a ferroelectric liquid crystal element). Therefore, in order to realize an inexpensive element, the liquid crystal is used. The liquid crystal material generally exhibits temperature dependence, and has a property that the viscosity decreases and the response speed increases as the temperature increases (see FIG. 18). Therefore, it is preferable to provide temperature adjusting means for speeding up the optical path switching.

温度調整手段としては、光路切り換えの応答性に影響するアクティブな回折光学素子あるいは偏光切り換え素子に直接ペルチェ素子や小型ヒーターなどの温度調整素子を設けることが可能である。このような構成とする場合、直接素子を温度調整するため、調整温度に達する時間が早く、高精度の調整ができるといった利点がある。一般にペルチェ素子は高価であるため、小型ヒーターを用いることが好ましく、小型ヒーターとしては例えば、セラミックヒーター等を用いることができる。   As the temperature adjusting means, it is possible to provide a temperature adjusting element such as a Peltier element or a small heater directly on an active diffractive optical element or polarization switching element that affects the response of switching the optical path. In the case of such a configuration, since the temperature of the element is directly adjusted, there is an advantage that the time for reaching the adjustment temperature is quick and high-precision adjustment can be performed. Since a Peltier element is generally expensive, it is preferable to use a small heater. As the small heater, for example, a ceramic heater can be used.

また、光走査ユニット内の温度を調整するように光走査装置に温度調整手段を設ける構成もある。図19に温度調整手段を具備した光走査装置の概略を示す。
図19のように図示しない光学部品(光源、光路切り換え手段、ポリゴンミラー、結像光学系等)を覆う筐体をヒーターを用いて、温度調整する構成としている。例えば、ヒーターとしては、加熱源と熱拡散板とで構成することができ、加熱源によって加熱された雰囲気は、熱拡散板によって均一に拡散される。また、ファンによる送風量を調節することでも装置内の温度を調整することができる。また、特定の温度範囲に調整されるようにサイリスタやサーモスタットを設けることが好ましい。
There is also a configuration in which temperature adjusting means is provided in the optical scanning device so as to adjust the temperature in the optical scanning unit. FIG. 19 shows an outline of an optical scanning device provided with temperature adjusting means.
As shown in FIG. 19, a casing that covers optical parts (not shown) (light source, optical path switching means, polygon mirror, imaging optical system, etc.) is configured to adjust the temperature using a heater. For example, the heater can be composed of a heating source and a heat diffusion plate, and the atmosphere heated by the heating source is uniformly diffused by the heat diffusion plate. Also, the temperature in the apparatus can be adjusted by adjusting the amount of air blown by the fan. Moreover, it is preferable to provide a thyristor or a thermostat so as to be adjusted to a specific temperature range.

ここで例えば、図18のような応答性を示す液晶素子を光路切り換えに用いる場合、温度調整手段における温度範囲を30℃〜40℃に設定することで0.5msec以下の高速応答を保つことができる。
温度を検知する手段としてはサーミスタ、熱電対などを用いることができるが、以下の理由のため熱電対を用いることが好ましい。サーミスタは抵抗温度変化特性の直線性が悪く測定精度が低い。熱電対は、熱起電力が大きく、特性のバラツキが小さく、互換性がある。また、熱に対し安定で寿命が長いなどの特徴があり信頼性が高い。材質としては例えば、JIS規格に規定されているK(クロメルーアルメル)、J(鉄−コンスタンタン)、T(銅−コンスタンタン)、E(クロメル−コンスタンタン)、N(ナイクロシル−ナイシル)または、JIS規格外の(ニッケル−ニッケル18%モリブデン)、(タングステン5%レニウム−タングステン26%レニウム)などを用いることができる。
Here, for example, when a liquid crystal element having responsiveness as shown in FIG. 18 is used for optical path switching, a high-speed response of 0.5 msec or less can be maintained by setting the temperature range in the temperature adjusting means to 30 ° C. to 40 ° C. it can.
As a means for detecting the temperature, a thermistor, a thermocouple, or the like can be used, but it is preferable to use a thermocouple for the following reason. Thermistors have poor linearity of resistance temperature change characteristics and low measurement accuracy. Thermocouples have high thermoelectromotive force, small variation in characteristics, and are compatible. In addition, it has features such as being stable against heat and having a long life, and is highly reliable. As the material, for example, K (chromel-alumel), J (iron-constantan), T (copper-constantan), E (chromel-constantan), N (nycrosyl-nycyl) or JIS standard defined in the JIS standard. External (nickel-nickel 18% molybdenum), (tungsten 5% rhenium-tungsten 26% rhenium), or the like can be used.

[第4の実施形態]
次に、前述の図1に示した構成の光走査装置において、光路切り換え手段4以降の光学系の構成についてより詳細に説明する。
図1において、光路切り換え手段4を出射したビームは上下段それぞれに配備されるシリンドリカルレンズ5(5c、5d)、5'(5a,5b)により、偏向器(ポリゴンミラー)7の偏向反射面の近傍にて主走査方向に長い線像に変換される。
なお、図1では、光路切り換え手段4で2方向に時分割された光束のうち、シリンドリカルレンズ5a,5bと入射ミラー2' を介して偏向器7の片側へ入射された一方側の入射光を偏向器7で偏向し、2つの感光体11a,11bを走査する走査光学系(第1走査レンズ8a,8b、光路折返し用のミラー9、第2走査レンズ10a,10b)のみを図示しているが、実際は偏向器7を挟んで、図示された光学系と同様の走査光学系が略対称な位置に配備された構成となっており、光路切り換え手段4で分割された他方の光束も、シリンドリカルレンズ5c,5dと入射ミラー2を介して偏向器7の他方側へ入射して偏向され、同様の構成の図示しない走査光学系を介して図示しない2つの感光体を走査するようになっている。
[Fourth Embodiment]
Next, in the optical scanning device having the configuration shown in FIG. 1, the configuration of the optical system after the optical path switching means 4 will be described in more detail.
In FIG. 1, the beam emitted from the optical path switching means 4 is formed on the deflection reflection surface of a deflector (polygon mirror) 7 by cylindrical lenses 5 (5c, 5d), 5 '(5a, 5b) arranged on the upper and lower stages respectively. A line image that is long in the main scanning direction is converted in the vicinity.
In FIG. 1, of the light beams time-divided in two directions by the optical path switching means 4, incident light on one side incident on one side of the deflector 7 via the cylindrical lenses 5a and 5b and the incident mirror 2 ′ is shown. Only the scanning optical system (the first scanning lenses 8a and 8b, the optical path folding mirror 9 and the second scanning lenses 10a and 10b) that deflects by the deflector 7 and scans the two photoconductors 11a and 11b is illustrated. However, in actuality, a scanning optical system similar to the optical system shown in the figure is disposed with the deflector 7 interposed therebetween, and the other light beam divided by the optical path switching means 4 is also cylindrical. The light is incident on the other side of the deflector 7 via the lenses 5c and 5d and the incident mirror 2 and deflected, and two photosensitive members (not shown) are scanned via a scanning optical system (not shown) having the same configuration. .

図20は光路切り換え手段4で2方向に時分割された時分割光による光走査を説明するための図である。同図(a)に示すように、光路切り換え手段4を出射したビームは時分割で上側の光路(すなわち図中の入射光x)を通過している時は、下側の光路(すなわち図中の入射光y)には殆ど通過しないが、若干下側の光路にもビームが通過する。また、逆も同じで下側の光路をビームが通過している時も上側の光路をビームが通過する。それゆえ、上側の光路からのビームが感光体上の走査領域を走査している時は下側の光路からのビームが感光体上の走査領域を走査してはならない。また、逆も同様のことが言える。   FIG. 20 is a diagram for explaining optical scanning with time-division light that is time-divided in two directions by the optical path switching means 4. As shown in FIG. 5A, when the beam emitted from the optical path switching means 4 passes through the upper optical path (that is, the incident light x in the figure) in a time division manner, the lower optical path (that is, in the figure). The incident light y) hardly passes, but the beam also passes through the slightly lower optical path. The reverse is also true, and when the beam passes through the lower optical path, the beam passes through the upper optical path. Therefore, when the beam from the upper optical path is scanning the scanning area on the photoreceptor, the beam from the lower optical path must not scan the scanning area on the photoreceptor. The reverse is also true.

図20(a)に示すように共通の光源から光路切り換え手段を通過した後の入射光は偏向器7の異なる面に入射するようにしており、位相差を90°つけている(図中の入射光x,入射光y)。位相差が90°近傍であれば分割された光束が同時に有効走査領域を走査することがない。例として、図20(a)に示す上側の有効走査領域xを走査している時(反射光aが反射光b、反射光cへと走査される時)の下側の反射光について説明する。   As shown in FIG. 20 (a), the incident light after passing through the optical path switching means from a common light source is incident on different surfaces of the deflector 7 and has a phase difference of 90 ° (in the figure). Incident light x, incident light y). If the phase difference is near 90 °, the divided light beams do not scan the effective scanning area at the same time. As an example, the lower reflected light when scanning the upper effective scanning region x shown in FIG. 20A (when the reflected light a is scanned into the reflected light b and reflected light c) will be described. .

上側の入射光xが反射光aとなる時は、図20(b)に示すように下側の反射光は位相差が90°なので走査領域に入らない。偏光器7が回転して上側の入射光が反射光bとなる時は、図20(c)に示すように下側の反射光はb' となり走査領域に入らない。また、さらに偏光器7が回転して、上側の入射光が反射光cとなる時も、図20(d)に示すように下側の反射光はc' となり走査領域に入らない。すなわち図20(b)から図20(c)を経て図20(d)まで下側の反射光は、走査領域に入らないことが分かる。これは、入射光の位相差が90°であり、偏光器7の面数が4面であるため、反射光の位相差が必ず90°になることで上記関係が成立するのである。この上側の入射光(入射光x)が有効走査領域内を走査している時は、下側の入射光は有効走査領域外を走査しており、感光体面上を走査しない関係は、位相差が90°より少しずれても成立するのは上記関係から自明である。逆に下側の入射光が有効走査領域内を走査している時は、上側の入射光は有効走査領域外を走査しており感光体面上を走査しないことも上下対称配置となっているため自明である。   When the upper incident light x becomes the reflected light a, the lower reflected light does not enter the scanning region because the phase difference of the lower reflected light is 90 ° as shown in FIG. When the polarizer 7 rotates and the upper incident light becomes reflected light b, the lower reflected light becomes b ′ as shown in FIG. 20C and does not enter the scanning region. Further, when the polarizer 7 further rotates and the upper incident light becomes the reflected light c, the lower reflected light becomes c ′ as shown in FIG. 20D and does not enter the scanning region. That is, it can be seen that the reflected light on the lower side from FIG. 20B through FIG. 20C to FIG. 20D does not enter the scanning region. This is because the phase difference of the incident light is 90 ° and the number of surfaces of the polarizer 7 is four. Therefore, the above relationship is established when the phase difference of the reflected light is always 90 °. When the upper incident light (incident light x) scans within the effective scanning region, the lower incident light scans outside the effective scanning region, and the relationship of not scanning the photosensitive member surface is the phase difference. It is self-evident from the above relationship that this holds even if the angle is slightly deviated from 90 °. Conversely, when the lower incident light scans within the effective scanning area, the upper incident light scans outside the effective scanning area and does not scan the surface of the photosensitive member. It is self-explanatory.

光源の変調駆動は上側の入射光が有効走査領域内を走査している時は対応する色(例えばマゼンタ)の画像情報に基づき光源の変調駆動を行う。さらに、下側の入射光が有効走査領域内を走査している時は対応する色(例えばブラック)の画像情報に光源の変調駆動を行うことで、共通の光源で2色分の画像を走査することが可能となる。   When the upper incident light is scanning the effective scanning area, the light source is modulated and driven based on the image information of the corresponding color (for example, magenta). Furthermore, when the incident light on the lower side scans the effective scanning area, the image of two colors is scanned with the common light source by performing modulation driving of the light source to the image information of the corresponding color (for example, black). It becomes possible to do.

図21に示すように偏向器7の同一の反射面に入射光xと入射光yを入射させることも出来るが、走査領域を跨って光線をミラー2,2' で折り返す必要があり、レイアウト性が悪くなる。また、偏向器7の同一の反射面に入射させると、分割された光束は副走査方向に異なる位置で偏向器7に入射させる必要があるため、光束分割素子とミラーにより、副走査方向の位置を変えなければならない。従って、図1に示すように偏向器7の異なる反射面に分割された光束を入射させた方がレイアウト性も向上する。   As shown in FIG. 21, the incident light x and the incident light y can be made incident on the same reflecting surface of the deflector 7. However, it is necessary to fold the light beam by the mirrors 2 and 2 'across the scanning region, and the layout property is improved. Becomes worse. Further, when the light beam is incident on the same reflecting surface of the deflector 7, the divided light beam needs to be incident on the deflector 7 at a different position in the sub-scanning direction. Must be changed. Therefore, as shown in FIG. 1, the layout is improved when the divided light beams are incident on different reflecting surfaces of the deflector 7.

図22は複数色用の露光のタイミングチャートである。同図において縦軸は光量、横軸は時間をそれぞれ表す。
前述したように、光路切り換え手段4で時分割された共通の光源からのビームを偏向器7で偏向走査して2つの感光体11a,11b(例えばブラックとマゼンタ用の感光体)の露光を時分割で行い、なおかつ、有効走査領域において、それぞれ全点灯する場合のタイムチャートを同図に示す。実線がブラックに相当する部分、点線がマゼンタに相当する部分を示している。ブラック、マゼンタにおける書き出しのタイミングは、有効走査幅外に配備される同期検知手段(同期検知センサ)で走査ビームを検知することにより決定される。なお、図1では同期検知手段は図示されていないが、通常はフォトダイオード等の受光素子を用いた同期検知センサが用いられる。
FIG. 22 is a timing chart of exposure for a plurality of colors. In the figure, the vertical axis represents the amount of light and the horizontal axis represents time.
As described above, the beam from the common light source time-divided by the optical path switching means 4 is deflected and scanned by the deflector 7 to expose the two photoconductors 11a and 11b (for example, black and magenta photoconductors). The time chart in the case of performing the division and lighting all in the effective scanning region is shown in FIG. A solid line indicates a portion corresponding to black, and a dotted line indicates a portion corresponding to magenta. The timing of writing in black and magenta is determined by detecting the scanning beam with a synchronization detection means (synchronization detection sensor) arranged outside the effective scanning width. Although the synchronization detection means is not shown in FIG. 1, a synchronization detection sensor using a light receiving element such as a photodiode is usually used.

図23は色によって露光量を異ならせるためのタイミングチャートである。図22ではブラックとマゼンタの領域での光量を同じに設定しているが、実際には光学素子の透過率、反射率が相対的に異なるため、光源の光量を同じにしてしまうと、感光体に到達するビームの光量が異なってしまう。そこで、図23に示すように、異なる感光体面を走査するときに互いの設定光量を異ならせることにより、異なる感光体面上に到達するビーム光量を等しくできる。   FIG. 23 is a timing chart for varying the exposure amount depending on the color. In FIG. 22, the light amounts in the black and magenta regions are set to be the same. However, since the transmittance and reflectance of the optical element are actually different, if the light amount of the light source is the same, the photoconductor The amount of light reaching the beam will be different. Therefore, as shown in FIG. 23, when the different photoconductor surfaces are scanned, the light amounts set on the different photoconductor surfaces can be made equal by making the set light amounts different from each other.

ところで、図1に記載の2つの光源1、1' から出射した各々のビームは、異なる2つの感光体11a,11bにそれぞれ露光されるので、2つの感光体11a,11bには、それぞれ一回の走査で2つの走査線が形成される。このとき、画素密度に応じて、走査線の副走査方向のピッチを調整する必要がある。副走査方向のピッチ調整の方法としてよく用いられる方法としては、光源ユニット(光源1、1' 、カップリングレンズ3、3' 、開口絞り12を1つのユニットとする)を主走査方向および副走査方向に垂直な軸を中心に回転させる方法があるが、この場合、ある感光体においては、所望のピッチとすることができるが、もう一方の感光体については光路切り換え手段4以降の光学素子の形状誤差、取り付け誤差等によりピッチ誤差が生じる。
この不具合を解決するためには光路切り換え手段4と偏向手段(偏向器)7の間に副走査方向のピッチを調整する手段を配備する必要がある。
By the way, since each beam emitted from the two light sources 1 and 1 ′ shown in FIG. 1 is exposed to two different photoconductors 11a and 11b, respectively, the two photoconductors 11a and 11b are each exposed once. In this scanning, two scanning lines are formed. At this time, it is necessary to adjust the pitch of the scanning lines in the sub-scanning direction according to the pixel density. As a method often used as a pitch adjustment method in the sub-scanning direction, the light source unit (the light sources 1, 1 ′, the coupling lenses 3, 3 ′, and the aperture stop 12 as one unit) is used as the main scanning direction and the sub-scanning. There is a method of rotating around an axis perpendicular to the direction. In this case, a certain photosensitive member can have a desired pitch. However, for the other photosensitive member, the optical element after the optical path switching means 4 is used. Pitch error occurs due to shape error, mounting error, etc.
In order to solve this problem, it is necessary to provide means for adjusting the pitch in the sub-scanning direction between the optical path switching means 4 and the deflection means (deflector) 7.

ここで、図24はピッチ調整手段の一例を示す図である。同図(a)は片側調整の手段、同図(b)は両側調整の手段を示す図である。
ここでは一例として、光路切り換え手段4と偏向器7の間に配置された光学素子5(例えば図1のシリンドリカルレンズ5a,5b,5c,5dにピッチ調整手段を設けた場合について説明する。
シリンドリカルレンズ5は21a(または21b、21c)の中間部材を介して光走査装置のハウジング(図示を省略)に装着される。それぞれの装着面には予め硬化性樹脂(例えば光硬化性樹脂)を塗布しておく。このとき、中間部材21a(または21b、21c)はハウジングに対し、「主走査方向に平行な軸回りの偏心調整」と「光軸方向の調整」が可能であり、シリンドリカルレンズ5は中間部材21a(または21b、21c)に対して「光軸に平行な軸回りの偏心調整」、「副走査方向の配置調整」が可能であり、ハウジングに対して中間部材21a(または21b、21c)が調整可能な方向の少なくとも1つと、中間部材21a(または21b、21c)に対してシリンドリカルレンズ5の調整可能な方向の少なくとも1つが異なっている。このような構成とすることで、複数の光学特性(ビームウエスト径太り、ビームウエスト位置ずれ低減、ビームスポット位置ずれ低減)を同時に確保でき、なおかつ、シリンドリカルレンズ5を光軸に平行な回りに偏心調整可能とすることで、副走査方向の走査線間隔を最適に設定することができる。また、中間部材21aのシリンドリカルレンズ5に接する面とハウジングに接する面は平面となっていて調整が容易になっている。調整が終了したら硬化性樹脂を所定の方法(例えば紫外線照射等)で硬化させることにより、相互の位置を固定させる。
Here, FIG. 24 is a diagram showing an example of the pitch adjusting means. FIG. 4A is a diagram showing one-side adjustment means, and FIG. 4B is a diagram showing both-side adjustment means.
Here, as an example, a case will be described in which pitch adjusting means is provided in the optical element 5 (for example, the cylindrical lenses 5a, 5b, 5c, and 5d in FIG. 1) disposed between the optical path switching means 4 and the deflector 7.
The cylindrical lens 5 is attached to a housing (not shown) of the optical scanning device via an intermediate member 21a (or 21b, 21c). A curable resin (for example, a photocurable resin) is previously applied to each mounting surface. At this time, the intermediate member 21a (or 21b, 21c) can be “adjusted eccentrically about an axis parallel to the main scanning direction” and “adjusted in the optical axis direction” with respect to the housing, and the cylindrical lens 5 is connected to the intermediate member 21a. (Or 21b, 21c) can be adjusted “eccentric adjustment around an axis parallel to the optical axis” and “position adjustment in the sub-scanning direction”, and the intermediate member 21a (or 21b, 21c) can be adjusted with respect to the housing. At least one of the possible directions is different from at least one of the adjustable directions of the cylindrical lens 5 with respect to the intermediate member 21a (or 21b, 21c). By adopting such a configuration, a plurality of optical characteristics (thickening the beam waist diameter, reducing beam waist position deviation, and beam spot position deviation) can be secured simultaneously, and the cylindrical lens 5 is decentered around the optical axis. By making the adjustment possible, the scanning line interval in the sub-scanning direction can be set optimally. Further, the surface of the intermediate member 21a that is in contact with the cylindrical lens 5 and the surface that is in contact with the housing are flat and easy to adjust. When the adjustment is completed, the mutual position is fixed by curing the curable resin by a predetermined method (for example, ultraviolet irradiation).

図25は実際の調整方法の一例を説明するための図である。同図(a)は片側調整、同図(b)は両側調整の例を示している。
シリンドリカルレンズ5を冶具で保持しておき、調整すべき方向(ここでは光軸方向位置、光軸に平行な軸回りの偏心、副走査方向の位置)にシリンドリカルレンズ5を移動する。その後、硬化性樹脂(例えば紫外線硬化樹脂)を塗布した中間部材21a(または21b、21c)をシリンドリカルレンズ5およびハウジングの台座22に押し当て、紫外線を照射しシリンドリカルレンズ5を固定する。このような構成とすることで、簡単な構造で容易に複数方向の調整が可能となる。ここで、中間部材21a(または21b、21c)は透明とすることにより、紫外線硬化樹脂による固定がより容易になる。
なお、図24(a)のように1つの中間部材21aを用いて光学素子(シリンドリカルレンズ5等)を保持することも可能だが、光ビームを挟んで互いに逆側に複数の中間部材21b、21cを配備することも可能であり、このような構成とすることにより、例えば、ハウジングと中間部材21(樹脂を想定)の線膨張係数が異なるとき、温度上昇が発生しても光軸に対して光学素子に関し対称的に応力が発生するので、光学素子の姿勢変化は小さくなる。
FIG. 25 is a diagram for explaining an example of an actual adjustment method. FIG. 4A shows an example of one-side adjustment, and FIG. 4B shows an example of both-side adjustment.
The cylindrical lens 5 is held by a jig, and the cylindrical lens 5 is moved in the direction to be adjusted (here, the position in the optical axis direction, the eccentricity around the axis parallel to the optical axis, the position in the sub-scanning direction). Thereafter, the intermediate member 21a (or 21b, 21c) coated with a curable resin (for example, an ultraviolet curable resin) is pressed against the cylindrical lens 5 and the pedestal 22 of the housing, and the cylindrical lens 5 is fixed by irradiating ultraviolet rays. With such a configuration, adjustment in a plurality of directions can be easily performed with a simple structure. Here, by making the intermediate member 21a (or 21b, 21c) transparent, it becomes easier to fix with the ultraviolet curable resin.
Although it is possible to hold an optical element (such as the cylindrical lens 5) using one intermediate member 21a as shown in FIG. 24A, a plurality of intermediate members 21b and 21c are arranged on opposite sides of the light beam. By adopting such a configuration, for example, when the linear expansion coefficients of the housing and the intermediate member 21 (assuming resin) are different, even if the temperature rises, the optical axis Since stress is generated symmetrically with respect to the optical element, the posture change of the optical element is reduced.

通常、画像形成装置に用いる半導体レーザは光量自動制御(Auto Power Control:以下APCと称す)を行い、光出力の安定化を図っている。APCとは半導体レーザの光出力をフォトダイオード(PD)等の受光素子によりモニタし、半導体レーザの光出力に比例する受光電流の検出信号により、半導体レーザの順方向電流を所望の値に制御する方式のことである。
半導体レーザが端面発光型半導体レーザの場合、上記受光素子はカップリングレンズに向かって出射する方向と逆方向に出射した光をモニタするフォトダイオードを用いることが多いが、APCを行なう際に、余計なゴースト光が入射すると、上記受光素子で検出する光量が増加してしまう。
Usually, a semiconductor laser used in an image forming apparatus performs automatic light quantity control (hereinafter referred to as APC) to stabilize light output. With APC, the optical output of a semiconductor laser is monitored by a light receiving element such as a photodiode (PD), and the forward current of the semiconductor laser is controlled to a desired value by a detection signal of the received light current proportional to the optical output of the semiconductor laser. It is a method.
When the semiconductor laser is an edge-emitting type semiconductor laser, the light receiving element often uses a photodiode that monitors light emitted in the direction opposite to the direction emitted toward the coupling lens. When a ghost light is incident, the amount of light detected by the light receiving element increases.

例えば、偏向器7の反射面(反射鏡)へのビームの入射角が0のとき、その反射面(反射鏡)が光源方向に正対しているので、この位置でAPCを行なうと、反射ビームが光源に戻り、モニタ用の受光素子で検出する光量が増加してしまう。そこで、入射角が0であるときはAPCを行なわないように設定しておく。この構成をとることにより、適切な濃度で、濃度むらの少ない画像出力が可能となる。   For example, when the incident angle of the beam to the reflecting surface (reflecting mirror) of the deflector 7 is 0, the reflecting surface (reflecting mirror) faces the light source direction. When APC is performed at this position, the reflected beam Returns to the light source, and the amount of light detected by the light receiving element for monitoring increases. Therefore, it is set so that APC is not performed when the incident angle is zero. By adopting this configuration, it is possible to output an image with an appropriate density and with little density unevenness.

次に同期検知手段の配置例としては、図26の下側に示すように、光源と反対側は有効走査領域外にフォトダイオード等の同期検知センサを置いて走査光を検知することが可能であるが、光源側は有効走査領域近傍に入射光があるため、同期検知センサを設置する余裕がない。そのため、光源側の同期検知は、図26の上側に示すように、入射光を境として光源側の反射光を同期検知に使用する。
また、上記の方式に代えて、前記APC用の受光素子を利用し、偏向器7の反射面へのビームの入射角が0の時の受光素子の光出力を使用して同期検知することも可能である。これは、入射角0の時には偏向器7の反射面からの反射光がそのままLDに戻ることから、APC用の受光素子にもLDへ戻った光が検知され、その信号を利用して同期検知用の信号として利用するのである。このようにAPC用の受光素子で同期検知をすることにより、同期検知専用のセンサ数を減らすことができ、さらに部品点数が下がり、かつコストダウン効果も期待できる。
Next, as an example of the arrangement of the synchronization detection means, as shown on the lower side of FIG. 26, it is possible to detect the scanning light by placing a synchronization detection sensor such as a photodiode outside the effective scanning region on the side opposite to the light source. However, since there is incident light in the vicinity of the effective scanning area on the light source side, there is no room for installing a synchronous detection sensor. Therefore, as shown in the upper side of FIG. 26, the light source side synchronous detection uses reflected light on the light source side for the synchronous detection with the incident light as a boundary.
In place of the above method, the APC light receiving element may be used to perform synchronous detection using the light output of the light receiving element when the incident angle of the beam to the reflecting surface of the deflector 7 is zero. Is possible. This is because, when the incident angle is 0, the reflected light from the reflecting surface of the deflector 7 returns to the LD as it is, so that the light returned to the LD is also detected by the APC light receiving element, and this signal is used to detect synchronization. It is used as a signal. Thus, by performing synchronization detection with a light receiving element for APC, the number of sensors dedicated to synchronization detection can be reduced, the number of parts can be reduced, and a cost reduction effect can be expected.

上述した本発明の技術は、図17に示すような集積化された面発光レーザ(VCSEL)を光源とした時も当然有効であり、例えば40チャンネルの面発光レーザ(VCSEL)アレイを用いる場合、光源が2つで4色40チャンネルのビームを得ることができ、40ビーム書込みの高速性を維持したまま光源のコストダウンが可能となる。   The technology of the present invention described above is naturally effective when an integrated surface emitting laser (VCSEL) as shown in FIG. 17 is used as a light source. For example, when a 40 channel surface emitting laser (VCSEL) array is used, With two light sources, a beam of 4 channels of 40 colors can be obtained, and the cost of the light source can be reduced while maintaining the high speed of 40 beam writing.

[第5の実施形態]
次に、上述した本発明の光走査装置を書込ユニットに備えた画像形成装置の実施形態について説明する。
図27は本発明の一実施形態を示す多色画像形成装置の概略構成図である。同図において符号31は像担持体である感光体、32は感光体を帯電する帯電器、33は帯電された各感光体に画像信号に応じて変調されたビームを露光して静電潜像を形成する前述の光走査装置を用いた書込ユニット、34は感光体上の潜像を各色のトナーで現像して顕像化する現像器、35は感光体上の転写残トナーを清掃するクリーニング手段、36は感光体上の顕像を記録材に転写するための転写用帯電手段、37は記録材を担持搬送する転写ベルト、38a,38bは転写ベルトが架張される駆動ローラと従動ローラ、39は記録材に転写された画像を定着する定着手段、40はシート状の記録材(例えば記録紙)Sが収容された給紙カセット、41は記録材Sを給紙する給紙ローラ、42は給紙ローラで給紙される記録材Sを1枚づつに分離する分離ローラ、43,44は記録材を搬送する搬送ローラ、45は各感光体上での画像形成にタイミングを合せて記録材Sを転写ベルト37に送り出すレジストローラをそれぞれ示している。また、符号に付けたY、M、C、Kは画像の色を表し、それぞれY:イエロー、M:マゼンダ、C:シアン、K:ブラックを示している。
[Fifth Embodiment]
Next, an embodiment of an image forming apparatus provided with the above-described optical scanning device of the present invention in a writing unit will be described.
FIG. 27 is a schematic configuration diagram of a multicolor image forming apparatus showing an embodiment of the present invention. In the figure, reference numeral 31 is a photoconductor as an image carrier, 32 is a charger for charging the photoconductor, 33 is an electrostatic latent image formed by exposing each charged photoconductor to a beam modulated in accordance with an image signal. A writing unit using the above-described optical scanning device for forming the image; 34, a developing unit for developing the latent image on the photoconductor with each color toner to make it visible; and 35, cleaning the transfer residual toner on the photoconductor Cleaning means 36 is a transfer charging means for transferring the visible image on the photosensitive member to the recording material, 37 is a transfer belt for carrying and transporting the recording material, 38a and 38b are driven by a driving roller on which the transfer belt is stretched. 40, a fixing means for fixing the image transferred to the recording material, 40, a paper feed cassette containing a sheet-like recording material (for example, recording paper) S, and 41, a paper feeding roller for feeding the recording material S , 42 indicates a recording material S fed by a paper feed roller. Separating rollers for separating the recording materials one after another, 43 and 44 are conveying rollers for conveying the recording material, and 45 is a registration roller for feeding the recording material S to the transfer belt 37 in synchronization with image formation on each photoconductor. . Further, Y, M, C, and K attached to the reference numerals represent the colors of the image, and indicate Y: yellow, M: magenta, C: cyan, and K: black, respectively.

4つの感光体31Y、31M、31C、31Kは転写ベルト37に沿って並設され、それぞれ時計回り方向に回転し、回転方向の順に帯電器32Y、32M、32C、32K、現像器34Y、34M、34C、34K、転写用帯電手段36Y、36M、36C、36K、クリーニング手段35Y、35M、35C、35Kが配備されている。   The four photoconductors 31Y, 31M, 31C, and 31K are juxtaposed along the transfer belt 37, rotate in the clockwise direction, and in the order of the rotation direction, the chargers 32Y, 32M, 32C, and 32K, the developing devices 34Y, 34M, 34C, 34K, transfer charging means 36Y, 36M, 36C, 36K, and cleaning means 35Y, 35M, 35C, 35K are provided.

帯電器32Y、32M、32C、32Kは、感光体表面を均一に帯電するための帯電装置を構成するものであり、この帯電器には、ローラ状やブラシ状等の接触帯電方式の帯電部材や、帯電チャージャ等の非接触帯電方式のもの等がある。この帯電器32Y、32M、32C、32Kと現像器34Y、34M、34C、34Kの間の感光体表面に書込ユニット33によりそれぞれビームが照射され、感光体31Y、31M、31C、31Kに静電潜像が形成されるようになっている。そして、静電潜像に基づき、現像器34Y、34M、34C、34Kにより感光体面上にY、M、C、Kの各色のトナー像が形成される。さらに、転写用帯電手段36Y、36M、36C、36Kにより、転写ベルト37で搬送される記録材Sに各色のトナー像が順次重ね合わせて転写された後、最終的に定着手段39により記録材Sに画像が定着される。   The chargers 32Y, 32M, 32C, and 32K constitute a charging device for uniformly charging the surface of the photosensitive member. The charger includes a charging member of a contact charging method such as a roller or brush. There are non-contact charging types such as charging chargers. The writing unit 33 irradiates the photosensitive member surfaces between the chargers 32Y, 32M, 32C, and 32K and the developing devices 34Y, 34M, 34C, and 34K with the writing unit 33, and electrostatically applies to the photosensitive members 31Y, 31M, 31C, and 31K. A latent image is formed. Then, based on the electrostatic latent image, toner images of respective colors Y, M, C, and K are formed on the photoreceptor surface by the developing units 34Y, 34M, 34C, and 34K. Further, after the toner images of the respective colors are sequentially superimposed and transferred onto the recording material S conveyed by the transfer belt 37 by the transfer charging units 36Y, 36M, 36C, and 36K, the recording material S is finally transferred by the fixing unit 39. The image is fixed on the screen.

なお、図1に示した光走査装置では、2つの感光体11a,11bに対応する図のみ示しているが、図27に示す画像形成装置の書込ユニット33内には、図1に示す光走査装置と同様の構成に加えて、前述の第4の実施形態で述べたように、偏向器7を挟んで、図示された光学系と同様の走査光学系が対称な位置に配備された構成となっており、上記の4つの感光体31Y、31M、31C、31Kに対応した光走査を行うことができるようになっている。   In the optical scanning device shown in FIG. 1, only the figures corresponding to the two photoconductors 11a and 11b are shown, but the light shown in FIG. 1 is placed in the writing unit 33 of the image forming apparatus shown in FIG. In addition to the configuration similar to the scanning device, as described in the fourth embodiment, a configuration in which a scanning optical system similar to the illustrated optical system is disposed at a symmetrical position with the deflector 7 interposed therebetween. Thus, optical scanning corresponding to the above-described four photoconductors 31Y, 31M, 31C, and 31K can be performed.

次に図1の実施形態に示した構成の光走査装置の光学系の具体的な実施データを以下に示す。
・光源1,1' の波長:655nm
・カップリングレンズ3,3' の焦点距離:15mm
・カップリング作用:コリメート作用
・ポリゴンミラー7:偏向反射面数:4
内接円半径:7mm
また、光路切り替え手段4(または偏光切り替え手段13と偏光分離手段14)と偏向手段(ポリゴンミラー)7の間に焦点距離110mmのシリンドリカルレンズ5,5' が配備されており、偏向器7の反射面近傍にて主走査方向に長い線像を形成している。
Next, specific implementation data of the optical system of the optical scanning apparatus having the configuration shown in the embodiment of FIG. 1 is shown below.
-Wavelength of light source 1, 1 ': 655nm
-Focal length of coupling lens 3, 3 ': 15mm
-Coupling action: Collimating action-Polygon mirror 7: Number of deflecting reflecting surfaces: 4
Inscribed circle radius: 7mm
Further, cylindrical lenses 5 and 5 ′ having a focal length of 110 mm are disposed between the optical path switching unit 4 (or the polarization switching unit 13 and the polarization separation unit 14) and the deflecting unit (polygon mirror) 7. A long line image is formed in the main scanning direction in the vicinity of the surface.

偏向器以降のレンズデータを以下に示す。
第1走査レンズ8a,8bの第1面および第2走査レンズ10a,10bの両面は以下の式(1)、(2)で表現される。
Lens data after the deflector is shown below.
The first surfaces of the first scanning lenses 8a and 8b and both surfaces of the second scanning lenses 10a and 10b are expressed by the following equations (1) and (2).

・主走査非円弧式
主走査面内における面形状は非円弧形状をなしており、光軸における主走査面内の近軸曲率半径をRm、光軸からの主走査方向の距離をY、円錐常数をK、高次の係数をA1、A2、A3、A4、A5、A6、・・・とするとき、光軸方向のデプスをXとして次の多項式(1)で表している。
X=(Y2/Rm)/[1+√{1−(1+K)(Y/Rm)2}
+A1・Y+A2・Y+A3・Y+A4・Y+A5・Y+A6・Y+・・
・・・(1)
ここで奇数次の係数A1、A3、A5・・にゼロ以外の数値を代入した場合、主走査方向に非対称形状を有する。
なお、本実施例では偶数次のみを用いており、主走査方向に対称系である。
Main scanning non-arc type The surface shape in the main scanning surface is a non-arc shape, the paraxial radius of curvature in the main scanning surface on the optical axis is Rm, the distance in the main scanning direction from the optical axis is Y, and the cone When the constant is K and the higher-order coefficients are A1, A2, A3, A4, A5, A6,..., The depth in the optical axis direction is X and is expressed by the following polynomial (1).
X = (Y2 / Rm) / [1 + √ {1- (1 + K) (Y / Rm) 2}
+ A1 ・ Y + A2 ・ Y 2 + A3 ・ Y 3 + A4 ・ Y 4 + A5 ・ Y 5 + A6 ・ Y 6 + ・ ・
... (1)
Here, when a numerical value other than zero is substituted for the odd-order coefficients A1, A3, A5,..., It has an asymmetric shape in the main scanning direction.
In this embodiment, only the even order is used, and it is a symmetric system in the main scanning direction.

・副走査曲率式
副走査曲率が主走査方向に応じて変化する式を以下の式(2)に示す。
Cs(Y)=1/Rs(0)
+B1・Y+B2・Y+B3・Y+B4・Y+B5・Y+・・
・・・(2)
ここでYの奇数乗係数のB1、 B3、B5、・・がゼロ以外の数値を代入した場合、副走査の曲率半径が主走査方向に非対称となる。
また、第1走査レンズの第2面は回転対称非球面であり、以下の式(3)で表現される。
Sub-scanning curvature formula The following formula (2) shows a formula in which the sub-scanning curvature changes according to the main scanning direction.
Cs (Y) = 1 / Rs (0)
+ B1 · Y + B2 · Y 2 + B3 · Y 3 + B4 · Y 4 + B5 · Y 5 + ··
... (2)
Here, when a value other than zero is substituted for the odd odd power coefficients B1, B3, B5,..., The radius of curvature of sub-scanning becomes asymmetric in the main scanning direction.
Further, the second surface of the first scanning lens is a rotationally symmetric aspheric surface, and is expressed by the following equation (3).

・回転対称非球面
光軸における近軸曲率半径をR、光軸からの主走査方向の距離をY、円錐常数をK、高次の係数をA1、A2、A3、A4、A5、A6、・・とするとき光軸方向のデプスをXとして次の多項式で表している。
X=(Y2/R)/[1+√{1−(1+K)(Y/Rm)2}
+A1・Y+A2・Y+A3・Y+ A4・Y+A5・Y+A6・Y+・・
・・・(3)
A rotationally symmetric aspheric surface The paraxial radius of curvature of the optical axis is R, the distance from the optical axis in the main scanning direction is Y, the cone constant is K, the higher order coefficients are A1, A2, A3, A4, A5, A6,. When represented by the following polynomial, the depth in the optical axis direction is X.
X = (Y2 / R) / [1 + √ {1- (1 + K) (Y / Rm) 2}
+ A1 • Y + A2 • Y 2 + A3 • Y 3 + A4 • Y 4 + A5 • Y 5 + A6 • Y 6 + ••
... (3)

第1走査レンズの第1面の形状
Rm=−279.9、Rs=−61.0
K=−2.900000E+01
A4=1.755765E−07
A6=−5.491789E−11
A8=1.087700E−14
A10=−3.183245E−19
A12=−2.635276E−24
B1=−2.066347E−06
B2=5.727737E−06
B3=3.152201E−08
B4=2.280241E−09
B5=−3.729852E−11
B6=−3.283274E−12
B7=1.765590E−14
B8=1.372995E−15
B9=−2.889722E−18
B10=−1.984531E−19
なお、上記で「E+01」は「×1001」、「E−07」は「×10-07」を意味しており、以下でも同様である。
The shape of the first surface of the first scanning lens Rm = −279.9, Rs = −61.0
K = -2.900,000E + 01
A4 = 1.755765E-07
A6 = −5.491789E-11
A8 = 1.087700E-14
A10 = -3.183245E-19
A12 = −2.6635276E-24
B1 = −2.066347E-06
B2 = 5.727737E-06
B3 = 3.1252201E-08
B4 = 2.280241E-09
B5 = −3.729852E-11
B6 = −3.283274E-12
B7 = 1.765590E-14
B8 = 1.732929E-15
B9 = −2.889722E-18
B10 = -1.984531E-19
In the above, “E + 01” means “× 10 01 ” and “E-07” means “× 10 -07 ”, and the same applies to the following.

第1走査レンズの第2面の形状
R=−83.6
K=−0.549157
A4=2.748446E−07
A6=−4.502346E−12
A8=−7.366455E−15
A10=1.803003E−18
A12=2.727900E−23
Shape of second surface of first scanning lens R = −83.6
K = −0.549157
A4 = 2.748446E-07
A6 = −4.502346E-12
A8 = -7.366455E-15
A10 = 1.803003E-18
A12 = 2.727900E-23

第2走査レンズの第1面の形状
Rm=6950、Rs=110.9
K=0.000000+00
A4=1.549648E−08
A6=1.292741E−14
A8=−8.811446E−18
A10=−9.182312E−22
B1=−9.593510E−07
B2=−2.135322E−07
B3=−8.079549E−12
B4=2.390609E−12
B5=2.881396E−14
B6=3.693775E−15
B7=−3.258754E−18
B8=1.814487E−20
B9=8.722085E−23
B10=−1.340807E−23
The shape of the first surface of the second scanning lens Rm = 6950, Rs = 110.9
K = 0.000000 + 00
A4 = 1.549648E-08
A6 = 1.292741E-14
A8 = −8.811446E-18
A10 = −9.182312E-22
B1 = −9.593510E-07
B2 = −2.135322E-07
B3 = −8.079549E-12
B4 = 2.390609E-12
B5 = 2.881396E-14
B6 = 3.693775E-15
B7 = -3.258754E-18
B8 = 1.814487E-20
B9 = 8.72085E-23
B10 = −1.3340807E-23

第2走査レンズの第2面の形状
Rm=766、Rs=−68.22
K=0.000000+00
A4=−1.150396E−07
A6=1.096926E−11
A8=−6.542135E−16
A10=1.984381E−20
A12=−2.411512E−25
B2=3.644079E−07
B4=−4.847051E−13
B6=−1.666159E−16
B8=4.534859E−19
B10=−2.819319E−23
なお、使用波長における走査レンズの屈折率は全て1.52724である。
The shape of the second surface of the second scanning lens Rm = 766, Rs = −68.22
K = 0.000000 + 00
A4 = -1.150396E-07
A6 = 1.096926E-11
A8 = −6.5542135E-16
A10 = 1.9844381E-20
A12 = −2.411512E−25
B2 = 3.644079E-07
B4 = −4.847051E-13
B6 = −1.666159E-16
B8 = 4.534859E-19
B10 = −2.819319E-23
Note that the refractive index of the scanning lens at the operating wavelength is 1.52724.

以下に光学配置を示す。
偏向器の偏向反射面から第1走査レンズの第1面までの距離d1:64mm
第1走査レンズの中心肉厚d2:22.6mm
第1走査レンズの第2面から第2走査レンズの第1面までの距離d3:75.9mm
第2走査レンズの中心肉厚d4:4.9mm
第2走査レンズの第2面から被走査面までの距離d5:158.7mm
The optical arrangement is shown below.
Distance d1: 64 mm from the deflection reflection surface of the deflector to the first surface of the first scanning lens
Center wall thickness d2 of the first scanning lens: 22.6 mm
The distance d3 from the second surface of the first scanning lens to the first surface of the second scanning lens: 75.9 mm
Center wall thickness d4 of second scanning lens: 4.9 mm
Distance d2: 158.7 mm from the second surface of the second scanning lens to the surface to be scanned

なお、図1に示す光走査装置では、屈折率1.514、厚さ1.9mmの防音ガラス6と防塵ガラス(図示せず)が配置されており、防音ガラス6は、ゴースト光の発生を防止するために、偏向回転面内において主走査方向に平行な方向に対し10deg傾けて設置されている。
また、防塵ガラスについては図示されていないが、第2走査レンズ10a,10bと被走査面11a,11bの間に配備されている。
In the optical scanning device shown in FIG. 1, a soundproof glass 6 and a dustproof glass (not shown) having a refractive index of 1.514 and a thickness of 1.9 mm are arranged, and the soundproof glass 6 generates ghost light. In order to prevent this, it is installed at an angle of 10 deg with respect to the direction parallel to the main scanning direction in the deflection rotation plane.
Moreover, although not shown about dustproof glass, it is arrange | positioned between the 2nd scanning lenses 10a and 10b and the to-be-scanned surfaces 11a and 11b.

本発明の一実施形態を示す光走査装置の概略構成図である。It is a schematic block diagram of the optical scanning device which shows one Embodiment of this invention. 第1の実施形態の光走査装置の一部を示す図である。It is a figure which shows a part of optical scanning device of 1st Embodiment. 回折光学素子を組み合わせた光路切り換え手段の一例を示す図である。It is a figure which shows an example of the optical path switching means which combined the diffractive optical element. 光路切り換え手段をなす回折光学素子の概略構成を示す図である。It is a figure which shows schematic structure of the diffractive optical element which makes an optical path switching means. 光路切り換え手段をなす回折光学素子の機能動作の一例を示す図である。It is a figure which shows an example of a functional operation | movement of the diffractive optical element which makes an optical path switching means. 光路切り換え手段をなす回折光学素子の機能動作の別の例を示す図である。It is a figure which shows another example of the functional operation | movement of the diffractive optical element which makes an optical path switching means. 回折光学素子の液晶の配向方向及び格子の傾き方向の説明図である。It is explanatory drawing of the orientation direction of the liquid crystal of a diffractive optical element, and the inclination direction of a grating | lattice. 傾斜させた回折光学素子の機能動作の一例を示す図である。It is a figure which shows an example of the functional operation | movement of the inclined diffractive optical element. 傾斜させた回折光学素子の機能動作の別の例を示す図である。It is a figure which shows another example of the functional operation | movement of the inclined diffractive optical element. 干渉露光前の液晶ホログラム素子の断面構成の概略を示す図である。It is a figure which shows the outline of a cross-sectional structure of the liquid crystal hologram element before interference exposure. 液晶ホログラム素子の相分離によるホログラム形成過程の説明図である。It is explanatory drawing of the hologram formation process by the phase separation of a liquid crystal hologram element. 第2の実施形態の光走査装置の一部を示す図である。It is a figure which shows a part of optical scanning apparatus of 2nd Embodiment. 回折光学素子を組み合わせた偏光分離手段の一例を示す図である。It is a figure which shows an example of the polarization separation means which combined the diffractive optical element. 強誘電性液晶素子を用いた偏光切り換え手段の概略構成を示す図である。It is a figure which shows schematic structure of the polarization switching means using a ferroelectric liquid crystal element. 強誘電性液晶素子のスイッチング動作を説明する模式図である。It is a schematic diagram explaining the switching operation | movement of a ferroelectric liquid crystal element. 偏光切り換え手段の動作を示す模式図である。It is a schematic diagram which shows operation | movement of a polarization switching means. 面発光レーザ(VCSEL)アレイの一例を示す図である。It is a figure which shows an example of a surface emitting laser (VCSEL) array. 温度に対する液晶素子の応答速度特性を示す図である。It is a figure which shows the response speed characteristic of the liquid crystal element with respect to temperature. 温度調整手段を具備した光走査装置の概略を示すブロック図である。It is a block diagram which shows the outline of the optical scanning device provided with the temperature adjustment means. 光路切り換え手段の時分割光による光走査を説明するための図である。It is a figure for demonstrating the optical scanning by the time division light of an optical path switching means. 光路切り換え手段の時分割光を偏向器の同じ反射面に入射した場合の問題点の説明図である。It is explanatory drawing of the problem when the time division light of an optical path switching means injects into the same reflective surface of a deflector. 複数色用の露光のタイミングチャートを示す図である。It is a figure which shows the timing chart of the exposure for multiple colors. 色によって露光量を異ならせるためのタイミングチャートを示す図である。It is a figure which shows the timing chart for varying the exposure amount according to a color. ピッチ調整手段の一例を示す図である。It is a figure which shows an example of a pitch adjustment means. 実際のピッチ調整方法の一例を説明するための図である。It is a figure for demonstrating an example of the actual pitch adjustment method. 同期検知センサの配置位置の説明図である。It is explanatory drawing of the arrangement position of a synchronous detection sensor. 本発明の一実施形態を示す多色画像形成装置の概略構成図である。1 is a schematic configuration diagram of a multicolor image forming apparatus showing an embodiment of the present invention.

符号の説明Explanation of symbols

1、1' :光源(半導体レーザ(LD))
2,2' :入射ミラー、
3、3' :カップリングレンズ
4:光路切り換え手段
5,5'(5a、5b、5c、5d):シリンドリカルレンズ
6:防音ガラス
7:偏向手段(偏向器(ポリゴンミラー))
8(8a,8b):第1走査レンズ
9:光路折返し用のミラー
10a,10b:第2走査レンズ
11a,11b:被走査面
12:開口絞り(アパーチャ)
13:偏光切り換え手段
14:偏光分離手段
31Y、31M、31C、31K
32Y、32M、32C、32K:帯電器
33:書込ユニット
34Y、34M、34C、34K:現像器
35Y、35M、35C、35K:クリーニング手段
36Y、36M、36C、36K:転写用帯電手段
37:転写ベルト
38a:駆動ローラ
38b:従動ローラ
39:定着手段
40:給紙カセット
41:給紙ローラ
42:分離ローラ
43,44:搬送ローラ
45:レジストローラ
50:回折光学素子(光路切り換え手段)
60:回折光学素子(偏光分離手段)
70:強誘電性液晶素子(偏光切り換え手段)
S:記録材
1, 1 ': Light source (semiconductor laser (LD))
2, 2 ': incident mirror,
3, 3 ': Coupling lens 4: Optical path switching means 5, 5' (5a, 5b, 5c, 5d): Cylindrical lens 6: Soundproof glass 7: Deflection means (deflector (polygon mirror))
8 (8a, 8b): first scanning lens 9: mirror for turning back the optical path 10a, 10b: second scanning lens 11a, 11b: surface to be scanned 12: aperture stop (aperture)
13: Polarization switching means 14: Polarization separation means 31Y, 31M, 31C, 31K
32Y, 32M, 32C, 32K: charger 33: writing unit 34Y, 34M, 34C, 34K: developing unit 35Y, 35M, 35C, 35K: cleaning means 36Y, 36M, 36C, 36K: transfer charging means 37: transfer Belt 38a: Drive roller 38b: Driven roller 39: Fixing means 40: Paper feed cassette 41: Paper feed roller 42: Separation roller 43, 44: Conveyance roller 45: Registration roller 50: Diffraction optical element (optical path switching means)
60: Diffractive optical element (polarized light separating means)
70: Ferroelectric liquid crystal element (polarization switching means)
S: Recording material

Claims (17)

変調駆動される光源と、多面の反射面を有する偏向手段と、前記偏向手段により偏向走査されたビームを被走査面に導く走査光学系を有する光走査装置において、
前記光源と前記偏向手段の間に光路切り換え手段を具備し、該光路切り換え手段では第1の光路と第2の光路に切り換え可能であり、前記第1の光路の前記偏向手段への入射光路と前記第2の光路の入射光路とが略π/2の開き角を有しており、かつ前記偏向手段が4面の反射面を有し、前記第1の光路を通るビームと前記第2の光路を通るビームは異なる被走査面に導かれることを特徴とする光走査装置。
In an optical scanning apparatus having a light source to be modulated and driven, a deflection unit having a multi-surface reflection surface, and a scanning optical system for guiding a beam deflected and scanned by the deflection unit to a surface to be scanned.
An optical path switching unit is provided between the light source and the deflecting unit, and the optical path switching unit can switch between a first optical path and a second optical path, and an incident optical path of the first optical path to the deflecting unit wherein it is second and the incident light path of the optical path has an opening angle of approximately [pi / 2, and has a reflecting surface of the deflection means 4 side, the beam and the second passing through the first optical path An optical scanning device characterized in that beams passing through an optical path are guided to different surfaces to be scanned .
請求項1記載の光走査装置において、前記光路切り換え手段と前記偏向手段の間の前記第1の光路上および前記第2の光路上に各々入射ミラーを備え、前記第1の光路の入射ミラーから前記偏向手段までの光路と前記第2の光路の入射ミラーから前記偏向手段までの光路とは略π/2の開き角を有することを特徴とする光走査装置。 2. The optical scanning device according to claim 1, further comprising incident mirrors on the first optical path and the second optical path between the optical path switching unit and the deflecting unit, respectively, from the incident mirror of the first optical path. An optical scanning device characterized in that the optical path to the deflecting means and the optical path from the incident mirror of the second optical path to the deflecting means have an opening angle of approximately π / 2 . 請求項1または2記載の光走査装置において、
前記光路切り換え手段は、回折光学素子と、該回折光学素子に電界印加が可能な電界印加手段を具備してなることを特徴とする光走査装置。
The optical scanning device according to claim 1 or 2 ,
The optical path switching means comprises a diffractive optical element and an electric field applying means capable of applying an electric field to the diffractive optical element .
請求項3記載の光走査装置において、
前記光路切り換え手段をなす前記回折光学素子は、非重合性液晶からなる領域と等方性媒質からなる領域の周期的な構造からなり、前記非重合性液晶からなる領域の特定の偏光方向に対する屈折率が電界印加により変化し、電界印加に応じて前記特定の偏光方向の光を透過または回折することを特徴とする光走査装置。
The optical scanning apparatus according to claim 3 Symbol mounting,
The diffractive optical element that constitutes the optical path switching means has a periodic structure of a region made of non-polymerizable liquid crystal and a region made of isotropic medium, and is refracted in a specific polarization direction of the region made of non-polymerizable liquid crystal. An optical scanning device characterized in that the rate changes with the application of an electric field, and the light having the specific polarization direction is transmitted or diffracted according to the application of the electric field .
請求項3または4記載の光走査装置において、
前記光路切り換え手段をなす前記回折光学素子は、主にポリマーから成る領域と主に非重合性液晶から成る領域との周期的な相分離構造を形成したポリマー分散型液晶ホログラム素子であることを特徴とする光走査装置。
The optical scanning device according to claim 3 or 4 ,
The diffractive optical element that constitutes the optical path switching means is a polymer-dispersed liquid crystal hologram element in which a periodic phase separation structure of a region mainly composed of a polymer and a region mainly composed of a non-polymerizable liquid crystal is formed. An optical scanning device.
変調駆動される光源と、多面の反射面を有する偏向手段と、前記偏向手段により走査されたビームを被走査面に導く走査光学系を有する光走査装置において、
前記光源と前記偏向手段との間に、偏光方向が切り換え可能な偏光切り換え手段と、互いに直交する偏光成分を分離する偏光分離手段からなる光路切り換え手段を具備し、該光路切り換え手段では第1の光路と第2の光路に切り換え可能であり、前記第1の光路の前記偏向手段への入射光路と前記第2の光路の入射光路とが略π/2の開き角を有しており、かつ前記偏向手段が4面の反射面を有し、前記第1の光路を通るビームと前記第2の光路を通るビームは異なる被走査面に導かれることを特徴とする光走査装置。
In an optical scanning apparatus having a light source to be modulated and driven, a deflecting unit having a multi-surface reflecting surface, and a scanning optical system for guiding a beam scanned by the deflecting unit to a surface to be scanned .
Between the light source and the deflecting means, there is provided an optical path switching means comprising a polarization switching means capable of switching the polarization direction and a polarization separation means for separating polarized light components orthogonal to each other. An optical path that can be switched between an optical path and a second optical path, the incident optical path of the first optical path to the deflecting means and the incident optical path of the second optical path have an opening angle of approximately π / 2, and The optical scanning device according to claim 1, wherein the deflecting unit has four reflecting surfaces, and the beam passing through the first optical path and the beam passing through the second optical path are guided to different scanning surfaces .
請求項6記載の光走査装置において、前記光路切り換え手段と前記偏向手段の間の前記第1の光路上および前記第2の光路上に各々入射ミラーを備え、前記第1の光路の入射ミラーから前記偏向手段までの光路と前記第2の光路の入射ミラーから前記偏向手段までの光路とは略π/2の開き角を有することを特徴とする光走査装置。 7. The optical scanning device according to claim 6, further comprising incident mirrors on the first optical path and the second optical path between the optical path switching unit and the deflecting unit, respectively, from the incident mirror of the first optical path. An optical scanning device characterized in that the optical path to the deflecting means and the optical path from the incident mirror of the second optical path to the deflecting means have an opening angle of approximately π / 2 . 請求項6または7記載の光走査装置において、
前記偏光分離手段は、回折光学素子からなり、該回折光学素子は、光学異方性を示す領域と光学等方性を示す領域からなる周期的な構造を有し、透過および回折により、互いに直交する偏光成分を分離することを特徴とする光走査装置。
The optical scanning device according to claim 6 or 7 ,
The polarization separation means includes a diffractive optical element, and the diffractive optical element has a periodic structure including a region exhibiting optical anisotropy and a region exhibiting optical isotropy, and is orthogonal to each other by transmission and diffraction. An optical scanning device that separates polarized light components to be separated .
請求項8記載の光走査装置において、
前記偏光切り換え手段は、一対の透明基板と、前記基板の内面側に設けられた配向膜と、前記配向膜によりホモジニアス配向をなすキラルスメクチックC相よりなる液晶層と、前記透明基板面に対して略垂直方向に電界を印加する電界印加手段とからなり、電界強度に応じて特定の偏光方向を略90°回転することを特徴とする光走査装置。
The optical scanning apparatus according to claim 8 Symbol mounting,
The polarization switching means includes a pair of transparent substrates, an alignment film provided on the inner surface side of the substrate, a liquid crystal layer composed of a chiral smectic C phase that is homogeneously aligned by the alignment film, and the transparent substrate surface. An optical scanning device comprising an electric field applying means for applying an electric field in a substantially vertical direction, and rotating a specific polarization direction by approximately 90 ° in accordance with the electric field strength .
請求項1〜9のいずれか1項に記載の光走査装置において、
温度調整手段を具備してなることを特徴とする光走査装置。
The optical scanning device according to any one of claims 1 to 9,
An optical scanning device comprising temperature adjusting means .
請求項1〜10のいずれか1項に記載の光走査装置において、
入射ビームを境として前記走査光学系と反対側に同期検知手段を配備することを特徴とする光走査装置。
In the optical scanning device according to any one of claims 1 to 10,
An optical scanning device characterized in that synchronization detection means is provided on the side opposite to the scanning optical system with an incident beam as a boundary .
請求項1〜11のいずれか1項に記載の光走査装置において、
前記被走査面に形成される複数の走査線の副走査方向ピッチを調整するピッチ調整手段を前記光路切り換え手段と前記偏向手段の間に配置したことを特徴とする光走査装置。
In the optical scanning device according to any one of claims 1 to 11,
An optical scanning apparatus characterized in that pitch adjusting means for adjusting a sub-scanning direction pitch of a plurality of scanning lines formed on the surface to be scanned is disposed between the optical path switching means and the deflecting means .
請求項1〜12のいずれか1項に記載の光走査装置において、
複数の光源を有し、該複数の光源が副走査方向に異なる位置に配置されていることを特徴とする光走査装置。
The optical scanning device according to any one of claims 1 to 12,
An optical scanning device having a plurality of light sources, wherein the plurality of light sources are arranged at different positions in the sub-scanning direction .
請求項1〜13のいずれか1項に記載の光走査装置において、The optical scanning device according to any one of claims 1 to 13,
共通の光源が相異なる被走査面を走査する時に、それぞれの被走査面に対して互いに異なる光量を設定することを特徴とする光走査装置。An optical scanning device characterized in that when a common light source scans different scanning surfaces, different light amounts are set for the respective scanning surfaces.
請求項1〜14のいずれか1項に記載の光走査装置において、
前記光源に面発光レーザを用いることを特徴とする光走査装置。
The optical scanning device according to any one of claims 1 to 14,
An optical scanning device using a surface emitting laser as the light source.
光源からのビームを被走査面である像担持体に照射して潜像を形成する書込ユニットを備えた画像形成装置において、In an image forming apparatus including a writing unit that forms a latent image by irradiating an image carrier, which is a surface to be scanned, with a beam from a light source.
前記書込ユニットに請求項1〜15のいずれか1項に記載の光走査装置を備えたことを特徴とする画像形成装置。An image forming apparatus comprising the optical scanning device according to claim 1 in the writing unit.
請求項16記載の画像形成装置において、The image forming apparatus according to claim 16.
前記像担持体を複数備え、前記書込ユニットで複数の像担持体にそれぞれ形成した潜像を色の異なる現像剤で現像して顕像化し、前記複数の像担持体に形成した各色の顕像を直接または中間転写体を介して記録材に重ね合せて転写して多色またはフルカラー画像を形成することを特徴とする画像形成装置。A plurality of the image carriers are provided, and latent images formed on the plurality of image carriers by the writing unit are developed with developers of different colors to be visualized, and each color formed on the plurality of image carriers is developed. An image forming apparatus for forming a multicolor or full color image by transferring an image on a recording material directly or via an intermediate transfer member.
JP2007315910A 2007-12-06 2007-12-06 Optical scanning apparatus and image forming apparatus Expired - Fee Related JP4992154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315910A JP4992154B2 (en) 2007-12-06 2007-12-06 Optical scanning apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315910A JP4992154B2 (en) 2007-12-06 2007-12-06 Optical scanning apparatus and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2009139639A JP2009139639A (en) 2009-06-25
JP4992154B2 true JP4992154B2 (en) 2012-08-08

Family

ID=40870304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315910A Expired - Fee Related JP4992154B2 (en) 2007-12-06 2007-12-06 Optical scanning apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4992154B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397633B2 (en) * 2010-06-25 2014-01-22 株式会社リコー Optical scanning apparatus and image forming apparatus
JP5724427B2 (en) * 2011-02-09 2015-05-27 株式会社リコー Optical scanning apparatus and image forming apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938721A (en) * 1982-08-27 1984-03-02 Canon Inc Method and device for scanning
JPS59193413A (en) * 1983-04-18 1984-11-02 Canon Inc Optical beam scanner
JP3071916B2 (en) * 1991-12-24 2000-07-31 日本電信電話株式会社 Optical switch and manufacturing method thereof
JP3297191B2 (en) * 1994-03-30 2002-07-02 三菱電機株式会社 Projection display device
JPH08110488A (en) * 1994-10-11 1996-04-30 Canon Inc Optical scanning device
JP2002228956A (en) * 2001-01-31 2002-08-14 Ricoh Co Ltd Optical scanner and image forming device
EP1612596A1 (en) * 2004-06-29 2006-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production
JP4568633B2 (en) * 2005-03-31 2010-10-27 株式会社リコー Optical scanning device and image forming apparatus
JP5058561B2 (en) * 2006-03-17 2012-10-24 株式会社リコー Optical scanning device, image forming apparatus, diffractive optical element for splitting light beam, and method for producing diffractive optical element

Also Published As

Publication number Publication date
JP2009139639A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5061397B2 (en) Optical scanning apparatus and image forming apparatus
JP4922118B2 (en) Optical scanning apparatus and image forming apparatus
CN105022180A (en) Distance measuring module with a variable optical attenuation unit from an LC cell
JP4634881B2 (en) Optical scanning device and image forming device
JP5729545B2 (en) Optical scanning apparatus and image forming apparatus
JP2009014993A (en) Diffraction optical element, optical beam detection means, optical scanning device and image forming device
JP2013068694A (en) Optical scanner, and image forming apparatus
JPH06118453A (en) Element for high-speed tracking in raster output scanner
JP4992154B2 (en) Optical scanning apparatus and image forming apparatus
JP5915888B2 (en) Alignment film processing equipment
JP2006189728A (en) Light source unit, optical scanner, image forming apparatus or the like
EP0589654B1 (en) Device and apparatus for scan line process direction control in a multicolor electrostatographic machine
JP3426653B2 (en) Optical element for selective skew correction of light beam
JP2003337293A (en) Optical scanner and light source device and image forming apparatus
JP4295054B2 (en) Optical deflection apparatus, image display apparatus, optical writing apparatus, and image forming apparatus
JP2004045840A (en) Method and device for optical scanning, and image forming device
JP4783750B2 (en) Beam splitting element
JP5370760B2 (en) Light separation system and polarization separation device
JP2010020028A (en) Polarization switching element, polarization switching device, optical path switching device, optical scanner and image forming apparatus
JP2009109669A (en) Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus
JP5397633B2 (en) Optical scanning apparatus and image forming apparatus
JP2009258533A (en) Liquid crystal optical device, optical path switching device, optical scanner, and image forming apparatus
JP4197431B2 (en) Optical scanning apparatus and image forming apparatus
JP2009169048A (en) Liquid crystal optical element, image forming apparatus and method of manufacturing liquid crystal optical element
JP2004184527A (en) Optical scanning device and image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4992154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees