JP5073150B2 - Optical deflector and optical scanning device - Google Patents

Optical deflector and optical scanning device Download PDF

Info

Publication number
JP5073150B2
JP5073150B2 JP2003187508A JP2003187508A JP5073150B2 JP 5073150 B2 JP5073150 B2 JP 5073150B2 JP 2003187508 A JP2003187508 A JP 2003187508A JP 2003187508 A JP2003187508 A JP 2003187508A JP 5073150 B2 JP5073150 B2 JP 5073150B2
Authority
JP
Japan
Prior art keywords
liquid crystal
transparent
transparent electrode
optical
optical deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003187508A
Other languages
Japanese (ja)
Other versions
JP2005024679A (en
Inventor
光生 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003187508A priority Critical patent/JP5073150B2/en
Publication of JP2005024679A publication Critical patent/JP2005024679A/en
Application granted granted Critical
Publication of JP5073150B2 publication Critical patent/JP5073150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光偏向器およびこれを備えた光走査装置に関する。
【0002】
【従来の技術】
従来、光偏向器は様々な分野の各種装置で使用されているが、そのほとんどが機械的な動きによって偏向を行なっている。たとえば、光磁気ディスクのトラッキング機構では、レンズを左右に移動させること、または、反射鏡の向きを変えることにより光を偏向している。この機械的な動きによる光偏向器は機械的な機構が複雑で、組み立て調整が難しく、また振動にも弱く、消費電力が比較的大きいという問題がある。そこで、これらの問題を解決する装置として機械可動部を持たない液晶を利用した光偏向器が知られており、非常に多くの透明電極を備えた液晶偏向器などが報告されている(例えば、非特許文献1参照)。
【0003】
【非特許文献1】
S.T.Kowel、D.S.Clerverly、P.G.Kornreich著、「反射液晶セルにおける電気的変調によるフォーカシング」、応用光学(1984年)、第23巻、278頁(S.T.Kowel,D.S.Clerverly,and P.G.Kornreich "Focusing by electrical modulation of reflectionina Liquid crystal cell", Applied Opt., 23, 278(1984)
【0004】
【発明が解決しようとする課題】
しかしながら、上記した非特許文献1に記載の液晶偏向器は、それぞれの電極に印加する電圧を制御することで液晶内に屈折率の分布を形成して偏向を行っているため、液晶内の電場分布が一様に変化せず階段状になっている。このため、液晶内では、屈折率の分布も階段状になり、偏向した光(以下、これを偏向光とよぶ)の波面が乱れる、という問題があった。
【0005】
従って、感光体や静電記録体等の像担持体である被走査面を光走査することにより画像形成する電子写真プロセスを有する各種の画像形成装置、例えば特にレーザビームプリンタやカラーレーザビームプリンタ、マルチカラーレーザプリンタ、レーザファクシミリ等の装置に、この液晶偏向器を併用すると、画像に歪みが発生するなどの画質不良をもたらすおそれがある。
【0006】
本発明の目的は、偏向光の波面の乱れが生じず、光の利用効率が高く、機械的な可動部がない光偏向器及び光走査装置を提供することである。
【0007】
【課題を解決するための手段】
本発明は、一対の透明基板と、前記一対の透明基板が互いに対向する基板面に形成された透明電極と、前記一対の透明基板の間に、前記透明基板の基板面に対して所定の角度をもって分子方向が配列された液晶と、を備え、互いに対向する前記透明電極のうち少なくとも一方は、高抵抗膜からなり、前記高抵抗膜からなる前記透明電極に、前記高抵抗膜よりシート抵抗値が低い材料からなる給電電極を少なくとも箇所有し、前記透明電極における前記給電電極の並ぶ順にしたがって、高い値の交流電圧または低い値の交流電圧を印加できる電源を備えるとともに、前記高抵抗膜が、前記透明電極にできる勾配電圧の方向にシート抵抗値の勾配を有する光偏向器を提供する。
【0010】
また、前記高抵抗膜が、酸化スズ薄膜からなる上記の光偏向器を提供する。
【0011】
また、少なくとも一つの光源と、光走査手段と、を備えた光走査装置において、前記光源と前記光走査手段の間に前記光源より出射された光を偏向する偏向手段として、上記に記載の光偏向器を有する光走査装置を提供する。
【0012】
【発明の実施の形態】
以下、添付図面を参照しながら本発明の実施の形態を説明する。
【0013】
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る光偏向器1を示す断面図であり、この光偏向器1Aは、原理的に液晶素子(としての機能)を利用した液晶偏向器で構成しており、ガラスやプラスチックなどの透明基板11A、11B上に、透明電極12A、12Bが対向するように配置されている。
【0014】
透明基板11A、11Bは、ガラスやプラスチックなどの適宜の透明材料で形成されているが、透明電極12A、12Bが対向するようにしてシール材10により接着させることにより、所望のセルギャップ(透明基板11A、11Bの隙間)を有するセルを構成している。また、これらの透明電極12A、12Bの各対向面上には、配向膜13A、13Bが設けられており、ラビング法などにより配向処理が施されている。
【0015】
なお、このシール材10には、エポキシやアクリル系接着剤などの有機材料やガラス接着剤などの無機系の材料、またはんだ等の金属材料など使用可能である。セルギャップを均一に保つためシール材10の中にガラスビーズ、樹脂ビーズ、ファイバ等のスペーサ混ぜてもよい。また、セル内にスペーサを配置してもよい。
【0016】
透明電極12A、12Bには、ITO(Indium Tin Oxide)膜などの金属酸化物材料などが使用できるが、図1に示す構成のものでは、透明電極12Aは低抵抗膜であり、透明電極12Bは高抵抗膜である。高抵抗膜である透明電極12Bの両端付近には、高抵抗膜に電圧を印加するために、第1、第2の給電電極15A、15Bが設けられており、これら第1、第2の給電電極15A、15Bには、各々交流電源16A、16Bが接続されている。一方、低抵抗膜である透明電極12Aは接地されている。
【0017】
第1、第2の給電電極15A、15Bは、透明でも不透明でもよく、ITOなどの金属酸化物や、Cr、Ni、Au、Ag等の金属でもよい。特に金属はシート抵抗が小さく細線化しやすいため、液晶素子の小型化が容易になり好ましい。
【0018】
高抵抗膜である透明電極12Bについては、透明で、かつ第1、第2の給電電極15A、15Bおよび低抵抗膜である透明電極12Aに対してシート抵抗が高い必要があり、例えばガリウム、アルミニウム、シリコン、イットリウム、インジウムなどの元素を1種または複数種ドープした酸化亜鉛膜や、ケイ素、アンチモン、インジウム、ガリウムなどの元素を1種または複数種ドープした酸化スズ膜や、ドープしない、酸化亜鉛膜、酸化スズ膜、ITO膜などがよい。また、これらと酸化ケイ素、酸化アルミニウムなどの複合酸化物がよい。特に、酸化スズ薄膜は、熱や水に対するシート抵抗値の安定性が高く、製造上また耐候性および信頼性上、極めて好ましい。
【0019】
前述のセル内には液晶14が封入されており、この液晶分子14Aは配向膜13A、13Bの界面においてその面に対して所定角度(プレチルト角:例えば、図1中では「θ」)をなすように配置される。液晶14には、例えばネマティック液晶などが使用でき、ここでは△ε(但し、△ε;誘電率異方性)が正の液晶について説明する。プレチルト角は、液晶に電界を印加した際の液晶分子の立ち上がり方向を決め、駆動時の配向不良を防ぐ。特に1度以上が好ましい。本実施の形態では、液晶14の配向はホモジニアス配向であるが、ハイブリッド配向、ホメオトロピック配向、ツイスト配向などをとることも可能である。
【0020】
なお、交流電源16A、16Bには、液晶パネルの信頼性向上のため直流成分の小さい電源を用いる。特に直流成分は交流成分の1%以下に抑えることが信頼性において好ましい。電源の周波数は50から5000Hz程度で、矩形交流波などが使用できる。
【0021】
次に、本実施の形態の光偏向器1の液晶素子部分の動作について、印加電圧に対するレタデーション値の相関性を示す図2を参照しながら説明する。
この光偏向器1に備えた液晶素子では、レタデーション値は、印加電圧が大きくなると徐々に小さくなる特性を有しているが、印加電圧に対して線形な領域(以下、これを線形領域とよぶ)が存在しており、液晶駆動時はこの線形領域の電圧を使用する。なお、この線形領域を示す電圧の高い方での値と低い方での値を、それぞれ、VH、VLとする。
【0022】
図1の液晶において、交流電源16Aの電圧をVH、交流電源16Bの電圧をVLとすれば、透明電極12Bが高抵抗膜であるため、第1の給電電極15Aの固定部位から第2の給電電極15Bの固定部位に向かって、高抵抗膜の透明電極12Bの電位が連続的に変化する。
【0023】
一方、低抵抗膜である透明電極12Aは接地されているので、高抵抗膜の透明電極12Bとの間には直線的な勾配を持つ電界分布が形成される。この電界中に存在する液晶14内では、前述した線形領域で液晶駆動を行っているため、同様に、線形(直線的;リニア)に変化する屈折率分布が形成される。
ここで、直線偏光された光を透明基板11Bに垂直に、かつ、偏光方向が配向した液晶分子の電界によって傾く面に対し平行となる方向に入射させると、入射光は屈折率の大きい方向に曲げられて進行し、透明基板11Aから出射される。
従って、入射光を所定方向に偏向させて出射させることができる。
【0024】
なお、図1に示す本実施の形態では片方の透明電極12Bのみ高抵抗膜としたが、図3に示すように、光偏向器1Bの対向する透明電極12A、12Bを両方とも高抵抗膜とし、それぞれに給電電極15A〜15Dを設置してもよい。この場合、印加する電圧を細かく制御することが可能となり、偏向角をより細かく制御することが可能となる。更に、各透明電極にできる勾配電圧の向きをクロスすることにより、2次元的に光を偏向することが可能となる。また、液晶素子を多段重ねることにより偏向角を大きくすることも可能である。ここで、符号17A,17Bは、交流電源である。なお、図3中の他の符号のうち、図1と同一符号のものは、図1と同じ要素を示す。
【0025】
[第2の実施の形態]
次に、図4に示す光偏向器1Cでは、図1に示す第1の実施の形態の光偏向器1Aとは異なり、透明基板11B上に、第1、第2の給電電極15A、15Bのほかに第3の給電電極15E及びこの第3の給電電極15Eと接続された交流電源18を設けている。
液晶素子をこのように構成して、例えば電圧VH、VC、VLを第1の給電電極15A、第3の給電電極15E、第2の給電電極15Bに各々印加すれば、液晶素子の印加電圧に対するレタデーション値については、図5に示すような相関性が得られる。
【0026】
即ち、これは、透明電極12Bが高抵抗膜であるため、第1の給電電極15Aの固定部位から第3の給電電極15Eの固定部位に向かって、高抵抗膜の透明電極12Bの電位が連続的に変化し、また第3の給電電極15Eの固定部位から第2の給電電極15Bの固定部位に向かって、高抵抗膜の透明電極12Bの電位が連続的に変化する。
【0027】
ここで、低抵抗膜である透明電極12Aを接地してあり、特に給電電極が第1の給電電極15Aから第3の給電電極15Eまで分割されているため、第1の給電電極15Aと第3の給電電極15Eの間、及び、第3の給電電極15Eと第2の給電電極15Bの間、つまり、各々の給電電極と高抵抗膜である透明電極12Bとの間には、異なる傾きを持った直線的な勾配電界分布を呈する線形領域を形成できる。このように、各勾配電界中に存在する液晶14内では、線形領域での液晶駆動を行っているため、同様に、線形に変化する屈折率分布が形成されている。
【0028】
しかも、第1の給電電極15Aと第2の給電電極15Bの間の液晶14内では、屈折率分布を直線的に大きく変化させることが実現可能となっている。これにより、図5に示すように、液晶素子での印加電圧に対するレタデーションについては、第1の実施形態に比べて線形領域を実質的に大きく取ることができる。
なお、図4中の他の符号のうち、図1と同一符号のものは、図1と同じ要素を示す。
【0029】
このように、分割させる給電電極を増やすことにより、線形性が保たれ、かつ、変化の大きな屈折率分布を確保することができるようになり、液晶素子から出射された光の波面を曲げることがなく、偏向後の光を平面波として出射できるので好ましい。また、液晶部分の厚さを増大させなくても、別言すれば液晶部分が薄くても、変化率の大きな屈折率分布を有する液晶素子が実現できるため、応答速度の点からも好ましい。
【0030】
[第3の実施の形態]
次に、本発明の第3の実施形態について図及び図を参照しながら説明する。
本実施形態では、図1における光偏向器1の透明電極12Bとして、第1の給電電極15Aから第2の給電電極15Bの方向に対して、シート抵抗値が勾配をもった高抵抗膜を用いている。
【0031】
このような構成とすると、第1、第2の給電電極15A、15Bに電圧を印加した場合、第1の給電電極15Aの固定部位から第2の給電電極15Bの固定部位に向かって、高抵抗膜の透明電極12Bの電位が連続的に変化する。ここで、低抵抗膜である透明電極12Aを接地させることで、高抵抗膜の透明電極12Bとの間には、高抵抗膜のシート抵抗値の勾配に対応した勾配電界分布が形成される。
【0032】
そこで、透明電極12Bにおいて、この高抵抗膜のシート抵抗値の勾配を調整する。即ち、この勾配電界分布を、図2に示した液晶素子の印加電圧に対するレタデーション値のカーブ(非線形領域)部分での特性に整合させる。
つまり、図2のレタデーションカーブの非線形領域についても、そこでの曲率変化を相殺するように電界分布の勾配率を調整させることで、第1、第2の給電電極15A、15B間において、直線的(リニア)に変化する屈折率分布が形成できるわけである。
【0033】
その結果、図2に示す液晶素子の印加電圧に対するレタデーションのグラフにおける線形領域を実質的に増大させることができるので、液晶素子より出射された光の波面を広範囲のエリアに亙って曲げることがなく、光を出射できるので好ましい。また、本実施の形態でも、液晶部分の厚さを薄くできるため、応答速度の点からも好ましい。
【0034】
[第4の実施の形態]
次に、本発明の第4の実施形態に係る光走査装置について、図6を参照しながら説明する。
図6に示す光走査装置は、プリンタに適用されており、光源2と、電圧制御装置3と、ポリゴンミラー4と、fθレンズなどの結像レンズ5と、静電潜像を形成する感光ドラム6との他に、本発明の光偏向器1(第1の実施の形態〜第3の実施の形態のいずれかのもの)を備えている。
なお、光源2と光偏向器1との間の光路上には、出射される光をコリメートさせるため、コリメートレンズ(図示せず)などの平行光形成手段を配設している。
【0035】
光偏向器1は、ここに入射する光の偏向方向が図中Y方向に一致するように配置されている。また、この光偏向器1には、交流電圧を印加する電圧制御装置3が接続されている。
【0036】
従って、本実施の形態の光走査装置によれば、光源2から出射して光偏向器1を通過する光は、回転するポリゴンミラー4により反射され、結像レンズ5により感光ドラム6上に集光される。この際、結像レンズ5によりZ方向を集光された光が、ポリゴンミラー4の回転により感光ドラム6上で掃引される。
【0037】
また、本実施の形態の光走査装置を組み付け調整するとき及び経時的に光軸がずれたとき等には、電圧制御装置3により光偏向器1に印加する電圧値を調整・制御することにより、感光ドラム6に投光される光をY方向に偏向させることで、感光ドラム6上の所定の投光位置に正確に集光させることができる。
【0038】
【実施例】
次に、本発明の光偏向器1およびこれを備えた光走査装置の実施例について、図1を参照しながら説明する。
例えば、第1の実施形態に係る光偏向器1Aでは、初めに、透明基板11Aとして所定0.6mmの厚さの無アルカリガラスを用い、その表面にスパッタ法により所要のシート抵抗300Ω/□のITO膜を成膜して低抵抗の透明電極12Aを形成する。そして、その透明電極12A面上に、配向膜13Aとしてポリイミド膜をフレキソ印刷法により厚さ50nm成膜して形成するようになっている。
【0039】
一方、高抵抗膜である透明基板11Bとしては、初めに、0.6mmの厚さの無アルカリガラス表面にスパッタ法によりシート抵抗1Ω/□のCr膜を成膜し、その後、エッチング技術により不要部分を除去して第1、第2の給電電極15A、15Bを形成する。その後、シート抵抗100kΩ/□の酸化スズ薄膜をスパッタ法により堆積し、これにより高抵抗膜の透明電極12Bを形成する。
【0040】
その後、この透明電極12Bの一方の面(透明電極12Aと対向する対向面)上に、配向膜13Bとしてポリイミド膜をフレキソ印刷法により厚さ50nm成膜する。ポリイミド膜はラビング法により配向処理を行った後、エポキシ樹脂よりなるシール材10を透明基板11A、11Bに印刷し、熱圧着によりセルを作製する。シール材10の中にガラスファイバスペーサ(図示せず)を混ぜることで、セルギャップを均一化し、10μmとした。なお、この透明電極12Bの対向面とは反対面上には、給電電極15A、15Bを形成するとともに、この給電電極15A、15Bを交流電源16A、16Bと適宜の線材で接続しておく。
【0041】
次に、真空注入法により、屈折率異方性△n(=0.18)の液晶14をセルに注入した後、封止材(図示せず)により封穴すれば、光偏向器1Aが完成する。
【0042】
このようにして形成した第1の実施形態に係る光偏向器1Aの液晶素子部分に対して、印加電圧に対するレタデーション値特性を測定したところ、図2のような特性が得られた。即ち、レタデーションの線形性が得られる領域が、印加電圧1.2Vrmsから2.0Vrmsの領域であり、最大獲得レタデーション値は680nmであった。
【0043】
この液晶素子に波長650nmのレーザ光を通過させ、電圧を印加させた際の偏向角を測定した。透明電極12Aは接地し、第1の給電電極15Aに1.2Vrms、周波数1000Hzの矩形交流、第2の給電電極15Bに2.0Vrms、周波数1000Hzの矩形交流を付与した。この際、第1、第2の給電電極15A、15Bへ印加する両矩形交流の位相差は0とした。
【0044】
このような条件下で光偏向器1Aに波長650nmのレーザ光を通過させた結果、約1分の角度偏向することが確認できた。一方、第1、第2の給電電極15A、15Bに印加する電圧を逆にすると、逆方向に約1分の角度変更(偏向)できることを確認した。また、偏向する際の液晶素子からの出射光の波面を測定したが0.03mλrms程度であり、波面の乱れが小さいことに問題がないことが確認された。
【0045】
また、このようにして作製した光偏向器1A(液晶素子)を図6に示すレーザビームプリンタの光走査装置の部分に搭載したところ、交流電源16へ印加する電圧により、液晶素子を通過したレーザ光の偏向角度を所定の電圧値の範囲(VL〜VH)内でリニアに調整できることが確認された。
【0046】
【発明の効果】
以上説明したように本発明の光偏向器によれば、入射する光を偏向させて出射させる際に、屈折率分布が直線的に変化するようになるため、偏向光の波面の乱れが生じず、また光の利用効率が高く、機械的な可動部がない屈折率分布型の光偏向器を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光偏向器(液晶素子)を示す側面図である。
【図2】図1に示す光偏向器(液晶素子)の印加電圧−リタデーション特性の一例を示すグラフである。
【図3】本発明の第1の実施形態に係る光偏向器(液晶素子)の変形例を示す側面図である。
【図4】本発明の第2の実施形態に係る光偏向器(液晶素子)を示す側面図である。
【図5】図4に示す光偏向器(液晶素子)の印加電圧−リタデーション特性の一例を示すグラフである。
【図6】本発明に係る光走査装置の概略構成の一例を示す斜視図である。
【符号の説明】
1、1A〜1C:光偏向器(液晶素子)
10:シール材
11A、11B:透明基板
12A、12B:透明電極
13A、13B:配向膜
14:液晶
14A:液晶分子
15A、15B、15C、15D、15E:給電電極
16A、16B、17A、17B、18:交流電源
2:光源
3:電圧制御装置
4:ポリゴンミラー
5:結像レンズ
6:感光ドラム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical deflector and an optical scanning device including the same.
[0002]
[Prior art]
Conventionally, optical deflectors have been used in various devices in various fields, and most of them deflect by mechanical movement. For example, in a magneto-optical disk tracking mechanism, light is deflected by moving a lens to the left or right or changing the direction of a reflecting mirror. This mechanical deflector has a problem that its mechanical mechanism is complicated, assembly adjustment is difficult, vibration is weak, and power consumption is relatively large. Therefore, an optical deflector using liquid crystal having no mechanical moving part is known as a device for solving these problems, and a liquid crystal deflector including a very large number of transparent electrodes has been reported (for example, Non-patent document 1).
[0003]
[Non-Patent Document 1]
STKowel, DSClerverly, PGKornreich, "Focusing by Electrical Modulation in Reflective Liquid Crystal Cells", Applied Optics (1984), Vol. 23, 278 (STKowel, DSClerverly, and PGKornreich "Focusing by electrical modulation of reflectionina Liquid crystal cell" , Applied Opt., 23, 278 (1984)
[0004]
[Problems to be solved by the invention]
However, since the liquid crystal deflector described in Non-Patent Document 1 described above performs deflection by forming a refractive index distribution in the liquid crystal by controlling the voltage applied to each electrode, the electric field in the liquid crystal The distribution does not change uniformly and is stepped. For this reason, in the liquid crystal, the refractive index distribution is also stepped, and there is a problem that the wavefront of the deflected light (hereinafter referred to as deflected light) is disturbed.
[0005]
Accordingly, various image forming apparatuses having an electrophotographic process for forming an image by optically scanning a surface to be scanned which is an image carrier such as a photosensitive member or an electrostatic recording member, such as a laser beam printer or a color laser beam printer, When this liquid crystal deflector is used in combination with an apparatus such as a multi-color laser printer or a laser facsimile, there is a risk of image quality defects such as distortion in the image.
[0006]
An object of the present invention is to provide an optical deflector and an optical scanning device that do not cause disturbance of the wave front of the deflected light, have high light utilization efficiency, and have no mechanical movable part.
[0007]
[Means for Solving the Problems]
The present invention provides a pair of transparent substrates, a transparent electrode formed on a substrate surface where the pair of transparent substrates face each other, and a predetermined angle with respect to the substrate surface of the transparent substrate between the pair of transparent substrates. And at least one of the transparent electrodes facing each other is made of a high-resistance film, and the transparent electrode made of the high-resistance film has a sheet resistance value higher than that of the high-resistance film. has at least two places the feeding electrode is made of material having low, the in the order of arrangement of the feeding electrode in the transparent electrode, Rutotomoni a power supply capable of applying an AC voltage of the AC voltage or low value of the high value, the high resistance film Provides an optical deflector having a sheet resistance value gradient in the direction of the gradient voltage generated in the transparent electrode .
[0010]
Moreover, the high resistance film, provides the above light deflector ing tin oxide thin film.
[0011]
Further, at least one light source, an optical scanning apparatus having a scanning means, and between said light scanning means and said light source, a deflecting means for deflecting the light emitted from the light source, according to the providing an optical scanning device which have a light deflector.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0013]
[First Embodiment]
FIG. 1 is a cross-sectional view showing an optical deflector 1 according to a first embodiment of the present invention. This optical deflector 1A is a liquid crystal deflector that in principle uses a liquid crystal element (function as). The transparent electrodes 12A and 12B are arranged on the transparent substrates 11A and 11B such as glass and plastic so as to face each other.
[0014]
The transparent substrates 11A and 11B are formed of an appropriate transparent material such as glass or plastic, but a desired cell gap (transparent substrate) can be formed by bonding with the sealing material 10 so that the transparent electrodes 12A and 12B face each other. 11A and 11B). In addition, alignment films 13A and 13B are provided on the opposing surfaces of the transparent electrodes 12A and 12B, and an alignment process is performed by a rubbing method or the like.
[0015]
The sealing material 10 can be an organic material such as epoxy or acrylic adhesive, an inorganic material such as glass adhesive, or a metal material such as sand. In order to keep the cell gap uniform, the sealing material 10 may be mixed with spacers such as glass beads, resin beads, and fibers. Further, a spacer may be arranged in the cell.
[0016]
For the transparent electrodes 12A and 12B, a metal oxide material such as an ITO (Indium Tin Oxide) film can be used. However, in the configuration shown in FIG. 1, the transparent electrode 12A is a low resistance film, and the transparent electrode 12B It is a high resistance film. Near both ends of the transparent electrode 12B, which is a high resistance film, first and second power supply electrodes 15A and 15B are provided to apply a voltage to the high resistance film. These first and second power supply electrodes are provided. AC power supplies 16A and 16B are connected to the electrodes 15A and 15B, respectively. On the other hand, the transparent electrode 12A, which is a low resistance film, is grounded.
[0017]
The first and second power supply electrodes 15A and 15B may be transparent or opaque, and may be a metal oxide such as ITO, or a metal such as Cr, Ni, Au, or Ag. In particular, a metal is preferable because it has a small sheet resistance and can be easily thinned, so that the liquid crystal element can be easily downsized.
[0018]
The transparent electrode 12B, which is a high resistance film, must be transparent and have a higher sheet resistance than the first and second feeding electrodes 15A, 15B and the transparent electrode 12A, which is a low resistance film. Zinc oxide film doped with one or more elements such as silicon, yttrium and indium, tin oxide film doped with one or more elements such as silicon, antimony, indium and gallium, and undoped zinc oxide film A film, a tin oxide film, an ITO film, or the like is preferable. In addition, composite oxides such as silicon oxide and aluminum oxide are preferable. In particular, a tin oxide thin film has a high stability of sheet resistance against heat and water, and is extremely preferable in terms of production, weather resistance and reliability.
[0019]
Liquid crystal 14 is sealed in the aforementioned cell, and the liquid crystal molecules 14A form a predetermined angle (pretilt angle: for example, “θ” in FIG. 1) with respect to the surface of the alignment films 13A and 13B. Are arranged as follows. As the liquid crystal 14, for example, nematic liquid crystal can be used. Here, a liquid crystal having a positive Δε (where Δε is dielectric anisotropy) will be described. The pretilt angle determines the rising direction of liquid crystal molecules when an electric field is applied to the liquid crystal, and prevents alignment failure during driving. 1 degree or more is particularly preferable. In the present embodiment, the alignment of the liquid crystal 14 is a homogeneous alignment, but it is also possible to take a hybrid alignment, a homeotropic alignment, a twist alignment, or the like.
[0020]
For the AC power supplies 16A and 16B, a power supply having a small DC component is used to improve the reliability of the liquid crystal panel. In particular, the DC component is preferably 1% or less of the AC component in terms of reliability. The frequency of the power source is about 50 to 5000 Hz, and a rectangular AC wave or the like can be used.
[0021]
Next, the operation of the liquid crystal element portion of the optical deflector 1 of the present embodiment will be described with reference to FIG. 2 showing the correlation of the retardation value with the applied voltage.
In the liquid crystal element provided in the optical deflector 1, the retardation value has a characteristic that it gradually decreases as the applied voltage increases. However, the retardation value is a linear region with respect to the applied voltage (hereinafter referred to as a linear region). ) And the voltage in this linear region is used when driving the liquid crystal. Note that the higher and lower values of the voltage indicating the linear region are V H and V L , respectively.
[0022]
In the liquid crystal of FIG. 1, if the voltage of the AC power supply 16A is V H and the voltage of the AC power supply 16B is VL , the transparent electrode 12B is a high-resistance film. The potential of the transparent electrode 12B of the high resistance film continuously changes toward the fixed portion of the power supply electrode 15B.
[0023]
On the other hand, since the transparent electrode 12A, which is a low resistance film, is grounded, an electric field distribution having a linear gradient is formed between the transparent electrode 12B and the high resistance film. In the liquid crystal 14 existing in the electric field, since the liquid crystal is driven in the linear region described above, similarly, a refractive index distribution changing linearly (linearly) is formed.
Here, when linearly polarized light is incident in a direction perpendicular to the transparent substrate 11B and parallel to the plane inclined by the electric field of the liquid crystal molecules whose polarization direction is aligned, the incident light is directed in a direction with a large refractive index. It is bent and travels and is emitted from the transparent substrate 11A.
Therefore, incident light can be emitted after being deflected in a predetermined direction.
[0024]
In the present embodiment shown in FIG. 1, only one transparent electrode 12B is a high-resistance film, but as shown in FIG. 3, both transparent electrodes 12A and 12B facing the optical deflector 1B are high-resistance films. The power supply electrodes 15A to 15D may be provided respectively. In this case, the applied voltage can be finely controlled, and the deflection angle can be finely controlled. Furthermore, it is possible to deflect light in a two-dimensional manner by crossing the direction of the gradient voltage that can be applied to each transparent electrode. In addition, the deflection angle can be increased by stacking liquid crystal elements in multiple stages. Here, reference numerals 17A and 17B denote AC power supplies. Note that among the other reference numerals in FIG. 3, the same reference numerals as those in FIG. 1 indicate the same elements as in FIG.
[0025]
[Second Embodiment]
Next, in the optical deflector 1C shown in FIG. 4, unlike the optical deflector 1A of the first embodiment shown in FIG. 1, the first and second feeding electrodes 15A and 15B are formed on the transparent substrate 11B. In addition, a third power supply electrode 15E and an AC power supply 18 connected to the third power supply electrode 15E are provided.
When the liquid crystal element is configured in this way and, for example, voltages V H , V C , and V L are applied to the first power supply electrode 15A, the third power supply electrode 15E, and the second power supply electrode 15B, respectively, About the retardation value with respect to an applied voltage, the correlation as shown in FIG. 5 is obtained.
[0026]
That is, since the transparent electrode 12B is a high-resistance film, the potential of the transparent electrode 12B of the high-resistance film continues from the fixed part of the first power supply electrode 15A toward the fixed part of the third power supply electrode 15E. The potential of the transparent electrode 12B of the high resistance film continuously changes from the fixed part of the third power supply electrode 15E toward the fixed part of the second power supply electrode 15B.
[0027]
Here, the transparent electrode 12A, which is a low-resistance film, is grounded, and in particular, since the feeding electrode is divided from the first feeding electrode 15A to the third feeding electrode 15E, the first feeding electrode 15A and the third feeding electrode 15A There are different inclinations between the feeding electrodes 15E and between the third feeding electrode 15E and the second feeding electrode 15B, that is, between each feeding electrode and the transparent electrode 12B, which is a high-resistance film. A linear region exhibiting a linear gradient electric field distribution can be formed. As described above, in the liquid crystal 14 existing in each gradient electric field, since the liquid crystal is driven in the linear region, similarly, a linearly changing refractive index distribution is formed.
[0028]
In addition, in the liquid crystal 14 between the first power supply electrode 15A and the second power supply electrode 15B, it is feasible to greatly change the refractive index distribution linearly. As a result, as shown in FIG. 5, the retardation with respect to the applied voltage in the liquid crystal element can be substantially larger than that in the first embodiment.
Note that among the other reference numerals in FIG. 4, the same reference numerals as those in FIG. 1 indicate the same elements as in FIG. 1.
[0029]
In this manner, by increasing the number of power supply electrodes to be divided, linearity can be maintained and a refractive index distribution with a large change can be secured, and the wavefront of light emitted from the liquid crystal element can be bent. The light after deflection can be emitted as a plane wave, which is preferable. In addition, even if the thickness of the liquid crystal portion is not increased, in other words, even if the liquid crystal portion is thin, a liquid crystal element having a refractive index distribution with a large change rate can be realized, which is preferable from the viewpoint of response speed.
[0030]
[Third Embodiment]
It will now be described with reference to FIGS. 1 and 2 a third embodiment of the present invention.
In the present embodiment, as the transparent electrode 12B of the optical deflector 1 A in FIG. 1, with respect to the first power supply electrode 15A toward the second power supply electrode 15B, the high-resistance film sheet resistance with a gradient Used.
[0031]
With such a configuration, when a voltage is applied to the first and second power supply electrodes 15A and 15B, the resistance increases from the fixed part of the first power supply electrode 15A toward the fixed part of the second power supply electrode 15B. The potential of the transparent electrode 12B of the film changes continuously. Here, by grounding the transparent electrode 12A, which is a low resistance film, a gradient electric field distribution corresponding to the gradient of the sheet resistance value of the high resistance film is formed between the transparent electrode 12B of the high resistance film.
[0032]
Therefore, in the transparent electrode 12B, the gradient of the sheet resistance value of the high resistance film is adjusted. That is, this gradient electric field distribution is matched with the characteristics in the curve (nonlinear region) portion of the retardation value with respect to the applied voltage of the liquid crystal element shown in FIG.
That is, even in the nonlinear region of the retardation curve in FIG. 2, the linearity (between the first and second feeding electrodes 15A and 15B is adjusted by adjusting the gradient rate of the electric field distribution so as to cancel the curvature change there. A refractive index distribution that changes linearly can be formed.
[0033]
As a result, the linear region in the retardation graph with respect to the applied voltage of the liquid crystal element shown in FIG. 2 can be substantially increased, so that the wavefront of the light emitted from the liquid crystal element can be bent over a wide area. It is preferable because light can be emitted. Also in this embodiment mode, the thickness of the liquid crystal portion can be reduced, which is preferable in terms of response speed.
[0034]
[Fourth Embodiment]
Next, an optical scanning device according to a fourth embodiment of the present invention will be described with reference to FIG.
The optical scanning device shown in FIG. 6 is applied to a printer, and includes a light source 2, a voltage control device 3, a polygon mirror 4, an imaging lens 5 such as an fθ lens, and a photosensitive drum that forms an electrostatic latent image. 6 is provided with the optical deflector 1 of the present invention (any one of the first to third embodiments).
Note that parallel light forming means such as a collimating lens (not shown) is disposed on the optical path between the light source 2 and the optical deflector 1 in order to collimate the emitted light.
[0035]
The optical deflector 1 is arranged so that the deflection direction of the light incident thereon coincides with the Y direction in the figure. The optical deflector 1 is connected to a voltage control device 3 that applies an AC voltage.
[0036]
Therefore, according to the optical scanning device of the present embodiment, the light emitted from the light source 2 and passing through the optical deflector 1 is reflected by the rotating polygon mirror 4 and collected on the photosensitive drum 6 by the imaging lens 5. Lighted. At this time, the light condensed in the Z direction by the imaging lens 5 is swept on the photosensitive drum 6 by the rotation of the polygon mirror 4.
[0037]
Further, when the optical scanning device of the present embodiment is assembled and adjusted, or when the optical axis is shifted over time, the voltage control device 3 adjusts and controls the voltage value applied to the optical deflector 1. By deflecting the light projected on the photosensitive drum 6 in the Y direction, the light can be accurately condensed at a predetermined light projecting position on the photosensitive drum 6.
[0038]
【Example】
Next, an embodiment of the optical deflector 1 of the present invention and an optical scanning device including the same will be described with reference to FIG.
For example, in the optical deflector 1A according to the first embodiment, first, a non-alkali glass with a thickness of 0.6 mm is used as the transparent substrate 11A, and a required sheet resistance of 300Ω / □ is formed on the surface by sputtering. An ITO film is formed to form a low-resistance transparent electrode 12A. On the surface of the transparent electrode 12A, a polyimide film is formed as the alignment film 13A with a thickness of 50 nm by flexographic printing.
[0039]
On the other hand, as a transparent substrate 11B which is a high resistance film, a Cr film having a sheet resistance of 1Ω / □ is first formed on a non-alkali glass surface having a thickness of 0.6 mm by a sputtering method, and then unnecessary by an etching technique. The first and second power supply electrodes 15A and 15B are formed by removing the portion. Thereafter, a tin oxide thin film having a sheet resistance of 100 kΩ / □ is deposited by sputtering, thereby forming a transparent electrode 12B having a high resistance film.
[0040]
Thereafter, on one surface of the transparent electrode 12B (opposing surface facing the transparent electrode 12A), a polyimide film is formed as the alignment film 13B to a thickness of 50 nm by a flexographic printing method. The polyimide film is subjected to an orientation treatment by a rubbing method, and then a sealing material 10 made of an epoxy resin is printed on the transparent substrates 11A and 11B, and a cell is produced by thermocompression bonding. A glass fiber spacer (not shown) was mixed in the sealing material 10 to make the cell gap uniform and 10 μm. The feeding electrodes 15A and 15B are formed on the surface opposite to the facing surface of the transparent electrode 12B, and the feeding electrodes 15A and 15B are connected to the AC power sources 16A and 16B with appropriate wires.
[0041]
Next, after injecting the liquid crystal 14 having a refractive index anisotropy Δn (= 0.18) into the cell by vacuum injection, sealing with a sealing material (not shown), the optical deflector 1A becomes Complete.
[0042]
When the retardation value characteristic with respect to the applied voltage was measured for the liquid crystal element portion of the optical deflector 1A according to the first embodiment formed as described above, the characteristic shown in FIG. 2 was obtained. That is, the region where the linearity of the retardation is obtained is a region where the applied voltage is 1.2 V rms to 2.0 V rms , and the maximum obtained retardation value is 680 nm.
[0043]
A laser beam having a wavelength of 650 nm was passed through the liquid crystal element, and the deflection angle when a voltage was applied was measured. The transparent electrode 12A was grounded, and 1.2V rms and a rectangular alternating current with a frequency of 1000 Hz were applied to the first feeding electrode 15A, and a rectangular alternating current of 2.0V rms and a frequency of 1000 Hz was applied to the second feeding electrode 15B. At this time, the phase difference between the rectangular alternating currents applied to the first and second feeding electrodes 15A and 15B was set to zero.
[0044]
As a result of passing a laser beam having a wavelength of 650 nm through the optical deflector 1A under such conditions, it was confirmed that the angle was deflected by about 1 minute. On the other hand, when the voltages applied to the first and second power supply electrodes 15A and 15B were reversed, it was confirmed that the angle could be changed (deflected) for about 1 minute in the reverse direction. Further, the wavefront of the light emitted from the liquid crystal element when deflecting was measured, and it was about 0.03 mλ rms , and it was confirmed that there was no problem that the wavefront disturbance was small.
[0045]
Further, when the optical deflector 1A (liquid crystal element) thus manufactured is mounted on the optical scanning device portion of the laser beam printer shown in FIG. 6, the laser that has passed through the liquid crystal element by the voltage applied to the AC power source 16 is used. It was confirmed that the deflection angle of light can be linearly adjusted within a predetermined voltage value range (V L to V H ).
[0046]
【Effect of the invention】
As described above, according to the optical deflector of the present invention, when the incident light is deflected and emitted, the refractive index distribution changes linearly, so that the wave front of the deflected light is not disturbed. Also, it is possible to provide a refractive index distribution type optical deflector having high light utilization efficiency and no mechanical moving parts.
[Brief description of the drawings]
FIG. 1 is a side view showing an optical deflector (liquid crystal element) according to a first embodiment of the present invention.
2 is a graph showing an example of applied voltage-retardation characteristics of the optical deflector (liquid crystal element) shown in FIG.
FIG. 3 is a side view showing a modification of the optical deflector (liquid crystal element) according to the first embodiment of the present invention.
FIG. 4 is a side view showing an optical deflector (liquid crystal element) according to a second embodiment of the present invention.
5 is a graph showing an example of applied voltage-retardation characteristics of the optical deflector (liquid crystal element) shown in FIG.
FIG. 6 is a perspective view showing an example of a schematic configuration of an optical scanning device according to the present invention.
[Explanation of symbols]
1, 1A-1C: Optical deflector (liquid crystal element)
10: Sealing material 11A, 11B: Transparent substrate 12A, 12B: Transparent electrode 13A, 13B: Alignment film 14: Liquid crystal 14A: Liquid crystal molecules 15A, 15B, 15C, 15D, 15E: Power feeding electrodes 16A, 16B, 17A, 17B, 18 : AC power supply 2: Light source 3: Voltage control device 4: Polygon mirror 5: Imaging lens 6: Photosensitive drum

Claims (3)

一対の透明基板と、
前記一対の透明基板が互いに対向する基板面に形成された透明電極と、
前記一対の透明基板の間に、前記透明基板の基板面に対して所定の角度をもって分子方向が配列された液晶と、を備え、
互いに対向する前記透明電極のうち少なくとも一方は、高抵抗膜からなり、
前記高抵抗膜からなる前記透明電極に、前記高抵抗膜よりシート抵抗値が低い材料からなる給電電極を少なくとも2箇所有し、
前記透明電極における前記給電電極の並ぶ順にしたがって、高い値の交流電圧または低い値の交流電圧を印加できる電源を備えるとともに、前記高抵抗膜が、前記透明電極にできる勾配電圧の方向にシート抵抗値の勾配を有する光偏向器。
A pair of transparent substrates;
A transparent electrode formed on the substrate surface where the pair of transparent substrates face each other;
A liquid crystal in which molecular directions are arranged at a predetermined angle with respect to the substrate surface of the transparent substrate between the pair of transparent substrates;
At least one of the transparent electrodes facing each other is made of a high resistance film,
The transparent electrode made of the high resistance film has at least two feeding electrodes made of a material having a sheet resistance value lower than that of the high resistance film,
According to the order in which the power supply electrodes are arranged in the transparent electrode, the sheet resistance value is provided in the direction of the gradient voltage that can be applied to the transparent electrode, and includes a power source that can apply a high value AC voltage or a low value AC voltage. An optical deflector having a gradient of
前記高抵抗膜が、酸化スズ薄膜からなる請求項1に記載の光偏向器。The optical deflector according to claim 1, wherein the high resistance film is formed of a tin oxide thin film. 少なくとも一つの光源と、光走査手段と、を備えた光走査装置において、
前記光源と前記光走査手段の間に、前記光源より出射された光を偏向する偏向手段として、請求項1または2に記載の光偏向器を有する光走査装置。
In an optical scanning device comprising at least one light source and optical scanning means,
3. An optical scanning device having the optical deflector according to claim 1 or 2, as deflection means for deflecting light emitted from the light source between the light source and the optical scanning means.
JP2003187508A 2003-06-30 2003-06-30 Optical deflector and optical scanning device Expired - Lifetime JP5073150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187508A JP5073150B2 (en) 2003-06-30 2003-06-30 Optical deflector and optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187508A JP5073150B2 (en) 2003-06-30 2003-06-30 Optical deflector and optical scanning device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011261969A Division JP5168403B2 (en) 2011-11-30 2011-11-30 Optical deflector and optical scanning device

Publications (2)

Publication Number Publication Date
JP2005024679A JP2005024679A (en) 2005-01-27
JP5073150B2 true JP5073150B2 (en) 2012-11-14

Family

ID=34186333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187508A Expired - Lifetime JP5073150B2 (en) 2003-06-30 2003-06-30 Optical deflector and optical scanning device

Country Status (1)

Country Link
JP (1) JP5073150B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350226A (en) * 2005-06-20 2006-12-28 Sony Corp Optical coupler, optical waveguide device and optical waveguide coupling method using the optical coupler
JP2008158261A (en) * 2006-12-25 2008-07-10 Ricoh Co Ltd Electric field forming element, method of manufacturing electric field forming element, optical deflecting element, and image display device
JP5006748B2 (en) * 2007-10-10 2012-08-22 株式会社リコー Electro-optic element and light beam deflector
FR2957684B1 (en) * 2010-03-19 2012-08-03 Evosens OPTICAL VARIATION DEVICE, OPTICAL ASSEMBLY, AND METHOD FOR MANUFACTURING SUCH A DEVICE
JP5603896B2 (en) * 2012-03-21 2014-10-08 株式会社東芝 Liquid crystal fresnel lens element and image display device
JP5599420B2 (en) * 2012-03-22 2014-10-01 株式会社東芝 Liquid crystal fresnel lens element and image display device
JP6858045B2 (en) * 2017-03-24 2021-04-14 スタンレー電気株式会社 Optical scanning device
JP6988225B2 (en) * 2017-07-24 2022-01-05 凸版印刷株式会社 Laser scanning device
JP7176331B2 (en) * 2018-09-28 2022-11-22 凸版印刷株式会社 optical scanner

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127526A (en) * 1985-11-27 1987-06-09 Honda Motor Co Ltd Disc braking device
JPH0740095B2 (en) * 1987-10-05 1995-05-01 日本電信電話株式会社 Liquid crystal optical shutter
JPH0764123A (en) * 1993-08-20 1995-03-10 Internatl Business Mach Corp <Ibm> Distributed-refractive-index type light deflector and method of optical deflection
US5493326A (en) * 1994-01-03 1996-02-20 Xerox Corporation Method and apparatus for scan line skew correction using a gradient index electrooptic prism
JP3814366B2 (en) * 1997-02-07 2006-08-30 シチズン時計株式会社 Liquid crystal wavefront modulation device and driving method thereof
JP4435320B2 (en) * 1999-01-22 2010-03-17 独立行政法人情報通信研究機構 Liquid crystal light modulation device and driving method thereof
JP4915028B2 (en) * 1999-09-02 2012-04-11 旭硝子株式会社 Optical head device
JP2002341270A (en) * 2001-05-14 2002-11-27 Sharp Corp Exposure device
JP2003091026A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Light deflecting device, image display device, image pick up device and optical switching device each using the light deflecting device
JP2003098504A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Optical deflecting element, optical deflector using it, and picture display device
JP2003167225A (en) * 2001-12-03 2003-06-13 Fuji Xerox Co Ltd Electronic display medium and electronic display device
JP4084203B2 (en) * 2002-01-31 2008-04-30 シチズンホールディングス株式会社 Optical deflection device
JP4094864B2 (en) * 2002-02-13 2008-06-04 シチズンホールディングス株式会社 Optical deflection element and driving method thereof

Also Published As

Publication number Publication date
JP2005024679A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US6879431B2 (en) Optical deflection apparatus and optical deflection method
US7167230B2 (en) Liquid crystal variable wavelength filter unit, and driving method thereof
JP4057597B2 (en) Optical element
JP5699394B2 (en) Liquid crystal cylindrical lens array and display device
US5596430A (en) Distributed index light deflector and method of light deflection
US8620117B2 (en) Optical device, optical deflection device, and optical modulation device
JP5073150B2 (en) Optical deflector and optical scanning device
JP4574428B2 (en) Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus
CN110778980A (en) Lamp unit and vehicle lamp system
US10600978B2 (en) Liquid crystal element and light control apparatus for accurate light control
JP2012128276A (en) Laser source device
JP4438497B2 (en) Optical deflection element
JP5906366B2 (en) Liquid crystal optical device
JP2008134652A (en) Optical deflection apparatus
JP3401760B2 (en) Optical device
JP2579426B2 (en) Liquid crystal electro-optical element
JP5168403B2 (en) Optical deflector and optical scanning device
JP5501142B2 (en) Liquid crystal lens and driving method thereof
JP2003098502A (en) Light deflector and image display device
CN111025737B (en) Electric scanning continuous light beam orientation device
CN113433723A (en) Light intensity modulator, light intensity modulation system and light intensity modulation method
JP3980908B2 (en) Optical path deflecting element, optical path deflecting element unit, and image display apparatus
JPH06208142A (en) Liquid crystal light deflecting element
KR20040039987A (en) Liquid crystal display device having touch panel
JPH06308453A (en) Liquid crystal optical element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R150 Certificate of patent or registration of utility model

Ref document number: 5073150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term