JP4990995B2 - Biaxially stretched styrene resin sheet and molded product using the same - Google Patents

Biaxially stretched styrene resin sheet and molded product using the same Download PDF

Info

Publication number
JP4990995B2
JP4990995B2 JP2010071747A JP2010071747A JP4990995B2 JP 4990995 B2 JP4990995 B2 JP 4990995B2 JP 2010071747 A JP2010071747 A JP 2010071747A JP 2010071747 A JP2010071747 A JP 2010071747A JP 4990995 B2 JP4990995 B2 JP 4990995B2
Authority
JP
Japan
Prior art keywords
molecular weight
average molecular
styrene resin
styrene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010071747A
Other languages
Japanese (ja)
Other versions
JP2011202064A (en
Inventor
信博 杉元
裕之 山崎
守 福岡
克弘 斉藤
剛 福喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Sundic Inc
Original Assignee
DIC Corp
Sundic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Sundic Inc filed Critical DIC Corp
Priority to JP2010071747A priority Critical patent/JP4990995B2/en
Priority to MYPI2012700649A priority patent/MY158688A/en
Priority to CN2011800257778A priority patent/CN102906138A/en
Priority to PCT/JP2011/056997 priority patent/WO2011118640A1/en
Priority to TW100110094A priority patent/TW201139470A/en
Publication of JP2011202064A publication Critical patent/JP2011202064A/en
Application granted granted Critical
Publication of JP4990995B2 publication Critical patent/JP4990995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、主に真空成形、圧空真空成形、熱板圧空成形などの手段で二次成形され、軽量食品包装容器やその他各種容器に使用される二軸延伸スチレン系樹脂シート、及びこれを用いた成形品に関する。
更に詳しくは、光学特性(透明性、光沢)、成形加工特性、例えば、輻射加熱式圧空真空成形(以下、輻射加熱式圧空成形並びに輻射加熱式真空成形を含む意味で使用する)時の金型再現性、成形品の打抜き性などに優れ、さらに輻射加熱式圧空真空成形品の厚み均一性を向上させると共に、当該成形方法を適用する際の最適成形時間の範囲が広く、二次加工時における生産管理上の問題を低減させた、スチレン系樹脂組成物を二軸延伸して得られるスチレン系樹脂シート、及びこれを用いた成形品に関する。
The present invention is a biaxially stretched styrene resin sheet which is secondarily formed mainly by means of vacuum forming, pressure vacuum forming, hot plate pressure forming, etc., and used for lightweight food packaging containers and other various containers, and uses the same. Related to the molded product.
More specifically, a mold for optical characteristics (transparency, gloss), molding processing characteristics, for example, radiation heating type compressed air vacuum forming (hereinafter used in the meaning including radiation heating type pressure forming and radiation heating type vacuum forming). Excellent reproducibility, punching of molded products, etc., further improving the thickness uniformity of radiant heating type compressed air vacuum molded products, and wide range of optimum molding time when applying the molding method, during secondary processing The present invention relates to a styrene resin sheet obtained by biaxially stretching a styrene resin composition, which has reduced production management problems, and a molded article using the same.

従来、スチレン系樹脂シートは、その透明性が優れることから主に内容物が見える容器に成形され、広く用いられている。   Conventionally, styrene-based resin sheets have been widely used because they are excellent in transparency and are mainly molded into containers in which the contents can be seen.

しかしながら、スチレン系樹脂シートはきわめて脆弱なために無延伸状態で供給されることはなく、通常加熱収縮応力で0.5MPa以上の値を示す延伸が施される。しかも、成形方法としては、加熱時の応力による収縮を防ぐためにシートを熱板でクランプして成形する接触加熱式圧空成形法を用いて成形するのが現状である。   However, since the styrene resin sheet is extremely fragile, it is not supplied in an unstretched state, and is usually stretched with a value of 0.5 MPa or more as a heat shrinkage stress. Moreover, as a forming method, in order to prevent shrinkage due to stress during heating, the forming is performed by using a contact heating type pressure forming method in which a sheet is clamped with a hot plate and formed.

一方、近年では、テイクアウト型食品の増加に伴い、市場からより透明な食品容器蓋が強く求められている。従来主流の接触加熱式圧空成形法では、二軸延伸スチレン系樹脂シートが熱板と接触して加熱されるため、熱板の凹凸や熱板に付着した防曇剤等がシートに転写し、成形品の透明性を損なう問題があり、輻射加熱式圧空真空成形法が見直されている。   On the other hand, in recent years, with the increase in take-out type foods, a more transparent food container lid is strongly demanded from the market. In the conventional mainstream contact heating pressure forming method, since the biaxially stretched styrene resin sheet is heated in contact with the hot plate, the unevenness of the hot plate or the antifogging agent attached to the hot plate is transferred to the sheet, There is a problem of impairing the transparency of the molded product, and the radiant heating type vacuum forming method has been reviewed.

輻射加熱式圧空真空成形法で成形可能な二軸延伸スチレン系樹脂シートとして、例えば、スチレン系樹脂の中にスチレンブタジエン共重合体ゴムを分散したスチレン系樹脂を二軸方向に加熱収縮応力で約2〜4kg/cm(0.196〜0.392MPa)に延伸配向させたシートが提案されている(例えば、特許文献1参照。)。 As a biaxially stretched styrene resin sheet that can be molded by a radiant heating type pressure air vacuum forming method, for example, a styrene resin in which a styrene butadiene copolymer rubber is dispersed in a styrene resin is approximately biaxially heated and contracted by stress. A sheet stretched and oriented at 2 to 4 kg / cm 2 (0.196 to 0.392 MPa) has been proposed (see, for example, Patent Document 1).

また、スチレンブタジエン共重合体の押出加工時の熱安定性不充分によるゲル状物質の発生を改善する方法として、例えば、ゴム成分を含まないスチレン系樹脂と、スチレン系モノマー及び不飽和カルボン酸エステル系モノマーからなる共重合体と、ミネラルオイルと、無機又は有機粒子とからなり、加熱収縮応力がMD(縦方向)0.20MPa以上、TD(横方向)2.00MPa以下、TDとMDとの差(TD−MD)が0.22MPa以上の二軸延伸スチレン系樹脂シートが提案されている(例えば、特許文献2参照。)。   In addition, as a method for improving the generation of a gel-like substance due to insufficient thermal stability during extrusion of a styrene-butadiene copolymer, for example, a styrene resin not containing a rubber component, a styrene monomer, and an unsaturated carboxylic acid ester It consists of a copolymer consisting of a monomer, mineral oil, and inorganic or organic particles, and the heat shrinkage stress is MD (longitudinal direction) 0.20 MPa or more, TD (transverse direction) 2.00 MPa or less, and TD and MD A biaxially stretched styrene resin sheet having a difference (TD-MD) of 0.22 MPa or more has been proposed (see, for example, Patent Document 2).

特開昭59−71829号公報JP 59-71829 A 特開2003−238703号公報JP 2003-238703 A

しかしながら、前記特許文献1〜2で提供された二軸延伸スチレン系樹脂シートは、加熱収縮応力を調整することで輻射加熱式圧空真空成形法において成形品の厚み均一性を向上させるものであり、厚み均一性に対して一定の効果はあるものの、良好な成形品が得られる加熱時間の範囲が非常に狭いという問題があった。即ち、輻射加熱式圧空真空成形法においては、一般的に加熱時間が短い場合には金型再現性が不充分であり、また、充分な金型再現性を得るために加熱時間を長くすると成形品に偏肉が発生しやすいという問題がある。これらの問題発生を防ぎ、良好な成形品が得られる最適加熱時間の範囲は、前記特許文献1及び2の組成物を用いた場合、1秒未満である。これは工程管理上、非常に難しく、生産性の観点からは実質的にこれらの二軸延伸スチレン系樹脂シートを輻射加熱式圧空真空成形法に適用するのは困難であったため、二軸延伸スチレン系樹脂シートを当該成形法で成形する工業的生産は行なわれてきていない。   However, the biaxially stretched styrenic resin sheet provided in Patent Documents 1 and 2 improves the thickness uniformity of the molded product in the radiation heating type compressed air vacuum forming method by adjusting the heat shrinkage stress, Although there is a certain effect on the thickness uniformity, there is a problem that the range of the heating time for obtaining a good molded product is very narrow. That is, in the radiant heating type pressure air vacuum forming method, generally, when the heating time is short, the mold reproducibility is insufficient, and when the heating time is lengthened in order to obtain sufficient mold reproducibility, the molding is performed. There is a problem that uneven thickness tends to occur in the product. The range of the optimum heating time for preventing the occurrence of these problems and obtaining a good molded product is less than 1 second when the compositions of Patent Documents 1 and 2 are used. This is very difficult in terms of process control, and from the viewpoint of productivity, it was difficult to apply these biaxially stretched styrene resin sheets to the radiant heating type pressure-air vacuum forming method. Industrial production of molding a resin-based resin sheet by the molding method has not been performed.

本発明は上記従来技術の問題点に鑑みてなされたものであり、本発明が解決しようとする課題は、押出加工時にゲル状物質が発生することなく、光学特性に優れ、輻射加熱式圧空真空成形法において金型再現性や成形品の打抜き性が充分で且つ偏肉のない良好な成形品が得られ、加熱時間の範囲が1秒以上得られる、二次加工時の生産性に優れた二軸延伸スチレン系樹脂シートを提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and the problem to be solved by the present invention is that no gel-like substance is generated during extrusion, excellent optical characteristics, and a radiant heating type compressed air vacuum. Excellent molding reproducibility and punching performance of molded products in molding methods, and good molded products with no uneven thickness are obtained, heating time range can be obtained for 1 second or more, and productivity during secondary processing is excellent. The object is to provide a biaxially stretched styrene resin sheet.

本発明者らは、上記課題を解決するために鋭意検討した結果、本発明者らが独自に開発した多分岐状マクロモノマーと、スチレン系単量体とアクリル酸エステルとを共重合させて得られる多分岐状共重合体を含有し、特定の重量平均分子量と分子量分布とを有するスチレン系樹脂組成物を用いて二軸延伸して得られるシートであって、縦方向及び横方向の加熱収縮応力が特定の範囲であるものが、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of diligent studies to solve the above problems, the present inventors obtained a copolymer of a multi-branched macromonomer originally developed by the present inventors, a styrene monomer and an acrylate ester. A sheet obtained by biaxially stretching using a styrene resin composition having a specific weight average molecular weight and a molecular weight distribution, and comprising heat-shrinkage in the longitudinal and transverse directions The inventors have found that a stress in a specific range can solve the above problems, and have completed the present invention.

即ち本発明は、スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物を二軸延伸して得られる輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シートであって、該組成物のGPC−MALS法により求められる重量平均分子量(Mw)が30万〜60万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7〜4.0であり、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13〜96/4(質量比)であり、且つ、得られる二軸延伸スチレン系樹脂シートの縦方向及び横方向のいずれの加熱収縮応力も0.20MPa〜0.45MPaの範囲であることを特徴とする輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シートを提供するものである。
また、本発明は、前記輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シートを輻射加熱式圧空真空成形して得られることを特徴とする成形品を提供するものである。
That is, the present invention has a weight average molecular weight of 1,000 to 1,000, having a styrene monomer (a1), an acrylate ester (a2), a plurality of branches, and a polymerizable double bond at the tip thereof. Radiation heating type compressed air obtained by biaxially stretching a styrene resin composition containing a multibranched copolymer (A) obtained by copolymerizing 15,000 multibranched macromonomers (a3). A biaxially stretched styrene resin sheet for vacuum forming , wherein the composition has a weight average molecular weight (Mw) determined by GPC-MALS method of 300,000 to 600,000, and the weight average molecular weight (Mw) and number average molecular weight The ratio (Mw / Mn) to (Mn) is 2.7 to 4.0, and the use ratio (a1) / (a2) of the styrene monomer (a1) and the acrylate ester (a2). Is 87/13 to 96/4 (mass ratio) And longitudinal and radiant heating pressure vacuum forming biaxially, wherein the one of the heat shrinkage stress in the transverse direction in the range of 0.20MPa~0.45MPa biaxially stretched styrenic resin sheet obtained An expanded styrene resin sheet is provided.
Further, the present invention is to provide a molded article which is characterized by being obtained by radiant heating pressure vacuum forming said radiant heated pressure vacuum forming biaxially stretched styrenic resin sheet.

本発明によれば、押出加工時にゲル状物質が発生することなく、輻射加熱式圧空真空成形法において金型再現性が充分で且つ偏肉のない良好な成形品を得ることができる二軸延伸スチレン系樹脂シートが得られる。これを輻射加熱式圧空真空成形法で二次加工する場合、成形時間は、従来提供されているものよりも充分に長く、生産管理上の問題がなく、又、熱板とは非接触であるために熱板汚れの発生もなく、スチレン系樹脂の透明性を損なわず写像性にも優れる。従って、大量生産される各種包装容器の蓋材等に好適に用いることができる。   According to the present invention, a biaxial stretching that can obtain a good molded product having sufficient mold reproducibility and no uneven thickness in a radiant heating type compressed air vacuum forming method without generating a gel substance during extrusion processing. A styrene resin sheet is obtained. When this is subjected to secondary processing by a radiant heating type compressed air vacuum forming method, the forming time is sufficiently longer than that conventionally provided, there is no problem in production management, and it is not in contact with the hot plate. Therefore, there is no occurrence of hot plate contamination, and the transparency of the styrene resin is not impaired and the image clarity is excellent. Therefore, it can be suitably used for lid materials for various packaging containers that are mass-produced.

静的ミキシングエレメントを有する管状反応器を組み込んだ連続塊状重合ラインの1例を示す工程図である。FIG. 3 is a process diagram illustrating an example of a continuous bulk polymerization line incorporating a tubular reactor having a static mixing element.

以下、本発明を詳細に述べる。
本発明で用いるスチレン系樹脂組成物は、スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、該組成物のGPC−MALS法により求められる重量平均分子量(Mw)が30万〜60万であり、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13〜96/4(質量比)であり、且つ重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7〜4.0の範囲にあるものである。
The present invention will be described in detail below.
The styrene resin composition used in the present invention has a styrene monomer (a1), an acrylate ester (a2), a weight average having a plurality of branches and a polymerizable double bond at the tip. A styrenic resin composition containing a multibranched copolymer (A) obtained by copolymerizing a hyperbranched macromonomer (a3) having a molecular weight of 1,000 to 15,000, the composition The weight average molecular weight (Mw) calculated | required by GPC-MALS method of a thing is 300,000-600,000, and the usage-amount (a1) / (of the said styrene-type monomer (a1) and the said acrylic ester (a2). a2) is 87/13 to 96/4 (mass ratio), and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is in the range of 2.7 to 4.0. There is something.

GPC−MALS法は多角度光散乱検出器による分子量の測定方法であり、高度に分岐したポリマーにおける分子量測定に有用である。本発明においては、スチレン系樹脂組成物のGPC−MALS測定を、Shodex HPLC、検出器Wyatt Technology DAWN EOS、Shodex RI−101、カラムShodex KF−806L×2、溶媒THF(テトラヒドロフラン)、流量1.0ml/分の条件にて行った。また、GPC−MALSの測定の解析は、Wyatt社の解析ソフトASTRAにより行い、スチレン系樹脂組成物についての重量平均分子量・数平均分子量を算出し、この値によって、スチレン系樹脂組成物を規定するものである。   The GPC-MALS method is a method for measuring molecular weight using a multi-angle light scattering detector, and is useful for measuring molecular weight in highly branched polymers. In the present invention, GPC-MALS measurement of a styrene-based resin composition is performed using Shodex HPLC, detector Wyatt Technology DAWN EOS, Shodex RI-101, column Shodex KF-806L × 2, solvent THF (tetrahydrofuran), flow rate 1.0 ml. Per minute. Moreover, the analysis of the measurement of GPC-MALS is performed by the analysis software ASTRA of Wyatt, the weight average molecular weight / number average molecular weight of the styrene resin composition is calculated, and the styrene resin composition is defined by this value. Is.

本発明で用いるスチレン系樹脂組成物の前記手法により求めた重量平均分子量(Mw)は30万〜60万であることを必須とする。該分子量が30万未満では、輻射加熱式圧空真空成形法での最適加熱時間が短くなり、また成形品の強度が不足することがある。又60万を超えると、分子量分布が広くても成形加工性が不十分で、偏肉が生じやすくなる。   It is essential that the weight average molecular weight (Mw) of the styrenic resin composition used in the present invention is 300,000 to 600,000 determined by the above-described method. When the molecular weight is less than 300,000, the optimum heating time in the radiant heating type compressed air vacuum forming method is shortened, and the strength of the molded product may be insufficient. On the other hand, when the molecular weight distribution exceeds 600,000, moldability is insufficient even if the molecular weight distribution is wide, and uneven thickness tends to occur.

又、スチレン系樹脂組成物のGPC−MALS法により求められる重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は2.7〜4.0の範囲であることを必須とする。Mw/Mnが2.7よりも小さいものは、従来、本発明者らが提供してきた多分岐構造を有するスチレン系樹脂組成物と同等であって、各種成形法を適用した場合の成形加工性が不足するものであり、輻射加熱式圧空真空成形法での生産性の向上には不向きである。又、Mw/Mnが4.0を超えるものは、後述する製造方法で得ることが難しくなる。   Further, the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) determined by the GPC-MALS method of the styrene resin composition is in the range of 2.7 to 4.0. Required. Mw / Mn smaller than 2.7 is equivalent to the styrene-based resin composition having a multi-branched structure that has been provided by the present inventors, and has a moldability when various molding methods are applied. Is insufficient, and is not suitable for improving the productivity in the radiant heating type pressure air vacuum forming method. In addition, it is difficult to obtain a product having Mw / Mn exceeding 4.0 by a production method described later.

又、透明性等の光学特性の観点から、本発明で用いるスチレン系樹脂組成物のメルトマスフローレイト(以下、「MFR」ということがある。)は2.0g/10分以上が好ましい。尚、メルトマスフローレイトの測定条件は、JIS K7210、条件H(200℃、5kg)である。   Further, from the viewpoint of optical properties such as transparency, the melt mass flow rate (hereinafter sometimes referred to as “MFR”) of the styrene resin composition used in the present invention is preferably 2.0 g / 10 min or more. The measurement conditions for the melt mass flow rate are JIS K7210, Condition H (200 ° C., 5 kg).

本発明で使用することができるスチレン系単量体(a1)としては、例えば、スチレン及びその誘導体;例えばスチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、ヘプチルスチレン、オクチルスチレン等のアルキルスチレン、フルオロスチレン、クロロスチレン、ブロモスチレン、ジブロモスチレン、ヨードスチレン等のハロゲン化スチレン、更にニトロスチレン、アセチルスチレン、メトキシスチレン等が挙げられ、これらは単独でも2種以上を混合して用いても良い。これらの中でも、汎用性に富み、後述のアクリル酸エステル(a2)との反応性に優れるため、スチレンを用いることが好ましい。   Examples of the styrenic monomer (a1) that can be used in the present invention include styrene and derivatives thereof; for example, styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, diethylstyrene, triethylstyrene, propylstyrene, Alkyl styrene such as butyl styrene, hexyl styrene, heptyl styrene, octyl styrene, halogenated styrene such as fluoro styrene, chloro styrene, bromo styrene, dibromo styrene, iodo styrene, nitro styrene, acetyl styrene, methoxy styrene, etc. These may be used alone or in admixture of two or more. Among these, styrene is preferably used because of its versatility and excellent reactivity with an acrylic ester (a2) described later.

本発明で使用することができるアクリル酸エステル(a2)としては、特に限定されるものではなく、例えば、炭素数1〜6のアルキル基もしくは置換アルキル基を有するアクリル酸アルキルエステルが好ましい。ここで置換アルキル基としては、アルキル基の水素原子の一部又は全部がハロゲン原子、水酸基等で置換されたアルキル基を指し、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸t−ブチル、アクリル酸n−へキシル、アクリル酸シクロヘキシル、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル等が挙げられ、単独でも、2種以上を混合して用いても良い。これらの中でも、得られる多分岐状共重合体(A)中に分岐構造を好適に配することができ、これを含むスチレン系樹脂組成物の成形加工性がより優れたものになる点からアクリル酸ブチルが好適である。
The acrylic ester (a2) that can be used in the present invention is not particularly limited, and, for example, an acrylic alkyl ester having an alkyl group having 1 to 6 carbon atoms or a substituted alkyl group is preferable. Here, the substituted alkyl group refers to an alkyl group in which part or all of the hydrogen atoms of the alkyl group are substituted with a halogen atom, a hydroxyl group or the like, and examples of the halogen atom include fluorine, chlorine, bromine and iodine.
Specific examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, t-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, hydroxyethyl acrylate, hydroxy acrylate Propyl etc. are mentioned, and may be used alone or in admixture of two or more. Among these, acrylic can be used because the branched structure can be suitably arranged in the obtained multibranched copolymer (A), and the molding processability of the styrene resin composition containing this can be improved. Butyl acid is preferred.

本発明において使用する多分岐状マクロモノマー(a3)としては、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000のマクロモノマーであればよく、その構造において特に限定されるものではない。工業的入手容易性の観点から、例えば、既に本発明者らが特開2003−292707号公報等にて開示している多分岐状マクロモノマーを用いることが好ましい。   The multi-branched macromonomer (a3) used in the present invention is a macromonomer having a plurality of branches and having a polymerizable double bond at the tip thereof and a weight average molecular weight of 1,000 to 15,000. Any structure may be used, and the structure is not particularly limited. From the viewpoint of industrial availability, for example, it is preferable to use a multi-branched macromonomer already disclosed by the present inventors in JP-A-2003-292707.

前記多分岐状マクロモノマーとしては、例えば下記(1)〜(5)のいずれかの方法によって得られるものが挙げられる。
(1)1分子中に活性メチレン基と、臭素、塩素、メチルスルホニルオキシ基またはトシルオキシ基等とを有するAB型モノマーを求核置換反応させて得られる多分岐状の自己縮合型重縮合体を前駆体として、該重縮合体中に残存する未反応の活性メチレン基またはメチン基を、クロロメチルスチレン、ブロモメチルスチレン等と求核置換反応させることによって重合性二重結合を導入して得られる多分岐状マクロモノマー、
(2)水酸基を1個以上有する化合物に、カルボキシル基に隣接する炭素原子が飽和炭素原子であり、且つ該炭素原子上の水素原子がすべて置換され、且つ水酸基を2個以上有するモノカルボン酸を反応することにより多分岐状ポリマーとし、これにアクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4−クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(3)水酸基を1個以上有する化合物に、水酸基を1個以上有する環状エーテル化合物を反応させることにより多分岐状ポリマーとし、次いで該ポリマーの末端基である水酸基に、アクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4−クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(4)水酸基を1個以上有する化合物と、2個以上の水酸基と、ハロゲン原子、−SOOCH、−OSOCH等を含有する化合物と、を反応させることにより多分岐状ポリマーとし、次いで該ポリマーの末端基である水酸基にアクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4−クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー、
(5)アミド結合が窒素原子を介して繰り返し構造となっているPAMAMデンドリマーに、アクリル酸、メタクリル酸、イソシアネート基含有アクリル系化合物、4−クロロメチルスチレン等を反応させ、重合性二重結合を導入して得られる多分岐状マクロモノマー。
Examples of the hyperbranched macromonomer include those obtained by any of the following methods (1) to (5).
(1) Multi-branched self-condensation polycondensate obtained by nucleophilic substitution reaction of AB 2 type monomer having active methylene group and bromine, chlorine, methylsulfonyloxy group or tosyloxy group in one molecule Obtained by introducing a polymerizable double bond by subjecting an unreacted active methylene group or methine group remaining in the polycondensate to a nucleophilic substitution reaction with chloromethylstyrene, bromomethylstyrene or the like. Hyperbranched macromonomer,
(2) A compound having one or more hydroxyl groups, a monocarboxylic acid in which the carbon atom adjacent to the carboxyl group is a saturated carbon atom, and all the hydrogen atoms on the carbon atom are substituted, and the monocarboxylic acid has two or more hydroxyl groups. A hyperbranched macromolecule obtained by reacting with acrylic acid, methacrylic acid, an isocyanate group-containing acrylic compound, 4-chloromethylstyrene, etc. by introducing a polymerizable double bond. monomer,
(3) A compound having at least one hydroxyl group is reacted with a cyclic ether compound having at least one hydroxyl group to form a multi-branched polymer, and then the hydroxyl group as a terminal group of the polymer is converted to acrylic acid, methacrylic acid, isocyanate. A hyperbranched macromonomer obtained by reacting a group-containing acrylic compound, 4-chloromethylstyrene, etc., and introducing a polymerizable double bond;
(4) A multi-branched polymer is obtained by reacting a compound having one or more hydroxyl groups with two or more hydroxyl groups and a compound containing a halogen atom, —SO 2 OCH 3 , —OSO 2 CH 3 or the like. Then, the multi-branched macromonomer obtained by reacting acrylic acid, methacrylic acid, isocyanate group-containing acrylic compound, 4-chloromethylstyrene, etc. with the hydroxyl group which is the terminal group of the polymer and introducing a polymerizable double bond ,
(5) Acrylic acid, methacrylic acid, an isocyanate group-containing acrylic compound, 4-chloromethylstyrene, etc. are reacted with a PAMAM dendrimer in which the amide bond has a repeating structure via a nitrogen atom, and a polymerizable double bond is formed. Multibranched macromonomer obtained by introduction.

前記(1)における、1分子中に活性メチレン基と、臭素、塩素、メチルスルホニルオキシ基またはトシルオキシ基等とを有するAB型モノマーとしては、例えば、ハロゲン化アルコキシ−フェニルアセトニトリル類、又はトシルオキシ基を有するフェニルアセトニトリル類が挙げられる。 Examples of the AB type 2 monomer having an active methylene group and a bromine, chlorine, methylsulfonyloxy group, or tosyloxy group in one molecule in the above (1) include halogenated alkoxy-phenylacetonitriles or tosyloxy groups. And phenylacetonitriles having

前記(2)における、カルボキシル基に隣接する炭素原子が飽和炭素原子であり、且つ該炭素原子上の水素原子がすべて置換され、且つ水酸基を2個以上有するモノカルボン酸としては、例えば、ジメチロールプロピオン酸、α,α−ビス(ヒドロキシメチル)酪酸、α,α,α−トリス(ヒドロキシメチル)酢酸、α,α−ビス(ヒドロキシメチル)吉草酸又はα,α−ビス(ヒドロキシメチル)プロピオン酸等が挙げられる。   Examples of the monocarboxylic acid in (2) in which the carbon atom adjacent to the carboxyl group is a saturated carbon atom, all the hydrogen atoms on the carbon atom are substituted, and having two or more hydroxyl groups include, for example, dimethylol. Propionic acid, α, α-bis (hydroxymethyl) butyric acid, α, α, α-tris (hydroxymethyl) acetic acid, α, α-bis (hydroxymethyl) valeric acid or α, α-bis (hydroxymethyl) propionic acid Etc.

前記(3)における、水酸基を1個以上有する環状エーテル化合物としては、例えば、3−エチル−3−(ヒドロキシメチル)オキセタン、2,3−エポキシ−1−プロパノール、2,3−エポキシ−1−ブタノール又は3,4−エポキシ−1−ブタノール等が挙げられる。   Examples of the cyclic ether compound having one or more hydroxyl groups in (3) above include 3-ethyl-3- (hydroxymethyl) oxetane, 2,3-epoxy-1-propanol, and 2,3-epoxy-1- Examples include butanol or 3,4-epoxy-1-butanol.

前記(4)における、2個以上の水酸基と、ハロゲン原子、−SOOCH、−OSOCH等を含有する化合物としては、例えば、5−(ブロモメチル)−1,3−ジヒドロキシベンゼン、2−エチル−2−(ブロモメチル)−1,3−プロパンジオール、2−メチル−2−(ブロモメチル)−1,3−プロパンジオール、2−(ブロモメチル)−2−(ヒドロキシメチル)−1,3−プロパンジオール等が挙げられる。 Examples of the compound containing two or more hydroxyl groups in (4) above, a halogen atom, —SO 2 OCH 3 , —OSO 2 CH 3 and the like include, for example, 5- (bromomethyl) -1,3-dihydroxybenzene, 2-ethyl-2- (bromomethyl) -1,3-propanediol, 2-methyl-2- (bromomethyl) -1,3-propanediol, 2- (bromomethyl) -2- (hydroxymethyl) -1,3 -Propanediol etc. are mentioned.

前記(5)における、PAMAMデンドリマーとしては、例えば、特公平6−070132号公報及び特公平7−042352号公報等にて示されている手法によって、製造することができる。   The PAMAM dendrimer in the above (5) can be produced, for example, by the technique shown in Japanese Patent Publication No. 6-070132 and Japanese Patent Publication No. 7-043522.

又、多分岐状マクロモノマー(a3)の重量平均分子量は1,000〜15,000であることを必須とするものである。該分子量は、GPC−MALS測定法(Shodex HPLC、検出器Wyatt Technology DAWN EOS、Shodex RI−101、カラムShodex KF−806L×2、溶媒THF(テトラヒドロフラン)、流量1.0ml/分の条件)にて測定することができる。該分子量が1,000未満では、分岐構造の導入量が不足し、従来の線状スチレン−アクリル共重合体に近い物性となり、本願で規定する広い分子量分布幅を有するスチレン系樹脂組成物が得られにくく、また得られる成形品の実用的強度が不足することがある。又、該分子量が15,000以上では、多分岐状マクロモノマーの取り扱いが困難になり、スチレン系単量体(a1)とアクリル酸エステル(a2)と均一に共重合しにくくなることがある。より好ましい分子量は2,500〜7,000である。   In addition, it is essential that the weight average molecular weight of the hyperbranched macromonomer (a3) is 1,000 to 15,000. The molecular weight is determined by GPC-MALS measurement method (Shodex HPLC, detector Wyatt Technology DAWN EOS, Shodex RI-101, column Shodex KF-806L × 2, solvent THF (tetrahydrofuran), flow rate 1.0 ml / min). Can be measured. When the molecular weight is less than 1,000, the introduction amount of the branched structure is insufficient, and the physical properties are close to those of the conventional linear styrene-acrylic copolymer, and a styrene resin composition having a wide molecular weight distribution range defined in the present application is obtained. In some cases, the molded product obtained is difficult to be obtained and the practical strength is insufficient. On the other hand, when the molecular weight is 15,000 or more, it is difficult to handle the hyperbranched macromonomer, and it may be difficult to uniformly copolymerize the styrene monomer (a1) and the acrylate ester (a2). A more preferable molecular weight is 2,500 to 7,000.

又、前記多分岐状マクロモノマー(a3)としては、重合性二重結合を1gあたり0.1ミリモル〜5.5ミリモル含有する事が好ましい。この範囲であれば、得られる多分岐状共重合体(A)中の分岐構造の導入量を制御でき、製造時のゲル化を防ぎながら、所望の高分子量成分を適度に含有し、且つ広い分子量分布を有するスチレン系樹脂組成物を得ることが容易になる。より好ましい含有量は、1.0〜3.5ミリモルの範囲である。尚、この含有量は、例えば、メタクリル酸又はその誘導体に基づく二重結合の場合は、メタクリル酸メチルの式量中に1モルの二重結合を含有するとして求めるものであり、スチレン又はその類似化合物に基づく二重結合の場合は、スチレンの式量中に1モルの二重結合を含有するとして求められる値である。   The multi-branched macromonomer (a3) preferably contains 0.1 to 5.5 mmol of polymerizable double bond per gram. Within this range, the introduction amount of the branched structure in the resulting multibranched copolymer (A) can be controlled, and the desired high molecular weight component is appropriately contained while preventing gelation during production, and is wide. It becomes easy to obtain a styrene resin composition having a molecular weight distribution. A more preferable content is in the range of 1.0 to 3.5 mmol. This content is determined, for example, in the case of a double bond based on methacrylic acid or a derivative thereof as containing 1 mol of double bond in the formula amount of methyl methacrylate, and styrene or the like. In the case of a double bond based on a compound, this is the value determined as containing 1 mole of double bond in the formula weight of styrene.

本発明で用いる多分岐状共重合体(A)は、前記スチレン系単量体(a1)と、前記アクリル酸エステル(a2)と前記多分岐状マクロモノマー(a3)とを共重合させて得られるものである。   The hyperbranched copolymer (A) used in the present invention is obtained by copolymerizing the styrene monomer (a1), the acrylate ester (a2), and the hyperbranched macromonomer (a3). It is what

本発明で用いる多分岐状共重合体(A)の製造方法としては、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)と前記多分岐状マクロモノマー(a3)とを共重合させ、該多分岐状共重合体(A)を含むスチレン系樹脂組成物が本願で規定する分子量・分子量分布幅になればよく、特に限定されるものではない。目的とするスチレン系樹脂組成物を1段の反応で効率よく製造できる点から、本発明者らによって既に特開2005−053939号公報等で提供されている製造方法を採用することが好ましい。   As a method for producing the multibranched copolymer (A) used in the present invention, the styrene monomer (a1), the acrylate ester (a2) and the multibranched macromonomer (a3) are copolymerized. The styrenic resin composition containing the multi-branched copolymer (A) is not particularly limited as long as it has the molecular weight / molecular weight distribution range specified in the present application. It is preferable to employ a production method already provided by the present inventors in Japanese Patent Application Laid-Open No. 2005-053939 and the like from the viewpoint that the objective styrenic resin composition can be efficiently produced by a one-step reaction.

具体的には、前記原料(a1)〜(a3)を含有する混合物を溶液重合法又は溶融重合法(塊状重合法)によって反応させるのが好ましい。その際、有機溶剤を添加せずに反応させることもできるが、少量の有機溶剤を併用することにより反応物の粘性が低下し、重合物の分子量の制御が容易となることから好ましい。   Specifically, the mixture containing the raw materials (a1) to (a3) is preferably reacted by a solution polymerization method or a melt polymerization method (bulk polymerization method). In this case, the reaction can be carried out without adding an organic solvent, but it is preferable to use a small amount of an organic solvent in combination because the viscosity of the reaction product is lowered and the molecular weight of the polymer is easily controlled.

使用され得る有機溶剤としては、連鎖移動定数が0.1×10−5〜1×10−4であるものが好ましく、0.2×10−5〜0.8×10−5であるものがより好ましい。その例として、トルエン、エチルベンゼン、キシレン、アセトニトリル、ベンゼン、クロロベンゼン、ジクロロベンゼン、アニソール、シアノベンゼン、ジメチルフォルムアミド、N,N−ジメチルアセトアミド、メチルエチルケトン等が好ましい。その使用量については、原料単量体の合計100質量部に対し、5質量部〜50質量部が好ましく、6質量部〜20質量部がより好ましい。尚、有機溶剤を使用して重合を行うと、有機溶剤不溶分の生成をも抑制し易く、好ましい。 As the organic solvent that can be used, one having a chain transfer constant of 0.1 × 10 −5 to 1 × 10 −4 is preferable, and one having a chain transfer constant of 0.2 × 10 −5 to 0.8 × 10 −5. More preferred. For example, toluene, ethylbenzene, xylene, acetonitrile, benzene, chlorobenzene, dichlorobenzene, anisole, cyanobenzene, dimethylformamide, N, N-dimethylacetamide, methyl ethyl ketone and the like are preferable. About the usage-amount, 5 mass parts-50 mass parts are preferable with respect to a total of 100 mass parts of a raw material monomer, and 6 mass parts-20 mass parts are more preferable. In addition, when it superposes | polymerizes using an organic solvent, it is easy to suppress the production | generation of an organic solvent insoluble part, and it is preferable.

特に多分岐状マクロモノマー(a3)の添加量を多くしたい場合には、ゲル化を抑制する観点からも上記有機溶剤を使用することが必要となる。これにより、先に示した多分岐状マクロモノマーの添加量を増量させることが可能である。   In particular, when it is desired to increase the amount of the multi-branched macromonomer (a3), it is necessary to use the organic solvent from the viewpoint of suppressing gelation. Thereby, it is possible to increase the addition amount of the multibranched macromonomer shown above.

重合開始にあたっては、ラジカル重合開始剤が用いられる。かかる開始剤としては、半減期が10時間になる温度が75〜140℃であるものが好ましく、より好ましくは、温度が85〜135℃である。例えば、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(t−ブチルパーオキシ)ブタン、2,2−ビス(4,4−ジ−ブチルパーオキシシクロヘキシル)プロパン等のパーオキシケタール類、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド等のジアルキルパーオキサイド類、ベンゾイルパーオキサイド、ジシナモイルパーオキサイド等のジアシルパーオキサイド類、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシイシプロピルモノカーボネート等のパーオキシエステル類、N,N’−アゾビスイソブチルニトリル、N,N’−アゾビス(シクロヘキサン−1−カルボニトリル)、N,N’−アゾビス(2−メチルブチロニトリル)、N,N’−アゾビス(2,4−ジメチルバレロニトリル)、N,N’−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種あるいは2種以上を組み合わせて使用することが可能である。   In starting the polymerization, a radical polymerization initiator is used. As such an initiator, those having a half-life of 10 hours are preferably 75 to 140 ° C, more preferably 85 to 135 ° C. For example, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) butane, 2,2-bis (4,4-di-butylperoxycyclohexyl) propane, etc. Hydroperoxides such as peroxyketals, cumene hydroperoxide, t-butyl hydroperoxide, dialkyl peroxides such as di-t-butyl peroxide, dicumyl peroxide, di-t-hexyl peroxide, Diacyl peroxides such as benzoyl peroxide and disinamoyl peroxide, peroxyesters such as t-butyl peroxybenzoate, di-t-butyl peroxyisophthalate, and t-butyl peroxy isopropyl monocarbonate, N , N'-Azobisisobutylnitrate N, N′-azobis (cyclohexane-1-carbonitrile), N, N′-azobis (2-methylbutyronitrile), N, N′-azobis (2,4-dimethylvaleronitrile), N, N′-azobis [2- (hydroxymethyl) propionitrile] and the like can be mentioned, and these can be used alone or in combination.

これらの使用量としては、原料の単量体合成質量に対して、質量基準で50ppm〜1,000ppmが好ましく、より好ましくは100〜500ppmである。   As these usage-amounts, 50 ppm-1,000 ppm are preferable on a mass basis with respect to the monomer synthetic | combination mass of a raw material, More preferably, it is 100-500 ppm.

更に、該多分岐状共重合体(A)を含むスチレン系樹脂組成物の分子量が過度に大きくなりすぎないように連鎖移動剤を添加してもよい。連鎖移動剤としては、連鎖移動基を1つ有する単官能連鎖移動剤でも連鎖移動剤を複数有する多官能連鎖移動剤を使用できる。単官能連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸エステル類等が挙げられる。   Further, a chain transfer agent may be added so that the molecular weight of the styrene resin composition containing the multibranched copolymer (A) does not become excessively large. As the chain transfer agent, a monofunctional chain transfer agent having one chain transfer group or a polyfunctional chain transfer agent having a plurality of chain transfer agents can be used. Examples of the monofunctional chain transfer agent include alkyl mercaptans and thioglycolic acid esters.

多官能連鎖移動剤としては、エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3−メルカプトプロピオン酸でエステル化したものが挙げられる。   Polyfunctional chain transfer agents such as ethylene glycol, neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, etc. are esterified with thioglycolic acid or 3-mercaptopropionic acid. The thing which was done is mentioned.

本発明で用いるスチレン系樹脂組成物は、前記多分岐状共重合体(A)を必須として含有するものであるが、上記のようにして多分岐状共重合体(A)を合成する際には、同時にスチレン系単量体(a1)とアクリル酸エステル(a2)との線状の共重合体等を含む混合物として得られることになる。本発明においてスチレン系樹脂組成物は、前記多分岐状共重合体(A)を必須として含有すれば良いので、この様な線状の共重合体を除去する必要はなく、前述で規定したMw、及びMw/Mn比率であれば本発明で用いるスチレン系樹脂組成物としてそのまま使用することができる。又、1段の製造工程で、前記で規定するMw、Mw/Mnを満たさない場合には、別途スチレン系単量体(a1)とアクリル酸エステル(a2)とを共重合させてなる樹脂を混合し、調整することもできる。   The styrenic resin composition used in the present invention contains the multi-branched copolymer (A) as an essential component. When the multi-branched copolymer (A) is synthesized as described above, Is obtained as a mixture containing a linear copolymer of the styrene monomer (a1) and the acrylate ester (a2) at the same time. In the present invention, the styrenic resin composition only needs to contain the multi-branched copolymer (A) as an essential component, so there is no need to remove such a linear copolymer. If the ratio is Mw / Mn, the styrene resin composition used in the present invention can be used as it is. Further, if the Mw and Mw / Mn specified above are not satisfied in the one-stage manufacturing process, a resin obtained by separately copolymerizing the styrene monomer (a1) and the acrylate ester (a2) is used. It can also be mixed and adjusted.

本発明で用いるスチレン系樹脂組成物におけるスチレン系単量体(a1)とアクリル酸エステル(a2)との使用割合において、低温成形性や像鮮明性を向上させる観点からアクリル酸エステル(a2)の使用割合は、4重量%以上が必須である。また、シート輸送時のブロッキング防止等の実用耐熱性の観点から13重量%以下が必須である。すなわち、スチレン系単量体(a1)とアクリル酸エステル(a2)との使用割合(a1)/(a2)を87/13〜96/4(質量比)とすることが必須である。
また、前記多分岐状マクロモノマー(a3)を前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との合計に対して質量基準で100〜1,000ppmで用いることが好ましい。
上記範囲で原料を配合することにより、前記で規定するMw、Mw/Mnを有するスチレン系樹脂組成物を1段の製造工程で得ることが容易になる。得られる成形品の物性バランスに優れる点から、アクリル酸エステル(a2)としてアクリル酸ブチルを用い、スチレン系単量体(a1)との使用割合としては、(a1)/アクリル酸ブチルを92/8〜96/4(質量比)とすることが更に好ましい。
In the use ratio of the styrene monomer (a1) and the acrylate ester (a2) in the styrene resin composition used in the present invention, the acrylate ester (a2) is used from the viewpoint of improving low-temperature moldability and image clarity. The use ratio is essential to be 4% by weight or more. Moreover, 13 weight% or less is essential from a viewpoint of practical heat resistance, such as blocking prevention at the time of sheet transport. That is, it is essential that the ratio (a1) / (a2) of the styrene monomer (a1) and the acrylate ester (a2) is 87/13 to 96/4 (mass ratio).
Moreover, it is preferable to use the said hyperbranched macromonomer (a3) by 100-1,000 ppm on a mass basis with respect to the sum total of the said styrene-type monomer (a1) and the said acrylic ester (a2).
By mix | blending a raw material in the said range, it becomes easy to obtain the styrene-type resin composition which has Mw and Mw / Mn prescribed | regulated above by a one-stage manufacturing process. From the viewpoint of excellent physical property balance of the obtained molded product, butyl acrylate is used as the acrylate ester (a2), and the ratio of use with the styrene monomer (a1) is (a1) / butyl acrylate is 92 / More preferably, it is 8 to 96/4 (mass ratio).

本発明で用いるスチレン系樹脂組成物は、前記のように、多分岐状共重合体(A)を含有するスチレン系樹脂組成物であって、該組成物のGPC−MALS法により求められる重量平均分子量(Mw)が30万〜60万であり、且つ重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7〜4.0であればよく、多分岐状共重合体(A)のみからなるものであってもよく、多分岐状共重合体(A)とその他の成分とからなるものであってもよい。ここでその他の成分としては、該その他の成分を用いることで、スチレン系樹脂組成物の重量平均分子量及び数平均分子量が上記範囲から外れることがなく、本願効果を妨げないものであれば特に限定されるものではないが、用途に応じて各種添加剤や、上記線状の共重合体等の高分子化合物等を用いることができる。   The styrene resin composition used in the present invention is a styrene resin composition containing the multi-branched copolymer (A) as described above, and is a weight average determined by the GPC-MALS method of the composition. The molecular weight (Mw) may be 300,000 to 600,000, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) may be 2.7 to 4.0. It may be composed only of the copolymer (A), or may be composed of the multi-branched copolymer (A) and other components. Here, as the other components, the use of the other components is not particularly limited as long as the weight average molecular weight and the number average molecular weight of the styrenic resin composition are not deviated from the above ranges and the effects of the present application are not hindered. However, various additives and polymer compounds such as the above-mentioned linear copolymers can be used depending on the application.

前記添加剤等としては、例えば、各種安定剤、アンチブロッキング剤、帯電防止剤、滑剤、防曇剤、抗菌剤、酸化防止剤、染料、紫外線吸収剤等が挙げられる。但し、本発明で用いるスチレン系樹脂組成物は、従来離型性や成形加工性を付与するために使用されていたミネラルオイル等を使用しなくてもこれらの性能に優れるため、添加剤の使用においては、従来のスチレン−(メタ)アクリル系共重合体における添加剤の使用方法とは異なる点に留意する必要がある。   Examples of the additive include various stabilizers, antiblocking agents, antistatic agents, lubricants, antifogging agents, antibacterial agents, antioxidants, dyes, and ultraviolet absorbers. However, since the styrenic resin composition used in the present invention is excellent in these performances without using mineral oil or the like that has been used for imparting releasability and molding processability, the use of additives However, it is necessary to pay attention to a point different from the method of using the additive in the conventional styrene- (meth) acrylic copolymer.

本発明の二軸延伸スチレン系樹脂シートは、前記のようにして得られたスチレン系樹脂組成物を用いて、二軸延伸してなるものであり、シートの縦方向及び横方向のいずれの加熱収縮応力も0.20MPa〜0.45MPaの範囲であることを特徴とする。   The biaxially stretched styrene resin sheet of the present invention is formed by biaxially stretching using the styrene resin composition obtained as described above, and is heated in any of the longitudinal and lateral directions of the sheet. The shrinkage stress is also in the range of 0.20 MPa to 0.45 MPa.

前記加熱収縮応力は、前記特許文献1及び2に記載されているように、本技術分野にて通常使用される物性値であり、具体的には、ASTM D−1504に準じて測定した値である。
本発明においては、二軸延伸シートの縦方向(MD)とこれと直行する横方向(TD)ともに、比較的低い値の範囲である0.20MPa〜0.45MPaの加熱収縮応力とすることによって、シートを固定せずに成形する輻射加熱式圧空真空成形を適用した場合においても偏肉等が起こらず、成形品の厚みの均質性に優れるものした。この様な低めの加熱収縮応力であることが輻射加熱式圧空真空成形に好ましいことは、既に前記特許文献1に於いて見出されているが、本発明はスチレン系樹脂が本来有する透明性を損なわず、前記のように実用の問題となりうる最適加熱時間を確保するために、多分岐構造を有し、且つ特定の分子量・分子量分布幅を有するスチレン系樹脂組成物を用いることを必須とするものである。
また、この加熱収縮応力が0.20MPa未満では、輻射加熱式圧空真空成形法での最適加熱時間が長くなるものの、成形品の強度が不足することがある。また加熱収縮力が0.45MPa以上では成形加工特性が損なわれる。
The heat shrinkage stress is a physical property value usually used in this technical field as described in Patent Documents 1 and 2, and specifically, a value measured according to ASTM D-1504. is there.
In the present invention, both the longitudinal direction (MD) of the biaxially stretched sheet and the transverse direction (TD) perpendicular thereto are set to a heat shrinkage stress of 0.20 MPa to 0.45 MPa which is a relatively low value range. In addition, even when radiant heating type pressure vacuum forming which forms without fixing the sheet is applied, uneven thickness or the like does not occur, and the thickness uniformity of the formed product is excellent. It has already been found in Patent Document 1 that such a low heat shrinkage stress is preferable for radiant heating type compressed air vacuum forming, but the present invention has the transparency inherent in styrene resins. In order to ensure the optimum heating time that can be a practical problem as described above without impairing, it is essential to use a styrene resin composition having a multi-branched structure and having a specific molecular weight / molecular weight distribution width. Is.
In addition, when the heat shrinkage stress is less than 0.20 MPa, the optimum heating time in the radiant heating type compressed air vacuum forming method becomes long, but the strength of the molded product may be insufficient. Further, when the heat shrinkage force is 0.45 MPa or more, the molding process characteristics are impaired.

本発明の特定の加熱収縮応力を有する二軸延伸シートとするための方法としては特に限定されるものではない。加熱収縮応力は、延伸温度・延伸倍率等によって調整可能であるが、更にシートの押出し速度・押出し時(延伸前)のシート幅によっても変動するものであるため、特定の製造条件を規定することは困難である。しかしながら、一般的な製造条件において、延伸温度としては、前述のスチレン系樹脂組成物のビカット軟化点+(0〜40)℃が好ましく、延伸倍率としては、一方向において1.5〜5.0倍であることが好ましい。これらの値がこの範囲にあれば、本発明で規定する加熱収縮応力を有するシートを容易に製造することができる。   It does not specifically limit as a method for setting it as the biaxially stretched sheet which has the specific heat contraction stress of this invention. Heat shrinkage stress can be adjusted by stretching temperature, stretching ratio, etc., but it also varies depending on the sheet extrusion speed and sheet width at the time of extrusion (before stretching), so specify specific production conditions. It is difficult. However, in general production conditions, the stretching temperature is preferably the Vicat softening point of the above-mentioned styrenic resin composition + (0-40) ° C., and the stretching ratio is 1.5-5.0 in one direction. It is preferable that it is double. If these values are within this range, a sheet having the heat shrinkage stress defined in the present invention can be easily produced.

又、二軸延伸して得られるシートの厚みとしても特に限定されるものではないが、0.1〜1mmの範囲であれば、汎用の輻射加熱式圧空真空成形機へ適用できる点から好ましいものである。   Further, the thickness of the sheet obtained by biaxial stretching is not particularly limited, but is preferably in the range of 0.1 to 1 mm because it can be applied to a general-purpose radiant heating type pressure vacuum forming machine. It is.

本発明の二軸延伸スチレン系樹脂シートの製造方法は、特に限定されるものではなく、従来の延伸シートの製造において使用されている方法で行えばよい。その一例は、スチレン系樹脂組成物を押出機に供給し、溶融混錬した後、Tダイ又はサーキュラーダイなどで連続して押出し、シートをテンター法、バブル法等で連続的に逐次又は同時に二軸延伸する方法である。   The production method of the biaxially stretched styrene resin sheet of the present invention is not particularly limited, and may be performed by a method used in the production of a conventional stretched sheet. For example, a styrenic resin composition is supplied to an extruder, melted and kneaded, and then continuously extruded with a T die or a circular die. This is a method of axial stretching.

また、本発明の二軸延伸スチレン系樹脂シートは、防曇剤又は離型剤を少なくとも片面又は両面に塗布することができる。防曇剤及び離型剤を併用しても良い。防曇剤としては、例えば、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレン誘導体等のノニオン系界面活性剤等であり、これらを単独又は混合物で使用できる。離型剤としては、例えば、シリコーンオイルやそのエマルジョン等である。また、各種ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤等を帯電防止剤として塗布しても良い。これらの塗布方法としては、スプレーコーター、ロールコーター、グラビアロールコーター、ナイフコーター、エアナイフコーター、ローターダンプニングコーター、アプリケーター方式等が挙げられる。   Moreover, the biaxially-stretched styrene resin sheet of this invention can apply | coat an antifogging agent or a mold release agent to at least one surface or both surfaces. You may use an antifogging agent and a mold release agent together. Examples of the antifogging agent include nonionic surfactants such as sorbitan fatty acid ester, sucrose fatty acid ester, polyglycerin fatty acid ester, and polyoxyethylene derivative, and these can be used alone or in a mixture. Examples of the release agent include silicone oil and emulsion thereof. Various nonionic surfactants, cationic surfactants, anionic surfactants, and the like may be applied as an antistatic agent. Examples of these coating methods include spray coaters, roll coaters, gravure roll coaters, knife coaters, air knife coaters, rotor dampening coaters, and applicator systems.

本発明の二軸延伸スチレン系樹脂シートは、本発明の効果を損なわない範囲で、意匠性や機能性等を付与するため、シートの表面に印刷を施すことや、バリア性、抗菌性、ヒートシール性等の機能性を持つ樹脂をシートの表面にラミネートしてもよい。また、本発明の二軸延伸スチレン系樹脂シートを発泡シートにラミネートする等、容器の一部として使用しても良い。   The biaxially stretched styrenic resin sheet of the present invention provides design, functionality, etc. within a range that does not impair the effects of the present invention, so printing on the surface of the sheet, barrier properties, antibacterial properties, heat A resin having functionality such as a sealing property may be laminated on the surface of the sheet. Moreover, you may use as a part of container, such as laminating the biaxially-stretched styrene resin sheet of this invention on a foam sheet.

本発明の二軸延伸スチレン系樹脂シートにはアンチブロッキング効果を付与するために各種微粒子を含有させることが出来る。前記微粒子としては、例えば、スチレン系樹脂架橋粒子、(メタ)アクリル酸エステル系樹脂架橋粒子、ポリウレタン系樹脂架橋粒子等の樹脂架橋粒子;シリカ、疎水化処理シリカ、球状シリカ、軽質炭酸カルシウム、酸化チタン、タルク等の無機微粒子、スチレングラフトジエンゴム等のゴム微粒子等が挙げられる。
特に、二軸延伸スチレン系樹脂シート及びそれを用いた成形品の強度とアンチブロッキング性並びに剥離性を向上させることから、スチレングラフトジエンゴムが特に好ましい。ここで、スチレングラフトジエンゴムとしては、二軸延伸スチレン系樹脂シートとそれを用いた成形品の強度と外観のバランスに優れたものが得られることから、平均粒子径が0.1〜5.0μmで、且つ、ジエン成分が0.05〜3.0質量%の範囲となるように二軸延伸スチレン系樹脂シートに含有したものが良い。より高い透明性を得るには、0.05〜0.5質量%を含有することが好ましい。
The biaxially stretched styrene resin sheet of the present invention can contain various fine particles in order to impart an antiblocking effect. Examples of the fine particles include resin crosslinked particles such as styrene resin crosslinked particles, (meth) acrylic ester resin crosslinked particles, polyurethane resin crosslinked particles; silica, hydrophobized silica, spherical silica, light calcium carbonate, oxidized Examples thereof include inorganic fine particles such as titanium and talc, and rubber fine particles such as styrene grafted diene rubber.
In particular, styrene-grafted diene rubber is particularly preferred because it improves the strength, anti-blocking property and peelability of the biaxially stretched styrene resin sheet and a molded article using the same. Here, as the styrene graft diene rubber, a biaxially stretched styrene-based resin sheet and a molded article using the same can be obtained with an excellent balance between strength and appearance, so that the average particle size is 0.1 to 5. What is contained in the biaxially-stretched styrene-based resin sheet so that the diene component is in the range of 0.05 to 3.0% by mass at 0 μm is preferable. In order to obtain higher transparency, it is preferable to contain 0.05-0.5 mass%.

また、二軸延伸スチレン系樹脂シート製膜時の延伸性と容器に成形する二次成形時の深絞り成形性、低温成形性を向上させることから、本発明の二軸延伸スチレン系樹脂シートはミネラルオイルを含有してもよい。ただし、溶融押出し時に発生するミネラルオイルの揮発分がシート製造装置に凝集付着し、これがシートに転写することで二軸延伸スチレン系樹脂シートの外観不良を防止するため、0.5質量%以下とすることが好ましい。
上記各種粒子やミネラルオイルは、前述した方法により得られた二軸延伸前のスチレン系樹脂組成物に添加し、二軸延伸スチレン系樹脂シートに含有させることができる。
In addition, the biaxially stretched styrene resin sheet of the present invention improves the stretchability at the time of forming the biaxially stretched styrene resin sheet, the deep drawability at the time of secondary molding to be molded into a container, and the low temperature moldability. Mineral oil may be contained. However, the volatile matter of mineral oil generated at the time of melt extrusion is aggregated and adhered to the sheet manufacturing apparatus, and this is transferred to the sheet to prevent the appearance failure of the biaxially oriented styrene resin sheet. It is preferable to do.
The above-mentioned various particles and mineral oil can be added to the styrenic resin composition before biaxial stretching obtained by the method described above and contained in the biaxially stretched styrene resin sheet.

本発明の成形品は、前述の二軸延伸スチレン系樹脂シートを二次加工して得られるものであり、その成形方法としては、輻射加熱式圧空真空成形であることが好ましい。成形品の形状・用途としては特に限定されるものはなく、例えば、食品容器の蓋、トレー、フードパック、ブリスターパック、その他各種パック、ケース等が挙げられる。特に、本発明の二軸延伸スチレン系樹脂シートを用いて輻射加熱式圧空真空成形で得られる成形品は、熱板と非接触であることから、圧力調整のために熱板に施してある微細な孔が転写されたり、シートの表面にコーティングされた防曇剤等に由来する熱板汚れが転写されたりすることがないため、透明性に優れたものとなる。   The molded product of the present invention is obtained by subjecting the above-mentioned biaxially stretched styrene resin sheet to secondary processing, and the molding method is preferably radiant heating type pressure vacuum forming. The shape and use of the molded product are not particularly limited, and examples thereof include food container lids, trays, food packs, blister packs, other various packs, and cases. In particular, the molded product obtained by radiant heating type pressure-air vacuum forming using the biaxially stretched styrene resin sheet of the present invention is non-contact with the hot plate, so the fineness applied to the hot plate for pressure adjustment Since no hot holes are transferred or hot plate stains derived from the antifogging agent or the like coated on the surface of the sheet are not transferred, the transparency is excellent.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断わりがない限り「%」は「質量%」を表わす。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “%” represents “mass%”.

用いた測定方法について説明する。
〔GPC−MALS測定条件〕
スチレン系樹脂組成物のGPC−MALS測定を、Shodex HPLC、検出器Wyatt Technology DAWN EOS、Shodex RI−101、カラムShodex KF−806L×2、溶媒THF(テトラヒドロフラン)、流量1.0ml/分の条件にて行った。また、GPC−MALSの測定の解析は、Wyatt社の解析ソフトASTRAにより行い、スチレン系樹脂組成物についての重量平均分子量、数平均分子量等を求めた。
The measurement method used will be described.
[GPC-MALS measurement conditions]
GPC-MALS measurement of styrene resin composition was performed under the conditions of Shodex HPLC, detector Wyatt Technology DAWN EOS, Shodex RI-101, column Shodex KF-806L × 2, solvent THF (tetrahydrofuran), flow rate 1.0 ml / min. I went. Moreover, the analysis of the measurement of GPC-MALS was performed with the analysis software ASTRA of Wyatt, and the weight average molecular weight, the number average molecular weight, etc. about the styrene resin composition were calculated | required.

〔メルトマスフローレイト測定法〕
JIS K7210に準拠して測定した。なお測定条件は、温度200℃、荷重49Nである。
[Melt Mass Flow Rate Measurement Method]
The measurement was performed according to JIS K7210. The measurement conditions are a temperature of 200 ° C. and a load of 49N.

〔ビカット軟化温度〕
JIS K7206:99に準拠して測定した。
[Vicat softening temperature]
It measured based on JISK7206: 99.

〔像鮮明度〕
JIS K7374 クシ間隔0.5mmにて評価し、50%以上を合格(○)とした。また、70%以上を◎とした。
(Image clarity)
Evaluation was made at JIS K7374 comb spacing of 0.5 mm, and 50% or more was judged as acceptable (◯). Further, 70% or more was rated as “◎”.

〔耐折強度〕
JIS P8115 縦方向と横方向の平均が6回以上を合格(○)とした。また、10回以上を◎とした。
(Folding strength)
JIS P8115 The average of the vertical direction and the horizontal direction was 6 times or more as a pass (◯). Moreover, 10 times or more was set as ◎.

〔加熱収縮応力〕
ASTM D−1504に準拠して測定した。
[Heating shrinkage stress]
Measured according to ASTM D-1504.

〔最適加熱時間〕
株式会社浅野研究所製FK−0431−10を用い、ヒーター温度370℃で加熱時間を変えて間口10cm×10cm、絞り比0.3の金型にてシートを成形し、同一加熱時間で得られる成形品の重量差が±10%以上となった時間を成形上限界とした。また、5mmφの穴の金型にて成形し、突起の高さが1.5mm以上となった時間を成形下限界とした。この成形範囲が1秒以上のものを合格(○)とした。
[Optimum heating time]
Using FK-0431-10 manufactured by Asano Laboratory Co., Ltd., changing the heating time at a heater temperature of 370 ° C., forming a sheet with a mold having a frontage of 10 cm × 10 cm and a drawing ratio of 0.3, and obtaining the same heating time The time when the weight difference of the molded product was ± 10% or more was defined as the upper limit of molding. Further, molding was performed with a mold having a hole of 5 mmφ, and the time when the height of the protrusion was 1.5 mm or more was defined as the lower limit of molding. Those with a molding range of 1 second or more were evaluated as acceptable (◯).

(参考例1)多分岐状マクロモノマー(a3−1)の合成
<多分岐ポリエーテルポリオールの合成>
攪拌機、温度計、滴下ロート及びコンデンサーを備えた2リットルフラスコに、室温下、エトキシ化ペンタエリスリトール(5モル−エチレンオキシド付加ペンタエリスリトール)50.5g、BFジエチルエーテル溶液(50%)1gを加え、110℃に加熱した。これに3−エチル−3−(ヒドロキシメチル)オキセタン450gを、反応による発熱を制御しつつ、25分間でゆっくり加えた。発熱が収まったところで、反応混合物をさらに120℃で3時間撹拌し、その後、室温に冷却した。得られた多分岐ポリエーテルポリオールの重量平均分子量は3,000、水酸基価は530であった。
Reference Example 1 Synthesis of Multibranched Macromonomer (a3-1) <Synthesis of Multibranched Polyether Polyol>
To a 2 liter flask equipped with a stirrer, a thermometer, a dropping funnel and a condenser, 50.5 g of ethoxylated pentaerythritol (5 mol-ethylene oxide-added pentaerythritol) and 1 g of BF 3 diethyl ether solution (50%) were added at room temperature. Heated to 110 ° C. To this, 450 g of 3-ethyl-3- (hydroxymethyl) oxetane was slowly added over 25 minutes while controlling the exotherm due to the reaction. When the exotherm had subsided, the reaction mixture was further stirred at 120 ° C. for 3 hours and then cooled to room temperature. The resulting multi-branched polyether polyol had a weight average molecular weight of 3,000 and a hydroxyl value of 530.

<メタクリロイル基及びアセチル基を有する多分岐状マクロモノマーの合成>
攪拌機、温度計、コンデンサーを備えたディーンスタークデカンター及び気体導入管を備えた反応器に、上述の<多分岐ポリエーテルポリオール1の合成>で得られた多分岐ポリエーテルポリオール50g、メタアクリル酸13.8g、トルエン150g、ヒドロキノン0.06g、パラトルエンスルホン酸1gを加え、混合溶液中に3ミリリットル/分の速度で7%酸素含有窒素(v/v)を吹き込みながら、常圧下で撹拌し、加熱した。デカンターへの留出液量が1時間あたり30gになるように加熱量を調節し、脱水量が2.9gに到達するまで加熱を続けた。反応終了後、一度冷却し、無水酢酸36g、スルファミン酸5.7gを加え、60℃で10時間撹拌した。その後、残っている酢酸及びヒドロキノンを除去する為に5%水酸化ナトリウム水溶液50gで4回洗浄し、さらに1%硫酸水溶液50gで1回、水50gで2回洗浄した。得られた有機層にメトキノン0.02gを加え、減圧下、7%酸素含有窒素(v/v)を導入しながら溶媒を留去し、イソプロペニル基およびアセチル基を有する多分岐状マクロモノマー(a3−1)60gを得た。得られた多分岐状マクロモノマー(a3−1)の重量平均分子量は3,900であり、多分岐ポリエーテルポリオールへのイソプロペニル基およびアセチル基導入率は、それぞれ30モル%および62モル%であった。従って、重合性二重結合の導入量は1.51ミリモル/gである。
<Synthesis of a hyperbranched macromonomer having a methacryloyl group and an acetyl group>
In a reactor equipped with a Dean-Stark decanter equipped with a stirrer, a thermometer, a condenser and a gas introduction tube, 50 g of the multi-branched polyether polyol obtained in the above-mentioned <Synthesis of multi-branched polyether polyol 1> .8 g, 150 g of toluene, 0.06 g of hydroquinone and 1 g of paratoluenesulfonic acid, and stirring under normal pressure while blowing 7% oxygen-containing nitrogen (v / v) into the mixed solution at a rate of 3 ml / min. Heated. The amount of heating was adjusted so that the amount of distillate in the decanter was 30 g per hour, and heating was continued until the amount of dehydration reached 2.9 g. After completion of the reaction, the mixture was cooled once, 36 g of acetic anhydride and 5.7 g of sulfamic acid were added, and the mixture was stirred at 60 ° C. for 10 hours. Thereafter, in order to remove the remaining acetic acid and hydroquinone, it was washed with 50 g of 5% aqueous sodium hydroxide solution four times, and further washed once with 50 g of 1% aqueous sulfuric acid solution and twice with 50 g of water. To the obtained organic layer, 0.02 g of methoquinone was added, the solvent was distilled off under reduced pressure while introducing 7% oxygen-containing nitrogen (v / v), and a multibranched macromonomer having an isopropenyl group and an acetyl group ( a3-1) 60 g was obtained. The obtained multibranched macromonomer (a3-1) has a weight average molecular weight of 3,900, and the introduction ratio of isopropenyl group and acetyl group into the multibranched polyether polyol is 30 mol% and 62 mol%, respectively. there were. Therefore, the introduction amount of the polymerizable double bond is 1.51 mmol / g.

(参考例2)多分岐状マクロモノマー(a3−2)の合成
<スチリル基及びアセチル基を有する多分岐状マクロモノマーの合成>
攪拌機、乾燥管を備えたコンデンサー、滴下ロート及び温度計を備えた反応器に、上述の<多分岐ポリエーテルポリオール1の合成>で得られた多分岐ポリエーテルポリオール50g、テトラヒドロフラン100g及び水素化ナトリウム4.3gを加え、室温下、撹拌した。これに4−クロロメチルスチレン26.7gを1時間かけて滴下し、得られた反応混合物を50℃でさらに4時間撹拌した。反応終了後、一度冷却し、無水酢酸34g、スルファミン酸5.4gを加え、60℃で10時間撹拌した。その後、減圧下でテトラヒドロフランを留去し、得られた混合物をトルエン150gで溶解させ、残っている酢酸を除去する為に5%水酸化ナトリウム水溶液50gで4回洗浄し、さらに1%硫酸水溶液50gで1回、水50gで2回洗浄した。得られた有機層から減圧下で溶媒を留去し、スチリル基およびアセチル基を有する多分岐状マクロモノマー(a3−2)70gを得た。得られた多分岐状マクロモノマー(a3−2)の重量平均分子量は4,800であり、多分岐ポリエーテルポリオールへのスチリル基およびアセチル基導入率は、それぞれ38モル%および57モル%であった。従って、重合性二重結合の導入量は1.31ミリモル/gである。
(Reference Example 2) Synthesis of hyperbranched macromonomer (a3-2) <Synthesis of hyperbranched macromonomer having a styryl group and an acetyl group>
In a reactor equipped with a stirrer, a condenser equipped with a drying tube, a dropping funnel and a thermometer, 50 g of the multibranched polyether polyol obtained in the above-mentioned <Synthesis of multibranched polyether polyol 1>, 100 g of tetrahydrofuran and sodium hydride 4.3 g was added and stirred at room temperature. To this was added dropwise 26.7 g of 4-chloromethylstyrene over 1 hour, and the resulting reaction mixture was further stirred at 50 ° C. for 4 hours. After completion of the reaction, the reaction mixture was once cooled, 34 g of acetic anhydride and 5.4 g of sulfamic acid were added, and the mixture was stirred at 60 ° C. for 10 hours. Thereafter, the tetrahydrofuran was distilled off under reduced pressure, the resulting mixture was dissolved in 150 g of toluene, washed with 50 g of 5% aqueous sodium hydroxide solution to remove the remaining acetic acid, and further 50 g of 1% aqueous sulfuric acid solution. And once with 50 g of water. The solvent was distilled off from the obtained organic layer under reduced pressure to obtain 70 g of a hyperbranched macromonomer (a3-2) having a styryl group and an acetyl group. The obtained multibranched macromonomer (a3-2) had a weight average molecular weight of 4,800, and the introduction ratios of styryl groups and acetyl groups into the multibranched polyether polyol were 38 mol% and 57 mol%, respectively. It was. Therefore, the introduction amount of the polymerizable double bond is 1.31 mmol / g.

(参考例3)多分岐状マクロモノマー(a3−3)の合成
<メタクリロイル基及びアセチル基を有する多分岐状マクロモノマーの合成>
4口フラスコにスターラー、圧力計、冷却器及び受け皿を取り付け、これに308.9gのエトキシル化ペンタエリスリトールと0.46gの硫酸を加えた。その後、140℃まで加温し、460.5gの2,2−ジ(ヒドロキシメチル)プロピオン酸を10分間で加えた。2,2−ジ(ヒドロキシメチル)プロピオン酸が完全に溶解して、透明溶液になってから、30〜40mmHgに減圧し、攪拌しながら、酸価が7.0mgKOH/gになるまで4時間反応させた。その後、この反応液に921gの2,2−ジ(ヒドロキシメチル)プロピオン酸と0.92gの硫酸を15分かけて加え、透明溶液になってから、30〜40mmHgに減圧し、攪拌しながら3時間反応させて、ポリエステルポリオールを得た。7%酸素導入管、温度計、コンデンサーを備えたディーンスタークデカンター、および攪拌機を備えた反応容器に、上記で生成したポリエステルポリオールを10g、ジブチル錫オキシド1.25g、イソプロペニル基を有するメチルメタクリレート100g、およびヒドロキノン0.05gを加え、混合溶液中に3ml/分の速度で7%酸素を吹き込みながら、撹拌下に加熱した。デカンターへの留出液量が1時間あたり15〜20gになるように加熱量を調節し、1時間ごとにデカンター内の留出液を取り出し、これに相当する量のメチルメタクリレートを加えながら4時間反応させた。反応終了後、メチルメタクリレートを減圧下で留去し、残っているヒドロキシ基をキャッピングするために無水酢酸10g、スルファミン酸2gを加えて室温下、10時間撹拌した。濾過でスルファミン酸を除去し、減圧下で無水酢酸および酢酸を留去した後に、残留物を酢酸エチル70gに溶解し、ヒドロキノンを除去する為に5%水酸化ナトリウム水溶液20gで4回洗浄した。さらに7%硫酸水溶液20gで2回、水20gで2回洗浄した。得られた有機層にメトキノン0.0045gを加え、減圧下、7%酸素を導入しながら溶媒を留去し、イソプロペニル基およびアセチル基を有する多分岐状マクロモノマー11gを得た。得られた多分岐状マクロモノマー(a3−3)の重量平均分子量は3,000、数平均分子量は2,100、イソプロペニル基およびアセチル基導入率は、それぞれ55モル%および36モル%であった。従って重合性二重結合の導入量は2.00ミリモル/gである。
Reference Example 3 Synthesis of Multibranched Macromonomer (a3-3) <Synthesis of Multibranched Macromonomer Having a Methacryloyl Group and an Acetyl Group>
A four-necked flask was equipped with a stirrer, pressure gauge, condenser and saucer, to which 308.9 g of ethoxylated pentaerythritol and 0.46 g of sulfuric acid were added. Then, it heated to 140 degreeC and 460.5g of 2, 2- di (hydroxymethyl) propionic acid was added over 10 minutes. After 2,2-di (hydroxymethyl) propionic acid is completely dissolved and becomes a transparent solution, the pressure is reduced to 30 to 40 mmHg and the reaction is continued for 4 hours while stirring and the acid value becomes 7.0 mgKOH / g. I let you. Thereafter, 921 g of 2,2-di (hydroxymethyl) propionic acid and 0.92 g of sulfuric acid were added to the reaction solution over 15 minutes to obtain a transparent solution, and then the pressure was reduced to 30 to 40 mmHg, while stirring. The polyester polyol was obtained by reacting for a period of time. In a reaction vessel equipped with a 7% oxygen introduction tube, a thermometer, a Dean-Stark decanter equipped with a condenser, and a stirrer, 10 g of the polyester polyol produced above, 1.25 g of dibutyltin oxide, and 100 g of methyl methacrylate having an isopropenyl group And 0.05 g of hydroquinone were added, and the mixture was heated with stirring while blowing 7% oxygen at a rate of 3 ml / min. The amount of heating is adjusted so that the amount of distillate in the decanter is 15 to 20 g per hour, the distillate in the decanter is taken out every hour, and the corresponding amount of methyl methacrylate is added for 4 hours. Reacted. After completion of the reaction, methyl methacrylate was distilled off under reduced pressure, and 10 g of acetic anhydride and 2 g of sulfamic acid were added to cap the remaining hydroxy groups, followed by stirring at room temperature for 10 hours. After removing sulfamic acid by filtration and distilling off acetic anhydride and acetic acid under reduced pressure, the residue was dissolved in 70 g of ethyl acetate and washed 4 times with 20 g of 5% aqueous sodium hydroxide to remove hydroquinone. Further, it was washed twice with 20 g of a 7% aqueous sulfuric acid solution and twice with 20 g of water. To the obtained organic layer, 0.0045 g of methoquinone was added, and the solvent was distilled off while introducing 7% oxygen under reduced pressure to obtain 11 g of a hyperbranched macromonomer having an isopropenyl group and an acetyl group. The resulting multi-branched macromonomer (a3-3) had a weight average molecular weight of 3,000, a number average molecular weight of 2,100, and isopropenyl group and acetyl group introduction rates of 55 mol% and 36 mol%, respectively. It was. Therefore, the introduction amount of the polymerizable double bond is 2.00 mmol / g.

(参考例4)多分岐状マクロモノマー(a3−4)の合成
<スチリル基を有するPAMAMデンドリマーの合成>
攪拌機、乾燥管を備えたコンデンサー、滴下ロート及び温度計を備えた反応器にPAMAMデンドリマー(ゼネレーション2.0:Dentritech社製)のメタノール溶液(20%)50gを加え、減圧下、撹拌しながらメタノールを留去した。続いて、テトラヒドロフラン50g及び微粉化した水酸化カリウム3.0gを加え、室温下、撹拌した。これに4−クロロメチルスチレン7.0gを10分間かけて滴下し、得られた反応混合物を50℃でさらに3時間撹拌した。反応終了後、冷却し、固体を濾過した後に、テトラヒドロフランを減圧下、留去し、スチリル基を有するPAMAMデンドリマー13gを得た。得られたデンドリマーのスチリル基含有率(重合性二重結合の導入量)は2.7ミリモル/グラムであった。得られた多分岐状マクロモノマー(a3−4)の重量平均分子量は4,050であった。
Reference Example 4 Synthesis of hyperbranched macromonomer (a3-4) <Synthesis of PAMAM dendrimer having a styryl group>
To a reactor equipped with a stirrer, a condenser equipped with a drying tube, a dropping funnel and a thermometer, 50 g of a methanol solution (20%) of PAMAM dendrimer (Generation 2.0: manufactured by Dentritech) was added and stirred under reduced pressure. Methanol was distilled off. Subsequently, 50 g of tetrahydrofuran and 3.0 g of finely divided potassium hydroxide were added, and the mixture was stirred at room temperature. 4-chloromethylstyrene 7.0g was dripped at this over 10 minutes, and the obtained reaction mixture was further stirred at 50 degreeC for 3 hours. After completion of the reaction, the mixture was cooled and the solid was filtered, and then tetrahydrofuran was distilled off under reduced pressure to obtain 13 g of a PAMAM dendrimer having a styryl group. The resulting dendrimer had a styryl group content (introduced amount of polymerizable double bond) of 2.7 mmol / gram. The weight average molecular weight of the obtained multibranched macromonomer (a3-4) was 4,050.

(参考例5)多分岐状マクロモノマー(a3−5)の合成
<スチリル基及びアセチル基を有する多分岐ポリエーテルポリオール>
攪拌機、コンデンサー、遮光性滴下ロート及び温度計を備え、窒素シールが可能な遮光性反応容器に、窒素気流下、無水1,3,5−トリヒドロキシベンゼン0.5g、炭酸カリウム29g、18−クラウン−6 2.7g及びアセトン180gを加え、撹拌しながら、5−(ブロモメチル)−1,3−ジヒドロキシベンゼン21.7gとアセトン180gからなる溶液を2時間かけて滴下、加えた。その後、5−(ブロモメチル)−1,3−ジヒドロキシベンゼンが消失するまで、撹拌下、加熱、還流させた。その後、4−クロロメチルスチレン9.0gを加え、これが消失するまで、さらに撹拌下、加熱、還流させた。その後、反応混合物に無水酢酸4g、スルファミン酸0.6gを加え、室温下、一晩撹拌した。冷却後、反応混合物中の固体を濾過で除き、溶媒を減圧下で留去した。得られた混合物をジクロロメタンに溶解し、水で3回洗浄した後、ジクロロメタン溶液をヘキサンに滴下し、生成物を沈殿させた。これを濾過し、乾燥させて、スチリル基及びアセチル基を有する多分岐状マクロモノマー(a3−5)12gを得た。重量平均分子量は3,200で、スチリル基の含有率は3.5ミリモル/グラムであった。
Reference Example 5 Synthesis of Multibranched Macromonomer (a3-5) <Multibranched Polyether Polyol Having Styryl Group and Acetyl Group>
A light-shielding reaction vessel equipped with a stirrer, a condenser, a light-shielding dropping funnel and a thermometer, and capable of nitrogen sealing. Under nitrogen flow, anhydrous 1,3,5-trihydroxybenzene 0.5 g, potassium carbonate 29 g, 18-crown -6 2.7 g and acetone 180 g were added, and a solution composed of 21.7 g of 5- (bromomethyl) -1,3-dihydroxybenzene and 180 g of acetone was added dropwise over 2 hours while stirring. Thereafter, the mixture was heated and refluxed with stirring until 5- (bromomethyl) -1,3-dihydroxybenzene disappeared. Thereafter, 9.0 g of 4-chloromethylstyrene was added, and the mixture was further heated and refluxed with stirring until the disappearance. Thereafter, 4 g of acetic anhydride and 0.6 g of sulfamic acid were added to the reaction mixture, and the mixture was stirred overnight at room temperature. After cooling, the solid in the reaction mixture was removed by filtration, and the solvent was distilled off under reduced pressure. The resulting mixture was dissolved in dichloromethane and washed three times with water, and then the dichloromethane solution was added dropwise to hexane to precipitate the product. This was filtered and dried to obtain 12 g of a hyperbranched macromonomer (a3-5) having a styryl group and an acetyl group. The weight average molecular weight was 3,200, and the styryl group content was 3.5 mmol / gram.

実施例1
本実施例では、図1に示すように配列されたラインを有する装置を用いた。スチレン、アクリル酸ブチル及び溶媒などを含む混合溶液をプランジャーポンプ(1)により、撹拌式反応器(2)に供給した。その後、ギヤポンプ(3)により循環重合ライン(I)に供給した。循環重合ライン(I)は、入口から順に内径2.5インチ管状反応器(スイス国、ゲブリュー・ズルツァー社製SMXスタティックミキサー)(4)、(5)、(6)及び混合溶液を循環させるためのギヤポンプ(7)から構成されている。(4)〜(6)の反応容積は約20Lである。管状反応器(6)とギヤポンプ(7)の間には非循環重合ライン(II)に続く出口が設けられている。非循環重合ライン(II)には、入口から順に上記と同様の管状反応器(8)、(9)、(10)とギヤポンプ(11)が直列に連結されている。(8)〜(10)の反応容積は約16Lである。
Example 1
In this example, an apparatus having lines arranged as shown in FIG. 1 was used. A mixed solution containing styrene, butyl acrylate, a solvent, and the like was supplied to a stirring reactor (2) by a plunger pump (1). Then, it supplied to the circulation polymerization line (I) with the gear pump (3). The circulation polymerization line (I) is used to circulate the 2.5 inch inner diameter tubular reactor (SMX static mixer manufactured by Gebrüu Sulzer, Switzerland) (4), (5), (6) and the mixed solution in order from the inlet. Gear pump (7). The reaction volume of (4) to (6) is about 20L. Between the tubular reactor (6) and the gear pump (7), there is an outlet that leads to the non-circulating polymerization line (II). Tubular reactors (8), (9), (10) and a gear pump (11) similar to the above are connected in series from the inlet to the non-circulating polymerization line (II). The reaction volume of (8) to (10) is about 16L.

スチレン93.5部、アクリル酸ブチル6.5部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3−1)をスチレンとアクリル酸ブチルの合計100部に対し300ppm、重合開始剤〔2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン〕をスチレンとアクリル酸ブチルの合計100部に対し150ppmからなる混合液を調整し、図1に示す装置を用いて下記条件で、連続的に重合させた。
混合溶液の供給量:9.0リットル/時間
撹拌式反応器での反応温度:116℃
循環重合ライン(I)での反応温度:120℃
非循環重合ライン(II)での反応温度:155〜170℃
93.5 parts of styrene, 6.5 parts of butyl acrylate, 7 parts of ethylbenzene, 300 ppm of the hyperbranched macromonomer (a3-1) of Reference Example 1 with respect to 100 parts in total of styrene and butyl acrylate, a polymerization initiator [ 1,2-bis (4,4-di-t-butylperoxycyclohexyl) propane] was prepared by adjusting a mixed solution consisting of 150 ppm with respect to a total of 100 parts of styrene and butyl acrylate, and using the apparatus shown in FIG. Polymerization was continuously performed under the following conditions.
Feed rate of mixed solution: 9.0 liter / hour Reaction temperature in stirred reactor: 116 ° C.
Reaction temperature in circulation polymerization line (I): 120 ° C
Reaction temperature in non-circulation polymerization line (II): 155 to 170 ° C.

重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。スチレン系樹脂組成物の重合平均分子量Mwは38万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。   The mixed solution obtained by polymerization was heated with a heat exchanger at 260 ° C., and after removing volatile components under a reduced pressure of 5 kPa, pelletized to obtain a styrene resin composition. The polymerization average molecular weight Mw of the styrene-based resin composition was 380,000, and the MFR was 4.0 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8.

上記で得られたスチレン系樹脂組成物にハイインパクトポリスチレン ディックスチレンGH−8300−5を2%添加し、φ30mm径のスクリューを有する二軸押出機(株式会社日本製鋼所製 TEX30α−31.5BW−5V)に供給、溶融混練、T−ダイより押出、ロールで冷却、再加熱後、ロール群の速度差により、シート流れ方向(MDとする)に延伸した後、テンターでシート流れ方向に対して直交方向(TDとする)に延伸を行い、厚みが0.25mmのシートを作製した。また、延伸倍率は、実施例1の表の通りである。延伸温度は、表中の加熱収縮応力となる様に調整した。シートは、像鮮明度、耐折強度に優れ、輻射熱式圧空真空成形法における最適加熱時間も充分であった。   A twin screw extruder (TEX30α-31.5BW- manufactured by Nippon Steel Works, Ltd.) having 2% high impact polystyrene dick styrene GH-8300-5 added to the styrene-based resin composition obtained above and having a φ30 mm diameter screw 5V), melt kneading, extrusion from a T-die, cooling with a roll, reheating, stretching in the sheet flow direction (MD) due to the speed difference of the roll group, and then the sheet flow direction with a tenter. Stretching was performed in the orthogonal direction (referred to as TD) to produce a sheet having a thickness of 0.25 mm. The draw ratio is as shown in the table of Example 1. The stretching temperature was adjusted to be the heat shrinkage stress in the table. The sheet was excellent in image definition and folding strength, and the optimum heating time in the radiant heat type pressure air vacuum forming method was sufficient.

実施例2
実施例1における多分岐状マクロモノマー(a3−1)の代わりに、多分岐状マクロモノマー(a3−2)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは35万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて、実施例1と同様な方法でシートを作製した。
Example 2
A styrene resin composition was obtained in the same manner as in Example 1 except that the multibranched macromonomer (a3-2) was used instead of the multibranched macromonomer (a3-1) in Example 1. The polymerization average molecular weight Mw was 350,000, and the MFR was 3.9 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例3
実施例1における多分岐状マクロモノマー(a3−1)の代わりに、多分岐状マクロモノマー(a3−3)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは39万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施施例1と同様な方法でシートを作製した。
Example 3
A styrene resin composition was obtained in the same manner as in Example 1 except that the multi-branched macromonomer (a3-3) was used instead of the multibranched macromonomer (a3-1) in Example 1. The polymerization average molecular weight Mw was 390,000, and MFR was 4.0 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was prepared in the same manner as in Example 1 using the obtained resin composition.

実施例4
実施例1における多分岐状マクロモノマー(a3−1)の代わりに、多分岐状マクロモノマー(a3−4)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 4
A styrene resin composition was obtained in the same manner as in Example 1 except that the multibranched macromonomer (a3-4) was used instead of the multibranched macromonomer (a3-1) in Example 1. The polymerization average molecular weight Mw was 360,000, and MFR was 4.0 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例5
実施例1における多分岐状マクロモノマー(a3−1)の代わりに、多分岐状マクロモノマー(a3−5)を用いた以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは32万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 5
A styrene resin composition was obtained in the same manner as in Example 1 except that the multibranched macromonomer (a3-5) was used instead of the multibranched macromonomer (a3-1) in Example 1. The polymerization average molecular weight Mw was 320,000, and MFR was 3.9 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例6
実施例1における多分岐状マクロモノマー(a3−1)の添加量を100ppmにした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは34万、MFRは、4.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 6
A styrene resin composition was obtained in the same manner as in Example 1 except that the amount of the hyperbranched macromonomer (a3-1) added in Example 1 was changed to 100 ppm. The polymerization average molecular weight Mw was 340,000, and MFR was 4.3 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例7
実施例1における多分岐状マクロモノマー(a3−1)の添加量を500ppmにした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは46万、MFRは、3.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 7
A styrene resin composition was obtained in the same manner as in Example 1 except that the amount of the hyperbranched macromonomer (a3-1) added in Example 1 was changed to 500 ppm. The polymerization average molecular weight Mw was 460,000, and the MFR was 3.6 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例8
実施例2における多分岐状マクロモノマー(a3−2)の添加量を100ppmにした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 8
A styrenic resin composition was obtained in the same manner as in Example 2 except that the amount of the hyperbranched macromonomer (a3-2) added in Example 2 was changed to 100 ppm. The polymerization average molecular weight Mw was 310,000, and MFR was 4.4 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.7. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例9
実施例2における多分岐状マクロモノマー(a3−2)の添加量を500ppmにした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは43万、MFRは、3.5g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 9
A styrenic resin composition was obtained in the same manner as in Example 2 except that the amount of the hyperbranched macromonomer (a3-2) added in Example 2 was changed to 500 ppm. The polymerization average molecular weight Mw was 430,000, and the MFR was 3.5 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例10
実施例3における多分岐状マクロモノマー(a3−3)の添加量を100ppmにした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 10
A styrene resin composition was obtained in the same manner as in Example 3 except that the amount of the hyperbranched macromonomer (a3-3) added in Example 3 was 100 ppm. The polymerization average molecular weight Mw was 360,000, and MFR was 4.6 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例11
実施例3における多分岐状マクロモノマー(a3−3)の添加量を500ppmにした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは51万、MFRは、3.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.0であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 11
A styrene resin composition was obtained in the same manner as in Example 3 except that the amount of the hyperbranched macromonomer (a3-3) added in Example 3 was changed to 500 ppm. The polymerization average molecular weight Mw was 510,000, and MFR was 3.3 g / 10 min. Moreover, ratio Mw / Mn of the weight average molecular weight and the number average molecular weight was 3.0. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例12
実施例4における多分岐状マクロモノマー(a3−4)の添加量を100ppmにした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、4.3g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 12
A styrenic resin composition was obtained in the same manner as in Example 4 except that the amount of the hyperbranched macromonomer (a3-4) added in Example 4 was changed to 100 ppm. The polymerization average molecular weight Mw was 330,000, and MFR was 4.3 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例13
実施例4における多分岐状マクロモノマー(a3−4)の添加量を500ppmにした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、3.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 13
A styrene resin composition was obtained in the same manner as in Example 4 except that the amount of the hyperbranched macromonomer (a3-4) added in Example 4 was changed to 500 ppm. The polymerization average molecular weight Mw was 440,000, and the MFR was 3.2 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例14
実施例5における多分岐状マクロモノマー(a3−5)の添加量を100ppmにした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 14
A styrenic resin composition was obtained in the same manner as in Example 5 except that the amount of the hyperbranched macromonomer (a3-5) added in Example 5 was changed to 100 ppm. The polymerization average molecular weight Mw was 310,000, and MFR was 4.4 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例15
実施例5における多分岐状マクロモノマー(a3−5)の添加量を500ppmにした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、3.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.3であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 15
A styrene resin composition was obtained in the same manner as in Example 5 except that the amount of the hyperbranched macromonomer (a3-5) added in Example 5 was changed to 500 ppm. The average molecular weight Mw was 400,000, and the MFR was 3.4 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 3.3. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例16
実施例1におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 16
A styrene resin composition was obtained in the same manner as in Example 1 except that the amount of butyl acrylate added in Example 1 was 4.5 parts. The polymerization average molecular weight Mw was 330,000, and MFR was 4.2 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例17
実施例1におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、4.0/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 17
A styrene resin composition was obtained in the same manner as in Example 1 except that the amount of butyl acrylate added in Example 1 was 12.5 parts. The polymerization average molecular weight Mw was 440,000, and MFR was 4.0 / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例18
実施例2におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例2と同様にしてチレン系樹脂組成物を得た。重合平均分子量Mwは32万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 18
A tylene-based resin composition was obtained in the same manner as in Example 2, except that the amount of butyl acrylate added in Example 2 was 4.5 parts. The polymerization average molecular weight Mw was 320,000, and MFR was 4.0 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.7. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例19
実施例2におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例2と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは43万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 19
A styrene resin composition was obtained in the same manner as in Example 2 except that the amount of butyl acrylate added in Example 2 was 12.5 parts. The average molecular weight Mw was 430,000, and the MFR was 4.2 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例20
実施例3におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは36万、MFRは、4.0g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 20
A styrene resin composition was obtained in the same manner as in Example 3 except that the amount of butyl acrylate added in Example 3 was 4.5 parts. The polymerization average molecular weight Mw was 360,000, and MFR was 4.0 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例21
実施例3におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例3と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは47万、MFRは、4.2g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 21
A styrene resin composition was obtained in the same manner as in Example 3 except that the amount of butyl acrylate added in Example 3 was 12.5 parts. Polymerization average molecular weight Mw was 470,000, and MFR was 4.2 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例22
実施例4におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは33万、MFRは、3.9g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 22
A styrene resin composition was obtained in the same manner as in Example 4 except that the amount of butyl acrylate added in Example 4 was 4.5 parts. The polymerization average molecular weight Mw was 330,000, and MFR was 3.9 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.7. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例23
実施例4におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例4と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは44万、MFRは、4.1g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 23
A styrene resin composition was obtained in the same manner as in Example 4 except that the amount of butyl acrylate added in Example 4 was 12.5 parts. The polymerization average molecular weight Mw was 440,000, and the MFR was 4.1 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例24
実施例5におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、3.7g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 24
A styrene resin composition was obtained in the same manner as in Example 5 except that the amount of butyl acrylate added in Example 5 was 4.5 parts. The polymerization average molecular weight Mw was 310,000, and MFR was 3.7 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例25
実施例5におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例5と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは46万、MFRは、4.6g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.6であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 25
A styrene resin composition was obtained in the same manner as in Example 5 except that the amount of butyl acrylate added in Example 5 was 12.5 parts. The polymerization average molecular weight Mw was 460,000, and the MFR was 4.6 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 3.6. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例26
実施例6におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例6と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは31万、MFRは、3.8g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.7であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 26
A styrene resin composition was obtained in the same manner as in Example 6 except that the amount of butyl acrylate added in Example 6 was 4.5 parts. The polymerization average molecular weight Mw was 310,000, and MFR was 3.8 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.7. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例27
実施例6におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例6と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、4.4g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 27
A styrene resin composition was obtained in the same manner as in Example 6 except that the amount of butyl acrylate added in Example 6 was 12.5 parts. The average molecular weight Mw was 400,000, and the MFR was 4.4 g / 10 minutes. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例28
実施例7におけるアクリル酸ブチルの添加量を4.5部にした以外は、実施例7と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは40万、MFRは、3.5g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.8であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 28
A styrene resin composition was obtained in the same manner as in Example 7 except that the amount of butyl acrylate added in Example 7 was 4.5 parts. The average molecular weight Mw was 400,000, and the MFR was 3.5 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.8. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例29
実施例7におけるアクリル酸ブチルの添加量を12.5部にした以外は、実施例7と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは58万、MFRは、4.1g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは3.0であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 29
A styrene resin composition was obtained in the same manner as in Example 7 except that the amount of butyl acrylate added in Example 7 was 12.5 parts. The polymerization average molecular weight Mw was 580,000, and MFR was 4.1 g / 10 min. Moreover, ratio Mw / Mn of the weight average molecular weight and the number average molecular weight was 3.0. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

実施例30
実施例1における多分岐状マクロモノマー(a3−1)の添加量を600ppmにした以外は、実施例1と同様にしてスチレン系樹脂組成物を得た。重合平均分子量Mwは52万、MFRは、1.8g/10分であった。また、重量平均分子量と数平均分子量の比Mw/Mnは2.9であった。得られた樹脂組成物を用いて実施例1と同様な方法でシートを作製した。
Example 30
A styrene resin composition was obtained in the same manner as in Example 1 except that the addition amount of the hyperbranched macromonomer (a3-1) in Example 1 was changed to 600 ppm. The polymerization average molecular weight Mw was 520,000, and the MFR was 1.8 g / 10 min. The ratio Mw / Mn of the weight average molecular weight to the number average molecular weight was 2.9. A sheet was produced in the same manner as in Example 1 using the obtained resin composition.

比較例1
実施例1と同様の反応装置を用い、スチレン98部、アクリル酸ブチル2部、エチルベンゼン6部、参考例1の多分岐状マクロモノマー(a3−1)をスチレンとアクリル酸ブチルの合計100部に対し100ppm、重合開始剤〔2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン〕をスチレンとアクリル酸ブチルの合計100部に対し150ppmからなる混合液を調整し、実施例1と同条件にて重合した。
Comparative Example 1
Using the same reactor as in Example 1, 98 parts of styrene, 2 parts of butyl acrylate, 6 parts of ethylbenzene, and 100 parts of the multi-branched macromonomer (a3-1) of Reference Example 1 in total of styrene and butyl acrylate 100 ppm of the polymerization initiator [2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane] was prepared by adjusting a mixed solution of 150 ppm with respect to a total of 100 parts of styrene and butyl acrylate. Polymerization was carried out under the same conditions as in Example 1.

重合して得られた混合溶液を250℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られたスチレン系樹脂組成物は、重量平均分子量37万、分子量分布(Mw/Mn)3.2であった。
このスチレン系樹脂を延伸温度、加熱収縮応力を比較例に示した通りにした他は実施例1と同様にシートを作製した。得られたシートは、輻射熱式圧空真空成形法での最適加熱時間は充分であり、耐折強度も優れるものの、MFRが1.5g/10分と粘度が高いためシートの像鮮明度が不充分であった。
The mixed solution obtained by polymerization was heated with a heat exchanger at 250 ° C., and after removing volatile components under a reduced pressure of 5 kPa, pelletized to obtain a styrene-based resin composition. The obtained styrene resin composition had a weight average molecular weight of 370,000 and a molecular weight distribution (Mw / Mn) of 3.2.
A sheet was produced in the same manner as in Example 1 except that this styrene resin was subjected to the same drawing temperature and heat shrinkage stress as shown in the comparative example. The obtained sheet has sufficient heating time in the radiant heat type pressure-air vacuum forming method and has excellent folding strength, but the MFR is 1.5 g / 10 min and the viscosity is high, so the image clarity of the sheet is insufficient. Met.

比較例2
実施例1と同様の反応装置を用い、スチレン98部、アクリル酸ブチル2部、エチルベンゼン7部、参考例1の多分岐状マクロモノマー(a3−1)をスチレンとアクリル酸ブチルの合計100部に対し100ppm、重合開始剤t−ブチルパーオキシベンゾエートをスチレンとアクリル酸ブチルの合計100部に対し300ppmからなる混合液を調整し、図1に示すように配列されたラインを有する装置を用いて下記条件で、連続的に重合させた。
混合溶液の供給量:9.0リットル/時間
撹拌式反応器での反応温度:130℃
循環重合ライン(I)での反応温度:130℃
非循環重合ライン(II)での反応温度:135〜145℃
Comparative Example 2
Using the same reactor as in Example 1, 98 parts of styrene, 2 parts of butyl acrylate, 7 parts of ethylbenzene, and 100 parts of the multi-branched macromonomer (a3-1) of Reference Example 1 in total of styrene and butyl acrylate 100 ppm, and a polymerization initiator t-butyl peroxybenzoate was prepared by adjusting a mixed solution consisting of 300 ppm with respect to a total of 100 parts of styrene and butyl acrylate, and using an apparatus having lines arranged as shown in FIG. The polymer was continuously polymerized under the conditions.
Feed rate of mixed solution: 9.0 liter / hour Reaction temperature in stirred reactor: 130 ° C
Reaction temperature in circulating polymerization line (I): 130 ° C
Reaction temperature in non-circulation polymerization line (II): 135 to 145 ° C

重合して得られた混合溶液を260℃の熱交換器で加熱し、5kPaの減圧下で揮発性成分を除去後、ペレット化してスチレン系樹脂組成物を得た。得られた樹脂組成物は、重量平均分子量は27万、重量平均分子量と数平均分子量の比Mw/Mnは2.2、MFRは3.5g/10分であった。このスチレン系樹脂組成物を延伸温度、加熱収縮応力を表に示した通りにした他は実施例1と同様にシートを作製した。得られたシートは像鮮明度、耐折強度に優れるものの、輻射熱式圧空真空成形法における最適加熱時間が非常に短いものであった。   The mixed solution obtained by polymerization was heated with a heat exchanger at 260 ° C., and after removing volatile components under a reduced pressure of 5 kPa, pelletized to obtain a styrene resin composition. The obtained resin composition had a weight average molecular weight of 270,000, a ratio Mw / Mn of the weight average molecular weight to the number average molecular weight of 2.2, and MFR of 3.5 g / 10 min. A sheet was produced in the same manner as in Example 1 except that this styrene resin composition was subjected to stretching temperature and heat shrinkage stress as shown in the table. Although the obtained sheet was excellent in image definition and folding strength, the optimum heating time in the radiant heat type compressed air vacuum forming method was very short.

比較例3
実施例1で得たスチレン系樹脂組成物を用い、ORS及び延伸倍率を表の通りとした以外は、実施例1と同様にシートを作製した。得られたシートは像鮮明度、耐折強度に優れるものの、輻射熱式圧空真空成形法における最適加熱時間が非常に短いものであった。
Comparative Example 3
A sheet was produced in the same manner as in Example 1 except that the styrene-based resin composition obtained in Example 1 was used and the ORS and the draw ratio were as shown in the table. Although the obtained sheet was excellent in image definition and folding strength, the optimum heating time in the radiant heat type compressed air vacuum forming method was very short.

比較例4
実施例1で得たスチレン系樹脂組成物を用い、ORSと延伸倍率を表の通りにした以外は、実施例1と同様にシートを作製した。得られたシートは、像鮮明度に優れ、輻射熱式圧空真空成形法における最適加熱時間は充分であったが、耐折強度が不充分であった。
Comparative Example 4
A sheet was prepared in the same manner as in Example 1 except that the styrene resin composition obtained in Example 1 was used and the ORS and the draw ratio were changed as shown in the table. The obtained sheet was excellent in image sharpness, and the optimum heating time in the radiant heat type compressed air vacuum forming method was sufficient, but the folding strength was insufficient.

Figure 0004990995
Figure 0004990995

Figure 0004990995
Figure 0004990995

Figure 0004990995
Figure 0004990995

Figure 0004990995
Figure 0004990995

Figure 0004990995
Figure 0004990995

Figure 0004990995
Figure 0004990995

Figure 0004990995
Figure 0004990995

Figure 0004990995
Figure 0004990995

Figure 0004990995
Figure 0004990995

(1):プラジャーポンプ
(2):撹拌式反応器
(3):ギヤポンプ
(4):静的ミキシングエレメントを有する管状反応器
(5):静的ミキシングエレメントを有する管状反応器
(6):静的ミキシングエレメントを有する管状反応器
(7):ギヤポンプ
(8):静的ミキシングエレメントを有する管状反応器
(9):静的ミキシングエレメントを有する管状反応器
(10):静的ミキシングエレメントを有する管状反応器
(I):循環重合ライン
(II):非循環重合ライン
(1): Pusher pump (2): Stirred reactor (3): Gear pump (4): Tubular reactor with static mixing element (5): Tubular reactor with static mixing element (6): Static Tubular reactor with static mixing element (7): gear pump (8): tubular reactor with static mixing element (9): tubular reactor with static mixing element (10): tubular with static mixing element Reactor (I): Circulation polymerization line (II): Non-circulation polymerization line

Claims (5)

スチレン系単量体(a1)と、アクリル酸エステル(a2)と、複数の分岐を有し、且つその先端部に重合性二重結合を有する重量平均分子量が1,000〜15,000の多分岐状マクロモノマー(a3)と、を共重合させて得られる多分岐状共重合体(A)を含有するスチレン系樹脂組成物を二軸延伸して得られる輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シートであって、
該組成物のGPC−MALS法により求められる重量平均分子量(Mw)が30万〜60万であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.7〜4.0であり、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との使用割合(a1)/(a2)が87/13〜96/4(質量比)であり、且つ、
得られる二軸延伸スチレン系樹脂シートの縦方向及び横方向のいずれの加熱収縮応力も0.20MPa〜0.45MPaの範囲であることを特徴とする輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シート。
A styrene monomer (a1), an acrylate ester (a2), a polymer having a plurality of branches and a weight average molecular weight of 1,000 to 15,000 having a polymerizable double bond at the tip. Biaxially for radiant heating type pressure-air vacuum forming obtained by biaxial stretching of a styrene resin composition containing a multibranched copolymer (A) obtained by copolymerizing a branched macromonomer (a3) An expanded styrene resin sheet,
The weight average molecular weight (Mw) calculated | required by GPC-MALS method of this composition is 300,000-600,000, and ratio (Mw / Mn) of a weight average molecular weight (Mw) and a number average molecular weight (Mn) is 2. 7 to 4.0, and the use ratio (a1) / (a2) of the styrene monomer (a1) to the acrylate ester (a2) is 87/13 to 96/4 (mass ratio). ,and,
The biaxially stretched styrene resin sheet for radiation heating type pressure-air vacuum forming, wherein the heat shrinkage stress in the longitudinal direction and the transverse direction of the obtained biaxially stretched styrene resin sheet is in the range of 0.20 MPa to 0.45 MPa. Resin sheet.
前記スチレン系樹脂組成物のメルトマスフローレイトが2.0g/10分以上である請求項1記載の輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シート。 The biaxially-stretched styrene resin sheet for radiant heating type pressure-air vacuum forming according to claim 1, wherein the melt mass flow rate of the styrene resin composition is 2.0 g / 10 min or more. 前記多分岐状マクロモノマー(a3)の使用割合が、前記スチレン系単量体(a1)と前記アクリル酸エステル(a2)との合計に対して質量基準で100〜1,000ppmである請求項1又は2記載の輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シート。 The usage ratio of the multi-branched macromonomer (a3) is 100 to 1,000 ppm on a mass basis with respect to the total of the styrene monomer (a1) and the acrylate ester (a2). Or the biaxially-stretched styrene resin sheet for radiant heating type pressure air vacuum forming of 2. 前記アクリル酸エステル(a2)がアクリル酸ブチルである請求項1〜3の何れか1項記載の輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シート。 The biaxially-stretched styrene resin sheet for radiation heating type pressure-air vacuum forming according to any one of claims 1 to 3, wherein the acrylic ester (a2) is butyl acrylate. 請求項1〜4の何れか1項記載の輻射加熱式圧空真空成形用二軸延伸スチレン系樹脂シートを輻射加熱式圧空真空成形して得られることを特徴とする成形品。 Molded article characterized by being obtained by radiant heating pressure vacuum forming the any one radiant heating pressure vacuum forming biaxially stretched styrenic resin sheet according of claims 1 to 4.
JP2010071747A 2010-03-26 2010-03-26 Biaxially stretched styrene resin sheet and molded product using the same Active JP4990995B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010071747A JP4990995B2 (en) 2010-03-26 2010-03-26 Biaxially stretched styrene resin sheet and molded product using the same
MYPI2012700649A MY158688A (en) 2010-03-26 2011-03-23 Styrene-based resin composition, biaxially oriented styrene-based resin sheet, and molded article thereof
CN2011800257778A CN102906138A (en) 2010-03-26 2011-03-23 Styrene resin composition, biaxially stretched styrene resin sheet, and molded article thereof
PCT/JP2011/056997 WO2011118640A1 (en) 2010-03-26 2011-03-23 Styrene resin composition, biaxially stretched styrene resin sheet, and molded article of the styrene resin composition or the biaxially stretched styrene resin sheet
TW100110094A TW201139470A (en) 2010-03-26 2011-03-24 Styrene-based resin composition, biaxially-oriented styrene-based resin sheet, and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071747A JP4990995B2 (en) 2010-03-26 2010-03-26 Biaxially stretched styrene resin sheet and molded product using the same

Publications (2)

Publication Number Publication Date
JP2011202064A JP2011202064A (en) 2011-10-13
JP4990995B2 true JP4990995B2 (en) 2012-08-01

Family

ID=44673190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071747A Active JP4990995B2 (en) 2010-03-26 2010-03-26 Biaxially stretched styrene resin sheet and molded product using the same

Country Status (5)

Country Link
JP (1) JP4990995B2 (en)
CN (1) CN102906138A (en)
MY (1) MY158688A (en)
TW (1) TW201139470A (en)
WO (1) WO2011118640A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913919B2 (en) * 2011-11-09 2016-04-27 新日鉄住金化学株式会社 Highly branched rubber-modified styrenic resin composition and sheet
JP5930668B2 (en) * 2011-11-09 2016-06-08 新日鉄住金化学株式会社 Manufacturing method of injection blow molded product
JP6242602B2 (en) * 2013-06-21 2017-12-06 旭化成株式会社 Styrene resin composition, styrene resin film, styrene laminate sheet and molded article
KR20180102540A (en) * 2016-01-13 2018-09-17 덴카 주식회사 Biaxially oriented sheet and its molded product
JP6389574B2 (en) * 2016-01-15 2018-09-12 デンカ株式会社 Biaxially stretched sheet and molded product thereof
SG11201807707QA (en) * 2016-03-28 2018-10-30 Ps Japan Corp Styrenic copolymer and production method therefor, and extruded foam sheet and molded article thereof
WO2018012373A1 (en) * 2016-07-12 2018-01-18 デンカ株式会社 Biaxially stretched sheet and shaped article of same
TW201823343A (en) * 2016-12-23 2018-07-01 奇美實業股份有限公司 Thermoplastic resin composition and molding product made therefrom

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220437A (en) * 1990-12-21 1992-08-11 Asahi Chem Ind Co Ltd Biaxially oriented styrenic resin sheet
JPH08157615A (en) * 1994-12-02 1996-06-18 Idemitsu Petrochem Co Ltd Polystyrene-based oriented film and productionn of polystyrene-based oriented film
JP4847667B2 (en) * 2002-12-27 2011-12-28 日本ポリプロ株式会社 PROPYLENE RESIN COMPOSITION FOR SHEET MOLDING AND SHEET COMPRISING THE SAME
JP2005179389A (en) * 2003-12-16 2005-07-07 Dainippon Ink & Chem Inc Styrene resin composition for biaxial stretching, biaxially stretched sheet and its manufacturing method
JP2005281405A (en) * 2004-03-29 2005-10-13 Dainippon Ink & Chem Inc Styrenic resin composition, its foamed sheet and foamed container
JP2005330299A (en) * 2004-05-18 2005-12-02 San Dic Kk Styrenic resin biaxially stretched sheet and thermoformed product
JP4815784B2 (en) * 2004-10-28 2011-11-16 Dic株式会社 Styrene- (meth) acrylic resin composition and method for producing the same

Also Published As

Publication number Publication date
WO2011118640A1 (en) 2011-09-29
JP2011202064A (en) 2011-10-13
MY158688A (en) 2016-10-31
CN102906138A (en) 2013-01-30
TW201139470A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4990995B2 (en) Biaxially stretched styrene resin sheet and molded product using the same
JP6481848B2 (en) Styrene resin composition, biaxially stretched styrene resin sheet and molded article
JP2003292707A (en) Styrene resin composition and method for producing the same
JPWO2016170964A1 (en) Styrene foam sheet and molded body using the same
JP4992271B2 (en) Rubber-modified styrene resin composition, styrene resin sheet and molded body using the same
JP5658607B2 (en) Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof
JP5333808B2 (en) Resin composition for biaxially oriented styrene resin sheet, and sheet and molded product using the same
JP6930422B2 (en) Styrene-based resin composition, biaxially stretched styrene-based resin sheet and molded product
JP2009030001A (en) Formed body for optical material
JP2007284591A (en) Styrene-(meth)acrylic resin and its molded article
JP5029722B2 (en) Styrenic resin composition and molded product thereof
JP4815784B2 (en) Styrene- (meth) acrylic resin composition and method for producing the same
JP2012116875A (en) Resin composition for heat-shrinkable film and heat-shrinkable film
JP2007291366A (en) Resin composition for biaxially oriented styrenic resin sheet, and sheet and formed article using the same
JP6507622B2 (en) Styrene foam sheet and molded article using the same
JP6481847B2 (en) Styrene resin sheet and molded body using the same
JP2007031660A (en) Styrene-based resin composition and styrene-based resin sheet and molded product using the same composition
JP6290530B2 (en) Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them
TWI538946B (en) A method for producing a styrene-based resin composition containing a high-branch type ultra-high molecular weight body and a composition thereof
JP4325475B2 (en) Methacrylic polymer and process for producing the same
JP4925391B2 (en) Heat resistant styrenic resin composition
JP6634812B2 (en) Styrene-based resin composition, sheet, molded article and method for producing the same
JP7384723B2 (en) Heat-resistant styrene resin compositions, non-foamed extruded sheets, foamed extruded sheets, and molded products thereof
JP2019011395A (en) Resin composition and manufacturing method therefor
JP6290529B2 (en) Biaxially stretched sheet and container for hot plate molding, and production methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111025

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4990995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250