JP2010020028A - Polarization switching element, polarization switching device, optical path switching device, optical scanner and image forming apparatus - Google Patents

Polarization switching element, polarization switching device, optical path switching device, optical scanner and image forming apparatus Download PDF

Info

Publication number
JP2010020028A
JP2010020028A JP2008179625A JP2008179625A JP2010020028A JP 2010020028 A JP2010020028 A JP 2010020028A JP 2008179625 A JP2008179625 A JP 2008179625A JP 2008179625 A JP2008179625 A JP 2008179625A JP 2010020028 A JP2010020028 A JP 2010020028A
Authority
JP
Japan
Prior art keywords
liquid crystal
polarization
heating
driving
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179625A
Other languages
Japanese (ja)
Inventor
Masanori Kobayashi
正典 小林
Toshiaki Tokita
才明 鴇田
Hiroshi Fujimura
浩 藤村
Toshimichi Hagitani
利道 萩谷
Yumi Matsuki
ゆみ 松木
洋平 ▲高▼野
Yohei Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008179625A priority Critical patent/JP2010020028A/en
Publication of JP2010020028A publication Critical patent/JP2010020028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization switching element in which heating efficiency and accuracy can be enhanced by directly heating a liquid crystal material in an optically effective region and reduction of light utilizing efficiency of a heater is eliminated by making the heater serve as an electrode for driving the liquid crystal and productivity can be also enhanced by forming a heater electrode and a driving electrode together. <P>SOLUTION: The polarization switching element 10 includes a pair of transparent substrates 1 and 2, spacers 3, an alignment layers 5 and 6, the liquid crystal 4 having spontaneous polarization by which an alignment state is changed by polarity inversion of an applied electric field, transparent conductive films 8 for heating which can apply a current for heating the liquid crystal 4 formed on the surfaces on the inner sides of the transparent substrates 1 and 2 superposed on the optically effective region 7 of incident light and a transparent conductive film 9 for driving which can apply a driving electric field changing the alignment state of the liquid crystal 4 to between the transparent substrates 1 and 2. The transparent conductive film 8 for heating serves as the transparent conductive film 9 for driving and is formed in the optically effective region 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、偏光切換素子、偏光切換装置、光路切換装置、光走査装置および画像形成装置に関し、さらに詳しくは、自発分極を有する液晶を備え入射光の偏光方向を切り換える機能を有する偏光切換素子、この偏光切換素子を具備した偏光切換装置、偏光切換素子または偏光切換装置と偏光分離素子とからなる光路切換装置、この光路切換装置を具備した光走査装置およびこの光走査装置を有する、複写機、ファクシミリ、プリンタ、プロッタ等またはそれら複数の機能を備えた複合機等の画像形成装置に関する。   The present invention relates to a polarization switching element, a polarization switching device, an optical path switching device, an optical scanning device, and an image forming apparatus, and more specifically, a polarization switching element that includes a liquid crystal having spontaneous polarization and has a function of switching the polarization direction of incident light, Polarization switching device provided with this polarization switching element, optical path switching device comprising polarization switching element or polarization switching device and polarization separation element, optical scanning device provided with this optical path switching device, and copier having this optical scanning device, The present invention relates to an image forming apparatus such as a facsimile, a printer, a plotter or the like, or a multifunction machine having a plurality of functions.

一般に、液晶素子(液晶表示装置含む)の性能は、環境温度に依存することが知られている。例えば、液晶素子が低温下において使用される場合には、液晶素子基板間に保持された液晶材料の粘度が増加するため、印加電界に対する応答速度は低下し、素子性能が劣化してしまう。このような問題を解決するために、液晶素子を加熱するためのヒータを設置する方法がいくつか提案されている。   In general, it is known that the performance of a liquid crystal element (including a liquid crystal display device) depends on an environmental temperature. For example, when the liquid crystal element is used at a low temperature, the viscosity of the liquid crystal material held between the liquid crystal element substrates increases, so that the response speed with respect to the applied electric field decreases and the element performance deteriorates. In order to solve such a problem, several methods for installing a heater for heating the liquid crystal element have been proposed.

ヒータを備えた従来の液晶素子としては、液晶素子とは別体の加熱ヒータを液晶素子に重ねて配置する構成がある。例えば、液晶素子に透明な面状ヒータを貼り付けたもの、これをメッシュ状のヒータに変更したもの、液晶素子とは別に光学補償素子を設け、この光学補償素子の少なくとも一方の基板の一面に透明抵抗膜をほぼ全面に形成したものなどが知られている(例えば、特許文献1参照)。   As a conventional liquid crystal element provided with a heater, there is a configuration in which a heating heater separate from the liquid crystal element is placed on the liquid crystal element. For example, a liquid crystal element with a transparent planar heater attached, a change to a mesh heater, an optical compensation element provided separately from the liquid crystal element, and a surface of at least one substrate of the optical compensation element. A film in which a transparent resistance film is formed on almost the entire surface is known (for example, see Patent Document 1).

液晶素子の小型化および生産性に関しては、液晶素子基板に直接ヒータを形成し、液晶素子と一体に加熱ヒータを設けた構成とすることで改善でき、例えば、TFTを形成した基板に対向する他方の基板に設けた遮光層であるブラックマトリクスをヒータとしたもの(例えば、特許文献2参照)や、ヒータ用透明導電膜を液晶素子の非表示領域の基板内側表面に直接形成するもの(例えば、特許文献3参照)が挙げられる。   The downsizing and productivity of the liquid crystal element can be improved by forming a heater directly on the liquid crystal element substrate and providing a heater integrally with the liquid crystal element. For example, the other side facing the substrate on which the TFT is formed is provided. A black matrix, which is a light-shielding layer provided on the substrate, is used as a heater (for example, see Patent Document 2), or a transparent conductive film for heater is directly formed on the inner surface of the substrate in the non-display region of the liquid crystal element (for example, Patent Document 3).

特開2000−47247号公報JP 2000-47247 A 特開平6−289370号公報JP-A-6-289370 特開2003−43515号公報JP 2003-43515 A

しかしながら、特許文献1記載の技術では、液晶素子とは別体の加熱ヒータを設ける場合、液晶素子基板間に保持された液晶材料を直接加熱せずに、液晶素子を構成する液晶素子基板を加熱するため、加熱開始から温度上昇までには時間差が生じ、加熱には必要以上のエネルギーを要するといった問題がある。また、液晶素子の厚みはヒータ基板分厚くなり、ヒータ取り付けのための工程を要するため、液晶素子が大きく生産性が悪いといった問題もある。   However, in the technique described in Patent Document 1, when a heater separately from the liquid crystal element is provided, the liquid crystal element substrate constituting the liquid crystal element is heated without directly heating the liquid crystal material held between the liquid crystal element substrates. Therefore, there is a problem that a time difference occurs between the start of heating and the temperature rise, and heating requires more energy than necessary. Further, since the thickness of the liquid crystal element becomes thicker than that of the heater substrate and a process for attaching the heater is required, there is a problem that the liquid crystal element is large and productivity is low.

上記のような従来の各種の液晶素子において、ヒータを光が透過する有効(表示)領域と重なって配置または形成する場合には、ヒータとして透明抵抗膜等(ヒータ用透明導電膜を含む)を用いても、ヒータは完全な透明性を有しているわけではないので、素子の性能として光利用効率(透過率)が低下するという問題がある。
特許文献2のヒータは遮光用のブラックマトリックスに、特許文献3のヒータは非表示領域といった光が透過しない領域に形成されており、光利用効率の低下はないが、この場合においても前記したように光有効(表示)領域の液晶材料を直接加熱できないため、加熱の効率および精度は悪くなるといった問題がある。
In various conventional liquid crystal elements as described above, when the heater is arranged or formed so as to overlap with an effective (display) region through which light is transmitted, a transparent resistance film or the like (including a transparent conductive film for the heater) is used as the heater. Even if it is used, since the heater does not have complete transparency, there is a problem that the light utilization efficiency (transmittance) decreases as the performance of the element.
The heater of Patent Document 2 is formed in a black matrix for shielding light, and the heater of Patent Document 3 is formed in a non-display area such that light does not pass through, and there is no reduction in light utilization efficiency. In addition, since the liquid crystal material in the light effective (display) region cannot be directly heated, there is a problem that the efficiency and accuracy of heating deteriorate.

そこで、本発明は、前記の問題を解決すべく、前述の事情に鑑みてなされたものであり、液晶素子の基板内側の光有効領域にヒータを形成することにより、光有効領域の液晶材料を直接加熱し、加熱の効率および精度が向上できるとともに、ヒータが液晶を駆動する電極を兼ねるよう構成することにより、ヒータにおける光利用効率の低下がなく、さらにヒータ電極と駆動電極との同一形成により生産性も向上できる偏光切換素子、後述の各効果を奏する、偏光切換装置、光路切換装置、光走査装置および画像形成装置を実現し提供することを主な目的とする。   Accordingly, the present invention has been made in view of the above-described circumstances in order to solve the above-described problems. By forming a heater in the light effective region inside the substrate of the liquid crystal element, the liquid crystal material in the light effective region can be obtained. By directly heating, the efficiency and accuracy of heating can be improved, and the heater also serves as an electrode for driving the liquid crystal, so that there is no decrease in light utilization efficiency in the heater, and the heater electrode and the drive electrode are formed in the same way. The main object is to realize and provide a polarization switching element that can improve productivity, and a polarization switching device, an optical path switching device, an optical scanning device, and an image forming apparatus that exhibit the effects described below.

本発明者らは、上述の課題を解決するとともに上述の目的を達成するために、後述の実施例等に記載の評価を含む実験を行い鋭意研究を重ねる中で、以下の点を明らかにした。すなわち、液晶素子の基板内側に直接ヒータを形成し、液晶素子と一体に加熱ヒータを設けた構成において、光有効(表示)領域にヒータを形成すると、中間階調を必要とするような液晶表示装置の場合には、ヒータ加熱時には既存構成の光有効(表示)領域に流れる電流のために光学(表示)性能に悪影響を与えるという問題があったが、本発明のような自発分極を有する液晶を用いて入射光の偏光方向を電気的に切り換える偏光切換素子とする場合、素子の基板内側の光有効(表示)領域に直接ヒータ電極を形成しても、このヒータ電極は駆動電極を兼ねる構成とし、ヒータ加熱時に液晶の配向状態が飽和する飽和電界以上の駆動電界を印加することで、前記問題にあるような加熱時の光学特性への悪影響が発生しないことを突き止めた。本発明は、このような評価を含む実験等で裏付けられた事実を基本にしてなされたものである。   In order to solve the above-mentioned problems and achieve the above-mentioned object, the present inventors made the following points clarified while conducting experiments including evaluations described in Examples and the like described later and conducting earnest research. . In other words, in a configuration in which a heater is formed directly inside the substrate of the liquid crystal element and a heater is provided integrally with the liquid crystal element, if a heater is formed in the light effective (display) area, a liquid crystal display that requires an intermediate gradation is required. In the case of the apparatus, there is a problem that the optical (display) performance is adversely affected due to the current flowing in the light effective (display) region of the existing configuration when the heater is heated. However, the liquid crystal having spontaneous polarization as in the present invention. When a polarization switching element is used to electrically switch the polarization direction of incident light by using a heater, even if a heater electrode is formed directly in the light effective (display) region inside the substrate of the element, the heater electrode also serves as a drive electrode As a result, it has been found that there is no adverse effect on the optical characteristics during heating, as described above, by applying a driving electric field equal to or higher than the saturation electric field at which the alignment state of the liquid crystal is saturated when the heater is heated.The present invention has been made based on the facts supported by experiments including such evaluation.

上述した課題を解決するとともに上述した目的を達成するために、請求項ごとの発明では、以下のような特徴ある手段・構成を採っている。
請求項1記載の発明は、一対の透明基板と、該各透明基板の互いに対向する内側表面の少なくとも一方に形成された配向膜と、前記各透明基板間に保持され自発分極を有する液晶と、電流印加により前記液晶を加熱するための加熱用透明導電膜と、電界印加により前記液晶を駆動するための駆動用透明導電膜とからなり、入射光の偏光方向を電気的に切り換えることが可能な偏光切換素子において、前記加熱用透明導電膜は、前記各透明基板の互いに対向する内側表面に形成されており、かつ、前記駆動用透明導電膜を兼ねていることを特徴とする。
In order to solve the above-described problems and achieve the above-described object, the invention according to each claim employs the following characteristic means and configuration.
The invention according to claim 1 is a pair of transparent substrates, an alignment film formed on at least one of the mutually facing inner surfaces of each transparent substrate, a liquid crystal having spontaneous polarization held between the transparent substrates, It consists of a heating transparent conductive film for heating the liquid crystal by applying an electric current and a driving transparent conductive film for driving the liquid crystal by applying an electric field, and the polarization direction of incident light can be electrically switched In the polarization switching element, the heating transparent conductive film is formed on inner surfaces of the transparent substrates facing each other, and also serves as the driving transparent conductive film.

請求項2記載の発明は、請求項1記載の偏光切換素子において、前記加熱用透明導電膜は、前記各透明基板への入射光領域の少なくとも一部に形成されていることを特徴とする。   According to a second aspect of the present invention, in the polarization switching element according to the first aspect, the transparent conductive film for heating is formed in at least a part of an incident light region to each transparent substrate.

請求項3記載の発明は、請求項1または2記載の偏光切換素子と、前記加熱用透明導電膜に電流印加、前記駆動用透明導電膜に電界印加することによって前記液晶の加熱および駆動を行う電圧印加手段とを具備する偏光切換装置において、前記液晶の加熱時の駆動電界は、前記各透明基板への前記少なくとも一部の入射光領域における前記液晶の駆動状態が飽和安定する飽和電界以上であることを特徴とする。   According to a third aspect of the present invention, the liquid crystal is heated and driven by applying a current to the polarization switching element of the first or second aspect and the heating transparent conductive film and applying an electric field to the driving transparent conductive film. In the polarization switching device comprising a voltage applying means, the driving electric field at the time of heating the liquid crystal is not less than a saturation electric field at which the driving state of the liquid crystal in the at least part of the incident light region to each transparent substrate is saturated and stabilized. It is characterized by being.

請求項4記載の発明は、請求項1または2記載の偏光切換素子と、前記加熱用透明導電膜に電流印加、前記駆動用透明導電膜に電界印加することによって前記液晶の加熱および駆動を行う電圧印加手段とを具備する偏光切換装置において、前記液晶の加熱時の駆動電界は、前記各透明基板への前記少なくとも一部の入射光領域における前記液晶の駆動状態が飽和安定する飽和電界以上であり、かつ、その大きさが前記少なくとも一部の入射光領域に対応する前記各透明基板の面内で略同じであることを特徴とする。   According to a fourth aspect of the present invention, the liquid crystal is heated and driven by applying a current to the polarization switching element of the first or second aspect and the heating transparent conductive film and applying an electric field to the driving transparent conductive film. In the polarization switching device comprising a voltage applying means, the driving electric field at the time of heating the liquid crystal is not less than a saturation electric field at which the driving state of the liquid crystal in the at least part of the incident light region to each transparent substrate is saturated and stabilized. And the size thereof is substantially the same in the plane of each transparent substrate corresponding to the at least part of the incident light region.

請求項5記載の発明は、請求項1または2記載の偏光切換素子と、前記加熱用透明導電膜に電流印加、前記駆動用透明導電膜に電界印加することによって前記液晶の加熱および駆動を行う電圧印加手段とを具備する偏光切換装置において、前記液晶の加熱時の駆動電界は、前記各透明基板への前記少なくとも一部の入射光領域における前記液晶の駆動状態が飽和安定する飽和電界以上であり、かつ、前記駆動飽和時に前記液晶の駆動状態が変化しない高周波信号を印加することを特徴とする。   According to a fifth aspect of the present invention, the liquid crystal is heated and driven by applying a current to the polarization switching element of the first or second aspect and the heating transparent conductive film and applying an electric field to the driving transparent conductive film. In the polarization switching device comprising a voltage applying means, the driving electric field at the time of heating the liquid crystal is not less than a saturation electric field at which the driving state of the liquid crystal in the at least part of the incident light region to each transparent substrate is saturated and stabilized. In addition, a high-frequency signal that does not change the driving state of the liquid crystal when the driving is saturated is applied.

請求項6記載の発明は、請求項1ないし5の何れか一つに記載の偏光切換素子または偏光切換装置と、互いに直交する2つの偏光成分をそれぞれ異なる光路に分離する偏光分離素子とを具備してなることを特徴とする光路切換装置である。   A sixth aspect of the invention includes the polarization switching element or the polarization switching device according to any one of the first to fifth aspects, and a polarization separation element that separates two polarization components orthogonal to each other into different optical paths. This is an optical path switching device.

請求項7記載の発明は、光源と、該光源からの光ビームを偏向する偏向手段と、該偏向手段により偏向された光ビームを被走査面上に結像する結像光学系とを具備する光走査装置において、前記光源と前記偏向手段との間に、請求項6記載の光路切換装置を有することを特徴とする。   The invention described in claim 7 comprises a light source, deflecting means for deflecting the light beam from the light source, and an imaging optical system for imaging the light beam deflected by the deflecting means on the surface to be scanned. An optical scanning device includes the optical path switching device according to claim 6 between the light source and the deflecting unit.

請求項8記載の発明は、請求項7記載の光走査装置において、前記光路切換装置からの複数光路のうち少なくとも一つの光路のビーム光量を検知する光量検知手段を具備し、該光量検知手段からの検知信号に基づいて、前記光路切換装置における前記液晶を加熱することを特徴とする。   According to an eighth aspect of the present invention, in the optical scanning device according to the seventh aspect of the present invention, the optical scanning device further includes a light amount detecting unit that detects a light amount of a beam in at least one of the plurality of optical paths from the optical path switching device. The liquid crystal in the optical path switching device is heated based on the detection signal.

請求項9記載の発明は、請求項8記載の光走査装置において、前記光路切換装置における前記液晶の加熱は、光走査非有効期間に設定されていることを特徴とする。   According to a ninth aspect of the present invention, in the optical scanning device according to the eighth aspect, the heating of the liquid crystal in the optical path switching device is set to an optical scanning ineffective period.

請求項10記載の発明は、請求項7ないし9の何れか一つの光走査装置を有することを特徴とする画像形成装置である。   A tenth aspect of the present invention is an image forming apparatus including the optical scanning device according to any one of the seventh to ninth aspects.

本発明によれば、上記課題を解決して新規な偏光切換素子、偏光切換装置、光路切換装置、光走査装置および画像形成装置を実現し提供することができる。請求項ごとの発明の効果を挙げれば、以下のとおりである。
請求項1記載の発明によれば、前記構成により、加熱用透明導電膜(例えばヒータ電極)と駆動用透明導電膜(例えば駆動電極)との同一形成により、偏光切換素子の生産性を向上できる。
According to the present invention, the above problems can be solved and a novel polarization switching element, polarization switching device, optical path switching device, optical scanning device, and image forming apparatus can be realized and provided. The effects of the invention for each claim are as follows.
According to the first aspect of the invention, the productivity of the polarization switching element can be improved by the same formation of the heating transparent conductive film (for example, heater electrode) and the driving transparent conductive film (for example, driving electrode). .

請求項2記載の発明によれば、前記構成により、加熱用透明導電膜(例えばヒータ電極)における光利用効率の低下なく、液晶への加熱効率および精度を向上させることができる。   According to the second aspect of the present invention, with the above configuration, it is possible to improve the heating efficiency and accuracy of the liquid crystal without reducing the light utilization efficiency in the heating transparent conductive film (for example, the heater electrode).

請求項3記載の発明によれば、前記構成により、少なくとも一部の入射光領域としての例えば光有効領域面内において均一な偏光切り換え動作が実現でき、低温環境下においても安定した高速応答性を示す偏光切換装置を実現し提供できる。   According to the third aspect of the invention, with the above configuration, a uniform polarization switching operation can be realized in at least a part of the incident light region, for example, in the light effective region, and stable high-speed response can be achieved even in a low temperature environment. The polarization switching device shown can be realized and provided.

請求項4記載の発明によれば、前記構成により、少なくとも一部の入射光領域としての例えば光有効領域面内において、低電圧印加で均一な偏光切り換え動作が実現でき、低温環境下においても安定した高速応答性を示す偏光切換装置を実現し提供できる。   According to the fourth aspect of the present invention, with the above-described configuration, a uniform polarization switching operation can be realized by applying a low voltage in, for example, the light effective region plane as at least a part of the incident light region, and stable even in a low temperature environment. It is possible to realize and provide a polarization switching device exhibiting high-speed response.

請求項5記載の発明によれば、前記構成により、液晶への加熱効率および精度を向上させることができ、低温環境下においても安定した高速応答性を示す偏光切換装置を実現し提供できる。   According to the fifth aspect of the present invention, the above configuration can improve the heating efficiency and accuracy of the liquid crystal, and can realize and provide a polarization switching device that exhibits stable high-speed response even in a low temperature environment.

請求項6記載の発明によれば、前記構成により、前記した加熱効率および精度が向上した偏光切換素子または偏光切換装置と偏光分離素子とを組み合わせた構成であるため、低温環境下においても安定して高速な光路切り換えが可能な光路切換装置を実現し提供できる。   According to the sixth aspect of the present invention, the configuration described above is a combination of the polarization switching element or the polarization switching device and the polarization separation element with improved heating efficiency and accuracy, and is stable even in a low temperature environment. In addition, an optical path switching device capable of switching optical paths at high speed can be realized and provided.

請求項7記載の発明によれば、前記構成により、前記した効果を奏する請求項6の光路切換装置を光走査装置に適用することで、低コスト、高速、高画質対応可能で、かつ、低温環境下においても安定した光走査記録が可能な光走査装置を実現し提供できる。   According to the seventh aspect of the present invention, by applying the optical path switching device according to the sixth aspect having the above-described effect to the optical scanning device by the above configuration, low cost, high speed, high image quality, and low temperature can be achieved. It is possible to realize and provide an optical scanning apparatus capable of stable optical scanning recording even under an environment.

請求項8記載の発明によれば、前記構成により、光量検知手段からの検知信号に基づいて、光路切換装置における液晶を加熱することにより、走査ビームの光量検知から光路切り換え時間を光路切換装置における液晶の加熱により調整するため、低温環境下においても光路切り換えの応答性がさらに安定した光走査装置を実現し提供できる。   According to the eighth aspect of the present invention, by the above configuration, the liquid crystal in the optical path switching device is heated based on the detection signal from the light amount detection means, so that the optical path switching time from the detection of the light amount of the scanning beam can be reduced in the optical path switching device. Since the adjustment is performed by heating the liquid crystal, it is possible to realize and provide an optical scanning device in which the response of switching the optical path is further stable even in a low temperature environment.

請求項9記載の発明によれば、前記構成により、走査ビームの光量検知から光路切り換え時間を光路切換装置における液晶の加熱により調整し、その加熱タイミングは光走査非有効期間に設定されているため、低温環境下においても特性劣化のない光走査装置を実現し提供できる。   According to the ninth aspect of the present invention, the optical path switching time is adjusted by heating the liquid crystal in the optical path switching device from the detection of the light amount of the scanning beam, and the heating timing is set to the optical scanning ineffective period. Therefore, it is possible to realize and provide an optical scanning device that does not deteriorate characteristics even in a low temperature environment.

請求項10記載の発明によれば、請求項7ないし9の何れか一つの前記した効果を奏する光走査装置を画像形成装置に適用することで、低コスト、高速、高画質対応可能で、かつ、低温環境下においても安定した画像形成が可能な多色画像形成装置等を含む画像形成装置を実現し提供できる。   According to the invention of claim 10, by applying the optical scanning device having the above-described effect of any one of claims 7 to 9 to an image forming apparatus, low cost, high speed, high image quality can be supported, and Therefore, it is possible to realize and provide an image forming apparatus including a multicolor image forming apparatus capable of stable image formation even in a low temperature environment.

以下、図を参照して実施例を含む本発明の実施の形態(以下、「実施形態」という)を説明する。各実施形態等に亘り、同一の機能および形状等を有する構成要素(部材や構成部品)等については、混同の虞が生じない限り一度説明した後では同一符号を付すことによりその説明を省略する。図および説明の簡明化を図るため、図に表されるべき構成要素であっても、その図において特別に説明する必要がない構成要素は適宜断わりなく省略することがある。公開特許公報等の構成要素を引用して説明する場合は、その符号に括弧を付して示し、各実施形態等のそれと区別するものとする。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention including examples will be described with reference to the drawings. In each embodiment, components (members and components) having the same function, shape, etc. are described once unless they are confused, and the description is omitted by giving the same reference numerals. . In order to simplify the drawings and the description, even if the components are to be represented in the drawings, the components that do not need to be specifically described in the drawings may be omitted as appropriate. When quoting and explaining constituent elements such as published patent gazettes, parentheses are given to the reference numerals to distinguish them from those of the embodiments and the like.

(第1の実施形態)
図1および図2を参照して、本発明の偏光切換素子に係る第1の実施形態を説明する。図1は偏光切換素子の断面図であり、図2は偏光切換素子を光入射光軸から見た図である。
図1および図2に示すように、偏光切換素子10は、一対の透明基板1,2と、各透明基板1,2間のギャップを保持するスペーサ3と、各透明基板1,2面の互いに対向する内側表面に形成され各透明基板1,2面に対して液晶4を一様に配向させる配向膜5,6と、印加電界の極性反転により配向状態が変化する自発分極を有する液晶4と、入射光の光有効領域7と重なる各透明基板1,2内側表面に形成された液晶4を加熱するための電流を印加可能とする加熱用透明導電膜8と、液晶4の配向状態を変化させる駆動電界を各透明基板1,2間に印加可能とする駆動用透明導電膜9とから主に構成されている。
(First embodiment)
With reference to FIGS. 1 and 2, a first embodiment of the polarization switching element of the present invention will be described. FIG. 1 is a cross-sectional view of the polarization switching element, and FIG. 2 is a view of the polarization switching element as viewed from the light incident optical axis.
As shown in FIGS. 1 and 2, the polarization switching element 10 includes a pair of transparent substrates 1 and 2, a spacer 3 that holds a gap between the transparent substrates 1 and 2, and surfaces of the transparent substrates 1 and 2. Alignment films 5 and 6 formed on opposing inner surfaces and uniformly aligning the liquid crystal 4 with respect to the transparent substrates 1 and 2, and a liquid crystal 4 having spontaneous polarization in which the alignment state changes due to polarity reversal of the applied electric field, The transparent conductive film 8 for heating that can apply a current for heating the liquid crystal 4 formed on the inner surfaces of the transparent substrates 1 and 2 overlapping the light effective region 7 of incident light, and the alignment state of the liquid crystal 4 are changed. It is mainly composed of a driving transparent conductive film 9 that can apply a driving electric field between the transparent substrates 1 and 2.

ここで、本実施形態では、加熱用透明導電膜8は、駆動用透明導電膜9を兼ねているとともに、偏光切換素子10の各透明基板1,2への入射光領域の少なくとも一部である光有効領域7に形成されていることを特徴としている。加熱用透明導電膜8は、前記したように駆動用透明導電膜9を兼ねる構成であるため、構成を示す図1では同じである。このため、加熱用透明導電膜8と駆動用透明導電膜9とを特に区別して説明しなければならない場合を除き、以下、総括的に「透明導電膜8」または「透明電極8」ともいう。両図において、上下一対の透明電極(透明導電膜)8の左右両端部に示す黒で塗色して示す部分は、透明電極(透明導電膜)8に電流および電界を印加するための電圧印加手段の接続端子部を表している。すなわち、加熱用および駆動用透明導電膜8は、同一の材料および形状で形成された共通部品であり、このため生産性が向上し、かつ、直接的に液晶4を加熱することができるため、加熱効率および精度が向上できる。さらに、新たに加熱用の透明導電膜を設ける構成ではないため、光利用効率の低下も生じない(請求項1、2参照)。   Here, in the present embodiment, the heating transparent conductive film 8 also serves as the driving transparent conductive film 9 and is at least a part of the incident light region on the transparent substrates 1 and 2 of the polarization switching element 10. It is characterized by being formed in the light effective region 7. The heating transparent conductive film 8 has the same structure as that of the driving transparent conductive film 9 as described above, and therefore is the same in FIG. For this reason, the transparent transparent conductive film 8 for heating and the transparent conductive conductive film 9 for driving are collectively referred to as “transparent conductive film 8” or “transparent electrode 8” hereinafter unless otherwise specifically described. In both figures, the portions shown in black in the left and right ends of a pair of upper and lower transparent electrodes (transparent conductive film) 8 are applied with voltage for applying current and electric field to the transparent electrode (transparent conductive film) 8. The connection terminal part of a means is represented. That is, the heating and driving transparent conductive film 8 is a common part formed of the same material and shape, so that the productivity is improved and the liquid crystal 4 can be directly heated. Heating efficiency and accuracy can be improved. Furthermore, since it is not the structure which newly provides the transparent conductive film for heating, the fall of light utilization efficiency does not arise, either (refer Claim 1, 2).

図1および図2の偏光切換素子10に関して、配向膜5,6は、TN液晶、STN液晶等に用いられるポリイミド等の通常の配向膜が利用でき、良好な耐光性を示す無機配向膜およびSiO2、SiO等の無機蒸着膜も利用できる。また、液晶ダイレクタの方向を強く規制するため、ラビング処理や光配向処理を別途施すことが好ましい。加熱用および駆動用の透明導電膜8は、透明性を有する導電体(抵抗体)であれば利用でき、例えば酸化インジウムスズ(ITO)膜を用いることができる。その膜厚は、所望の透過率および抵抗値によって適宜設定される。
液晶4は、印加電界の極性反転により配向状態が変化する自発分極を有するものであればよく、強誘電性液晶や反強誘電性液晶を用いることができる。
With respect to the polarization switching element 10 of FIGS. 1 and 2, the alignment films 5 and 6 can be made of a normal alignment film such as polyimide used for TN liquid crystal, STN liquid crystal, and the like, and have an inorganic alignment film and SiO having good light resistance. 2. Inorganic vapor deposition films such as SiO can also be used. In order to strongly restrict the direction of the liquid crystal director, it is preferable to separately perform a rubbing process or a photo-alignment process. The heating and driving transparent conductive film 8 can be used as long as it is a transparent conductor (resistor). For example, an indium tin oxide (ITO) film can be used. The film thickness is appropriately set depending on the desired transmittance and resistance value.
The liquid crystal 4 only needs to have a spontaneous polarization in which the alignment state changes due to the polarity reversal of the applied electric field, and a ferroelectric liquid crystal or an antiferroelectric liquid crystal can be used.

偏光切換素子10の偏光切り換え動作として、図3〜図5にて液晶4として例えば強誘電性液晶を用いた場合のスイッチングを説明する。図3は、偏光切換素子10の構成の概略図であり、図1に示した配向膜5,6やスペーサ3等を省略しているが、図1と同じ断面構成である。一般に、キラルスメクチックC相よりなる強誘電性液晶層は、らせん構造を有しているが、図3に示すように、そのらせんピッチより薄いセルギャップd間に挟持すると、らせん構造がほどけ、表面安定化強誘電性液晶層(以下、「SSFLC」という)となる。SSFLCは、図4(a)に示すように、液晶分子がスメクチック層法線に対してチルト角(傾き角)−θ(ここでは、θ=22.5°)だけ傾いて安定する配向状態H1と、図4(b)に示すように、逆方向に(+)θだけ傾いて安定する配向状態H2とが混在する状態が実現できる。   As a polarization switching operation of the polarization switching element 10, switching in the case where, for example, a ferroelectric liquid crystal is used as the liquid crystal 4 in FIGS. 3 to 5 will be described. FIG. 3 is a schematic diagram of the configuration of the polarization switching element 10, omitting the alignment films 5 and 6 and the spacer 3 shown in FIG. 1, but has the same cross-sectional configuration as FIG. 1. In general, a ferroelectric liquid crystal layer composed of a chiral smectic C phase has a helical structure. However, as shown in FIG. 3, when sandwiched between cell gaps d thinner than the helical pitch, the helical structure is unwound and the surface It becomes a stabilized ferroelectric liquid crystal layer (hereinafter referred to as “SSFLC”). As shown in FIG. 4A, the SSFLC is an alignment state H1 in which the liquid crystal molecules are inclined and tilted with respect to the smectic layer normal by a tilt angle (tilt angle) −θ (here, θ = 22.5 °). As shown in FIG. 4B, it is possible to realize a state in which a stable alignment state H2 that is inclined in the opposite direction by (+) θ is mixed.

図4において、Wはスメクチック層法線方向、nは液晶分子の長軸方向(ダイレクタ)、液晶分子における丸印(○)内に黒丸(●)の記号と、丸印(○)内に+の記号は自発分極の方向を表す。紙面に垂直な方向に電界を印加することにより、液晶分子とその自発分極の向きを一様に揃えることができ、その状態を保持しておくことができる。そして、印加する電界の極性を切り換えることによって、2つの状態間のスイッチングを行うことができる。   In FIG. 4, W is the normal direction of the smectic layer, n is the major axis direction of the liquid crystal molecules (director), black circles (●) in circles (◯) in the liquid crystal molecules, + The symbol of represents the direction of spontaneous polarization. By applying an electric field in a direction perpendicular to the paper surface, the direction of liquid crystal molecules and their spontaneous polarization can be made uniform, and that state can be maintained. And switching between two states can be performed by switching the polarity of the electric field to apply.

すなわち、図4において−Eの電界を印加すると、スメクチック層法線方向Wから−θだけ傾いた配向状態H1に、+Eの電界を印加すると、スメクチック層法線方向Wからθだけ傾いた配向状態H2に安定化することができる。ここでθ=22.5°とする場合、配向状態H1から45°傾いた配向状態H2に安定させることができる。   That is, when an electric field of −E is applied in FIG. 4, an orientation state inclined by −θ from the smectic layer normal direction W is applied to an orientation state H1 and when an + E electric field is applied, an orientation state inclined by θ from the smectic layer normal direction W is applied. It can be stabilized to H2. Here, when θ = 22.5 °, the alignment state H2 tilted 45 ° from the alignment state H1 can be stabilized.

図5は、前述したSSFLCを用いた偏光切換素子10の動作を示す模式図である。図5において、液晶層の厚さ(セルギャップ)dは、入射光の波長λ(例えば650nmまたは780nm)と液晶材料の650nmまたは780nmにおける屈折率異方性Δnによって決まり、Δn×d=λ/2を満たすように、すなわち、半波長板条件を満たすように決定し、かつ2θが45°にあることで、偏光面の90°回転が実現できる。
入射偏光方向は液晶層における液晶分子配向の2つの配向状態のうち、どちらか一方の配向状態における液晶分子の短軸方向または長軸方向と位置するように調整配置する必要がある。ここでは、図5(a)に示すように、−Eの電界を印加したときの配向状態H1の短軸方向としている。調整法としては、位相板の配置により偏光方向を調整すること、または液晶素子自体を回転調整しても可能である。
FIG. 5 is a schematic diagram showing the operation of the polarization switching element 10 using the SSFLC described above. In FIG. 5, the thickness (cell gap) d of the liquid crystal layer is determined by the wavelength λ of incident light (for example, 650 nm or 780 nm) and the refractive index anisotropy Δn at 650 nm or 780 nm of the liquid crystal material, and Δn × d = λ / 90, the polarization plane can be rotated by 90 °, so that the half-wave plate condition is satisfied and 2θ is 45 °.
The incident polarization direction needs to be adjusted and arranged so as to be positioned in the short axis direction or the long axis direction of the liquid crystal molecules in one of the two alignment states of the liquid crystal molecules in the liquid crystal layer. Here, as shown to Fig.5 (a), it is set as the short-axis direction of the orientation state H1 when the electric field of -E is applied. As an adjustment method, it is possible to adjust the polarization direction by arranging the phase plate, or to rotate and adjust the liquid crystal element itself.

このような構成とすることで、図5(a)に示すように、透明電極(透明導電膜)9間に−Eの電界を印加した場合、図4(a)に示したように液晶分子はスメクチック層法線方向Wから−θだけ傾いた配向状態H1をとり、入射偏光は、そのままの偏光方向を保持したまま出射する。一方、図5(b)に示すように、透明電極9間に+Eの電界を印加した場合、液晶分子は図4(a)に示したようにスメクチック層法線方向Wから+θだけ傾いた配向状態H2をとる。ここではθ=22.5°としているので、入射偏光に対して、液晶分子長軸方向(ダイレクタ)は2θ=45°傾いて配向する。その結果、半波長板条件が成立し、出射偏光は入射偏光から90°回転した偏光方向となる。すなわち、電界制御により偏光の切り換えが実現できる。しかし、前述したように一般に液晶素子の性能は環境温度に依存し、図6(a)に示すように、低温環境下においては、応答速度が低下するといった問題がある。   By adopting such a configuration, as shown in FIG. 5A, when an electric field of −E is applied between the transparent electrodes (transparent conductive films) 9, as shown in FIG. Takes an orientation state H1 tilted by −θ from the smectic layer normal direction W, and incident polarized light is emitted while maintaining the polarization direction as it is. On the other hand, as shown in FIG. 5 (b), when an electric field of + E is applied between the transparent electrodes 9, the liquid crystal molecules are aligned with an inclination of + θ from the smectic layer normal direction W as shown in FIG. 4 (a). The state H2 is taken. Here, since θ = 22.5 °, the liquid crystal molecule major axis direction (director) is inclined with respect to incident polarized light by 2θ = 45 °. As a result, the half-wave plate condition is satisfied, and the outgoing polarized light has a polarization direction rotated by 90 ° from the incident polarized light. That is, polarization switching can be realized by electric field control. However, as described above, the performance of the liquid crystal element generally depends on the environmental temperature, and as shown in FIG. 6A, there is a problem that the response speed decreases in a low temperature environment.

そこで、図7(a),(b)を参照して、本発明の第1の実施形態として説明した図1の構成の偏光切換素子10に電圧印加手段を具備した構成である偏光切換装置11の加熱および駆動例について説明する。図示しない電圧印加手段から印加される印加電圧は、図7(b)に示すように、透明基板1(以下、単に「基板1」ともいう)側へはV11、V12とし、透明基板2(以下、単に「基板2」ともいう)側へはV21、V22とする。   Therefore, with reference to FIGS. 7A and 7B, the polarization switching device 11 having a configuration in which the polarization switching element 10 having the configuration shown in FIG. 1 described as the first embodiment of the present invention is provided with voltage applying means. An example of heating and driving will be described. As shown in FIG. 7B, the applied voltage applied from the voltage applying means (not shown) is V11 and V12 toward the transparent substrate 1 (hereinafter also simply referred to as “substrate 1”), and the transparent substrate 2 (hereinafter referred to as “substrate 1”). V21 and V22 are also referred to as “substrate 2”).

まず、図8を参照して、図7(b)に示した偏光切換素子10を備えた偏光切換装置11において、加熱しないで駆動する場合の印加電圧の信号および透明基板1,2間の電界の大きさと方向・極性との一例について説明する。印加電圧の信号として、図8(a)に示す矩形波信号が入力されるものとする。非加熱・駆動時には、それぞれの透明電極8の接続端子(以下、単に「端子」ともいう)への印加電圧は、V11=V12およびV21=V22であり、基板面に電流は流れ(印加され)ないので加熱はされない。
偏光切り換え時は、図8(b)および図8(c)に示すように、V12とV21の極性反転により基板1と基板2との間の電界方向が切り換り、その大きさは光有効領域7面内で同じであるため、光有効領域7面内において均一な偏光切り換え動作が実現できる。
First, referring to FIG. 8, in the polarization switching device 11 provided with the polarization switching element 10 shown in FIG. 7B, the signal of the applied voltage and the electric field between the transparent substrates 1 and 2 when driven without heating. An example of the size and direction / polarity of the image will be described. Assume that a rectangular wave signal shown in FIG. 8A is input as an applied voltage signal. At the time of non-heating and driving, applied voltages to the connection terminals (hereinafter also simply referred to as “terminals”) of the respective transparent electrodes 8 are V11 = V12 and V21 = V22, and current flows (applied) on the substrate surface. There is no heating.
At the time of switching the polarization, as shown in FIGS. 8B and 8C, the electric field direction between the substrate 1 and the substrate 2 is switched by the polarity inversion of V12 and V21, and the magnitude is light effective. Since it is the same in the area 7 plane, a uniform polarization switching operation can be realized in the plane of the light effective area 7.

次に、図9を参照して、図7(b)に示した偏光切換素子10を備えた偏光切換装置11において、加熱しながら駆動する場合の印加電圧の信号および透明基板1,2間の電界の大きさと方向・極性との一例について説明する。印加電圧の信号として、図9(a)に示す矩形波信号が入力されるものとする。それぞれの端子への印加電圧は、V11>V12およびV21=V22であり、V11>V12の関係から基板1面には電流I12またはI21が印加され・流れて液晶4が直接加熱できる。
偏光切り換え時は、図9(b)および図9(c)に示すように、V12とV21の極性反転により基板1と基板2の間の電界方向が切り換り、その大きさは光有効領域7面内で異なり、|E1|>|E2|>|E3|であるため、この場合は光有効領域7面内において均一な偏光切換え動作ができない。
Next, referring to FIG. 9, in the polarization switching device 11 having the polarization switching element 10 shown in FIG. An example of the magnitude and direction / polarity of the electric field will be described. Assume that a rectangular wave signal shown in FIG. 9A is input as an applied voltage signal. The voltages applied to the respective terminals are V11> V12 and V21 = V22. From the relationship of V11> V12, the current I12 or I21 is applied to the surface of the substrate 1 and flows, whereby the liquid crystal 4 can be directly heated.
At the time of switching the polarization, as shown in FIGS. 9B and 9C, the electric field direction between the substrate 1 and the substrate 2 is switched by the polarity inversion of V12 and V21, and the magnitude thereof is the light effective region. Since it is different within the seven planes and | E1 |> | E2 |> | E3 |, in this case, a uniform polarization switching operation cannot be performed within the seven planes of the light effective area.

(第2の実施形態)
そこで、図10を参照して、本発明の第2の実施形態として、図7(b)に示した偏光切換素子10を備えた偏光切換装置11において、加熱しながら駆動する場合の印加電圧の信号および透明基板1,2間の電界の大きさと方向・極性との一例について説明する。印加電圧の信号として、図10(a)に示す矩形波信号が入力されるものとする。
それぞれの端子への印加電圧は、V11>V12およびV21=V22であり、V11>V12の関係から基板1面には電流I12またはI21が印加され・流れて液晶4が直接加熱できる。また、偏光切り換え時は図10(b)および図10(c)に示すように、V12とV21の極性反転により基板1と基板2の間の電界方向が切り換り、その大きさは光有効領域7面内で異なり、|E1|>|E2|>|E3|であるが、光有効領域7における最小電界|E3|は液晶4の配向・駆動状態が飽和する(偏光切り換えの光学特性が飽和するのと同じ)飽和電界|Eth|以上としているため、光有効領域7面内においては均一な偏光切り換え動作が実現できる。
ここでは、印加電圧は、V11>V12およびV21=V22としたが、基板面への電流印加が可能で、光有効領域7面内における基板1,2間の電界が飽和電界|Eth|以上であればこれに限らない。このような印加電流および印加電界となるように電圧を印加することで、加熱時にも光有効領域7面内において均一な偏光切り換え動作が実現できる(請求項3参照)。
(Second Embodiment)
Therefore, referring to FIG. 10, as a second embodiment of the present invention, in the polarization switching device 11 having the polarization switching element 10 shown in FIG. An example of the magnitude and direction / polarity of the signal and the electric field between the transparent substrates 1 and 2 will be described. Assume that a rectangular wave signal shown in FIG. 10A is input as an applied voltage signal.
The voltages applied to the respective terminals are V11> V12 and V21 = V22. From the relationship of V11> V12, the current I12 or I21 is applied to the surface of the substrate 1 and flows, whereby the liquid crystal 4 can be directly heated. At the time of switching the polarization, as shown in FIGS. 10B and 10C, the electric field direction between the substrate 1 and the substrate 2 is switched by the polarity inversion of V12 and V21, and the magnitude is light effective. The difference in the plane of the region 7 is | E1 |> | E2 |> | E3 |, but the minimum electric field | E3 | in the light effective region 7 is saturated in the alignment / driving state of the liquid crystal 4 (the optical property of polarization switching is Since the saturation electric field | Eth | is greater than or equal to the saturation), a uniform polarization switching operation can be realized in the plane of the light effective region 7.
Here, the applied voltages are V11> V12 and V21 = V22, but current can be applied to the substrate surface, and the electric field between the substrates 1 and 2 in the plane of the optical effective region 7 is equal to or greater than the saturation electric field | Eth |. If there is, it is not limited to this. By applying a voltage so as to have such an applied current and applied electric field, a uniform polarization switching operation can be realized in the surface of the light effective region 7 even during heating (see claim 3).

(第3の実施形態)
図11を参照して、本発明の別の第3の実施形態として、図7(b)に示した偏光切換素子10を備えた偏光切換装置11において、加熱しながら駆動する場合の印加電圧の信号および透明基板1,2間の電界の大きさと方向・極性との一例について説明する。印加電圧の信号として、図11(a)に示す矩形波信号が入力されるものとする。
それぞれの端子への印加電圧は、|V11−V21|≒|V12−V22|の関係を満たしており、V11≠V12およびV21≠V22の関係から基板面には電流I1−12およびI1−21、またはI2―12およびI2−21が印加されて液晶4が直接加熱できる。また、偏光切り換え時は図11(b)および図11(c)に示すように、V11、V12、V21、V22の極性反転により基板1と基板2の間の電界方向が切り換り、その大きさは光有効領域7面内で同じであるため、光有効領域7面内において均一な偏光切り換え動作が実現できる。
ここでは、印加電圧は|V11−V21|≒|V12−V22|としたが、基板面への電流印加が可能で、光有効領域7面内における基板1,2間の電界が飽和電界|Eth|以上であり、かつ、その電界の大きさが光有効領域7面内で略同じであればこれに限らない。このような印加電流および印加電界となるように電圧を印加することで、加熱時にも低電圧で、光有効領域7面内において均一な偏光切り換え動作が実現できる(請求項4参照)。
(Third embodiment)
Referring to FIG. 11, as another third embodiment of the present invention, in the polarization switching device 11 having the polarization switching element 10 shown in FIG. An example of the magnitude and direction / polarity of the signal and the electric field between the transparent substrates 1 and 2 will be described. Assume that a rectangular wave signal shown in FIG. 11A is input as an applied voltage signal.
The voltages applied to the respective terminals satisfy the relationship of | V11−V21 | ≈ | V12−V22 |, and currents I1-12 and I1-21 on the substrate surface from the relationship of V11 ≠ V12 and V21 ≠ V22, Alternatively, the liquid crystal 4 can be directly heated by applying I2-12 and I2-21. At the time of polarization switching, as shown in FIGS. 11 (b) and 11 (c), the electric field direction between the substrate 1 and the substrate 2 is switched by the polarity inversion of V11, V12, V21, and V22, and the magnitude thereof is increased. Since this is the same in the plane of the light effective area 7, a uniform polarization switching operation can be realized in the plane of the light effective area 7.
Here, the applied voltage is set to | V11−V21 | ≈ | V12−V22 |, but current can be applied to the substrate surface, and the electric field between the substrates 1 and 2 in the plane of the optical effective region 7 is the saturation electric field | Eth. If it is above and the magnitude of the electric field is substantially the same in the plane of the light effective region 7, it is not limited to this. By applying a voltage so as to achieve such an applied current and an applied electric field, a uniform polarization switching operation can be realized in the surface of the light effective region 7 at a low voltage even during heating (see claim 4).

また、図12に示すように、駆動電圧信号の飽和時に液晶の配向・駆動状態が変化しない(偏光切り換えの光学特性が変化しないのと同じ)高周波信号を印加することによっても加熱することができ、この信号の電圧および周波数は用いる液晶にもよるが、周波数は100kHz以上が好ましい(請求項5参照)。   In addition, as shown in FIG. 12, heating can also be performed by applying a high-frequency signal that does not change the alignment / drive state of the liquid crystal when the drive voltage signal is saturated (the same as the polarization switching optical characteristics do not change). The voltage and frequency of this signal depend on the liquid crystal used, but the frequency is preferably 100 kHz or more (see claim 5).

次に、第1の実施形態の代表具体例として強誘電性液晶を用いた偏光切換素子10の作製およびその偏光切換装置11の動作確認に係る実施例1ついて、図1および図7を参照しながら説明する。   Next, as a typical example of the first embodiment, referring to FIG. 1 and FIG. 7 for Example 1 relating to the fabrication of the polarization switching element 10 using ferroelectric liquid crystal and the operation confirmation of the polarization switching device 11. While explaining.

基板1,2として、厚さ1.1mmの無アルカリガラス製で、その大きさが30×40mmのものを用い、これに透明電極(透明導電膜)8としてのヒータ電極および駆動電極としてITO(膜厚1000Å、シート抵抗50Ω/□)を成膜した。基板電極面にポリイミド配向膜(AL3046−R31 JSR 社製)をスピンコートにより約800Åの厚さに形成し、その基板表面を、ラビング法により配向処理を行った。前述したガラス基板を2枚用い、ラビング方向がアンチパラレル方向となるようにITO電極面を対向させて、基板1,2間が約2μmになるようにスペーサ3としてビーズスペーサを混入した接着剤にて貼り合わせて空セルを作製した。   The substrates 1 and 2 are made of non-alkali glass with a thickness of 1.1 mm and have a size of 30 × 40 mm. The heater electrode as the transparent electrode (transparent conductive film) 8 and ITO ( A film having a thickness of 1000 mm and a sheet resistance of 50Ω / □ was formed. A polyimide alignment film (AL3046-R31 manufactured by JSR) was formed on the substrate electrode surface by spin coating to a thickness of about 800 mm, and the substrate surface was subjected to alignment treatment by rubbing. Adhesive with bead spacer mixed as spacer 3 using two glass substrates as described above, with ITO electrode faces facing each other so that the rubbing direction is anti-parallel, and the distance between substrates 1 and 2 is about 2 μm. To form an empty cell.

次いで、前記空セルをホットプレート上にて90度(℃)に加熱した状態で空セル内に液晶4として、強誘電性液晶(クラリアント製FELIX018−100 Δn=0.17、2θ=45)を毛管法で注入し、放置冷却後に注入口等を封止して液晶層を形成し、図1のような偏光切換素子10および図7のような偏光切換装置11を作製した。電圧印加用の接続端子は、はんだで形成した。   Next, a ferroelectric liquid crystal (FELIX 018-100 made by Clariant Δn = 0.17, 2θ = 45) is formed as the liquid crystal 4 in the empty cell in a state where the empty cell is heated to 90 degrees (° C.) on a hot plate. After injecting by the capillary method, and allowing to cool after standing, the inlet and the like were sealed to form a liquid crystal layer, and a polarization switching element 10 as shown in FIG. 1 and a polarization switching device 11 as shown in FIG. 7 were produced. The connection terminal for voltage application was formed with solder.

前記した偏光切換素子10に用いたヒータ電極および駆動電極を形成したガラス基板単体(基板1)を用いて、電圧印加手段の端子にV11=10V、V12=+10Vの電圧を印加して基板1表面に電流を流して(印加して)加熱した。この時、電極を形成したガラス基板表面と電極を形成していないガラス基板表面の温度とを、熱電対を用いて測定したところ、温度上昇時間には差が有り、電極を形成したガラス基板表面の方が早い温度上昇を示した。
また、ガラス基板表面にヒータ電極および駆動電極を形成した領域(電極形成領域)と、電極が形成されていない領域(電極非形成領域)の2つの領域があるガラス基板単体を用いて、前記と同様にして電極部分に電流を印加して加熱し、電極形成領域と電極非形成領域の温度を測定したところ、2つの領域では温度が異なり、電極形成領域の方が温度が高かった。すなわち、ヒータ電極の形成領域は加熱時間が早く、加熱効率および精度が高いことが分かった。
Using the glass substrate alone (substrate 1) on which the heater electrode and the drive electrode used in the polarization switching element 10 are formed, the voltages V11 = 10V and V12 = + 10V are applied to the terminals of the voltage applying means, and the surface of the substrate 1 is applied. Was heated by applying (applying) an electric current. At this time, the temperature of the glass substrate surface on which the electrode was formed and the temperature on the glass substrate surface on which the electrode was not formed were measured using a thermocouple. Showed a faster temperature rise.
Further, using a glass substrate alone having two regions, a region where the heater electrode and the drive electrode are formed on the glass substrate surface (electrode forming region) and a region where no electrode is formed (electrode non-forming region), Similarly, when current was applied to the electrode portion and heated to measure the temperature of the electrode formation region and the electrode non-formation region, the temperature was different in the two regions, and the temperature was higher in the electrode formation region. That is, it was found that the heater electrode formation region has a fast heating time and high heating efficiency and accuracy.

次に偏光切換素子10の光学特性評価として、レーザ光源とフォトダイオード(以下、「PD」という)の光路中に偏光切換素子10を直交ニコル下の偏光板に挟み、偏光切換素子10に電圧を印加して偏光切換えスイッチング動作を観察した。ここで、偏光切換素子10の配置は入射偏光方向が液晶配向の2つの配向状態のうち、どちらか一方の配向状態における液晶分子の長軸方向と一致するように調整し、PD出力が明暗状態となるように調整配置した。   Next, as an optical characteristic evaluation of the polarization switching element 10, the polarization switching element 10 is sandwiched between polarizing plates under crossed Nicols in the optical path of a laser light source and a photodiode (hereinafter referred to as “PD”), and a voltage is applied to the polarization switching element 10. The polarization switching switching operation was observed after application. Here, the arrangement of the polarization switching element 10 is adjusted so that the incident polarization direction coincides with the major axis direction of the liquid crystal molecules in one of the two alignment states of the liquid crystal alignment, and the PD output is in a bright and dark state. Adjusted and arranged so that

まず、印加電圧信号を周波数4kHz、基板(ガラス基板)1、基板(ガラス基板)2の各端子への印加電圧はV11=+40⇔−40、V12=+40⇔−40、V21=G(接地)、V22=G(接地)とし、基板1,2(ガラス基板)間の電界強度が図6(b)に示すように飽和電界となる±20V/μmの矩形波信号を入力して駆動した。この時、熱電対にて基板(ガラス基板)1表面の温度を測定したところ25℃であり、応答速度(暗0%→明100%の立ち上がり時間)は図6(a)に示したように30μsecであった。   First, the applied voltage signal has a frequency of 4 kHz, and the applied voltages to the terminals of the substrate (glass substrate) 1 and substrate (glass substrate) 2 are V11 = + 40⇔−40, V12 = + 40⇔−40, V21 = G (ground) , V22 = G (ground), and a rectangular wave signal of ± 20 V / μm is inputted and driven so that the electric field strength between the substrates 1 and 2 (glass substrate) becomes a saturation electric field as shown in FIG. At this time, when the temperature of the surface of the substrate (glass substrate) 1 was measured with a thermocouple, it was 25 ° C., and the response speed (dark 0% → light 100% rise time) was as shown in FIG. 30 μsec.

次に、印加電圧信号を周波数4kHz、基板(ガラス基板)1、基板(ガラス基板)2の各端子への印加電圧はV11=+50⇔−50、V12=+40⇔−40 、V21=G(接地)、V22=G(接地)とし、基板1,2(ガラス基板)間の電界強度が±20V/μm(光有効領域の最小電界)の矩形波信号を入力して駆動した。この時、PD出力値は前記と同じであり、光学性能の劣化がないことを確認した。また、基板(ガラス基板)1には電流が印加されるため、駆動および加熱から数秒後に基板(ガラス基板)1の温度は上昇し、熱電対にて基板(ガラス基板)1の表面の温度を測定したところ約40℃となり、応答速度(暗0%→明100%の立ち上がり時間)は約22μsecであった。このことから加熱時に飽和電界以上となる電界を印加することで、低温下においても高速応答性が確保できることが分かった。   Next, the applied voltage signal has a frequency of 4 kHz, the applied voltages to the terminals of the substrate (glass substrate) 1 and substrate (glass substrate) 2 are V11 = + 50⇔−50, V12 = + 40⇔−40, V21 = G (ground) ), V22 = G (ground), and a rectangular wave signal having an electric field strength of ± 20 V / μm (minimum electric field in the light effective region) between the substrates 1 and 2 (glass substrate) was input and driven. At this time, the PD output value was the same as described above, and it was confirmed that there was no deterioration in optical performance. In addition, since current is applied to the substrate (glass substrate) 1, the temperature of the substrate (glass substrate) 1 rises several seconds after driving and heating, and the temperature of the surface of the substrate (glass substrate) 1 is set by a thermocouple. When measured, the temperature was about 40 ° C., and the response speed (dark 0% → light 100% rise time) was about 22 μsec. From this, it was found that high-speed responsiveness can be ensured even at low temperatures by applying an electric field that is equal to or higher than the saturation electric field during heating.

さらに、印加電圧信号を周波数4kHz、基板(ガラス基板)1、基板(ガラス基板)2の各端子への印加電圧はV11=+20⇔−20、V12=+20⇔−20、V21=−20⇔+20、V22=−20⇔+20とし、基板(ガラス基板)1,2間の電界強度が±20V/μm(光有効領域の電界)の矩形波信号を入力して駆動した。この時、PD出力値は前記と同じであり、光学性能の劣化がないことを確認した。また、基板(ガラス基板)1には電流が印加されるため、駆動および加熱から数秒後に基板(ガラス基板)1の温度は上昇し、熱電対にて基板(ガラス基板)1の表面の温度を測定したところ約40℃となり、応答速度(暗0%→明100%の立ち上がり時間)は約22μsecであった。
このことからも加熱時に飽和電界以上となる電界を印加することで、低温下においても高速応答性が確保できることが分かった。以上説明した実施例1の結果から加熱時に飽和電界以上となる電界を印加し、基板間の電界強度を同じとすることで、低温下においても低電圧印加で高速応答性が確保できることが分かった。
Further, the applied voltage signal has a frequency of 4 kHz, applied voltages to the terminals of the substrate (glass substrate) 1 and substrate (glass substrate) 2 are V11 = + 20⇔−20, V12 = + 20⇔−20, V21 = −20⇔ + 20. V22 = −20⇔ + 20, and driving was performed by inputting a rectangular wave signal having an electric field strength between the substrates (glass substrates) 1 and 2 of ± 20 V / μm (electric field in the light effective region). At this time, the PD output value was the same as described above, and it was confirmed that there was no deterioration in optical performance. In addition, since current is applied to the substrate (glass substrate) 1, the temperature of the substrate (glass substrate) 1 rises several seconds after driving and heating, and the temperature of the surface of the substrate (glass substrate) 1 is set by a thermocouple. When measured, the temperature was about 40 ° C., and the response speed (dark 0% → light 100% rise time) was about 22 μsec.
From this, it was found that high-speed responsiveness can be ensured even at low temperatures by applying an electric field that is equal to or higher than the saturation electric field during heating. From the results of Example 1 described above, it was found that high-speed responsiveness can be ensured by applying a low voltage even at low temperatures by applying an electric field that is equal to or higher than the saturation electric field during heating and maintaining the same electric field strength between the substrates. .

(第4の実施形態)
図13を参照して、本発明の光路切換装置に係る第4の実施形態の構成および動作について説明する。図13に示すように、第4の実施形態の光路切換装置15は、前記した偏光切換素子10と、この偏光切換素子10における入射光の透過後の光路上に配置された偏光分離素子13とを具備した構成からなる。偏光分離素子13は、複屈折素子や偏光ビームスプリッタ(以下、「PBS」とも称する)プリズム、偏光依存性を示す回折光学素子等を用いて実現できる。
(Fourth embodiment)
With reference to FIG. 13, the configuration and operation of the fourth embodiment according to the optical path switching apparatus of the present invention will be described. As shown in FIG. 13, the optical path switching device 15 of the fourth embodiment includes the polarization switching element 10 described above, and a polarization separation element 13 disposed on the optical path after transmission of incident light in the polarization switching element 10. It comprises the structure which comprised. The polarization separation element 13 can be realized using a birefringence element, a polarization beam splitter (hereinafter also referred to as “PBS”) prism, a diffractive optical element exhibiting polarization dependency, and the like.

偏光切換素子10は、前記したように電界制御により入射光の偏光方向を、互いに直交する2つの偏光成分(第1の偏光方向D1、第2の偏光方向D2、以下同様)に切り換える動作・機能を有している。すなわち、入射光の偏光面方向を略90°切り換えることができる。また、偏光分離素子13は互いに直交する2つの偏光成分(偏光方向D1、偏光方向D2)を、それぞれ異なる光路(第1の光路P1、第2の光路P2、以下同様)に分離する動作・機能を有している。すなわち、前記の偏光切換素子10により切り換えられた2つの偏光成分(偏光方向D1、偏光方向D2)を、それぞれ異なる光路(光路P1、光路P2)に導き・切り換えることができる。このようにして、偏光切換素子10と偏光分離素子13との構成により、光路切換装置15が実現できる。この光路切換装置15の光路切り換え性能に与える影響は、その装置を構成するそれぞれの素子により異なり、偏光切換素子10は主に光路切り換えの応答性、光学特性に影響を及ぼし、偏光分離素子13は主に光路切り換えの光路シフト量に影響を及ぼす。ここで、光路シフト量は、素子を通過する光路長に大きく依存するため、偏光分離素子13の素子サイズを適宜設定することで、所望の光路シフト量を得ることができる。また、偏光分離素子13は小さいシフト量であれば複屈折素子が有効であり、ある程度大きいシフト量を必要とする場合はPBSプリズムが有効である。   The polarization switching element 10 operates / functions to switch the polarization direction of incident light to two polarization components orthogonal to each other (first polarization direction D1, second polarization direction D2, and so on) by electric field control as described above. have. That is, the polarization plane direction of incident light can be switched by approximately 90 °. In addition, the polarization separation element 13 separates two orthogonal polarization components (polarization direction D1 and polarization direction D2) into different optical paths (first optical path P1, second optical path P2, and so on). have. That is, the two polarization components (polarization direction D1 and polarization direction D2) switched by the polarization switching element 10 can be guided and switched to different optical paths (optical path P1 and optical path P2), respectively. In this way, the optical path switching device 15 can be realized by the configuration of the polarization switching element 10 and the polarization separation element 13. The influence of the optical path switching device 15 on the optical path switching performance differs depending on each element constituting the device. The polarization switching element 10 mainly affects the response and optical characteristics of the optical path switching. Mainly affects the optical path shift amount of optical path switching. Here, since the optical path shift amount greatly depends on the optical path length passing through the element, a desired optical path shift amount can be obtained by appropriately setting the element size of the polarization separation element 13. The polarization separation element 13 is effective when the shift amount is small, and a birefringence element is effective. When a certain amount of shift is required, a PBS prism is effective.

前記したように偏光切換素子10は、液晶の加熱および駆動が可能であるため低温環境下においても、高速応答性を示すことができることから、光路切換装置15による光路切り換え動作も同様にして、低温環境下で光路を高速に切り換えることができる(請求項6参照)。   As described above, since the polarization switching element 10 can heat and drive the liquid crystal and can exhibit high-speed response even in a low temperature environment, the optical path switching operation by the optical path switching device 15 is similarly performed at a low temperature. The optical path can be switched at high speed under the environment (see claim 6).

(第5の実施形態)
図14を参照して、本発明の光走査装置に係る第5の実施形態について説明する。図14は、光走査装置の一部を示しており、同図の光走査装置は、光源16と、第4の実施形態の光路切換装置15と、光路切換装置15により切り換えられた光ビームを偏向する偏向手段としてのポリゴンミラー37とを具備する構成であり、光源16とポリゴンミラー37との間に光路切換装置15が配置されていることを特徴としている。
(Fifth embodiment)
With reference to FIG. 14, a fifth embodiment according to the optical scanning device of the present invention will be described. FIG. 14 shows a part of the optical scanning device. The optical scanning device in FIG. 14 is a light source 16, an optical path switching device 15 according to the fourth embodiment, and a light beam switched by the optical path switching device 15. The configuration includes a polygon mirror 37 as a deflecting means for deflecting, and an optical path switching device 15 is disposed between the light source 16 and the polygon mirror 37.

さらに、光路切換装置15からの2つの第1の光路P1(以下、「上段光路」ともいう)、第2の光路P2(以下、「下段光路」ともいう)におけるビーム光量を検知する第1、第2の光量検知手段18a,18bを設け、各光量検知手段18a,18bからの検知信号に基づいて光路切換装置15への加熱および駆動を制御する電圧調整手段の機能を備えた電圧印加手段12を具備した構成としていることも特徴となっている。
ポリゴンミラー37は、共通の回転軸を有し、複数段としての2段の回転反射多面鏡である、45°の位相をもって配設された上段ポリゴンミラー37aと下段ポリゴンミラー37bとを備えている。
Further, the first and second optical paths P1 (hereinafter also referred to as “upper optical path”) and the second optical path P2 (hereinafter also referred to as “lower optical path”) from the optical path switching device 15 are detected. The voltage application means 12 is provided with second light quantity detection means 18a and 18b, and has a function of voltage adjustment means for controlling heating and driving to the optical path switching device 15 based on detection signals from the respective light quantity detection means 18a and 18b. It is also characterized by having a configuration comprising
The polygon mirror 37 includes an upper polygon mirror 37a and a lower polygon mirror 37b having a common rotation axis and arranged as a plurality of stages of two-stage rotary reflection polygon mirrors with a phase of 45 °. .

図14の光走査装置の動作として、光源16から出射した光ビームは、レンズ17を通過し、前述の光路切換装置15による光路切り換えにより、副走査方向にビーム光路(第1の光路P1として上段光路と、第2の光路P2として下段光路)がシフトされ、第1、第2の光路P1,P2に対応した2段のポリゴンミラー37を構成する上段ポリゴンミラー37aおよび下段ポリゴンミラー37bに入射される。   As an operation of the optical scanning device of FIG. 14, the light beam emitted from the light source 16 passes through the lens 17 and is switched in the sub-scanning direction by the optical path switching by the optical path switching device 15 described above (upper stage as the first optical path P1). The optical path and the lower optical path as the second optical path P2 are shifted, and are incident on the upper polygon mirror 37a and the lower polygon mirror 37b constituting the two-stage polygon mirror 37 corresponding to the first and second optical paths P1 and P2. The

光量検知手段18a,18bは、一般的なフォトダイオードが使用できる。光路切換装置15の加熱および駆動は、前記したように偏光切換素子10構成の液晶に対する加熱用および駆動用透明導電膜8(図1、図7参照)によりなされる。このような構成とする場合、直接液晶を加熱するため、設定温度に達する時間が早く、高精度の加熱ができるといった利点がある(請求項7参照)。   A common photodiode can be used for the light quantity detection means 18a, 18b. The optical path switching device 15 is heated and driven by the transparent conductive film 8 for heating and driving the liquid crystal of the polarization switching element 10 as described above (see FIGS. 1 and 7). In the case of such a configuration, since the liquid crystal is directly heated, there is an advantage that the time for reaching the set temperature is quick and high-precision heating can be performed (see claim 7).

以下、光量検知による加熱および駆動制御について具体的に説明する。図15に走査記録タイミングと光量検知手段18a,18bからの検知信号1s,2sを示す。ここでは上下段の2つの切換光路に関して示している。図15のように上段光路における記録終了時の上段光路の光量と、下段光路における記録開始時の下段光路の光量とが同じである場合(下段光路における記録終了時の下段光路の光量と、上段光路における記録開始時の上段光路の光量とが同じである場合)、光路切換の応答時間が設定値内であり、応答性能が確保されているので、加熱する必要はない。   Hereinafter, heating and drive control by light amount detection will be specifically described. FIG. 15 shows the scanning recording timing and the detection signals 1s and 2s from the light quantity detection means 18a and 18b. Here, two upper and lower switching optical paths are shown. As shown in FIG. 15, when the amount of light in the upper optical path at the end of recording in the upper optical path is the same as the amount of light in the lower optical path at the start of recording in the lower optical path (the amount of light in the lower optical path at the end of recording in the lower optical path, When the amount of light in the upper optical path at the start of recording in the optical path is the same), the response time for switching the optical path is within the set value and the response performance is ensured, so heating is not necessary.

しかし、図16のように上段光路における記録終了時の上段光路の光量と、下段光路における記録開始時の下段光路の光量とが異なる場合(下段光路における記録終了時の下段光路の光量と、上段光路における記録開始時の上段光路の光量とが異なる場合)、光路切換の応答時間が設定値から外れ、応答性能が確保されていないことが分かり、光量が同じになるように加熱する必要がある。ここで、加熱のタイミングは、記録終了から記録開始までの光走査時の書き込み記録をしていない光走査非有効期間に設定されていることで、加熱における書き込み記録への影響は完全になくなる(請求項8、9参照)。   However, as shown in FIG. 16, when the amount of light in the upper optical path at the end of recording in the upper optical path is different from the amount of light in the lower optical path at the start of recording in the lower optical path (the amount of light in the lower optical path at the end of recording in the lower optical path, If the light amount of the upper optical path at the start of recording in the optical path is different), it can be seen that the response time of the optical path switching is out of the set value and the response performance is not secured, and it is necessary to heat the light amount to be the same . Here, the heating timing is set to an optical scanning ineffective period in which writing recording at the time of optical scanning from the end of recording to the start of recording is not performed, so that the influence of heating on writing recording is completely eliminated ( (See claims 8 and 9).

また、図17のように記録終了時から上段光路の光量と下段光路の光量が重なる時間Tを規定し、記録終了時から上段光路の光量と下段光路の光量が重なる時間が規定時間Tからずれることで応答速度の変化を確認することもできる。すなわち、T’>Tとなる場合には、光路切換の応答時間が設定値外で、応答性能が確保されていないことが分かり、光量が同じになるように電界または温度を調整する必要がある。この検知方法の場合、光量の絶対値によらずに検知できるため、光量検知手段としてのフォトダイオードの仕様範囲が広がる。   Further, as shown in FIG. 17, a time T in which the light amount in the upper optical path and the light amount in the lower optical path overlap from the end of recording is defined, and a time in which the light amount in the upper optical path and the light amount in the lower optical path overlap from the specified time T from the end of recording. It is also possible to confirm the change in response speed. That is, when T ′> T, it can be seen that the response time of optical path switching is outside the set value and the response performance is not ensured, and it is necessary to adjust the electric field or temperature so that the amount of light is the same. . In the case of this detection method, detection can be performed regardless of the absolute value of the amount of light, so that the specification range of the photodiode as the light amount detection means is expanded.

上述の説明では上下段の2つの切り換え光路に関して説明しているが、上段または下段の1つの光路の光量検知でも記録開始と記録終了時の光量差が最大になっているかいないかで、応答時間が設定値内に入っているか確認できる(請求項8参照)。
このような光量検知により光路切換装置15内の液晶を加熱および駆動制御し、光路切換装置15の高速応答性を確保することで、低温環境下においても光路切換の応答時間を所望の応答時間に安定することができ、実際に使用される記録走査光の光量性能が確保されるため、印刷画像劣化の発生が低減できる。
In the above description, the upper and lower switching optical paths are described. However, the response time depends on whether the difference in the light amount between the start of recording and the end of recording is maximized even in the light amount detection of the upper or lower optical path. Is within the set value (see claim 8).
By detecting the amount of light, the liquid crystal in the optical path switching device 15 is heated and driven and the high-speed response of the optical path switching device 15 is ensured, so that the response time of the optical path switching is set to a desired response time even in a low temperature environment. Since the light quantity performance of the recording scanning light actually used can be ensured, the occurrence of print image deterioration can be reduced.

ここで、光量検知手段の配置としては、ポリゴンミラー37前に設置することで切り換え時間に有する時間を長く設定できる。具体的には図14のように、ハーフミラープリズム19a,19bにより光路をさらに分岐して検知する。開口を有するミラーにより開口外の反射光を検知する。   Here, as the arrangement of the light quantity detection means, the time for the switching time can be set longer by installing it in front of the polygon mirror 37. Specifically, as shown in FIG. 14, the optical path is further branched and detected by the half mirror prisms 19a and 19b. Reflected light outside the aperture is detected by a mirror having an aperture.

また、図18に示す第5の実施形態の変形例1に係る光走査装置のように、ポリゴンミラー37を囲っている防音ガラス36の反射光を検知する構成(反射強度は反射膜等により調整することが好ましい)があるが、記録走査していない無効走査期間での記録走査する直前直後(記録に影響しない記録開始および終了のタイミング)の光量を検知できればこれに限るものではない。
図18において、45a,45b,45c,45dは、光走査周期の同期検知する同期検知フォトダイオードを示す。
Further, as in the optical scanning device according to the first modification of the fifth embodiment shown in FIG. 18, a configuration for detecting the reflected light of the soundproof glass 36 surrounding the polygon mirror 37 (the reflection intensity is adjusted by a reflection film or the like). However, the present invention is not limited to this as long as the amount of light immediately before the recording scan in the invalid scanning period in which the recording scan is not performed can be detected (recording start and end timing not affecting the recording).
In FIG. 18, reference numerals 45a, 45b, 45c, and 45d denote synchronization detection photodiodes that detect the synchronization of the optical scanning period.

また、図19に示す第5の実施形態の変形例2に係る光走査装置のように、光量検知手段18a,18b,18c,18dの別の配置例としては、ポリゴンミラー37の後に設置することで、余計な部品や反射膜の設置が必要なくなる。   Further, as another arrangement example of the light amount detection means 18a, 18b, 18c, 18d as in the optical scanning device according to the second modification of the fifth embodiment shown in FIG. 19, it is installed after the polygon mirror 37. Therefore, it is not necessary to install extra parts or reflective films.

さらに、図20に示す第5の実施形態の変形例3に係る光走査装置のように、光走査周期の同期検知を兼用するように、光量検知兼走査同期検知フォトダイオード46a,46b,46c,46dとすることで、さらに部品点数を減らすこともできる。   Further, as in the optical scanning device according to the third modification of the fifth embodiment shown in FIG. 20, the light quantity detection / scanning synchronization detection photodiodes 46a, 46b, 46c, By setting it to 46d, the number of parts can be further reduced.

図21を参照して、図14にその一部を示した第5の実施形態に係る光走査装置の全体構成を示す。なお、図18〜図20に示した光走査装置の構成要素(構成部品や構成部材)にも、混同の虞がない限り同様の符号を付してその細部説明を省略したが、以下説明する内容に準ずるものとする。   Referring to FIG. 21, the overall configuration of the optical scanning device according to the fifth embodiment, part of which is shown in FIG. The components (components and components) of the optical scanning device shown in FIG. 18 to FIG. 20 are given the same reference numerals as long as there is no risk of confusion, and detailed descriptions thereof are omitted. It shall conform to the contents.

図21に示すように、本実施形態に係る光走査装置は、第1の光学系と第2の光学系とから構成されている。
すなわち、第1の光学系は、光源としての半導体レーザ31,31’と、LDベース32と、カップリングレンズ33,33’と、光路切換装置15(あるいは偏光切換手段、偏光分離手段)と、シリンドリカルレンズ35a,35bとから主に構成されている。
第2の光学系は、防音ガラス36と、上段ポリゴンミラー37aおよび下段ポリゴンミラー37bを備えたポリゴンミラー37と、第1の走査レンズ(fθレンズ)38a,38bと、ミラー39と、第2の走査レンズ(fθレンズ)40a,40bと、被走査面を備えたドラム状の像担持体である感光体41a,41bと、開口絞り42と、光量検知兼走査同期検知フォトダイオード46a,46b,46c,46dとから主に構成されている。
As shown in FIG. 21, the optical scanning device according to the present embodiment includes a first optical system and a second optical system.
That is, the first optical system includes semiconductor lasers 31 and 31 ′ as light sources, an LD base 32, coupling lenses 33 and 33 ′, an optical path switching device 15 (or polarization switching means and polarization separation means), It is mainly composed of cylindrical lenses 35a and 35b.
The second optical system includes a soundproof glass 36, a polygon mirror 37 having an upper polygon mirror 37a and a lower polygon mirror 37b, first scanning lenses (fθ lenses) 38a and 38b, a mirror 39, and a second mirror. Scanning lenses (fθ lenses) 40a and 40b, photoconductors 41a and 41b, which are drum-shaped image carriers having scanning surfaces, an aperture stop 42, and light quantity detection / scanning synchronization detection photodiodes 46a, 46b, and 46c. , 46d.

図15には示さないが、レーザ光源(2LDユニット)から光路切換装置15(あるいは偏光切換素子と偏光分離素子)の後のシリンドリカルレンズ35a,35bまでの第1の光学系、およびfθレンズを含む結像光学系である第2の光学系とのそれぞれを2セットと、2段ポリゴンミラーとを用いることによって、2ビームで光走査4箇所への書き込む光走査装置を構築できる。
4個所の光走査は、4色(シアン、イエロー、マゼンダ、ブラック(黒))に対応する感光体であり、多色画像形成装置を構築することができる。
Although not shown in FIG. 15, the first optical system from the laser light source (2LD unit) to the cylindrical lenses 35a and 35b after the optical path switching device 15 (or the polarization switching element and the polarization separation element) and the fθ lens are included. By using two sets of the second optical system that is an imaging optical system and a two-stage polygon mirror, it is possible to construct an optical scanning device that writes to four optical scanning locations with two beams.
The four optical scans are photoconductors corresponding to four colors (cyan, yellow, magenta, and black (black)), and a multicolor image forming apparatus can be constructed.

(第6の実施形態)
図22を参照して、本発明の画像形成装置に係る第6の実施形態としての多色画像形成装置の基本的な構成を示す。
図22に示す多色画像形成装置は、本発明に係る第5の実施形態、変形例1〜4の何れか一つの光走査装置を適用した画像形成装置の一例である。
(Sixth embodiment)
Referring to FIG. 22, there is shown a basic configuration of a multicolor image forming apparatus as a sixth embodiment according to the image forming apparatus of the present invention.
The multicolor image forming apparatus shown in FIG. 22 is an example of an image forming apparatus to which the optical scanning device according to any one of the fifth embodiment and the first to fourth modifications according to the present invention is applied.

図22に示す多色画像形成装置は、Y(イエロー)、M(マゼンダ)、C(シアン)、K(ブラック)の4色に対応し、感光体1Y,感光体1M,感光体1C,感光体1Kと、帯電器2Y,帯電器2M,帯電器2C,帯電器2Kと、書込ユニット(光走査装置)23と、現像器4Y,現像器4M,現像器4C,現像器4Kと、クリーニング手段5Y,クリーニング手段5M,クリーニング手段5C,クリーニング手段5Kと、転写用帯電手段6Y,転写用帯電手段6M,転写用帯電手段6C,転写用帯電手段6Kと、転写ベルト24と、定着手段25とを有する。   The multicolor image forming apparatus shown in FIG. 22 corresponds to four colors of Y (yellow), M (magenta), C (cyan), and K (black), and the photosensitive member 1Y, the photosensitive member 1M, the photosensitive member 1C, and the photosensitive member. Cleaning unit 1K, charger 2Y, charger 2M, charger 2C, charger 2K, writing unit (optical scanning device) 23, developer 4Y, developer 4M, developer 4C, developer 4K Means 5Y, cleaning means 5M, cleaning means 5C, cleaning means 5K, transfer charging means 6Y, transfer charging means 6M, transfer charging means 6C, transfer charging means 6K, transfer belt 24, and fixing means 25 Have

感光体1Y,1M,1C,1Kは、図中矢印の方向に回転し、回転順に帯電器2Y,2M,2C,2K、現像器4Y,4M,4C,4K、転写用帯電手段6Y,6M,6C,6K、クリーニング手段5Y,5M,5C,5Kが配置されている。
帯電手段2Y,2M,2C,2Kは、感光体表面を均一に帯電するための帯電装置を構成する帯電部材を備えている。
The photoreceptors 1Y, 1M, 1C, and 1K rotate in the direction of the arrow in the figure, and in the order of rotation, the charging devices 2Y, 2M, 2C, and 2K, the developing devices 4Y, 4M, 4C, and 4K, the transfer charging units 6Y, 6M, 6C, 6K and cleaning means 5Y, 5M, 5C, 5K are arranged.
The charging means 2Y, 2M, 2C, and 2K include a charging member that constitutes a charging device for uniformly charging the surface of the photoreceptor.

この帯電手段2Y,2M,2C,2Kと、現像部材4Y,4M,4C,4Kとの間の感光体表面に書込ユニット23によりビームが照射され、感光体に静電潜像が形成されるようになっている。
そして、静電潜像に基づき、現像器4Y,4M,4C,4Kの各現像部材により感光体面上にトナー像が形成される。
The writing unit 23 irradiates the photosensitive member surface between the charging units 2Y, 2M, 2C, and 2K and the developing members 4Y, 4M, 4C, and 4K, and an electrostatic latent image is formed on the photosensitive member. It is like that.
Based on the electrostatic latent image, a toner image is formed on the surface of the photoreceptor by the developing members of the developing devices 4Y, 4M, 4C, and 4K.

さらに、図示しないシート給送装置から搬送されてきたシート状記録媒体としての記録紙(図示せず)が無端ベルトからなる転写ベルト24上に保持されることで、転写用帯電手段6Y,6M,6C,6Kにより、順次、前記記録紙に各色転写トナー像が転写され、最終的に定着手段25により前記記録紙に画像が定着する。   Further, a recording sheet (not shown) as a sheet-like recording medium conveyed from a sheet feeding device (not shown) is held on a transfer belt 24 formed of an endless belt, thereby transferring charging means 6Y, 6M, Each of the color transfer toner images is sequentially transferred onto the recording paper by 6C and 6K, and finally the image is fixed on the recording paper by the fixing unit 25.

前述したような電界制御により光路が切換可能な光走査装置を用いた画像形成装置において、複数段のポリゴンミラーからの走査記録に対応して、レーザ光源の光路切り換えおよび光量を変調駆動することで、各色に対応する感光体を順次走査記録することができ、光源数を減らしながらも、ビームパワーのロスがなく、高速な画像出力を可能とする画像形成装置が実現できる。   In the image forming apparatus using the optical scanning device capable of switching the optical path by the electric field control as described above, the optical path of the laser light source is switched and the light quantity is modulated in response to scanning recording from a plurality of stages of polygon mirrors. Thus, it is possible to realize an image forming apparatus that can sequentially scan and record the photoconductors corresponding to the respective colors, and can reduce the number of light sources without causing loss of beam power and enabling high-speed image output.

図22のような4ドラムタンデム方式において、2段ポリゴンミラーを用いる場合、走査記録は、順次、例えば、イエローとマゼンダ、シアンとブラックのそれぞれ2つの感光体を交互に走査記録することができる。ここで、光量検知手段からのフィードバック制御により安定した走査記録が実現できる(請求項10参照)。   In the 4-drum tandem system as shown in FIG. 22, when a two-stage polygon mirror is used, scanning recording can sequentially scan and record, for example, two photosensitive members of yellow and magenta and cyan and black, respectively. Here, stable scanning recording can be realized by feedback control from the light amount detection means (see claim 10).

上述の第6の実施形態では、転写体としての転写ベルトでシート状記録媒体を搬送しながら順次転写して重ね合わせる直接転写方式のタンデム型の多色(カラー)画像形成装置の例で説明したが、これに限らず、例えば、無端ベルト状の中間転写体に転写した後、シート状記録媒体に一括転写するタンデム型の多色(カラー)画像形成装置にも、本発明に係る第5の実施形態、変形例1〜4の何れか一つの光走査装置を適用して同様に実施することができることは無論である。   In the above-described sixth embodiment, an example of a direct transfer type tandem type multi-color (color) image forming apparatus that sequentially transfers and superimposes a sheet-like recording medium while being conveyed by a transfer belt as a transfer member has been described. However, the present invention is not limited to this. For example, a tandem type multicolor (color) image forming apparatus that transfers images to an endless belt-like intermediate transfer member and then transfers them to a sheet-like recording medium at the same time is applied to the fifth aspect of the invention. It goes without saying that the optical scanning device according to any one of the embodiments and modified examples 1 to 4 can be applied in the same manner.

以上説明したとおり、本発明を特定の実施形態や変形例等について説明したが、本発明が開示する技術的範囲は、上述した実施形態や変形例あるいは実施例等に例示されているものに限定されるものではなく、それらを適宜組み合わせて構成してもよく、本発明の範囲内において、その必要性および用途等に応じて種々の実施形態や変形例あるいは実施例を構成し得ることは当業者ならば明らかである。   As described above, the present invention has been described with respect to specific embodiments, modifications, and the like. However, the technical scope disclosed by the present invention is limited to those exemplified in the above-described embodiments, modifications, or examples. However, it should be understood that various embodiments, modifications, or examples may be configured within the scope of the present invention in accordance with the necessity and application thereof. It will be clear to the trader.

第1の実施形態に係る偏光切換素子の構成の一例を示す図であって、図2のS1−S1の断面図である。It is a figure which shows an example of a structure of the polarization switching element which concerns on 1st Embodiment, Comprising: It is sectional drawing of S1-S1 of FIG. 第1の実施形態に係る偏光切換素子を入射光軸から見た図である。It is the figure which looked at the polarization switching element concerning a 1st embodiment from the incident optical axis. 液晶層として強誘電性液晶を用いた偏光切換素子の構成を示す概略的な断面図である。It is a schematic sectional drawing which shows the structure of the polarization switching element using ferroelectric liquid crystal as a liquid-crystal layer. 強誘電性液晶のスイッチングを説明するための模式図である。It is a schematic diagram for demonstrating switching of a ferroelectric liquid crystal. 表面安定化強誘電性液晶層(SSFLC)を用いた偏光切り換え手段の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the polarization switching means using the surface stabilization ferroelectric liquid crystal layer (SSFLC). (a)は、液晶素子の応答速度の温度特性を示すグラフ、(b)は、液晶素子の応答速度の電界特性を示すグラフである。(A) is a graph which shows the temperature characteristic of the response speed of a liquid crystal element, (b) is a graph which shows the electric field characteristic of the response speed of a liquid crystal element. 偏光切換素子を備えた偏光切換装置の構成の一例を示す図であって、図7(a)は、図7(b)のSa−Saの断面図、図7(b)は入射光軸から見た図である。FIGS. 7A and 7B are diagrams illustrating an example of a configuration of a polarization switching device including a polarization switching element, in which FIG. 7A is a cross-sectional view taken along the line Sa-Sa in FIG. 7B and FIG. FIG. 偏光切換装置において、加熱しないで駆動する場合の印加電圧の信号および透明基板間の電界の大きさと方向・極性との一例について説明する図である。In a polarization switching device, it is a figure explaining an example of the signal of the applied voltage at the time of driving without heating, and the magnitude | size, direction, and polarity of the electric field between transparent substrates. 偏光切換装置において、加熱しながら駆動する場合の印加電圧の信号および透明基板間の電界の大きさと方向・極性との一例について説明する図である。In a polarization switching device, it is a figure explaining an example of the signal of the applied voltage at the time of driving while heating, and the magnitude | size, direction, and polarity of the electric field between transparent substrates. 第2の実施形態に係る偏光切換装置において、加熱しながら駆動する場合の印加電圧の信号および透明基板間の電界の大きさと方向・極性との一例について説明する図である。In the polarization switching device concerning a 2nd embodiment, it is a figure explaining an example of the signal of the applied voltage at the time of driving while heating, and the size, direction, and polarity of the electric field between transparent substrates. 第3の実施形態に係る偏光切換装置において、加熱しながら駆動する場合の印加電圧の信号および透明基板間の電界の大きさと方向・極性との一例について説明する図である。In the polarization switching device concerning a 3rd embodiment, it is a figure explaining an example of a signal of an applied voltage at the time of driving while heating, and a size, direction, and polarity of an electric field between transparent substrates. 駆動電圧信号の飽和時に液晶の配向・駆動状態が変化しない偏光切換装置において、高周波信号を印加することによって加熱する例を示す図である。It is a figure which shows the example which heats by applying a high frequency signal in the polarization switching apparatus with which the orientation and drive state of a liquid crystal do not change at the time of saturation of a drive voltage signal. 第4の実施形態に係る光路切換装置の一例を示す構成図である。It is a block diagram which shows an example of the optical path switching apparatus which concerns on 4th Embodiment. 第5の実施形態に係る光走査装置の一部の構成図であって、光路切換装置の配置等を示す図である。It is a partial block diagram of the optical scanning device which concerns on 5th Embodiment, Comprising: It is a figure which shows arrangement | positioning etc. of an optical path switching device. 第5の実施形態に係る光走査装置において、第1の走査記録タイミングと光量検知手段からの検知信号を示す図である。In the optical scanning device which concerns on 5th Embodiment, it is a figure which shows the 1st scanning recording timing and the detection signal from a light quantity detection means. 第5の実施形態に係る光走査装置において、第2の走査記録タイミングと光量検知手段からの検知信号を示す図である。In the optical scanning device which concerns on 5th Embodiment, it is a figure which shows the 2nd scanning recording timing and the detection signal from a light quantity detection means. 第5の実施形態に係る光走査装置において、第3の走査記録タイミングと光量検知手段からの検知信号を示す図である。In the optical scanning device which concerns on 5th Embodiment, it is a figure which shows the detection signal from a 3rd scanning recording timing and a light quantity detection means. 第5の実施形態の変形例1に係る光走査装置を示す斜視図である。It is a perspective view which shows the optical scanning device which concerns on the modification 1 of 5th Embodiment. 第5の実施形態の変形例2に係る光走査装置を示す斜視図である。It is a perspective view which shows the optical scanning device which concerns on the modification 2 of 5th Embodiment. 第5の実施形態の変形例3に係る光走査装置を示す斜視図である。It is a perspective view which shows the optical scanning device which concerns on the modification 3 of 5th Embodiment. 第5の実施形態に係る光走査装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the optical scanning device concerning 5th Embodiment. 第6の実施形態に係る多色画像形成装置の概略的な構成図である。FIG. 10 is a schematic configuration diagram of a multicolor image forming apparatus according to a sixth embodiment.

符号の説明Explanation of symbols

1,2 透明基板
3 スペーサ
4 液晶
5,6 配光膜
7 光有効領域(入射光領域の少なくとも一部)
8 加熱用透明導電膜、透明電極
9 駆動用透明導電膜、透明電極
10 偏光切換素子
11 偏光切換装置
12 電圧印加手段
13 偏光分離素子
15 光路切換装置
18a,18b 光量検知手段
23 書込ユニット(光走査装置)
24 転写ベルト
25 定着手段
31,31’ 半導体レーザ
32 LDベース
33,33’ カップリングレンズ
35,35’ シリンドリカルレンズ
36 防音ガラス
37 ポリゴンミラー(偏向手段)
38a,38b 第1の走査レンズ(結像光学系)
39 ミラー
40a,40b 第2の走査レンズ(結像光学系)
41a,41b 感光体(被走査面を有する像担持体)
42 開口絞り
45a,45b,45c,45d 走査同期検知フォトダイオード
46a,46b,46c,46d 光量検知兼走査同期検知フォトダイオード
1, 2 Transparent substrate 3 Spacer 4 Liquid crystal 5, 6 Light distribution film 7 Light effective region (at least part of incident light region)
DESCRIPTION OF SYMBOLS 8 Transparent conductive film for heating, transparent electrode 9 Transparent conductive film for driving, transparent electrode 10 Polarization switching element 11 Polarization switching device 12 Voltage application means 13 Polarization separation element 15 Optical path switching device 18a, 18b Light quantity detection means 23 Writing unit (light Scanning device)
24 Transfer belt 25 Fixing means 31, 31 'Semiconductor laser 32 LD base 33, 33' Coupling lens 35, 35 'Cylindrical lens 36 Soundproof glass 37 Polygon mirror (deflection means)
38a, 38b First scanning lens (imaging optical system)
39 Mirror 40a, 40b Second scanning lens (imaging optical system)
41a, 41b photoconductor (image carrier having a scanned surface)
42 Aperture stop 45a, 45b, 45c, 45d Scanning synchronization detection photodiode 46a, 46b, 46c, 46d Light quantity detection / scanning synchronization detection photodiode

Claims (10)

一対の透明基板と、該各透明基板の互いに対向する内側表面の少なくとも一方に形成された配向膜と、前記各透明基板間に保持され自発分極を有する液晶と、電流印加により前記液晶を加熱するための加熱用透明導電膜と、電界印加により前記液晶を駆動するための駆動用透明導電膜とからなり、入射光の偏光方向を電気的に切り換えることが可能な偏光切換素子において、
前記加熱用透明導電膜は、前記各透明基板の互いに対向する内側表面に形成されており、かつ、前記駆動用透明導電膜を兼ねていることを特徴とする偏光切換素子。
A pair of transparent substrates, an alignment film formed on at least one of the opposing inner surfaces of each transparent substrate, a liquid crystal having spontaneous polarization held between the transparent substrates, and heating the liquid crystal by applying a current A polarization switching element capable of electrically switching the polarization direction of incident light, comprising a transparent conductive film for heating for driving and a transparent conductive film for driving for driving the liquid crystal by applying an electric field,
The polarization switching element, wherein the heating transparent conductive film is formed on inner surfaces of the transparent substrates facing each other and serves also as the driving transparent conductive film.
請求項1記載の偏光切換素子において、
前記加熱用透明導電膜は、前記各透明基板への入射光領域の少なくとも一部に形成されていることを特徴とする偏光切換素子。
The polarization switching element according to claim 1,
The polarization switching element, wherein the heating transparent conductive film is formed in at least a part of an incident light region to each transparent substrate.
請求項1または2記載の偏光切換素子と、前記加熱用透明導電膜に電流印加、前記駆動用透明導電膜に電界印加することによって前記液晶の加熱および駆動を行う電圧印加手段とを具備する偏光切換装置において、
前記液晶の加熱時の駆動電界は、前記各透明基板への前記少なくとも一部の入射光領域における前記液晶の駆動状態が飽和安定する飽和電界以上であることを特徴とする偏光切換装置。
A polarized light comprising: the polarization switching element according to claim 1; and a voltage applying unit that heats and drives the liquid crystal by applying a current to the heating transparent conductive film and an electric field to the driving transparent conductive film. In the switching device,
A polarization switching device, wherein a driving electric field at the time of heating the liquid crystal is equal to or higher than a saturation electric field at which the driving state of the liquid crystal in the at least part of the incident light region to each transparent substrate is saturated and stabilized.
請求項1または2記載の偏光切換素子と、前記加熱用透明導電膜に電流印加、前記駆動用透明導電膜に電界印加することによって前記液晶の加熱および駆動を行う電圧印加手段とを具備する偏光切換装置において、
前記液晶の加熱時の駆動電界は、前記各透明基板への前記少なくとも一部の入射光領域における前記液晶の駆動状態が飽和安定する飽和電界以上であり、かつ、その大きさが前記少なくとも一部の入射光領域に対応する前記各透明基板の面内で略同じであることを特徴とする偏光切換装置。
A polarized light comprising: the polarization switching element according to claim 1; and a voltage applying unit that heats and drives the liquid crystal by applying a current to the heating transparent conductive film and an electric field to the driving transparent conductive film. In the switching device,
The driving electric field at the time of heating the liquid crystal is equal to or more than a saturation electric field at which the driving state of the liquid crystal in the at least part of the incident light region to each transparent substrate is saturated and stabilized, and the magnitude thereof is at least the part. The polarization switching device characterized by being substantially the same in the plane of each of the transparent substrates corresponding to the incident light region.
請求項1または2記載の偏光切換素子と、前記加熱用透明導電膜に電流印加、前記駆動用透明導電膜に電界印加することによって前記液晶の加熱および駆動を行う電圧印加手段とを具備する偏光切換装置において、
前記液晶の加熱時の駆動電界は、前記各透明基板への前記少なくとも一部の入射光領域における前記液晶の駆動状態が飽和安定する飽和電界以上であり、かつ、前記駆動飽和時に前記液晶の駆動状態が変化しない高周波信号を印加することを特徴とする偏光切換装置。
A polarized light comprising: the polarization switching element according to claim 1; and a voltage applying unit that heats and drives the liquid crystal by applying a current to the heating transparent conductive film and an electric field to the driving transparent conductive film. In the switching device,
The driving electric field at the time of heating the liquid crystal is not less than a saturation electric field at which the driving state of the liquid crystal in the at least part of the incident light region to each transparent substrate is saturated and stabilized, and the driving of the liquid crystal at the time of the driving saturation. A polarization switching device characterized by applying a high-frequency signal whose state does not change.
請求項1ないし5の何れか一つに記載の偏光切換素子または偏光切換装置と、互いに直交する2つの偏光成分をそれぞれ異なる光路に分離する偏光分離素子とを具備してなることを特徴とする光路切換装置。   A polarization switching element or a polarization switching device according to any one of claims 1 to 5, and a polarization separation element that separates two polarization components orthogonal to each other into different optical paths. Optical path switching device. 光源と、該光源からの光ビームを偏向する偏向手段と、該偏向手段により偏向された光ビームを被走査面上に結像する結像光学系とを具備する光走査装置において、
前記光源と前記偏向手段との間に、請求項6記載の光路切換装置を有することを特徴とする光走査装置。
In an optical scanning apparatus comprising: a light source; a deflecting unit that deflects a light beam from the light source; and an imaging optical system that forms an image on the surface to be scanned.
An optical scanning device comprising the optical path switching device according to claim 6 between the light source and the deflecting means.
請求項7記載の光走査装置において、
前記光路切換装置からの複数光路のうち少なくとも一つの光路のビーム光量を検知する光量検知手段を具備し、該光量検知手段からの検知信号に基づいて、前記光路切換装置における前記液晶を加熱することを特徴とする光走査装置。
The optical scanning device according to claim 7.
Comprising a light amount detection means for detecting a light amount of a beam in at least one of the plurality of optical paths from the optical path switching device, and heating the liquid crystal in the optical path switching device based on a detection signal from the light amount detection means. An optical scanning device characterized by the above.
請求項8記載の光走査装置において、
前記光路切換装置における前記液晶の加熱は、光走査非有効期間に設定されていることを特徴とする光走査装置。
The optical scanning device according to claim 8.
The optical scanning device according to claim 1, wherein the heating of the liquid crystal in the optical path switching device is set to an optical scanning ineffective period.
請求項7ないし9の何れか一つの光走査装置を有することを特徴とする画像形成装置。   An image forming apparatus comprising the optical scanning device according to claim 7.
JP2008179625A 2008-07-09 2008-07-09 Polarization switching element, polarization switching device, optical path switching device, optical scanner and image forming apparatus Pending JP2010020028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179625A JP2010020028A (en) 2008-07-09 2008-07-09 Polarization switching element, polarization switching device, optical path switching device, optical scanner and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179625A JP2010020028A (en) 2008-07-09 2008-07-09 Polarization switching element, polarization switching device, optical path switching device, optical scanner and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2010020028A true JP2010020028A (en) 2010-01-28

Family

ID=41705005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179625A Pending JP2010020028A (en) 2008-07-09 2008-07-09 Polarization switching element, polarization switching device, optical path switching device, optical scanner and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2010020028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008359A (en) * 2010-06-25 2012-01-12 Ricoh Co Ltd Optical scanning device and image forming apparatus
WO2013015066A1 (en) * 2011-07-25 2013-01-31 シチズンホールディングス株式会社 Optical device, projector, production method, and production support device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008359A (en) * 2010-06-25 2012-01-12 Ricoh Co Ltd Optical scanning device and image forming apparatus
WO2013015066A1 (en) * 2011-07-25 2013-01-31 シチズンホールディングス株式会社 Optical device, projector, production method, and production support device
CN103635857A (en) * 2011-07-25 2014-03-12 西铁城控股株式会社 Optical device, projector, production method, and production support device
JPWO2013015066A1 (en) * 2011-07-25 2015-02-23 シチズンホールディングス株式会社 Optical device, projector, manufacturing method, and manufacturing support apparatus
US9285601B2 (en) 2011-07-25 2016-03-15 Citizen Holdings Co., Ltd. Optical device, projector, manufacturing method, and manufacturing support apparatus

Similar Documents

Publication Publication Date Title
JP5061397B2 (en) Optical scanning apparatus and image forming apparatus
US7251410B2 (en) Variable optical attenuator and optical filter
US20080049178A1 (en) Liquid crystal display device
US20050078237A1 (en) Liquid crystal variable wavelength filter unit, and driving method thereof
EP0898196A2 (en) Liquid crystal projector
JP5729545B2 (en) Optical scanning apparatus and image forming apparatus
US6888582B2 (en) Optical display system
JP2011149966A (en) Liquid crystal display device
JP2013068694A (en) Optical scanner, and image forming apparatus
JPH04229834A (en) Display device
JP2010020028A (en) Polarization switching element, polarization switching device, optical path switching device, optical scanner and image forming apparatus
JP5073150B2 (en) Optical deflector and optical scanning device
JP4992154B2 (en) Optical scanning apparatus and image forming apparatus
JP4295054B2 (en) Optical deflection apparatus, image display apparatus, optical writing apparatus, and image forming apparatus
JP2004045840A (en) Method and device for optical scanning, and image forming device
JP2009258533A (en) Liquid crystal optical device, optical path switching device, optical scanner, and image forming apparatus
JP5510745B2 (en) Optical scanning apparatus and image forming apparatus
JP5773333B2 (en) Optical scanning apparatus and image forming apparatus
JP2009276538A (en) Optical path switching device, optical scanner and image forming apparatus
JP5397633B2 (en) Optical scanning apparatus and image forming apparatus
JP2009169048A (en) Liquid crystal optical element, image forming apparatus and method of manufacturing liquid crystal optical element
JPH0527254A (en) Optical modulating element and electronic device using the same
JP2009109669A (en) Polarized light switching element, luminous flux splitting element, optical scanner and image forming apparatus
JP2004184527A (en) Optical scanning device and image forming device
JP2009092943A (en) Optical scanning device-image forming apparatus