JP4991139B2 - 光学システム、リソグラフィ装置、光学システムのアポディゼーションを修正する方法、及びデバイス製造方法 - Google Patents

光学システム、リソグラフィ装置、光学システムのアポディゼーションを修正する方法、及びデバイス製造方法 Download PDF

Info

Publication number
JP4991139B2
JP4991139B2 JP2005314216A JP2005314216A JP4991139B2 JP 4991139 B2 JP4991139 B2 JP 4991139B2 JP 2005314216 A JP2005314216 A JP 2005314216A JP 2005314216 A JP2005314216 A JP 2005314216A JP 4991139 B2 JP4991139 B2 JP 4991139B2
Authority
JP
Japan
Prior art keywords
radiation beam
euv radiation
optical component
intensity distribution
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005314216A
Other languages
English (en)
Other versions
JP2006128697A (ja
Inventor
マシーズ セオドール マリー ディーリッチス マルセル
Original Assignee
エーエスエムエル ネザーランズ ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーエスエムエル ネザーランズ ビー.ブイ. filed Critical エーエスエムエル ネザーランズ ビー.ブイ.
Publication of JP2006128697A publication Critical patent/JP2006128697A/ja
Application granted granted Critical
Publication of JP4991139B2 publication Critical patent/JP4991139B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、光学部品、このような光学部品を備えた光学システム、リソグラフィ装置、光学システムのアポディゼーションを修正する方法、デバイス製造方法及びそれによって製造されたデバイスに関する。
リソグラフィ装置は、基板、一般的には基板の目標部分に所望のパターンを適用する機械である。リソグラフィ装置は、例えば集積回路(IC)の製造に使用することができる。その場合、マスク或いはレチクルとも呼ばれているパターン形成装置を使用してICの個々の層に形成すべき回路パターンが生成され、生成されたパターンが基板(例えばシリコン・ウェハ)上の目標部分(例えば1つ又は複数のダイの部分を含む)に転送される。パターンの転送は、通常、基板の上に提供されている放射線感応材料(レジスト)の層への画像化を介して実施される。通常、1枚の基板には、順次パターン形成される目標部分に隣接する回路網が含まれている。知られているリソグラフィ装置には、パターン全体を1回で目標部分に露光することによって目標部分の各々が照射されるステッパと、パターンを放射ビームで所与の方向(「走査」方向)に走査し、且つ、基板をこの方向に平行に、或いは逆平行に同期走査することによって目標部分の各々が照射されるスキャナがある。パターンを基板上へ転写することによってパターン形成装置から基板へパターンを転送することも可能である。
放射ビームがリソグラフィ装置の光学システムを通って伝搬している間、放射ビームは、その位相及び/又は強度が変化する。これらの変化は、例えば放射ビームが伝搬する媒体によるものであり、また、光学システム内で放射ビームが相互作用する光学部品との相互作用によるものである。放射ビームの位相変化は収差と呼ばれ、ひとみにおける放射ビームの強度変化はアポディゼーションと呼ばれている。アポディゼーションは、ひとみ放射照度の非一様性である。リソグラフィ装置の場合、放射ビームは、その強度が高度に一様であることが重要である。収差及びアポディゼーションは、可能な限り小さくしなければならない。現在、収差は修正が可能であり、例えば米国特許第5,757,017号に、収差を補償するための修正層、つまり望ましくない位相変化を補償するための修正層を備えることができる複数の光学部品を備えたリソグラフィ・システムが開示されているが、反射型リソグラフィ・システムのアポディゼーション誤差については、有意義な方法で何ら対処されていない。
本発明の一態様によれば、アポディゼーション誤差に関連する問題が解決される。
本発明の一実施例によれば、光学システムは、光学システムのアポディゼーションを修正するための光学部品を備えている。光学部品は、光学部品から上流側の強度分布である、アポディゼーションによってより望ましい強度分布から逸脱した上流側強度分布を有する放射ビームを受け取るように構成されており、ひとみ面から下流側の放射ビームがより望ましい強度分布を有するよう、放射ビームの一部を位置に応じて吸収するように構成された層を備えている。
他の実施例では、光学システムのための、光学システムのアポディゼーションを修正するための光学部品は、光学部品から上流側の強度分布である、アポディゼーションによってより望ましい強度分布から逸脱した上流側強度分布を有する放射ビームを受け取るように構成されており、ひとみ面から下流側の放射ビームがより望ましい強度分布を有するよう、放射ビームの一部を位置に応じて吸収するように構成された層を備えている。
他の実施例では、リソグラフィ装置は、放射ビームを調整するように構成された照明システムと、放射ビームの断面にパターンを付与するように構成されたパターン形成装置を支持するように構成された支持部と、基板を保持するように構成された基板テーブルと、パターン形成された放射ビームを基板の目標部分に投射するように構成された、上で説明した光学部品を備えた投影システムとを備えている。
さらに他の実施例では、光学システムのアポディゼーションを修正する方法には、光学システムの所定の面における放射ビームの強度分布に対するアポディゼーションの効果を決定する工程と、所定の面における放射ビームのより望ましい強度分布を決定する工程と、所定の面から下流側の放射ビームがより望ましい強度分布を有するよう、放射ビームの一部を所定の面で位置に応じて吸収する工程が含まれている。
さらに他の実施例では、デバイス製造方法には、放射ビームを提供する工程と、放射ビームの断面にパターンを付与する工程と、放射ビームをパターン形成した後、放射ビームを基板の目標部分に投射する工程と、光学システムの所定の面における放射ビームの強度分布を決定する工程と、所定の面における放射ビームのより望ましい強度分布を決定する工程と、所定の面から下流側の放射ビームがより望ましい強度分布を有するよう、放射ビームの一部を所定の面で位置に応じて吸収する工程が含まれている。
以下、本発明の実施例について、単なる実施例にすぎないが、添付の略図を参照して説明する。図において、対応する参照記号は対応する部品を表している。
図1は、本発明の一実施例によるリソグラフィ装置1を略図で示したものである。このリソグラフィ装置1は、ベース・プレートBPを備えている。照明システム(イルミネータ)ILは、放射ビームPB(例えばUV放射或いはEUV放射)を調整するように構成されている。支持部(例えばマスク・テーブル)MTは、パターン形成装置(例えばマスク)MAを支持するように構成されており、特定のパラメータに従ってパターン形成装置を正確に位置決めするように構成された第1の位置決め装置PMに接続されている。基板テーブル(例えばウェハ・テーブル)WTは、基板(例えばレジスト被覆ウェハ)Wを保持するように構成されており、特定のパラメータに従って基板を正確に位置決めするように構成された第2の位置決め装置PWに接続されている。投影システム(例えば屈折投影レンズ系)PSは、パターン形成装置MAによって放射ビームPBに付与されたパターンを基板Wの目標部分C(例えば1つ又は複数のダイを含む)に投影するように構成されている。
照明システムは、放射を導き、整形し、或いは制御するための屈折光学部品、反射光学部品、磁気光学部品、電磁光学部品、静電光学部品或いは他のタイプの光学部品、若しくはそれらの任意の組合せなどの様々なタイプの光学部品を備えることができる。
支持部MTは、パターン形成装置を支持しており、例えばパターン形成装置の重量を支えている。支持部MTは、パターン形成装置の配向、リソグラフィ装置のデザイン及び他の条件、例えばパターン形成装置が真空環境中で保持されているか否か等に応じた方法でパターン形成装置を保持している。支持部には、パターン形成装置を保持するための機械式クランプ技法、真空クランプ技法、静電クランプ技法若しくは他のクランプ技法を使用することができる。支持部は、例えば必要に応じて固定若しくは移動させることができるフレームであっても、或いはテーブルであっても良い。支持部は、例えば投影システムに対してパターン形成装置を所望の位置に確実に配置することができる。本明細書における「レチクル」或いは「マスク」という用語の使用はすべて、より一般的な「パターン形成装置」という用語の同義語と見なすことができる。
本明細書に使用されている「パターン形成装置」という用語は、放射ビームの断面にパターンを付与し、それにより基板の目標部分にパターンを生成するべく使用することができる任意の装置を意味するものとして広義に解釈されたい。放射ビームに付与されるパターンは、例えばそのパターンが移相フィーチャ若しくはいわゆる補助フィーチャを備えている場合、基板の目標部分における所望のパターンに必ずしも厳密に対応している必要はないことに留意されたい。放射ビームに付与されるパターンは、通常、目標部分に生成される、例えば集積回路などのデバイス中の特定の機能層に対応している。
パターン形成装置は、透過型であっても或いは反射型であっても良い。パターン形成装置の実施例には、マスク、プログラム可能ミラー・アレイ及びプログラム可能LCDパネルがある。マスクについてはリソグラフィにおいては良く知られており、バイナリ、交番移相及び減衰移相などのマスク・タイプ、及び様々なハイブリッド・マスク・タイプが知られている。プログラム可能ミラー・アレイの実施例には、マトリックスに配列された微小ミラーが使用されている。微小ミラーの各々は、入射する放射ビームが異なる方向に反射するよう、個々に傾斜させることができる。この傾斜したミラーによって、ミラー・マトリックスで反射する放射ビームにパターンが付与される。
本明細書に使用されている「投影システム」という用語には、使用する露光放射に適した、或いは浸漬液の使用若しくは真空の使用などの他の要因に適した、屈折光学系、反射光学系、カタディオプトリック光学系、磁気光学系、電磁光学系及び静電光学系、若しくはそれらの任意の組合せを始めとする任意のタイプの投影システムが包含されているものとして広義に解釈されたい。本明細書における「投影レンズ」という用語の使用はすべて、より一般的な「投影システム」という用語の同義語と見なすことができる。
図に示すように、この装置は反射型(例えば反射型マスクを使用した)タイプの装置である。別法としては、この装置は透過型(例えば透過型マスクを使用した)タイプの装置であっても良い。
リソグラフィ装置は、場合によっては2つ(二重ステージ)以上の基板テーブル(及び/又は複数のマスク・テーブル)を有するタイプの装置であり、このような「多重ステージ」機械の場合、追加テーブルを並列に使用することができ、或いは1つ又は複数の他のテーブルを露光のために使用している間、1つ又は複数のテーブルに対して予備工程を実行することができる。
また、リソグラフィ装置は、基板の少なくとも一部が比較的屈折率の大きい液体、例えば水で覆われ、それにより投影システムと基板の間の空間が充填されるタイプの装置であっても良い。また、リソグラフィ装置内の他の空間、例えばマスクと投影システムの間の空間に浸漬液を充填することも可能である。浸漬技法は、当分野においては、投影システムの開口数を大きくすることで良く知られている。本明細書に使用されている「浸漬」という用語は、基板などの構造を液体中に浸すことを意味しているのではなく、単に、露光の間、例えば投影システムと基板の間に液体が充填されることを意味しているにすぎない。
図1を参照すると、イルミネータILは、放射源SOから放射を受け取っている。放射源が例えばエキシマ・レーザである場合、放射源及びリソグラフィ装置は、個別の構成要素にすることができる。その場合、放射源は、リソグラフィ装置の一部を形成しているとは見なされず、放射ビームは、例えば適切な誘導ミラー及び/又はビーム・エキスパンダを備えたビーム引渡しシステムBDを使用して放射源SOからイルミネータILへ引き渡される。それ以外の例えば放射源が水銀灯などの場合、放射源は、リソグラフィ装置の一構成部品にすることができる。放射源SO及びイルミネータILは、必要に応じてビーム引渡しシステムBDと共に放射システムと呼ぶことができる。
イルミネータILは、放射ビームの角強度分布を調整するための調整装置ADを備えることができる。通常、イルミネータのひとみ面内における強度分布の少なくとも外部半径範囲及び/又は内部半径範囲(一般に、それぞれσ−アウター及びσ−インナーと呼ばれている)は調整が可能である。また、イルミネータILは、インテグレータ及びコンデンサなどの他の様々な部品を備えることができる。イルミネータを使用して放射ビームを調整し、所望する一様な強度分布をその断面に持たせることができる。
支持部(例えばマスク・テーブルMT)上に保持されているパターン形成装置(例えばマスクMA)に放射ビームPBが入射し、パターン形成装置によってパターン形成される。マスクMAを透過した放射ビームPBは、放射ビームを基板Wの目標部分Cに集束させる投影システムPSを通過する。基板テーブルWTは、第2の位置決め装置PW及び位置センサIF2(例えば干渉装置、直線エンコーダ若しくは容量センサ)を使用して正確に移動させることができ、それにより例えば異なる目標部分Cを放射ビームPBの光路内に配置することができる。同様に、第1の位置決め装置PM及びもう1つの位置センサIF1(例えば干渉装置、直線エンコーダ若しくは容量センサ)を使用して、例えばマスク・ライブラリから機械的に検索した後、若しくは走査中に、マスクMAを放射ビームPBの光路に対して正確に配置することができる。通常、マスク・テーブルMTの移動は、第1の位置決め装置PMの一部を形成している長ストローク・モジュール(粗位置決め)及び短ストローク・モジュール(精密位置決め)を使用して実現されている。同様に、基板テーブルWTの移動は、第2の位置決め装置PWの一部を形成している長ストローク・モジュール及び短ストローク・モジュールを使用して実現されている。スキャナではなくステッパの場合、マスク・テーブルMTは、短ストローク・アクチュエータのみに接続することができ、或いは固定することも可能である。マスクMA及び基板Wは、マスク・アライメント・マークM1、M2及び基板アライメント・マークP1、P2を使用して整列させることができる。図には、専用目標部分を占有している基板アライメント・マークが示されているが、基板アライメント・マークは、目標部分と目標部分の間の空間に配置することも可能である。このような基板アライメント・マークは、スクライブ・レーン・アライメント・マークとして知られている。同様に、複数のダイがマスクMA上に提供される場合、ダイとダイの間にマスク・アライメント・マークを配置することができる。
図に示す装置は、以下に示すモードのうちの少なくとも1つのモードで使用することができる。
1.ステップ・モード:ステップ・モードでは、マスク・テーブルMT及び基板テーブルWTが基本的に静止状態に維持され、放射ビームに付与されたパターン全体が目標部分Cに1回で投影される(即ち単一静止露光)。次に、基板テーブルWTがX及び/又はY方向にシフトされ、異なる目標部分Cが露光される。ステップ・モードでは、露光視野の最大サイズによって、単一静止露光で画像化される目標部分Cのサイズが制限される。
2.走査モード:走査モードでは、放射ビームに付与されたパターンが目標部分Cに投影されている間、マスク・テーブルMT及び基板テーブルWTが同期走査される(即ち単一動的露光)。マスク・テーブルMTに対する基板テーブルWTの速度及び方向は、投影システムPSの倍率(縮小率)及び画像反転特性によって決定される。走査モードでは、露光視野の最大サイズによって、単一動的露光における目標部分の幅(非走査方向の幅)が制限され、また、走査運動の長さによって目標部分の高さ(走査方向の高さ)が決まる。
3.その他のモード:その他のモードでは、プログラム可能パターン形成装置を保持するべくマスク・テーブルMTが基本的に静止状態に維持され、放射ビームに付与されたパターンが目標部分Cに投影されている間、基板テーブルWTが移動若しくは走査される。このモードでは、通常、パルス放射源が使用され、走査中、基板テーブルWTが移動する毎に、或いは連続する放射パルスと放射パルスの間に、必要に応じてプログラム可能パターン形成装置が更新される。この動作モードは、上で言及したタイプのプログラム可能ミラー・アレイなどのプログラム可能パターン形成装置を利用しているマスクレス・リソグラフィに容易に適用することができる。
上で説明した使用モードの組合せ及び/又はその変形形態或いはまったく異なる使用モードを使用することも可能である。
図2aは、図1に示すリソグラフィ装置の投影システムPSを詳細に示したものである。投影システムPSは、投影光学ボックスPOBを備えている。投影光学ボックスPOBは、ミラー21(i)(i=1,2,…,I)を備えており、図2aには6つのミラーが示されている。ミラー21(2)は、「ひとみミラー」と呼ばれており、このミラー21(2)が投影システムPSのひとみ面に配置されていることを示している。他のデザインでは、ミラーの番号を異なる番号にすることができ、また、異なる位置にひとみミラーを配置することも可能である。ビームPBとマスクMAの間の角度は、それぞれひとみミラー21(2)上の位置に対応しており、その逆についても同様である。他のミラーは、視野とひとみ面との間の中間面に配置されている。
基板Wは、レジスト層20を備えており、このレジスト層20の露光部分22が示されている。基板Wは、参照番号18で示す所定のz位置に配置されている。このz位置はウェハ・レベル18である。
放射ビームPBは、マスクMAで反射し(反射型リソグラフィ装置の場合)、投影光学ボックスPOBに入射する。放射ビームPBは、マスクMAで、図2aにそれぞれ光線23、25及び27で示す複数の次数で回折する。放射ビームPBは、投影光学ボックスPOB内で6つのミラー21(i)で反射し、最後に投影光学ボックスPOBから射出して基板W上のレジスト層20に衝突する。放射ビームPBは、レジスト層20の露光部分22に当たる。放射ビームPBの対称軸は、ほぼ直角にレジスト層20に当たることが望ましい。その理由については、図2bで明らかにする。ここで使用されている「対称軸」は、すべての強度(光パワー)が集中していると見なすことができる光線を表している。実際、放射ビームPBの総強度は、投影光学ボックスPOBを通過する回折次数の数で決まる。本明細書を通して、放射ビームPBは一様であり、且つ、ひとみミラー21(2)を完全に照射することが仮定されているが、リソグラフィ装置を使用して画像化する場合、顧客は顧客独自の指定照明、例えば環状照明を使用することになるため、実際にはそうではない。
図2bは、投影システムPOBを示したものである。投影システムPOBから上流側のマスクMA(この図では除去されている)のレベルには、ピンホール28が穿たれたプレート30が提供されている。ピンホールの直径は、50μmから200μmの範囲にすることができる。また、アポディゼーションを測定するための検出器29が提供されている。図2bの構成では、基板Wは存在していない。検出器29は、放射ビームPBの強度をx−y平面内の位置に応じて測定することができるよう、基板レベル18下流側のどこかに焦点外れで存在している。参照番号16は、検出器29が配置されているzレベルを示している。したがってzレベル16及び検出器29は、「ファー・フィールド」に位置している。検出器29は、x−y平面内で移動可能であり、測定信号を受け取り、且つ、ユーザに測定データを提供するように構成された適切なプロセッサ(図示せず)に接続されている。これについては、例えば米国特許第6,710,856号に説明されている。
この構成によってファー・フィールド強度パターンを測定することができるが、その方法は次の通りである。放射PBがピンホール28に導かれる。ピンホールによって回折光線23、25及び27が生成される。これらの回折光線は投影光学ボックスPOBを通過し、ウェハ・レベル18で集束する。ウェハ・レベル18を通過した回折光線は、再び発散する。リソグラフィ装置内及び投影光学ボックスPOB内のすべての光学が完全である場合、回折光線23及び25は、同じ強度を有することになり、また、ウェハ・レベル18に衝突する際の放射ビームPBは、実際にx−y平面に対して直角になるが、光学及び投影システムPOBが完全ではなく、局部強度偏差が生じる場合、ウェハ・レベル18に衝突する際の放射ビームPBは、事実上、理想的な直角方向に対して傾斜することになる。図2bのダッシュ線26は、これを示したものである。
この傾斜は、検出器29を使用して測定することができる。検出器29を使用してx−y平面で測定した強度がファー・フィールドの特定の位置14でより小さく、且つ、特定の位置12でより大きいと仮定すると、それは、事実上、放射ビームPBの対称軸がライン27からライン26へシフトしており、ウェハ・レベル18に対して直角ではないことを意味している。
リソグラフィ装置は、複数の構造を互いに正確に重ね合わせて投影するために使用されるため、放射ビームPBが非一様であると、深刻な問題が生じることは明らかであろう。露光の焦点が正確に合っていない場合、傾斜した対称軸によってパターンがシフトすることになる。これは、オーバレイ誤差として知られている。
他の技法を使用して投影システムのアポディゼーションを測定し、或いは計算することができることを理解されたい。
図2bの構成を使用して、ピンホール28の位置から射出するビームのアポディゼーションを測定することができる。第1の実施例では、アポディゼーションがこのピンホールのx位置及びy位置に依存しないこと、つまり、アポディゼーションがフィールド独立型であることが想定される。
本発明は、ファー・フィールドで測定した強度分布が投影光学ボックスPOBのひとみ面における同様の強度分布に対応する、という見識に基づいており、したがって、投影システムのひとみ面レベルにおける強度プロファイルを修正することができる場合、同じくファー・フィールドの強度分布が修正され、したがってウェハ・レベル18に衝突する際の投影ビームPBの対称軸が修正される。
ひとみミラー21(2)は、ひとみ面に配置されているため、このひとみミラーを使用して強度分布を修正することができる。ひとみミラーを使用した強度分布の修正方法の実施例を示す前に、図3を参照して、このようなひとみミラー21(2)の典型的な実施例について説明しておく。
図3は、ひとみミラー21(2)をより詳細に示したものである。図3には、放射ビームPB及び反射した放射ビームPBが示されている。放射ビームPBは、多層ひとみミラー21(2)で反射する。単一の層での反射は最小である。汚染及び劣化を最小にするためには、この多層ひとみミラーは、例えばルテニウム(Ru)若しくはパラジウム(Pa)の薄い反射層39で開始することができる。ひとみミラー21(2)は、材料が異なる他の複数の層31及び33を備えている。例えば層31はケイ素(Si)を含有することができ、層33はモリブデン(Mo)を含有することができるが、他の材料を使用することも可能である。層31及び33は、複数のセットで蒸着されており、図3には最初の2つのセットの31及び33が示されている。ダッシュ線は、追加セットの1つを示している。ひとみミラー21(2)(及び他のミラー21(i))は、多数のセットの層31及び33を備えていることを理解されたい。これらのセットは、3つ以上の層を備えることができる。このような多層膜反射鏡は、EUVアプリケーションに広く使用されており、ここでは詳細な説明は省略する。参照数表示35は、入射する放射ビームPBの断平面を示し、参照数表示37は、反射した放射ビームPBの断平面を示している。
図4は、ひとみ面レベル即ちひとみミラー21(2)レベルにおける放射ビームPBの強度分布の一実施例を断面図で示したものである。この実施例は、図2bに示すファー・フィールド強度分布に対応しており、したがって同様のシステムのアポディゼーションが想定されている。したがって図4は、強度輪郭41及び43を示しており、個々の強度輪郭41及び43の強度は一定である。強度輪郭43の強度は、例えば強度輪郭41の強度より大きい。
放射ビームPBの強度は、通常、ひとみ面に沿って変化する。ここで、この強度の変化は、マスクMAで反射する際に、放射ビームPBに含まれているパターンによってもたらされる強度変化を意味しているのではなく、マスク・レベルの一点から射出する、基板レベルの一点に投射されることになる放射ビームPBの一部に対して直角の表面の強度変化を意味している。上で言及したように、同様の強度変化がファー・フィールド・レベル16に存在する。ひとみ面レベルにおける放射ビームPBの強度分布は、ファー・フィールド・レベル16における強度とは異なる場合があるが、ひとみ面レベルにおける強度分布の変化はすべて、ファー・フィールド・レベル16における対応する変化に反映される。
図5は、線V−Vに沿った図4の側面図である。図5は、ひとみ面内の位置に応じた強度51を示したもので、「強度プロファイル」とも呼ばれている。図に示す強度プロファイル51の形状は正弦波であるが、他の別の形状のプロファイル、例えば放物線プロファイルも可能である。リソグラフィの場合、放射ビームは、制御された強度分布を有していることが望ましく、また、通常、一様な強度分布であることが望ましい。図5のダッシュ線51dは、放射ビームに沿った位置に応じたこのような一様な強度を示している。分かりやすくするために、ダッシュ線51dは直線で示されているが、それには、システムがひとみミラー21(2)から下流側に一切のアポディゼーションを有していないことが想定されている。システムがひとみミラー21(2)から下流側にアポディゼーションを有している場合、ひとみ面レベルにおける所望の強度分布は直線にはならない。ひとみ面レベルにおける所望の強度分布の実際の曲線51dは、計算によって求めることができる。
本発明により、反射した放射ビームPBのひとみ面レベルにおける強度分布が所望の強度分布になるよう、放射ビームPBの一部をミラー表面上の位置に応じて吸収するように設計されたひとみミラー21(2)が提供される。したがって、ウェハ・レベル18における個々の点の角度分布に対する一様な透過率が得られる。そのようにすることにより、ひいては、ウェハ・レベル18に衝突する放射ビームの対称軸が直角になるように修正される。ウェハ・レベル18上のすべての点におけるすべての角度に対して一様な透過率を得るための修正プロファイルは、プロファイルを測定することによって得ることができ、或いはミラーとミラーを覆っているコーティングの両方の設計データからプロファイルをシミュレーションすることによって得ることができる。
図6aは、図3に示すひとみミラー21(2)を示したものであるが、1つ又は複数の追加副層61(j)(j=1,2,…,J)及びダッシュ線で示す任意選択の追加層63を備えた層61が追加されている。副層61(j)は、図5に示す、検出器29を使用して測定された強度プロファイル51に従って反射層39の上に加えられている(図6では略図で反復されている)。副層61(j)の材料は、放射ビームPBの位相に対する影響を無視することができ、且つ、局部吸収によって放射ビームPBの強度にのみ影響するように選択される。個々の追加副層61(j)に対して選択される材料及び厚さは、放射ビームPBの波長及びアポディゼーションの量によって様々である。一適用例では、波長がλ=13.5nmのEUVである。ケイ素(Si)はこの波長のEUVに対して放射ビームPBの位相にほとんど影響しないため、この場合、すべての追加層61(j)に対する適切な材料はケイ素(Si)である。放射ビームPBが1つ又は複数の副層61(j)に当たると、ケイ素によって放射ビームPBが吸収される。Alは、屈折率の実数部の1からの偏差が同じく小さいため、Siの代わりにAlを使用することも可能である。
追加副層61(j)は、階段状の構造を形成している。この階段状の構造は、追加副層の各々に孔65(1)、65(2)、…、65(j)を提供することによって実施することができる。層61(j)の孔65(j)は、その前の層61(j−1)の孔65(j−1)と重畳している。図6aに示す構造の上面図である図6bは、この重畳を詳細に示したものである。図6bには円形の孔65(j)が示されているが、必要に応じて、アポディゼーション効果に対する可能な最良の修正を提供する他の任意の形状が可能である。
連続する孔65(j)は、放射ビームPBが強度の大きい位置で比較的多数の追加副層61(j)を通過することになるよう、階段状の壁との組合せ孔65(1)、…、65(j)が存在し、その輪郭が強度プロファイル51を可能な限り良好に追従するように設計されている。追加層61(j)の各々が放射ビームPBの光パワーの一部を吸収するため、放射ビームの強度分布をひとみ面内で修正することができる。追加副層61(j)の数及び孔65(j)の数は、反射した放射ビームPBのひとみ面レベルにおける強度プロファイルがほぼ所望の強度プロファイル51dを示すように選択される。
好ましい解決法は、例えばSi或いはAlなどの材料は、屈折率の実数部の1からの偏差が小さいため、これらの単一材料をひとみミラー21(2)に使用して吸収させることである。これについては以下を参照されたい。Mo(モリブデン)を使用することも可能である。Moは、Alと比較すると、吸収は劣るが、より大きい位相差をもたらす利点を有している。これらの材料の主な効果は吸収である。強度変化を修正するために、それぞれ異なる面積を有する様々な蒸着ランの中に層を加えることができる。例えば強度プロファイルが、最小強度と最大強度が交番する正弦波プロファイルである場合、図6a及び図6bに示すようなスキームを使用することができる。
しかしながら、Si層61全体の厚さが比較的分厚く、例えば100nmである場合、放射ビームPBの位相に対する効果を副層61(j)が持たないようにすることは困難である。Si層61全体の厚さが比較的分厚い場合、層61(j)の材料とは逆に、放射ビームPBの強度に影響するばかりでなく、位相にも影響する材料の反射表面39に余分の層63を加える必要がある。モリブデン(Mo)は、後者の材料の一例である。強度及び位相に対する効果は、複素屈折率(n)によって表すことができる。つまり、複素屈折率(n)は、スカラの形で、
n=1−δ+iβ
で表すことができる。δは、複素原子散乱因子の実数部に関連し、βは、複素原子散乱因子の虚数部に関連している。複素原子散乱因子の実数部及び虚数部の形のδ及びβについての詳細情報及び数学偏差については、例えば「Soft x−rays and extreme ultraviolet radiation」(David Attwood ISBN 0−521−65214−6)を参照されたい。入射する放射の強度に対する比較的強力な効果を有するためには、層61には、δが小さく、且つ、βが大きい、大きいβ/δ比が得られる材料を使用することが好ましい。一方、入射する放射の位相に対する比較的明白な効果を有するためには、層63には、βが小さく、且つ、δが大きい、小さいβ/δ比が得られる材料を使用することが好ましい。上で説明したモリブデン(Mo)の他に、ルテニウム(Ru)、ベリリウム(Be)及び/又はロジウム(Rh)を使用することも可能である。層61及び層63は、例えばルテニウム(Ru)或いはパラジウム(Pa)の保護コーティングで被覆することができる。
既に言及したように、収差の修正とアポディゼーションの修正は、2つの異なる効果である。収差の効果は、所定のプロファイルを備えたコーティングをひとみミラー21(2)に加えることによっても修正することができる。層61とこのようなコーティングを組み合わせて両方を修正することも可能であり、それによりひとみミラー21(2)上への最終コーティングが単純化される。
既に指摘したように、本発明は、図2に示す投影光学ボックスPOBの右上隅のひとみミラー21(2)に対する適用に限定されないが、他のミラー21(i)の上に追加層を加えると、ひとみの一様性に影響するだけでなく、放射ビームPBに対するフィールド依存性の効果がもたらされることになる。他のミラー21(i)の上に層を追加すると、放射ビームPBの一部がミラー21(i)(i≠2)に向かって射出するマスク・レベルの位置によっては、放射ビームPBの強度分布に影響する。放射ビームが射出するマスク・レベルの位置に対する依存性が存在しないのはひとみ面内のみである。
また、本発明は、反射光学部品ではなく、透過光学部品(レンズ)にも等しく適用することができる。レンズを備えたこのようなシステム或いはカタディオプトリック・システムの場合、ひとみ面にグラデーション・フィルタを組み込むことによって本発明を実施することができる。本発明は、EUVシステムに何ら限定されない。
図6a及び図6bに示す副層61(j)の形状は任意であるが、これらの副層は、例えば層61(J+1)から層61(j)へ向かって厚さが階段状になるよう或いはその逆に層61(j)から層61(J+1)へ向かって厚さが階段状になるよう、互いに重ね合わせて分布させることができる。
β及びδの値が以下に示す値である以下の元素を含有した副層61(j)を使用することができる。δ=0.0007、β=0.0018のケイ素(Si)、及びδ0.0028、β=0.0297のアルミニウム(Al)。層63には、虚数部が実数部より実質的に大きい複素屈折率をもたらす、δ=0.0789、β=0.0064のモリブデン(Mo)を使用することができる。以下は、層61(j)の厚さに関するいくつかの情報を示したものである。吸収率I=I×exp(−4×π×β×t/λ)(t=厚さ、λ=波長、βについては上記参照)。相対移相Δφ=(2×π×δ/λ)×t(δの意味は上記と同じである)。一例として5%吸収率の場合、Siの厚さは30.6nm、Moの厚さは8.6nm、Alの厚さは1.9nmである。対応する移相は、それぞれ10−2、0.32及び−2.4×10−2である。したがって比較的大きい(>10%)一様性修正の場合、実質的に位相効果がなく、吸収効果のみを有するSi/Alの多層が望ましい。修正がもっと小さい場合、Siのみの解決法が実施されることになる。
総合補償が30%に達することがあるため、最大総合厚さは、Siで約90nm、Alで6nmである。修正プロファイルの急峻度に応じて層の量を決定することができる。副層の数は、個々の層の対の縁部分が滑らかであるため、3層であることが実際的である。
ミラー21(i)には、EUVリソグラフィで広く使用されているように多層膜反射鏡を使用することができる。多層膜反射鏡を使用する場合、ミラー21(i)の反射表面39は、EUV放射に対する良好な反射特性を有していなければならない。投影光学ボックスPOB内のミラー21(i)の特定の位置に応じて、放射ビームPBに対する副層61(j)の効果が変化する。例えば副層61(j)をひとみミラー21(2)に加えると、副層61(j)は、フィールドに依存しない強度分布変化を補償するが、他のミラー21(i)に加えると、強度分布及びフィールド分布に影響することになる。
本明細書においては、とりわけICの製造におけるリソグラフィ装置の使用が言及されているが、本明細書において説明したリソグラフィ装置は、集積光学系、磁気領域メモリのための誘導及び検出パターン、フラット・パネル・ディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド等の製造などの他の応用を有していることを理解されたい。このような代替応用の文脈においては、本明細書における「ウェハ」或いは「ダイ」という用語の使用はすべて、それぞれより一般的な「基板」或いは「目標部分」という用語の同義語と見なすことができることを理解されたい。本明細書において言及されている基板は、例えばトラック(通常、基板にレジスト層を塗布し、且つ、露光済みレジストを現像するツール)、度量衡学ツール及び/又は検査ツール中で、露光前若しくは露光後に処理することができる。適用可能である場合、本明細書における開示は、このような基板処理ツール及び他の基板処理ツールに適用することができる。また、基板は、例えば多層ICを生成するために複数回に渡って処理することができるため、本明細書において使用されている基板という用語は、処理済みの複数の層が既に含まれている基板を指している場合もある。
また、本発明による実施例の使用について、とりわけ光リソグラフィの文脈の中で言及したが、本発明は、他の応用、例えば転写リソグラフィに使用することができ、文脈が許容する場合、光リソグラフィに限定されないことは理解されよう。転写リソグラフィの場合、基板に生成されるパターンは、パターン形成装置のトポグラフィによって画定される。パターン形成装置のトポグラフィが、基板に塗布されたレジストの層にプレスされ、次に、レジストを硬化させるべく、電磁放射、熱、圧力若しくはそれらの組合せが印加される。レジストが硬化すると、パターン形成装置がレジストから除去され、後にパターンが残る。
本明細書に使用されている「放射」及び「ビーム」という用語には、紫外(UV)放射(例えば波長が365nm、248nm、193nm、157nm或いは126nmの放射若しくはその近辺の波長の放射)、極紫外(EUV)放射(例えば波長の範囲が5〜20nmの放射)、及びイオン・ビーム或いは電子ビームなどの粒子線を含むあらゆるタイプの電磁放射が包含されている。
文脈が許す場合、「レンズ」という用語は、屈折光学部品、反射光学部品、磁気光学部品、電磁光学部品及び静電光学部品を始めとする様々なタイプの光学部品のうちの任意の1つ或いは組合せを意味している。
以上の説明は、本発明の例証を意図したものであり、本発明を何ら制限するものではない。したがって、上で説明した本発明に改変を加えることができることは当業者には明らかであろう。
本発明の一実施例によるリソグラフィ装置を示す図。 図1に示すリソグラフィ装置の投影システムの詳細図。 アポディゼーション効果を説明するための図2aの部分IIBの略図。 図2aに示す構造のひとみ面のミラーの詳細図。 強度プロファイルの上面図。 図4の線V−Vに沿った位置に対するビーム強度を示す断面図。 本発明の一実施例を示す図。 本発明の一実施例を示す図。

Claims (9)

  1. システムのアポディゼーションを修正するための光学部品を備えた光学システムであって、前記光学部品が、前記光学部品から上流側の強度分布である、アポディゼーションによってより望ましい強度分布から逸脱した上流側強度分布を有するEUV放射ビームを受け取るように構成され、また、前記光学部品が、前記光学部品から下流側の前記EUV放射ビームがより望ましい強度分布を有するよう、前記EUV放射ビームの一部を位置に応じて吸収するように構成された層を備えており、
    ケイ素、アルミニウム、モリブデン、ルテニウム、ベリリウム、及びロジウムのうち、ケイ素又はアルミニウムが前記EUV放射ビームに対して最も大きいβ/δの絶対値を有し、モリブデン、ルテニウム、ベリリウム、又はロジウムが前記EUV放射ビームに対して最も小さいβ/δの絶対値を有する場合において(δは材料の複素原子散乱因子の実数部に関連し、βは材料の複素原子散乱因子の虚数部に関連する値である)、
    前記層が、互いに重ね合わせて配置された少なくとも2つの副層であって、ケイ素またはアルミニウムで作られた副層を備え、前記副層が互いの上方に孔を有し、階段状の壁との組合せ孔を形成しており、
    さらに、前記組合せ孔内の前記光学部品の上に配置された、前記層によって前記EUV放射ビームにもたらされる位相効果を修正するように構成された少なくとも1つの追加層であって、モリブデン、ルテニウム、ベリリウム、またはロジウムで作られた追加層を備えており、
    前記光学部品が前記光学システムのひとみ面に配置された光学システム。
  2. 前記光学部品が反射光学部品である、請求項1に記載の光学システム。
  3. 前記副層の厚さが100nm未満である、請求項1に記載の光学システム。
  4. 前記反射光学部品が多層膜反射鏡である、請求項2に記載の光学システム。
  5. 光学部品上の前記層が、前記光学システムの収差効果を修正するように構成された、請求項1に記載の光学システム。
  6. 前記光学システムが、フィールド効果を修正するための少なくとも1つの別の層を備えた少なくとも1つの別の光学部品を備えた投影システムを備えた、請求項1に記載の光学システム。
  7. EUV放射ビームを調整するように構成された照明システムと、
    前記EUV放射ビームの断面にパターンを付与するように構成されたパターン形成装置を支持するように構成された支持部と、
    基板を保持するように構成された基板テーブルと、
    パターン形成されたEUV放射ビームを前記基板の目標部分に投射するように構成された、光学部品を備えた投影システムとを備えたリソグラフィ装置であって、前記光学部品の上流側の前記EUV放射ビームが、前記投影システムのアポディゼーションによってより望ましい強度分布から逸脱した強度分布を有し、前記光学部品が、前記光学部品から下流側の前記パターン形成されたEUV放射ビームがより望ましい強度分布を有するよう、前記パターン形成されたEUV放射ビームの一部を位置に応じて吸収するように構成された層を備えており、
    ケイ素、アルミニウム、モリブデン、ルテニウム、ベリリウム、及びロジウムのうち、ケイ素又はアルミニウムが前記EUV放射ビームに対して最も大きいβ/δの絶対値を有し、モリブデン、ルテニウム、ベリリウム、又はロジウムが前記EUV放射ビームに対して最も小さいβ/δの絶対値を有する場合において(δは材料の複素原子散乱因子の実数部に関連し、βは材料の複素原子散乱因子の虚数部に関連する値である)、
    前記層が、互いに重ね合わせて配置された少なくとも2つの副層であって、ケイ素またはアルミニウムで作られた副層を備え、前記副層が互いの上方に孔を有し、階段状の壁との組合せ孔を形成しており、
    さらに、前記組合せ孔内の前記光学部品の上に配置された、前記層によって前記EUV放射ビームにもたらされる位相効果を修正するように構成された少なくとも1つの追加層であって、モリブデン、ルテニウム、ベリリウム、またはロジウムで作られた追加層を備えており、
    前記光学部品が前記光学システムのひとみ面に配置されたリソグラフィ装置。
  8. 光学システムのアポディゼーションを修正する方法であって、
    前記光学システムのひとみ面におけるEUV放射ビームの強度分布に対するアポディゼーションの効果を決定する工程と、
    アポディゼーションを修正するために、前記ひとみ面における前記EUV放射ビームのより望ましい強度分布を決定する工程と、
    ケイ素、アルミニウム、モリブデン、ルテニウム、ベリリウム、及びロジウムのうち、ケイ素又はアルミニウムが前記EUV放射ビームに対して最も大きいβ/δの絶対値を有し、モリブデン、ルテニウム、ベリリウム、又はロジウムが前記EUV放射ビームに対して最も小さいβ/δの絶対値を有する場合において(δは材料の複素原子散乱因子の実数部に関連し、βは材料の複素原子散乱因子の虚数部に関連する値である)、
    ケイ素またはアルミニウムで作られた少なくとも2つの副層を備えた層を用いて、前記ひとみ面から下流側の前記EUV放射ビームがより望ましい強度分布を有するよう、前記EUV放射ビームの一部を前記ひとみ面で位置に応じて吸収する工程と、
    モリブデン、ルテニウム、ベリリウム、またはロジウムで作られた追加層を用いて、前記EUV放射ビームの一部を吸収する工程による位相効果を修正する工程とを含む、
    光学システムのアポディゼーションを修正する方法。
  9. EUV放射ビームを提供する工程と、
    前記EUV放射ビームの断面にパターンを付与する工程と、
    前記EUV放射ビームをパターン形成した後、前記EUV放射ビームを基板の目標部分に投射する工程と、
    光学システムのひとみ面における前記EUV放射ビームの強度分布を決定する工程と、
    前記ひとみ面における前記EUV放射ビームのより望ましい強度分布を決定する工程と、
    ケイ素、アルミニウム、モリブデン、ルテニウム、ベリリウム、及びロジウムのうち、ケイ素又はアルミニウムが前記EUV放射ビームに対して最も大きいβ/δの絶対値を有し、モリブデン、ルテニウム、ベリリウム、又はロジウムが前記EUV放射ビームに対して最も小さいβ/δの絶対値を有する場合において(δは材料の複素原子散乱因子の実数部に関連し、βは材料の複素原子散乱因子の虚数部に関連する値である)、
    ケイ素またはアルミニウムで作られた少なくとも2つの副層を備えた層を用いて、前記ひとみ面から下流側の前記EUV放射ビームがより望ましい強度分布を有するよう、前記EUV放射ビームの一部を前記ひとみ面で位置に応じて吸収する工程と、
    モリブデン、ルテニウム、ベリリウム、またはロジウムで作られた追加層を用いて、前記EUV放射ビームの一部を吸収する工程による位相効果を修正する工程とを含むデバイス製造方法。
JP2005314216A 2004-10-29 2005-10-28 光学システム、リソグラフィ装置、光学システムのアポディゼーションを修正する方法、及びデバイス製造方法 Expired - Fee Related JP4991139B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/976,158 US7224430B2 (en) 2004-10-29 2004-10-29 Optical component, optical system including such an optical component, lithographic apparatus, method of correcting apodization in an optical system, device manufacturing method, and device manufactured thereby
US10/976,158 2004-10-29

Publications (2)

Publication Number Publication Date
JP2006128697A JP2006128697A (ja) 2006-05-18
JP4991139B2 true JP4991139B2 (ja) 2012-08-01

Family

ID=36260740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314216A Expired - Fee Related JP4991139B2 (ja) 2004-10-29 2005-10-28 光学システム、リソグラフィ装置、光学システムのアポディゼーションを修正する方法、及びデバイス製造方法

Country Status (2)

Country Link
US (1) US7224430B2 (ja)
JP (1) JP4991139B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315353B2 (en) * 2004-09-08 2008-01-01 Asml Netherlands B.V. Apodization measurement for lithographic apparatus
DE102005042496A1 (de) * 2005-09-05 2007-03-08 Carl Zeiss Sms Gmbh Verfahren zur Korrektur der Apodisierung in mikroskopischen Abbildungssystemen
DE102006022352B4 (de) 2006-05-12 2014-11-20 Qimonda Ag Anordnung zur Projektion eines Musters von einer EUV-Maske auf ein Substrat
US7681172B2 (en) * 2007-01-29 2010-03-16 Synopsys, Inc. Method and apparatus for modeling an apodization effect in an optical lithography system
CN101836163B (zh) * 2007-08-20 2012-06-27 卡尔蔡司Smt有限责任公司 包括具有反射涂层的镜元件的投射物镜
US9341831B2 (en) 2011-06-10 2016-05-17 Canon Kabushiki Kaisha Optical system with catadioptric optical subsystem
NL2010467A (en) 2012-04-16 2013-10-17 Asml Netherlands Bv Lithographic method and apparatus.
JP5746259B2 (ja) * 2013-05-07 2015-07-08 カール・ツァイス・エスエムティー・ゲーエムベーハー 反射コーティングを備えたミラー要素を有する投影対物系
DE102017211443A1 (de) * 2017-07-05 2019-01-10 Carl Zeiss Smt Gmbh Metrologiesystem mit einer EUV-Optik
WO2019011552A1 (en) * 2017-07-10 2019-01-17 Asml Netherlands B.V. LITHOGRAPHIC METHOD AND APPARATUS
KR102535147B1 (ko) * 2017-09-07 2023-05-23 에이에스엠엘 네델란즈 비.브이. 리소그래피 방법 및 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824721B1 (en) * 1996-03-07 2000-07-26 Koninklijke Philips Electronics N.V. Imaging system and apparatus for ultraviolet lithography

Also Published As

Publication number Publication date
JP2006128697A (ja) 2006-05-18
US20060091324A1 (en) 2006-05-04
US7224430B2 (en) 2007-05-29

Similar Documents

Publication Publication Date Title
JP4991139B2 (ja) 光学システム、リソグラフィ装置、光学システムのアポディゼーションを修正する方法、及びデバイス製造方法
JP4742136B2 (ja) リソグラフィ装置および装置製造方法
JP5155264B2 (ja) 整列マーカ、リソグラフィ装置およびそれを使うデバイス製造方法
US20060203221A1 (en) Lithographic apparatus and a method for determining a polarization property
JP4787282B2 (ja) デバイス製造方法、コンピュータプログラム、及び、リソグラフィ装置
JP5112408B2 (ja) リソグラフィ装置及び基板非平坦性を補償する方法
JP4394628B2 (ja) リソグラフィ装置のアポディゼーション測定
KR100695984B1 (ko) 리소그래피 장치의 투영시스템의 수차 판정 방법
KR100874737B1 (ko) 그레이 필터를 갖는 파면 센서 및 이 파면 센서를 포함한 리소그래피 장치
JP6957692B2 (ja) リソグラフィ装置
TWI417679B (zh) 微影裝置及圖案化元件
JP5485262B2 (ja) アライメントフィーチャ、プリ・アライメント方法、及びリソグラフィ装置
JP4639134B2 (ja) リソグラフィ・システムおよびリソグラフィ・システム内の光路の透過特性を調整するための方法
CN102105837B (zh) 反射镜、光刻设备以及器件制造方法
JP2010524231A (ja) パターニングデバイスを照明するための照明システム、および照明システムを製造する方法
KR20040086817A (ko) Z오프셋 및 비-수직 조명으로 인한 마스크 대물시프트의y에서의 위치보정
JP6496077B2 (ja) 位置測定システム、干渉計、及びリソグラフィ装置
JP2010521809A (ja) デバイス製造方法、リソグラフィ装置およびコンピュータプログラム
JP4509974B2 (ja) レチクル予備位置合わせセンサ用一体照明システムがあるエンドエフェクタ
JP5033861B2 (ja) 気体ゲージ、リソグラフィ装置及びデバイス製造方法
JP5006889B2 (ja) 粗ウェーハ位置合わせ用マーク構造及びこのようなマーク構造の製造方法
JP4376227B2 (ja) リソグラフィ装置用投影装置
JP4418782B2 (ja) リソグラフィ装置、デバイス製造方法、較正方法およびコンピュータ・プログラム製品
JP2006179907A (ja) 自動焦点システムを備えたリソグラフィ機器
US20070103789A1 (en) Optical system, lithographic apparatus and method for projecting

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060904

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091221

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110920

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees