JP2009109669A - Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus - Google Patents

Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus Download PDF

Info

Publication number
JP2009109669A
JP2009109669A JP2007280794A JP2007280794A JP2009109669A JP 2009109669 A JP2009109669 A JP 2009109669A JP 2007280794 A JP2007280794 A JP 2007280794A JP 2007280794 A JP2007280794 A JP 2007280794A JP 2009109669 A JP2009109669 A JP 2009109669A
Authority
JP
Japan
Prior art keywords
liquid crystal
polarization
light
polarized light
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007280794A
Other languages
Japanese (ja)
Inventor
Kazuya Miyagaki
一也 宮垣
Masanori Kobayashi
正典 小林
Hiroyoshi Funato
広義 船戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007280794A priority Critical patent/JP2009109669A/en
Publication of JP2009109669A publication Critical patent/JP2009109669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Polarising Elements (AREA)
  • Laser Beam Printer (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarized light switching element which has a large tolerance to the shift of the wavelength of incident light and an installing error of the element, and can contribute to the improvement of productivity of an optical scanner. <P>SOLUTION: The polarized light switching element 10 is composed of: a λ/4 plate 11; and a liquid crystal element 12 which switches the alignment direction of liquid crystal molecules into a predetermined direction by switching the direction of electric field, both arranged in this order from the incident light side. The light which is made incident to the polarized light switching element 10 is vertically polarized as shown in Figure. The incident light which was linear polarized light P1 becomes clockwise circular polarized light P2 after passing through the λ/4 plate 11. The light further becomes horizontally polarized light P3 by being added with a phase shift of λ/4 when the liquid crystal molecules of the liquid crystal element 12 are oriented in 45° direction. Further, the clockwise circular polarized light P2 after passing through the λ/4 plate 11 becomes linear polarized light P5 which vertically oscillates when the direction of the electric field applied on the liquid crystal is switched and the alignment of the liquid crystal molecules is directed to -45° as shown in (b) of the Figure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、入射光の偏光をそのまま、または、回転させて出射させる偏光切替素子、該偏光切替素子を有する光束分割素子、該光束分割素子を用いた光走査装置(以下、「光書込み装置」ともいう)、該光走査装置を有する複写機、プリンタ、ファクシミリ、プロッタ、これらのうち少なくとも1つを備えた複合機等の画像形成装置に関する。   The present invention relates to a polarization switching element that emits the polarization of incident light as it is or after being rotated, a light beam splitting element having the polarization switching element, and an optical scanning device (hereinafter referred to as “optical writing device”) using the light beam splitting element. The present invention also relates to an image forming apparatus such as a copying machine, a printer, a facsimile machine, a plotter, and a multifunction machine including at least one of them.

特許文献1には、4つの光源、回転多面鏡、アナモフィック面を有する走査光学素子からなる光走査装置が開示されている。画像形成装置に用いたとき、1つの感光体に1つのレーザー光で書込みを行う場合には1つのレーザーが必要であるため、4つの感光体なら4つのレーザー光源が必要になる
特許文献2には、光束分割による1光源複数ドラム記録方式が開示されている。光源からのビーム数を2倍に分割する手段として、ハーフミラーを分割面に用いたプリズムが開示されている。この光束分割素子は入射光を常に2つの光束に分割する。この構成により、タンデム方式の画像形成装置において、光源数を減らしながらも、高速な画像出力を可能にしている。
Patent Document 1 discloses an optical scanning device including a scanning optical element having four light sources, a rotating polygon mirror, and an anamorphic surface. When used in an image forming apparatus, one laser is required for writing on one photoconductor with one laser beam, so four laser light sources are required for four photoconductors. Discloses a one-light source multiple-drum recording method using beam splitting. As a means for dividing the number of beams from the light source by a factor of 2, a prism using a half mirror as a dividing surface is disclosed. This beam splitting element always splits incident light into two beams. With this configuration, the tandem image forming apparatus enables high-speed image output while reducing the number of light sources.

特開2004−70110号公報JP 200470110 A 特開2005−92129号公報JP 2005-92129 A

特許文献2記載のパッシブタイプでは、常に半分のLD光が損失する。
チルト角22.5°(コーン角45°)を有する(表面安定化)FLCと、偏光依存性光路分離素子(PBS、または、偏光依存性ホログラム)とによるアクティブ型光束分割素子は光利用効率が向上するが、波長や入射角に敏感であり組付け許容幅が小さかった。
LD光源から出射される光はほぼ直線偏光であるが、その振動面はばらつく。LDケース内に設置されるLDチップの回転ずれや、LDケースを装置(光書込み装置)に組付ける際の回転ずれが発生する。さらには、2つのLDからなるLDユニットを光源とする光書込み装置ではLDユニットの回転調整によって2つのLD光の間隔を微調整するため、この調整によって偏光振動面の回転ずれが生じる。
In the passive type described in Patent Document 2, half of the LD light is always lost.
An active beam splitting element based on a FLC having a tilt angle of 22.5 ° (cone angle of 45 °) (surface stabilization) and a polarization-dependent optical path separation element (PBS or polarization-dependent hologram) has a light use efficiency. Although improved, it was sensitive to the wavelength and incident angle, and the allowable assembly width was small.
The light emitted from the LD light source is almost linearly polarized light, but its vibration plane varies. Rotation deviation of the LD chip installed in the LD case and rotation deviation when the LD case is assembled to the apparatus (optical writing apparatus) occur. Further, in an optical writing apparatus using an LD unit composed of two LDs as a light source, the interval between two LD lights is finely adjusted by adjusting the rotation of the LD unit.

多面反射鏡(ポリゴンミラー)が2段の構成を用いた光書込み装置で、LD出射光を多面反射鏡の2段に対応するように光束分割素子で2光束に分割する方式が提案されている。
また、この光束分割素子として回折光学素子(ホログラム)を用いる方式も提案されている。この回折光学素子を使った光束分割素子で、1枚目の回折光学素子に高回折効率の偏光依存性タイプが用いられる方式がある。この方式では、LDの振動面をλ/2板などによって45°回転させ、1枚目の回折光学素子の回折光と透過光の強度比を揃えることができる。しかし、上記のようにLD振動面の回転ずれが生じた場合、λ/2板によって変換された振動面は45°から外れる。このため、2つの光束強度比が1:1から外れる。
An optical writing device in which a multi-surface reflecting mirror (polygon mirror) uses a two-stage configuration, and a method is proposed in which light emitted from an LD is divided into two light beams by a light beam dividing element so as to correspond to the two stages of the multi-surface reflecting mirror. .
In addition, a method using a diffractive optical element (hologram) as the light beam splitting element has been proposed. As a light beam splitting element using this diffractive optical element, there is a system in which a polarization-dependent type with high diffraction efficiency is used for the first diffractive optical element. In this method, the vibration surface of the LD can be rotated by 45 ° with a λ / 2 plate or the like, and the intensity ratio of the diffracted light and transmitted light of the first diffractive optical element can be made uniform. However, when the rotational displacement of the LD vibration surface occurs as described above, the vibration surface converted by the λ / 2 plate deviates from 45 °. For this reason, the two luminous flux intensity ratios deviate from 1: 1.

具体例として、LD振動面が多面反射鏡によって光が偏向される平面内に垂直な場合を、回転ずれ無しとし、この状態で1枚目の回折光学素子による光束分割比が1と仮定する。
LD設置ずれにより5°回転ずれを起こすとλ/2板をさらに2.5°回転させると光束分割比1を維持できる。しかし、2つのLDからなるLDユニットの場合には2つのLD光の振動面が非平行であることが多い。λ/2板の遅相軸とそれぞれのLD振動面との角度差が22.5°から5°ずれていたとすると、光束分割比は1.19(またはその逆数の0.84)となる。
さらに、光束分割素子への入射角ずれや入射光の波長変動による波長ずれによって光束分割の光強度比が変換する問題がある。
As a specific example, when the LD vibration surface is perpendicular to the plane in which light is deflected by the polyhedral reflector, it is assumed that there is no rotational deviation, and the light beam splitting ratio by the first diffractive optical element is assumed to be 1 in this state.
If a 5 ° rotation shift occurs due to the LD installation shift, the beam splitting ratio of 1 can be maintained if the λ / 2 plate is further rotated 2.5 °. However, in the case of an LD unit composed of two LDs, the vibration surfaces of the two LD lights are often non-parallel. Assuming that the angle difference between the slow axis of the λ / 2 plate and each LD vibration surface is shifted from 22.5 ° to 5 °, the light beam splitting ratio is 1.19 (or its inverse 0.84).
Further, there is a problem that the light intensity ratio of the light beam splitting is converted by the wavelength shift due to the incident angle shift to the light beam splitting element or the wavelength variation of the incident light.

本発明は、入射光の波長ずれや素子の設置誤差に対する許容度が大きく、光走査装置の生産性の向上に寄与できる偏光切替素子、該偏光切替素子を有する光束分割素子、該光束分割素子を有する光走査装置、該光走査装置を有する画像形成装置の提供を、その主な目的とする。   The present invention has a large tolerance with respect to a wavelength shift of incident light and an installation error of an element, and can contribute to improvement of productivity of an optical scanning device, a light beam splitting element having the polarization switching element, and the light beam splitting element. The main object of the present invention is to provide an optical scanning device having the optical scanning device and an image forming apparatus having the optical scanning device.

上記目的を達成するために、請求項1記載の発明では、印加電圧の極性に応じて右回り円偏光と左回り円偏光とに切り替えが可能な液晶素子と、λ/4板と、からなり、入射光を異なる偏光方位に切り替えることを特徴とする。
請求項2記載の発明では、請求項1記載の偏光切替素子において、前記液晶素子は、一対の透明基板と、少なくとも一方の透明基板に設けられた配向膜と、前記配向膜によりホモジニアス配向をなすキラルスメクチックC相よりなる液晶層と、前記透明基板の法線方向に電界の向きを生じさせる電界発生手段とからなり、前記液晶層のチルト角が45°(コーン角が90°)であることを特徴とする。
ここでは特に、切替速度の高速化を目的とする。
In order to achieve the above object, the invention according to claim 1 comprises a liquid crystal element capable of switching between clockwise circularly polarized light and counterclockwise circularly polarized light according to the polarity of the applied voltage, and a λ / 4 plate. The incident light is switched to a different polarization direction.
According to a second aspect of the present invention, in the polarization switching element according to the first aspect, the liquid crystal element has a pair of transparent substrates, an alignment film provided on at least one of the transparent substrates, and homogeneous alignment by the alignment film. It comprises a liquid crystal layer comprising a chiral smectic C phase and an electric field generating means for generating an electric field direction in the normal direction of the transparent substrate, and the liquid crystal layer has a tilt angle of 45 ° (cone angle of 90 °). It is characterized by.
In particular, the purpose is to increase the switching speed.

請求項3記載の発明では、請求項1記載の偏光切替素子において、前記液晶素子はネマチック液晶を用いた垂直配向型液晶素子が二段構成で配置され、1段目と2段目の液晶分子の透光性基板へ投影した方位θ1、θ2が、1段目に入射する偏光面に対して、
θ1=0°、θ2=45°
と、
θ1=45°、θ2=0°
とを順次繰り返すことを特徴とする。
According to a third aspect of the present invention, in the polarization switching element according to the first aspect, a vertical alignment type liquid crystal element using a nematic liquid crystal is arranged in a two-stage configuration, and the liquid crystal molecules in the first and second stages are arranged. Azimuth θ1, θ2 projected onto the translucent substrate of
θ1 = 0 °, θ2 = 45 °
When,
θ1 = 45 °, θ2 = 0 °
Are sequentially repeated.

請求項4記載の発明では、光束分割素子において、請求項1〜3のいずれか1つに記載の偏光切替素子と、偏光分離手段とで構成されたことを特徴とする。
請求項5記載の発明では、請求項4記載の光束分割素子において、前記偏光分離手段が偏光ビームスプリッタと偏向プリズムとからなることを特徴とする。
The invention according to claim 4 is characterized in that the light beam splitting element comprises the polarization switching element according to any one of claims 1 to 3 and polarization separation means.
According to a fifth aspect of the present invention, in the light beam splitting element according to the fourth aspect, the polarization separation means includes a polarization beam splitter and a deflection prism.

請求項6記載の発明では、請求項5記載の光束分割素子において、前記偏光ビームスプリッタが偏光依存性ホログラムであることを特徴とする。
請求項7記載の発明では、光走査装置において、請求項4〜6のいずれか1つに記載の光束分割素子と、多段の回転多面鏡と、少なくともfθレンズを用いた結像光学系とからなることを特徴とする。
ここでは特に、良好なホワイトバランスを得ることを目的とする。
請求項8記載の発明では、画像形成装置において、請求項7記載の光走査装置を有することを特徴とする。
According to a sixth aspect of the present invention, in the light beam splitting element according to the fifth aspect, the polarization beam splitter is a polarization-dependent hologram.
According to a seventh aspect of the present invention, in the optical scanning device, the light beam splitting element according to any one of the fourth to sixth aspects, a multistage rotary polygon mirror, and an imaging optical system using at least an fθ lens. It is characterized by becoming.
In particular, the object here is to obtain a good white balance.
According to an eighth aspect of the present invention, the image forming apparatus includes the optical scanning device according to the seventh aspect.

請求項1記載の発明によれば、±λ/4の位相差を与える液晶素子とλ/4板との組合せによって、入射光の波長ずれや素子の設置ずれに対する許容が広い偏光切替素子を実現でき、光走査装置の生産性の向上に寄与できる。
請求項2記載の発明によれば、上記効果に加えて、強誘電性液晶を用いるため、応答速度の速い偏光切替素子を実現できる。
請求項3記載の発明によれば、ネマチック液晶を用いることで液晶素子の作製容易化を図ることができる。
請求項4、5、6記載の発明によれば、上記の偏光切替素子と偏光分離手段とを用いることによって、入射光の波長ずれや素子の設置ずれに対する許容が広い光束分割素子を実現でき、光走査装置の生産性の向上に寄与できる。
請求項7記載の発明によれば、上記光束分割素子を搭載することによって、入射光の波長ずれや素子の設置ずれに対する許容が広く、ホワイトバランスの良好な光走査装置を実現できる。
According to the first aspect of the present invention, a combination of a liquid crystal element that gives a phase difference of ± λ / 4 and a λ / 4 plate realizes a polarization switching element that has a wide tolerance for wavelength shift of incident light and element shift. This can contribute to the improvement of the productivity of the optical scanning device.
According to the second aspect of the invention, in addition to the above effect, a ferroelectric liquid crystal is used, so that a polarization switching element with a high response speed can be realized.
According to the invention described in claim 3, it is possible to facilitate the production of the liquid crystal element by using the nematic liquid crystal.
According to the inventions of the fourth, fifth and sixth aspects, by using the polarization switching element and the polarization separation means, it is possible to realize a light beam splitting element having a wide tolerance with respect to a wavelength shift of incident light and an installation shift of the element, This can contribute to the improvement of the productivity of the optical scanning device.
According to the seventh aspect of the present invention, by mounting the light beam splitting element, it is possible to realize an optical scanning device having a wide tolerance with respect to a wavelength shift of incident light and a shift of the element installation and a good white balance.

以下、本発明の実施形態を、図を参照して説明する。
まず、図1乃至図4に基づいて第1の実施形態を説明する。図1は本実施形態に係る偏光切替素子10の機能を説明するための図である。偏光切替素子10は、入射光側からλ/4板11と、図示しない電界発生手段と、該電界発生手段による印加電圧の極性(電界の向き)の切り替えによって液晶分子の配向方向を所定方向に切り替えられる液晶素子12とで構成される。
λ/4板11は遅相軸が偏光切替素子10の出口側から見て右回りに45°傾いた配置をとる。液晶素子12は一軸異方性を有する液晶(例えばネマチック液晶)が印加電界によって45°(同図(a))もしくは−45°(同図(b))の方位を向くように制御される。
また、液晶層のリタデーションはλ/4となるように、液晶の常光屈折率と異常光屈折率の差Δnと、液晶層厚さdの積は、
Δnd=λ/4(λは入射光の波長)
とする。
Embodiments of the present invention will be described below with reference to the drawings.
First, a first embodiment will be described with reference to FIGS. FIG. 1 is a diagram for explaining the function of the polarization switching element 10 according to this embodiment. The polarization switching element 10 changes the alignment direction of the liquid crystal molecules to a predetermined direction by switching the λ / 4 plate 11 from the incident light side, the electric field generating means (not shown), and the polarity of the applied voltage (electric field direction) by the electric field generating means. It is comprised with the liquid crystal element 12 which can be switched.
The λ / 4 plate 11 is arranged such that the slow axis is inclined 45 ° clockwise as viewed from the exit side of the polarization switching element 10. The liquid crystal element 12 is controlled so that a liquid crystal having uniaxial anisotropy (for example, nematic liquid crystal) is oriented at 45 ° (FIG. 5A) or −45 ° (FIG. 5B) by an applied electric field.
Further, the product of the difference Δn between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal and the liquid crystal layer thickness d so that the retardation of the liquid crystal layer is λ / 4,
Δnd = λ / 4 (λ is the wavelength of incident light)
And

偏光切替素子10に入射される光は図の上下方向に偏光している。直線偏光P1であった入射光はλ/4板11を通過すると右回り円偏光P2となる。液晶素子12の液晶分子が45°方位を向いているとき、さらにλ/4の位相差が加わり水平方向の偏光P3となる。
次に、液晶への印加電界の向きが切り替わり、液晶分子の方位が同図(b)のように−45°方位を向いたときにはλ/4板11透過後の右回り円偏光P2は上下方向に振動する直線偏光P5となる。
したがって、液晶素子12への印加電界によって入射光が90°回転したり、偏光を維持して(回転せずに)出射させることができる。
The light incident on the polarization switching element 10 is polarized in the vertical direction in the figure. Incident light that has been linearly polarized light P1 passes through the λ / 4 plate 11 and becomes clockwise circularly polarized light P2. When the liquid crystal molecules of the liquid crystal element 12 are oriented in the 45 ° azimuth, a phase difference of λ / 4 is further added to become the horizontally polarized light P3.
Next, when the direction of the electric field applied to the liquid crystal is switched and the orientation of the liquid crystal molecules is oriented at −45 ° as shown in FIG. 5B, the clockwise circular polarized light P2 transmitted through the λ / 4 plate 11 is in the vertical direction. The linearly polarized light P5 oscillates at the same time.
Therefore, the incident light can be rotated by 90 ° by the electric field applied to the liquid crystal element 12 or can be emitted while maintaining the polarization (without rotating).

本実施形態の効果について以下に詳しく述べる。
図2は比較のために位相差λ/2を与える液晶素子21による偏光切替素子を図示している。液晶のΔndはλ/2とする。例えば、使用する波長を650nmとし、メルク社の液晶ZLI−1840を使用する。650nmでのΔnは0.14であるため液晶層の厚さは2.32μmとすることが望ましい。
XYZ座標系を図2に示すようにとり、波長ずれや入射角が法線方向からずれた影響を調べた。偏光切替素子に対して入射光が入射角0.3°、方位角0°(もしくは45°)で入射する場合を考える。
波長は設計値に対して5nmずれた場合を想定し655nmであるとする。なお、方位角はXY面でX軸方向を0°とし、z軸に対して右回りを正とする。本実施形態(図1)の場合と比較例(図2)の場合とで、出射光を水平方向にしたいとき(a)のx方向光強度Ix、垂直方向に切り替えたときの(b)y方向光強度Iyを計算し、その結果を表1に示す。なお、入射光強度を1.0とし、液晶層を挟持するためのガラス基板は計算上、無視するが、液晶層と空気との屈折率差によるフレネル損失(反射による光量損失)は考慮した。
The effect of this embodiment will be described in detail below.
FIG. 2 shows a polarization switching element by the liquid crystal element 21 giving a phase difference λ / 2 for comparison. The Δnd of the liquid crystal is λ / 2. For example, the wavelength used is 650 nm, and a liquid crystal ZLI-1840 manufactured by Merck is used. Since Δn at 650 nm is 0.14, the thickness of the liquid crystal layer is preferably 2.32 μm.
The XYZ coordinate system was taken as shown in FIG. 2, and the effects of wavelength shift and incident angle shift from the normal direction were examined. Consider a case where incident light is incident on a polarization switching element at an incident angle of 0.3 ° and an azimuth angle of 0 ° (or 45 °).
The wavelength is assumed to be 655 nm assuming a case where the wavelength is shifted by 5 nm from the design value. The azimuth angle is 0 ° in the X-axis direction on the XY plane and positive in the clockwise direction with respect to the z-axis. In the case of the present embodiment (FIG. 1) and the comparative example (FIG. 2), when the emitted light is desired to be in the horizontal direction, the x-direction light intensity Ix in (a), and (b) y in the case of switching in the vertical direction. The directional light intensity Iy was calculated, and the result is shown in Table 1. In addition, although the incident light intensity was set to 1.0 and the glass substrate for sandwiching the liquid crystal layer was ignored in the calculation, Fresnel loss due to the difference in refractive index between the liquid crystal layer and air (light loss due to reflection) was considered.

Figure 2009109669
Figure 2009109669

表1から、入射光方位角度に関わらず、偏光を切り替えた時の出射光強度は比較例よりも本実施例(本実施形態)のほうが変化が小さい。すなわち、本発明のほうが従来技術(位相差λ/2を与える偏光切替素子)よりも波長変動や素子設置許容が広いことを表している。
なお、図1において、λ/4板11と液晶素子12の順番を逆に設置、すなわち、入射光が液晶素子12とλ/4板11の順に通過するように設置しても良い。
さらに、ネマチック液晶に限定されることは無く、ホモジニアス配向をなすキラルスメクチックC相よりなる液晶で、チルト角が45°(すなわちコーン角が90°)のタイプを用いることができる。この場合、ネマチック液晶に比べて応答速度が速くできるため、偏光切り替えの速度を向上させることができる。
From Table 1, regardless of the incident light azimuth angle, the intensity of the emitted light when the polarization is switched is smaller in this example (this embodiment) than in the comparative example. That is, the present invention shows that the wavelength variation and the element installation allowance are wider than those of the prior art (polarization switching element that gives a phase difference λ / 2).
In FIG. 1, the order of the λ / 4 plate 11 and the liquid crystal element 12 may be reversed, that is, the incident light may be installed so as to pass through the liquid crystal element 12 and the λ / 4 plate 11 in this order.
Further, the liquid crystal is not limited to nematic liquid crystal, and may be a liquid crystal composed of a chiral smectic C phase having homogeneous orientation and having a tilt angle of 45 ° (that is, a cone angle of 90 °). In this case, since the response speed can be increased as compared with the nematic liquid crystal, the polarization switching speed can be improved.

コーン角90°キラルスメクチックC相よりなる液晶に関して、以下に示す。
図3は強誘電性液晶のスイッチングを説明する模式図である。一般にキラルスメクチックC相よりなる強誘電性液晶層はらせん構造を有しているが、そのらせんピッチより薄いセルギャップd間に挟持すると、らせん構造がほどけ、表面安定化強誘電性液晶層(SSFLC)となる。
SSFLCは図4に示すように、液晶分子がスメクチック層法線に対して傾き角−θ(ここでは、θ=45°)だけ傾いて安定する配向状態と、逆方向にθだけ傾いて安定する配向状態とが混在する状態が実現できる。
図3において、Wはスメクチック相の層法線、nは液晶分子の長軸方向(ダイレクタ)、白丸内に黒丸の記号と、白丸内に+の記号は自発分極の方向を表す。紙面に垂直な方向に電界の向きが生じるように電圧を印加することにより、液晶分子とその自発分極の向きを一様に揃えることができ、その状態を保持しておくことができる。そして、印加する電圧の極性を切り替えることによって、2つの状態間のスイッチングを行うことができる。
A liquid crystal composed of a chiral smectic C phase having a cone angle of 90 ° is shown below.
FIG. 3 is a schematic diagram for explaining the switching of the ferroelectric liquid crystal. In general, a ferroelectric liquid crystal layer composed of a chiral smectic C phase has a helical structure. However, when sandwiched between cell gaps d thinner than the helical pitch, the helical structure is unwound and a surface-stabilized ferroelectric liquid crystal layer (SSFLC). )
As shown in FIG. 4, the SSFLC has an alignment state in which liquid crystal molecules are inclined and stabilized with respect to the smectic layer normal by an inclination angle −θ (here, θ = 45 °), and is stabilized by being inclined by θ in the opposite direction. A state in which the alignment state is mixed can be realized.
In FIG. 3, W is the layer normal of the smectic phase, n is the major axis direction of the liquid crystal molecules (director), the black circle symbol in the white circle, and the + symbol in the white circle indicate the direction of spontaneous polarization. By applying a voltage so that the direction of the electric field is generated in a direction perpendicular to the paper surface, the directions of the liquid crystal molecules and the spontaneous polarization can be made uniform, and the state can be maintained. And switching between two states can be performed by switching the polarity of the voltage to apply.

すなわち、図3において−Eの電界を形成させると、スメクチック相の層法線方向Wから−θだけ傾いた配向状態1に、+Eの電界を形成させると、スメクチック相の層法線方向Wからθだけ傾いた配向状態2に安定化することができる。すなわち、θ=45°とする場合、配向状態1から90°傾いた配向状態2に安定させることができる。
液晶層の厚さ(セルギャップ)dは入射光の波長λ(例えば650nmまたは780nm)と液晶材料の650nmまたは780nmにおける屈折率異方性Δnによって決まり、Δn×d=λ/4を満たすように決定する。
ここで、入射偏光方向は液晶層における液晶分子配向の2つの配向状態の2等分角となるように調整配置する必要がある。調整法としては、位相板の配置により偏光方向を調整することが可能である。また、ラビング等の配向処理により、液晶分子の初期配向を設定する、または液晶素子自体を回転調整しても可能である。
That is, when an electric field of −E is formed in FIG. 3, an electric field of + E is formed in the orientation state 1 inclined by −θ from the layer normal direction W of the smectic phase, and from the layer normal direction W of the smectic phase. It is possible to stabilize the alignment state 2 tilted by θ. That is, when θ = 45 °, the alignment state 2 tilted by 90 ° from the alignment state 1 can be stabilized.
The thickness (cell gap) d of the liquid crystal layer is determined by the wavelength λ of incident light (for example, 650 nm or 780 nm) and the refractive index anisotropy Δn of the liquid crystal material at 650 nm or 780 nm, and satisfies Δn × d = λ / 4. decide.
Here, the incident polarization direction needs to be adjusted and arranged so as to be a bisector of the two alignment states of the liquid crystal molecules in the liquid crystal layer. As an adjustment method, it is possible to adjust the polarization direction by arranging the phase plate. It is also possible to set the initial alignment of the liquid crystal molecules or to adjust the rotation of the liquid crystal element itself by an alignment process such as rubbing.

このような構成とすることで図3に示すように、透明電極間に−Eの電界を形成した場合、液晶分子はスメクチック相の層法線方向Wから−θだけ傾いた配向状態(配向状態1)をとり、入射偏光は、そのままの偏光方向を保持したまま出射する。一方、透明電極に+Eの電界を形成した場合、液晶分子はスメクチック相の層法線方向Wから+θだけ傾いた配向状態、(配向状態2)をとる。
この場合、ここではθ=45°としているので、入射偏光に対して、液晶分子長軸方向(ダイレクタ)は2θ=90°傾いて配向する。その結果、λ/4板条件が成立し、入射直線偏光が右回り円偏光もしくは左回り円偏光となる。
すなわち、電界制御により偏光切り替えが実現でき、強誘電性液晶を用いているため、偏光切り替えに有する応答速度は数十μsec〜数百μsecと高速応答となる。
With this configuration, as shown in FIG. 3, when an electric field of −E is formed between the transparent electrodes, the liquid crystal molecules are aligned in an orientation state (alignment state) inclined by −θ from the layer normal direction W of the smectic phase. 1), the incident polarized light is emitted while maintaining the polarization direction as it is. On the other hand, when a + E electric field is formed on the transparent electrode, the liquid crystal molecules take an alignment state (alignment state 2) inclined by + θ from the layer normal direction W of the smectic phase.
In this case, since θ = 45 °, the liquid crystal molecule major axis direction (director) is tilted by 2θ = 90 ° with respect to the incident polarized light. As a result, the λ / 4 plate condition is satisfied, and the incident linearly polarized light becomes clockwise circularly polarized light or counterclockwise circularly polarized light.
That is, polarization switching can be realized by electric field control, and the ferroelectric liquid crystal is used. Therefore, the response speed for polarization switching is a high-speed response of several tens to several hundreds of μsec.

ここで、強誘電性液晶素子を用いた偏光切り替え手段(偏光切替素子)の作製および動作確認について説明する。
厚さ1.1mmの無アルカリガラス基板にITO電極(膜厚1500Å)を成膜した。基板電極面に配向膜(AL3046−R31 JSR社製)をスピンコートにより約800Åの厚さに形成し、その基板表面を、ラビング法により配向処理を行った。
前述したガラス基板を2枚用い、電極面を対向させて、基板間が約1μmになるようにビーズを混入した接着剤にて貼り合わせた。基板を90度に加熱した状態で2枚の基板間に液晶層として、強誘電性液晶(クラリアント製R5002 Δn=0.17、2θ=90度)を毛管法で注入し、70℃から55℃までを10V/μmの直流電圧を印加した状態で冷却後に封止し、配向状態を光学顕微鏡により観察したところ、ほぼ均一な配向状態を確認した。この液晶素子に周波数100Hz、±10V/μmの矩形波信号を入力し、クロスニコル下での明暗のスイッチング速度を測定した(液晶素子特性評価装置 大塚電子製)ところ、室温(25℃)付近における応答速度は約1msec、であり、一般的な液晶素子より1桁も高速応答性を示した。
Here, the fabrication and operation check of the polarization switching means (polarization switching element) using the ferroelectric liquid crystal element will be described.
An ITO electrode (thickness: 1500 mm) was formed on a non-alkali glass substrate having a thickness of 1.1 mm. An alignment film (AL3046-R31 manufactured by JSR) was formed on the surface of the substrate electrode by spin coating to a thickness of about 800 mm, and the substrate surface was subjected to alignment treatment by rubbing.
Two glass substrates described above were used, and the electrode surfaces were opposed to each other, and bonded together with an adhesive mixed with beads so that the distance between the substrates was about 1 μm. A ferroelectric liquid crystal (Clariant R5002 Δn = 0.17, 2θ = 90 degrees) is injected as a liquid crystal layer between the two substrates in a state where the substrate is heated to 90 degrees by a capillary method. Was sealed after cooling in a state where a DC voltage of 10 V / μm was applied, and the alignment state was observed with an optical microscope. As a result, a substantially uniform alignment state was confirmed. A square wave signal with a frequency of 100 Hz and ± 10 V / μm was input to this liquid crystal element, and the switching speed of light and dark under crossed Nicols was measured (liquid crystal element characteristic evaluation device, manufactured by Otsuka Electronics). The response speed is about 1 msec, which is one order of magnitude faster than a general liquid crystal element.

またここで、電界制御による偏光切り替え動作に関して、作製した液晶素子とλ/4板を用いて、直線偏光を入射させたときの出射の偏光方向を評価した。
光源は赤色LD(波長650nm)を用いた。まず、素子電極間に−10V/μmの電界を印加し入射偏光(垂直方向)が90°回転して出力されるようにλ/4板(図1の11に相当)を回転調整した。
次に、素子電極間に極性の異なる−10V/μmの電界を印加したところ、入射時と出射時の偏光方向は略平行方向となった。すなわち、電界印加の制御により液晶素子のリタデーションを+λ/4と−λ/4に切り替えることができた。
Further, here, regarding the polarization switching operation by electric field control, the polarization direction of emission when linearly polarized light was incident was evaluated using the manufactured liquid crystal element and the λ / 4 plate.
A red LD (wavelength 650 nm) was used as a light source. First, an electric field of −10 V / μm was applied between the device electrodes, and the λ / 4 plate (corresponding to 11 in FIG. 1) was rotated and adjusted so that incident polarized light (vertical direction) was rotated 90 ° and output.
Next, when an electric field of −10 V / μm having different polarities was applied between the element electrodes, the polarization directions at the time of incidence and at the time of emission became substantially parallel. That is, the retardation of the liquid crystal element could be switched between + λ / 4 and −λ / 4 by controlling the electric field application.

図5及び図6に基づいて第2の実施形態を説明する。
本実施形態に係る偏光切替素子30は、第一の液晶素子31と第二の液晶素子32とλ/4板11とから構成される。
両液晶素子31、32に垂直配向型液晶素子を用いることができる。液晶素子31は2枚のITO成膜付ガラス基板にネマチック液晶を挟んだ構造をとる。液晶層とガラス基板との間には配向膜があり、ラビング処理によって所定方向に液晶を配向させる。
ラビング方位は第一の液晶素子31では45°方向に、第二の液晶素子32では−45°方向とする。両ITOへの電圧差が低いときには液晶分子はガラス基板の法線方向から傾き、かつ、ラビング処理による所定方位を向く。
電圧差を大きくとると液晶分子は法線方向を向くようになる。図6(a)に示すように、第一の状態T1では第一の液晶31は電圧差を小さく(VL)、第二の液晶32は電圧差を大きく(VH)する。
The second embodiment will be described with reference to FIGS.
The polarization switching element 30 according to this embodiment includes a first liquid crystal element 31, a second liquid crystal element 32, and a λ / 4 plate 11.
Both the liquid crystal elements 31 and 32 can be vertically aligned liquid crystal elements. The liquid crystal element 31 has a structure in which a nematic liquid crystal is sandwiched between two glass substrates with an ITO film. There is an alignment film between the liquid crystal layer and the glass substrate, and the liquid crystal is aligned in a predetermined direction by rubbing treatment.
The rubbing orientation is 45 ° in the first liquid crystal element 31 and −45 ° in the second liquid crystal element 32. When the voltage difference between the two ITOs is low, the liquid crystal molecules are inclined from the normal direction of the glass substrate and are directed in a predetermined direction by rubbing treatment.
When the voltage difference is increased, the liquid crystal molecules are oriented in the normal direction. As shown in FIG. 6A, in the first state T1, the first liquid crystal 31 decreases the voltage difference (VL), and the second liquid crystal 32 increases the voltage difference (VH).

第一の液晶素子31に直線偏光が入射されると右回り円偏光となり、第二の液晶32では位相差が発生しないため右回り円偏光のまま出射される。次のλ/4板11で水平方向の直線偏光に変換される。
一方、図6(b)に示すように、第二の状態T2では電圧差のかけ方を逆転させる。このため、第一の液晶31では入射光は直線偏光を維持し、第二の液晶32で左回り円偏光となる。次のλ/4板11でもとの垂直方向の直線偏光に戻される。
本実施形態では液晶ライトバルブに使われる液晶を流用でき、また、強誘電性液晶に比べてネマチック液晶の配向の難易度は低いため、生産性に優れる。
When linearly polarized light is incident on the first liquid crystal element 31, it becomes clockwise circularly polarized light. In the second liquid crystal 32, no phase difference is generated, so that it is emitted as clockwise circularly polarized light. The next λ / 4 plate 11 converts it into linearly polarized light in the horizontal direction.
On the other hand, as shown in FIG. 6B, in the second state T2, the method of applying the voltage difference is reversed. For this reason, incident light maintains linearly polarized light in the first liquid crystal 31 and becomes counterclockwise circularly polarized light in the second liquid crystal 32. The next λ / 4 plate 11 returns to the original linearly polarized light.
In the present embodiment, the liquid crystal used for the liquid crystal light valve can be used, and the degree of difficulty in aligning the nematic liquid crystal is lower than that of the ferroelectric liquid crystal, so that the productivity is excellent.

図7に基づいて第3の実施形態を説明する。
図7は上述した偏光切替素子を用いた光束分割素子50を説明するための図である。
図7(a)に示すように、光束分割素子50Aは、上述の偏光切替素子10または30と、偏光分離手段51と、偏向プリズム52で構成される。
偏光分離手段51としては、偏光ビームスプリッタが利用できる。偏光切替素子からの出射光の偏光が紙面に平行ならビームは偏光ビームスプリッタ51を透過する。
一方、偏光切替素子からの出射光の偏光が紙面に垂直なら、ビームは偏光ビームスプリッタ51で反射し、偏向プリズム52で全反射して出射される。本実施形態では光束を上下に切り替えるために偏向プリズム52が用いられる。
A third embodiment will be described with reference to FIG.
FIG. 7 is a diagram for explaining a light beam splitting element 50 using the above-described polarization switching element.
As shown in FIG. 7A, the light beam splitting element 50A includes the above-described polarization switching element 10 or 30, the polarization separating means 51, and the deflecting prism 52.
As the polarization separation means 51, a polarization beam splitter can be used. If the polarization of the light emitted from the polarization switching element is parallel to the paper surface, the beam passes through the polarization beam splitter 51.
On the other hand, if the polarization of the light emitted from the polarization switching element is perpendicular to the paper surface, the beam is reflected by the polarization beam splitter 51 and totally reflected by the deflecting prism 52 and emitted. In this embodiment, a deflection prism 52 is used to switch the light beam up and down.

図7(b)に示すように、偏向プリズム52を偏光ビームスプリッタ53とした光束分割素子50Bにおいても同じ効果が得られる。
さらに、図7(c)に示すように、偏光分離手段と偏向プリズムとして、それぞれ偏光依存性ホログラム55、56を使用した光束分割素子50Cとしても良い。
偏光依存性ホログラムとしてはブレーズ化ホログラムや、深溝の表面レリーフホログラム、ホログラフィックPDLC(ポリマー分散型液晶)を用いることができる。
As shown in FIG. 7B, the same effect can be obtained with a light beam splitting element 50 </ b> B in which the deflecting prism 52 is a polarizing beam splitter 53.
Further, as shown in FIG. 7C, a light beam splitting element 50C using polarization-dependent holograms 55 and 56 as the polarization separating means and the deflecting prism may be used.
As the polarization-dependent hologram, a blazed hologram, a deep groove surface relief hologram, or a holographic PDLC (polymer dispersed liquid crystal) can be used.

図8に基づいて第4の実施形態を説明する。
図8は上述の偏光切替素子および光束分割素子を用いた光走査装置60を説明するための図である。
光源61と、光束分割素子50と、その後にシリンドリカルレンズ62、2段ポリゴンミラー(多段の回転多面鏡)63、結像光学系65a、65bとを配置することによって光走査装置60を構築できる。
光源61はLDが2つからなるLDユニットであり、光束分割素子50は上述の素子50Aまたは50Bまたは50Cを用いる。結像光学系65は少なくともfθレンズ64を用いる。図8ではfθレンズ64のほかに補正用レンズや折り返しミラーを配置している。
2つのビームをある時間帯は光走査66aのラインへ、残りの時間帯は光走査66bのラインへの光走査を行うことができる。
図示しないが、LDユニットから光束分割素子50の後のシリンドリカルレンズ62までの前段の光学系、および、fθレンズ64を含む結像光学系65のそれぞれを2セットと、2段ポリゴンミラー63を用いることによって、2ビームで4箇所の被走査面へ書き込む光書込み装置を構築できる。
4個所の被走査面は4色(シアン、イエロー、マゼンダ、黒)に対応する感光体であり、本発明を利用したカラープリンタを構築することができる。
A fourth embodiment will be described with reference to FIG.
FIG. 8 is a diagram for explaining an optical scanning device 60 using the above-described polarization switching element and light beam splitting element.
The optical scanning device 60 can be constructed by arranging the light source 61, the light beam splitter 50, the cylindrical lens 62, the two-stage polygon mirror (multistage rotary polygon mirror) 63, and the imaging optical systems 65a and 65b.
The light source 61 is an LD unit including two LDs, and the light beam splitting element 50 uses the above-described element 50A, 50B, or 50C. The imaging optical system 65 uses at least the fθ lens 64. In FIG. 8, in addition to the fθ lens 64, a correction lens and a folding mirror are arranged.
The two beams can be optically scanned to the line of the optical scan 66a in a certain time zone, and to the line of the optical scan 66b in the remaining time zone.
Although not shown, two sets of each of the optical system in the front stage from the LD unit to the cylindrical lens 62 after the light beam splitting element 50 and the imaging optical system 65 including the fθ lens 64 are used, and the two-stage polygon mirror 63 is used. Thus, it is possible to construct an optical writing device for writing to four scanned surfaces with two beams.
The four scanned surfaces are photoconductors corresponding to four colors (cyan, yellow, magenta, and black), and a color printer using the present invention can be constructed.

図9に基づいて、上述した光走査装置60を用いたタンデム型のカラー画像形成装置(第5の実施形態)を説明する。
カラー画像形成装置は、転写ベルト70の移動方向に沿って並置された4つの感光体71Y、71C、71M、71Kを有している。イエロー画像形成用の感光体71Yの周りには、その矢印で示す回転方向において順に、帯電器72Y、現像器73Y、転写手段74Y、クリーニング手段75Yが配置されている。他の色についても同様の構成を有しており、色別の欧文字(C:シアン、M:マゼンダ、K:ブラック)を付して区別し、説明は省略する。
帯電器72は、感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。帯電器72と現像器73の間において感光体表面に光走査装置60によりビームが照射され、感光体71に静電潜像が形成されるようになっている。
そして、静電潜像に基づき、現像器73により感光体面上にトナー像が形成される。転写手段74により、転写ベルト70で搬送される記録媒体(転写紙)に各色の転写トナー像が順次転写され、最終的に定着手段76により重ね合わせ画像が転写紙に定着される。
Based on FIG. 9, a tandem type color image forming apparatus (fifth embodiment) using the above-described optical scanning device 60 will be described.
The color image forming apparatus has four photoconductors 71Y, 71C, 71M, 71K juxtaposed along the moving direction of the transfer belt 70. Around the photoreceptor 71Y for yellow image formation, a charger 72Y, a developing device 73Y, a transfer unit 74Y, and a cleaning unit 75Y are sequentially arranged in the rotation direction indicated by the arrow. Other colors also have the same configuration, and are distinguished by adding European letters (C: cyan, M: magenta, K: black) for each color, and a description thereof is omitted.
The charger 72 is a charging member that constitutes a charging device for uniformly charging the surface of the photoreceptor. An optical latent image is formed on the photosensitive member 71 by irradiating the photosensitive member surface with a beam between the charger 72 and the developing unit 73 by the optical scanning device 60.
Based on the electrostatic latent image, a toner image is formed on the surface of the photoreceptor by the developing device 73. The transfer unit 74 sequentially transfers the transfer toner images of the respective colors onto the recording medium (transfer sheet) conveyed by the transfer belt 70, and finally the superimposed image is fixed on the transfer sheet by the fixing unit 76.

このように、タンデム方式の画像形成装置において、光源数を減らしながらも、高速な画像出力を可能にしており、かつ、本発明での偏光切替素子を用いることで、光利用効率が高くて偏光を切り替えた時の強度変化を小さくすることができる。
すなわち、各感光体への書込み強度に差異を発生させることが無いため、カラーバランスの良い画像が得られる。
As described above, in the tandem image forming apparatus, high-speed image output is possible while reducing the number of light sources, and the use of the polarization switching element according to the present invention provides high light utilization efficiency and polarization. It is possible to reduce the intensity change when switching the.
That is, since there is no difference in the writing intensity to each photoconductor, an image with good color balance can be obtained.

本発明の第1の実施形態に係る偏光切替素子の要部斜視図である。It is a principal part perspective view of the polarization switching element which concerns on the 1st Embodiment of this invention. 比較例に係る偏光切替素子の要部斜視図である。It is a principal part perspective view of the polarization switching element which concerns on a comparative example. 強誘電性液晶のスイッチングを説明するための模式図である。It is a schematic diagram for demonstrating switching of a ferroelectric liquid crystal. 表面安定化強誘電性液晶層を用いた偏光切替素子の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the polarization switching element using the surface stabilization ferroelectric liquid crystal layer. 第2の実施形態に係る偏光切替素子の概要構成図である。It is a schematic block diagram of the polarization switching element which concerns on 2nd Embodiment. 偏光切替素子の動作を示す図である。It is a figure which shows operation | movement of a polarization switching element. 第3の実施形態に係る光束分割素子の概要構成図である。It is a schematic block diagram of the light beam splitting element which concerns on 3rd Embodiment. 第4の実施形態に係る光走査装置の概要斜視図である。It is a general | schematic perspective view of the optical scanning device which concerns on 4th Embodiment. 第5の実施形態に係る画像形成装置の概要構成図である。It is a schematic block diagram of the image forming apparatus which concerns on 5th Embodiment.

符号の説明Explanation of symbols

10、30 偏光切替素子
11 λ/4板
12 液晶素子
50A、50B、50C 光束分割素子
51、53 偏光ビームスプリッタ
52 偏向プリズム
55、56 偏光依存性ホログラム
60 光走査装置
63 回転多面鏡
64 fθレンズ
DESCRIPTION OF SYMBOLS 10, 30 Polarization switching element 11 λ / 4 plate 12 Liquid crystal element 50A, 50B, 50C Light beam splitting element 51, 53 Polarizing beam splitter 52 Deflection prism 55, 56 Polarization-dependent hologram 60 Optical scanning device 63 Rotating polygon mirror 64 fθ lens

Claims (8)

印加電圧の極性に応じて右回り円偏光と左回り円偏光とに切り替えが可能な液晶素子と、λ/4板と、からなり、入射光を異なる偏光方位に切り替えることを特徴とする偏光切替素子。   Polarization switching characterized by comprising a liquid crystal element capable of switching between right-handed circularly polarized light and left-handed circularly polarized light according to the polarity of the applied voltage and a λ / 4 plate, and switching incident light to different polarization directions element. 請求項1記載の偏光切替素子において、
前記液晶素子は、一対の透明基板と、少なくとも一方の透明基板に設けられた配向膜と、前記配向膜によりホモジニアス配向をなすキラルスメクチックC相よりなる液晶層と、前記透明基板の法線方向に電界の向きを生じさせる電界発生手段とからなり、前記液晶層のチルト角が45°(コーン角が90°)であることを特徴とする偏光切替素子。
The polarization switching element according to claim 1,
The liquid crystal element includes a pair of transparent substrates, an alignment film provided on at least one transparent substrate, a liquid crystal layer composed of a chiral smectic C phase that is homogeneously aligned by the alignment film, and a normal direction of the transparent substrate. A polarization switching element comprising an electric field generating means for generating an electric field direction, wherein the tilt angle of the liquid crystal layer is 45 ° (cone angle is 90 °).
請求項1記載の偏光切替素子において、
前記液晶素子はネマチック液晶を用いた垂直配向型液晶素子が二段構成で配置され、1段目と2段目の液晶分子の透光性基板へ投影した方位θ1、θ2が、1段目に入射する偏光面に対して、
θ1=0°、θ2=45°
と、
θ1=45°、θ2=0°
とを順次繰り返すことを特徴とする偏光切替素子。
The polarization switching element according to claim 1,
The liquid crystal element is a vertical alignment type liquid crystal element using nematic liquid crystal arranged in two stages, and the orientations θ1 and θ2 projected onto the light-transmitting substrates of the first and second liquid crystal molecules are in the first stage. For the incident polarization plane,
θ1 = 0 °, θ2 = 45 °
When,
θ1 = 45 °, θ2 = 0 °
The polarization switching element characterized by repeating the above.
請求項1〜3のいずれか1つに記載の偏光切替素子と、偏光分離手段とで構成されたことを特徴とする光束分割素子。   A light beam splitting element comprising the polarization switching element according to any one of claims 1 to 3 and polarization separation means. 請求項4記載の光束分割素子において、
前記偏光分離手段が偏光ビームスプリッタと偏向プリズムとからなることを特徴とする光束分割素子。
The light beam splitting element according to claim 4,
The light beam splitting element, wherein the polarization separating means comprises a polarizing beam splitter and a deflecting prism.
請求項5記載の光束分割素子において、
前記偏光ビームスプリッタが偏光依存性ホログラムであることを特徴とする光束分割素子。
The light beam splitting element according to claim 5.
The light beam splitting element, wherein the polarization beam splitter is a polarization-dependent hologram.
請求項4〜6のいずれか1つに記載の光束分割素子と、多段の回転多面鏡と、少なくともfθレンズを用いた結像光学系とからなる光走査装置。   An optical scanning device comprising the light beam splitter according to any one of claims 4 to 6, a multistage rotary polygon mirror, and an imaging optical system using at least an fθ lens. 請求項7記載の光走査装置を有する画像形成装置。   An image forming apparatus comprising the optical scanning device according to claim 7.
JP2007280794A 2007-10-29 2007-10-29 Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus Pending JP2009109669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280794A JP2009109669A (en) 2007-10-29 2007-10-29 Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280794A JP2009109669A (en) 2007-10-29 2007-10-29 Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2009109669A true JP2009109669A (en) 2009-05-21

Family

ID=40778227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280794A Pending JP2009109669A (en) 2007-10-29 2007-10-29 Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2009109669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103021A (en) * 2014-11-29 2016-06-02 華為技術有限公司Huawei Technologies Co.,Ltd. Beam processing apparatus, apparatus for attenuating and switching beam, and optical wavelength selective switch system
JP7458437B2 (en) 2021-12-02 2024-03-29 シャープディスプレイテクノロジー株式会社 Optical element, variable focus element and head mounted display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103021A (en) * 2014-11-29 2016-06-02 華為技術有限公司Huawei Technologies Co.,Ltd. Beam processing apparatus, apparatus for attenuating and switching beam, and optical wavelength selective switch system
JP7458437B2 (en) 2021-12-02 2024-03-29 シャープディスプレイテクノロジー株式会社 Optical element, variable focus element and head mounted display

Similar Documents

Publication Publication Date Title
JP5061397B2 (en) Optical scanning apparatus and image forming apparatus
US7505060B2 (en) Light scanning apparatus having a liquid crystal deflector and image forming apparatus using the same
US6573953B1 (en) Spatial light modulation device with a reflection type spatial light modulator and method
CN105022180A (en) Distance measuring module with a variable optical attenuation unit from an LC cell
US20120147279A1 (en) Projection display apparatus
KR19990023660A (en) Projection type liquid crystal display device
US20030231270A1 (en) Projection type optical display system
US11493822B2 (en) Diffractive optical element and display device
JP2007052383A (en) Heads-up display system
JP2013068694A (en) Optical scanner, and image forming apparatus
JPH06118453A (en) Element for high-speed tracking in raster output scanner
JP4669811B2 (en) Light control film device, light control device, illumination angle variable light source, display device including the same, and terminal device
JP2009109669A (en) Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus
JP2009139623A (en) Liquid crystal lens
JP3426653B2 (en) Optical element for selective skew correction of light beam
TW202331322A (en) Light guide display system for providing increased pixel density
JPH06118323A (en) Optical device
JP4992154B2 (en) Optical scanning apparatus and image forming apparatus
JP5510745B2 (en) Optical scanning apparatus and image forming apparatus
JP5370760B2 (en) Light separation system and polarization separation device
JP5397633B2 (en) Optical scanning apparatus and image forming apparatus
JP2009258533A (en) Liquid crystal optical device, optical path switching device, optical scanner, and image forming apparatus
US20200057302A1 (en) Diffraction grating structure, augmented reality apparatus including the same, and method of manufacturing diffraction grating structure
JP2005091743A (en) Optical deflection device, image display device, optical writing device and image forming device
JP2010160295A (en) Polarization splitting device, optical scanner, and image forming apparatus