JP6290530B2 - Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them - Google Patents

Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them Download PDF

Info

Publication number
JP6290530B2
JP6290530B2 JP2012238459A JP2012238459A JP6290530B2 JP 6290530 B2 JP6290530 B2 JP 6290530B2 JP 2012238459 A JP2012238459 A JP 2012238459A JP 2012238459 A JP2012238459 A JP 2012238459A JP 6290530 B2 JP6290530 B2 JP 6290530B2
Authority
JP
Japan
Prior art keywords
biaxially stretched
container
stretched sheet
vacuum
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012238459A
Other languages
Japanese (ja)
Other versions
JP2014087955A (en
Inventor
成一 熊倉
成一 熊倉
安藤 孝行
孝行 安藤
隆廣 土佐
隆廣 土佐
英明 西村
英明 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2012238459A priority Critical patent/JP6290530B2/en
Publication of JP2014087955A publication Critical patent/JP2014087955A/en
Application granted granted Critical
Publication of JP6290530B2 publication Critical patent/JP6290530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Description

本発明は、容器の真空圧空成形に適した二軸延伸シートと該シートを用いて成形した深絞り容器に関する。   The present invention relates to a biaxially stretched sheet suitable for vacuum / pressure forming of a container and a deep-drawn container formed using the sheet.

スチレン系樹脂は、安価で、透明性、成形性、剛性に優れた樹脂として、家庭用品、電気製品等の成形材料に広く用いられている。これらの成形品は、射出成形、或いはシートからの真空成形、圧空成形、さらには押出し機から樹脂をパリソンと呼ばれる筒状に押出し、金型に挟み込んだ後に内部から圧縮エアー等を吹き込むブロー成形等の手段で得られる。また軽量及び断熱性能を有する成形体を得るためには発泡成形等の技術も用いられる。これらの成形方法において、特に溶融延伸過程を有するシート成形、ブロー成形、発泡成形等の成形方法には、溶融時の歪み硬化性の高い素材の要求が高い。   Styrenic resins are widely used as molding materials for household goods, electrical products and the like as inexpensive resins with excellent transparency, moldability, and rigidity. These molded products include injection molding, vacuum molding from sheets, pressure molding, and blow molding in which resin is extruded into a cylinder called a parison from an extruder, and compressed air is blown from the inside after being sandwiched between molds. It is obtained by means of Moreover, in order to obtain the molded object which has a lightweight and heat insulation performance, techniques, such as foam molding, are also used. In these molding methods, there is a high demand for a material having high strain-hardening properties at the time of melting, particularly for molding methods such as sheet molding, blow molding, and foam molding having a melt-drawing process.

上記の成形方法における歪み硬化性の低い樹脂材料を用いた場合の問題点としては、シート成形では食品容器等の深絞り成形品に二次加工する際に、加熱溶融に伴うダレ現象で製品に厚さムラが生じやすく、また延伸性の不足による製品の割れ、破れ等が生じやくなること、ブロー成形ではパリソン形成時に歪み硬化性が低いとドローダウンを生じ成形が困難となる上、厚さムラによる製品強度のバラツキが大きいこと、さらに発泡成形では断熱性能を高めるため、発泡体の気泡を微小化、独立化させることが困難となる等の現象があげられる。   When using a resin material with low strain-hardening properties in the above molding method, the problem with sheet molding is that when the secondary processing is performed on a deep-drawn molded product such as a food container, the sagging phenomenon associated with heat melting causes the product to Thickness unevenness is likely to occur, product cracks and tears are likely to occur due to insufficient stretchability, and blow molding makes it difficult to mold due to drawdown if the distortion hardenability is low during parison formation. For example, there is a large variation in product strength due to unevenness, and in addition, foam molding makes it difficult to make the bubbles in the foam smaller and independent in order to improve the heat insulation performance.

溶融状態での歪み硬化性に代表される溶融粘弾性を制御する手段としては、スチレン系樹脂組成物に超高分子量成分を含有させる方法が有効であることが知られている。超高分子量成分を含有し、溶融特性に優れたスチレン系樹脂組成物としては、特許文献1に、多分岐型超高分子量成分と線状成分とを含有し、ゲル状物のないスチレン系樹脂組成物が開示されている。   As a means for controlling melt viscoelasticity typified by strain hardening in a molten state, it is known that a method of incorporating an ultrahigh molecular weight component into a styrene resin composition is effective. As a styrenic resin composition containing an ultrahigh molecular weight component and excellent in melting characteristics, Patent Document 1 discloses a styrene resin containing a multi-branched ultrahigh molecular weight component and a linear component and having no gel-like substance. A composition is disclosed.

特開2011−225866号公報JP 2011-225866 A

しかしながら、特許文献1に開示されたスチレン系樹脂組成物を用いて二軸延伸シートを成形したところ、シートに厚さムラを生じる場合があり、該二軸延伸シートを用いて真空圧空成形にて形成した深絞り容器において、外観や座屈強度が不十分である場合があった。   However, when a biaxially stretched sheet is molded using the styrenic resin composition disclosed in Patent Document 1, uneven thickness may occur in the sheet. In the formed deep-drawn container, the appearance and buckling strength may be insufficient.

本発明の課題は、厚さムラがないスチレン系の二軸延伸シートを提供し、該二軸延伸シートを用いて、外観や座屈強度に優れた深絞り容器を提供することにある。   An object of the present invention is to provide a styrene-based biaxially stretched sheet having no thickness unevenness, and to provide a deep-drawn container excellent in appearance and buckling strength using the biaxially stretched sheet.

本発明の真空圧空成形用の二軸延伸シートは、スチレンを必須とするビニル系モノマーと、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体との重合物である超高分子量多分岐型共重合体と、
前記ビニル系モノマーからなる線状重合体と、を含むスチレン系樹脂組成物であって、
前記溶剤可溶性多官能ビニル化合物共重合体が、前記超高分子量多分岐型共重合体及び前記線状重合体に含まれる前記ビニル系モノマー単位の全量に対して質量基準で100ppm〜3000ppmであるスチレン系樹脂組成物からなる二軸延伸シートであって、
前記スチレン系樹脂組成物の130℃におけるHencky歪が2.5及び0.5の時の伸長粘度をη2.5及びη0.5とした時、η2.5/η0.5で示される一軸伸長粘度比が19〜28であり、
前記二軸延伸シートのMD方向の最大配向緩和応力(a)とTD方向の最大配向緩和応力(b)とが、いずれも0.3MPa〜2.0MPaであり、且つ、(a)と(b)との差の絶対値が0.5MPa以下であることを特徴とする。
また、本発明の真空圧空成形用の二軸延伸シートの製造方法は、スチレンを必須とするビニル系モノマーに、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体を、質量基準で100ppm〜3000ppm添加し、均一混合した後に、連続的に配置された重合反応器に供給して重合反応を進行させ、前記溶剤可溶性多官能ビニル化合物共重合体と前記ビニル系モノマーが重合して生じる超高分子量多分岐型共重合体と、前記ビニル系モノマーが重合して生じる線状重合体とを含み、
130℃におけるHencky歪が2.5及び0.5の時の伸長粘度をη2.5及びη0.5とした時、η2.5/η0.5で示される一軸伸長粘度比が19〜28であるスチレン系樹脂組成物を押出機により溶融混練してダイから押し出し、次いで二軸延伸することを特徴とする。
The biaxially stretched sheet for vacuum / pressure forming of the present invention comprises a vinyl-based monomer essentially comprising styrene and a solvent-soluble polyfunctional vinyl compound having a branched structure and having two or more vinyl groups in one molecule on average. An ultra-high molecular weight multi-branched copolymer that is a polymer with a polymer;
A linear polymer comprising the vinyl monomer, and a styrene resin composition comprising:
The solvent-soluble polyfunctional vinyl compound copolymer is 100 ppm to 3000 ppm on a mass basis with respect to the total amount of the vinyl monomer units contained in the ultrahigh molecular weight multi-branched copolymer and the linear polymer. A biaxially stretched sheet comprising a resin-based resin composition,
Uniaxial elongational viscosity represented by η2.5 / η0.5 when the elongational viscosity when the Henky strain at 130 ° C. of the styrenic resin composition is 2.5 and 0.5 is η2.5 and η0.5. The ratio is 19-28,
The maximum orientation relaxation stress (a) in the MD direction and the maximum orientation relaxation stress (b) in the TD direction of the biaxially stretched sheet are both 0.3 MPa to 2.0 MPa, and (a) and (b ) Is an absolute value of a difference of 0.5 MPa or less.
In addition, the method for producing a biaxially stretched sheet for vacuum / pressure forming according to the present invention is a solvent-soluble solvent having a branched structure and having, on average, two or more vinyl groups in one molecule in a vinyl monomer essential to styrene. A polyfunctional vinyl compound copolymer is added in an amount of 100 ppm to 3000 ppm on a mass basis, uniformly mixed, then supplied to a continuously arranged polymerization reactor to proceed a polymerization reaction, and the solvent-soluble polyfunctional vinyl compound copolymer is added. An ultra-high molecular weight multi-branched copolymer produced by polymerizing the vinyl monomer and a linear polymer produced by polymerizing the vinyl monomer;
When the elongational viscosity at 130 ° C. when the Hencky strain is 2.5 and 0.5 is η2.5 and η0.5, the uniaxial elongational viscosity ratio represented by η2.5 / η0.5 is 19 to 28. The styrenic resin composition is melt-kneaded by an extruder, extruded from a die, and then biaxially stretched.

また、本発明の容器は、容器の深さをH[mm]、容器の開口部の最小内寸をL[mm]とした時に、H/Lが0.4〜2.0であり、上記本発明の真空圧空成形用の二軸延伸シートからなることを特徴とする。
さらに、本発明の容器の製造方法は、容器の深さをH[mm]、容器の開口部の最小内寸をL[mm]とした時に、H/Lで示される容器の絞り比が0.4〜2.0である容器を、上記本発明の真空圧空成形用の二軸延伸シートを用いて真空圧空成形することを特徴とする。
In the container of the present invention, H / L is 0.4 to 2.0 when the depth of the container is H [mm] and the minimum inner dimension of the opening of the container is L [mm]. It is characterized by comprising the biaxially stretched sheet for vacuum / pressure forming of the present invention.
Further, in the container manufacturing method of the present invention, when the depth of the container is H [mm] and the minimum inner dimension of the opening of the container is L [mm], the squeezing ratio of the container indicated by H / L is 0. The container which is .4 to 2.0 is vacuum-pressure molded using the biaxially stretched sheet for vacuum-pressure molding of the present invention described above.

本発明によれば、上記構成をとることにより、厚さムラのない二軸延伸シートが得られ、係る二軸延伸シートを真空圧空成形することで、外観に優れ、座屈強度に優れた深絞り容器を提供することができる。   According to the present invention, by taking the above configuration, a biaxially stretched sheet having no thickness unevenness can be obtained, and by forming the biaxially stretched sheet by vacuum / pressure forming, the depth is excellent in appearance and buckling strength. A squeeze container can be provided.

本発明の二軸延伸シートは、超高分子量多分岐型共重合体と線状重合体とを含むスチレン系樹脂組成物を成形してなり、該スチレン系樹脂組成物の130℃におけるHencky歪が2.5及び0.5の時の伸長粘度をη2.5及びη0.5とした時、η2.5/η0.5で示される一軸伸長粘度比が19〜28であることを特徴とする。そして、上記スチレン系樹脂組成物は、スチレンを必須とするビニル系モノマーに、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体を、質量基準で50ppm〜5000ppm添加し、均一混合した後に、連続的に配置された重合反応器に供給して重合反応を進行させることにより得られる。   The biaxially stretched sheet of the present invention is formed by molding a styrene resin composition containing an ultrahigh molecular weight multi-branched copolymer and a linear polymer, and the Henky strain at 130 ° C. of the styrene resin composition is When the elongational viscosity at 2.5 and 0.5 is η2.5 and η0.5, the uniaxial elongational viscosity ratio represented by η2.5 / η0.5 is 19 to 28. The styrene-based resin composition comprises a vinyl-based monomer essentially containing styrene, a solvent-soluble polyfunctional vinyl compound copolymer having an average of two or more vinyl groups in one molecule and a branched structure. It is obtained by adding 50 ppm to 5000 ppm on a mass basis, uniformly mixing, and then feeding to a continuously arranged polymerization reactor to advance the polymerization reaction.

本発明に係るスチレン系樹脂組成物の重合方法としては、スチレンを含むビニル系モノマーと溶剤可溶性多官能ビニル化合物共重合体と、必要に応じて溶剤、重合触媒、連鎖移動剤等を均一混合した後に、直列及び並列の少なくとも一方に配列された1個以上の反応器と未反応モノマー等を除去する揮発分除去工程を備えた設備に連続的にモノマー類を送入し、段階的に重合を進行させる所謂、連続塊状重合法が好適に用いられる。反応器の様式としては、完全混合型の槽型反応器、プラグフロー性を有する塔型反応器、重合を進行させながら一部の重合液を抜き出すループ型の反応器等が例示される。これら反応器の配列の順序に特に制限は無いが、連続生産においてゲル状物の生成を抑制するためには、溶剤可溶性多官能ビニル化合物共重合体が未反応の状態で、反応器壁面の境膜中に高濃度に滞留する状態を発現させないことが重要であり、第一の反応器として完全混合型の槽型反応器を選択することが好ましい。   As a polymerization method of the styrene resin composition according to the present invention, a vinyl monomer containing styrene, a solvent-soluble polyfunctional vinyl compound copolymer, and a solvent, a polymerization catalyst, a chain transfer agent, and the like were uniformly mixed as necessary. Later, one or more reactors arranged in at least one of serial and parallel, and equipment equipped with a devolatilization process for removing unreacted monomers, etc., are continuously fed monomers, and polymerization is carried out in stages. A so-called continuous bulk polymerization method is preferably used. Examples of the reactor type include a fully mixed tank reactor, a column reactor having plug flow properties, and a loop reactor in which a part of the polymerization liquid is withdrawn while the polymerization proceeds. There are no particular restrictions on the order of arrangement of these reactors, but in order to suppress the formation of gel-like substances in continuous production, the solvent-soluble polyfunctional vinyl compound copolymer is in an unreacted state and the boundary of the reactor wall surface. It is important not to develop a state of staying in the membrane at a high concentration, and it is preferable to select a fully mixed tank reactor as the first reactor.

本発明においては、溶剤可溶性多官能ビニル化合物共重合体は、重合溶剤等に溶解した状態で、必要に応じて上記の反応器の途中から添加することもできる。   In the present invention, the solvent-soluble polyfunctional vinyl compound copolymer can be added in the middle of the reactor as necessary in a state dissolved in a polymerization solvent or the like.

本発明に係るスチレンを必須とするビニル系モノマー(以下、スチレン系モノマーともいう)は、スチレンが100%であってもよく、スチレンと他のビニル系モノマーを含む混合物であってもよい。他のビニル系モノマーとしては、スチレンと共重合可能なオレフィン性二重結合を有するものであればよく、パラメチルスチレン等の芳香族ビニル系モノマー類、アクリル酸、メタクリル酸等のアクリル酸モノマー、アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー、アクリル酸ブチル、メタクリル酸メチル等のアクリル系モノマーや無水マレイン酸、フマル酸等のα,β−エチレン不飽和カルボン酸類、フェニルマレイミド、シクロヘキシルマレイミド等のイミド系モノマー類が挙げられる。これらの他のビニル系モノマーは1種もしくは2種以上を併用して使用することもできる。そして、スチレンと他のビニル系モノマーの割合は、スチレン50〜100モル%、他のビニル系モノマー0〜50モル%であることが、スチレン系樹脂組成物の特性を生かすために好ましい。   100% of styrene may be sufficient as the vinyl-type monomer (henceforth a styrene-type monomer) which requires the styrene which concerns on this invention, and the mixture containing styrene and another vinyl-type monomer may be sufficient as it. Other vinyl monomers may be those having an olefinic double bond copolymerizable with styrene, aromatic vinyl monomers such as paramethylstyrene, acrylic acid monomers such as acrylic acid and methacrylic acid, Vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, acrylic monomers such as butyl acrylate and methyl methacrylate, and α, β-ethylenically unsaturated carboxylic acids such as maleic anhydride and fumaric acid, phenylmaleimide, cyclohexylmaleimide, etc. Examples include imide monomers. These other vinyl monomers can be used alone or in combination of two or more. And it is preferable in order to make use of the characteristic of a styrene resin composition that the ratio of styrene and another vinyl monomer is 50-100 mol% of styrene, and 0-50 mol% of other vinyl monomers.

本発明に係る溶剤可溶性多官能ビニル化合物共重合体(以下、多官能ビニル化合物共重合体ともいう)は、スチレン系モノマーと共重合化されることで多岐に分岐された超高分子量のスチレン系樹脂を与えるものである。   The solvent-soluble polyfunctional vinyl compound copolymer (hereinafter, also referred to as polyfunctional vinyl compound copolymer) according to the present invention is an ultrahigh molecular weight styrene-based polymer branched in various ways by being copolymerized with a styrene-based monomer. It gives resin.

本発明に係る多官能ビニル化合物共重合体は、特開2004−123873号公報、特開2005−213443号公報、WO2009/110453等に開示されている方法に準じて得ることができる。具体的には、ジビニル化合物とモノビニル化合物を必須とするモノビニル化合物から選ばれる少なくとも1種以上の化合物を使用し、共重合させて、下記式(I)で示される反応性のペンダントビニル基を有する共重合体を得るものである。さらに、上記特許文献に記載されるように末端にビニル基以外の他の末端基が導入されたものを使用することもでき、特にフェノキシメタクリレート末端変性されたものは下記式(I)以外にも架橋点として作用することが可能となるため好ましい。この場合は、末端の不飽和結合も下記式(I)に含めたモル分率として取り扱う。   The polyfunctional vinyl compound copolymer according to the present invention can be obtained according to the methods disclosed in JP-A Nos. 2004-123873, 2005-213443, WO 2009/110453 and the like. Specifically, at least one compound selected from a divinyl compound and a monovinyl compound essentially comprising a monovinyl compound is used and copolymerized to have a reactive pendant vinyl group represented by the following formula (I). A copolymer is obtained. Furthermore, as described in the above-mentioned patent document, those having other terminal groups other than vinyl groups introduced at the terminals can also be used. Particularly, those having a phenoxymethacrylate terminal-modified other than the following formula (I) This is preferable because it can act as a crosslinking point. In this case, the terminal unsaturated bond is also handled as a mole fraction included in the following formula (I).

Figure 0006290530
Figure 0006290530

(式中、R1はジビニル芳香族化合物に由来する芳香族炭化水素基を示す。) (In the formula, R 1 represents an aromatic hydrocarbon group derived from a divinyl aromatic compound.)

ここで、モノビニル化合物としては、スチレン等のモノビニル芳香族化合物が100%であってもよく、これと共重合可能な他のビニル系モノマーを含む混合物であってもよい。他のビニル系モノマーとしては、上記したようなモノマーが挙げられる。モノビニル化合物は、モノビニル芳香族化合物を25〜100モル%含むことが好ましい。また、モノビニル芳香族化合物以外の単官能エチレン性不飽和結合含有化合物から選ばれるその他のモノビニル化合物を使用する場合は、全モノマーの50モル%以下、好ましくは10モル%以下使用することが好ましい。   Here, the monovinyl compound may be 100% of a monovinyl aromatic compound such as styrene, or may be a mixture containing other vinyl monomers copolymerizable therewith. Examples of other vinyl monomers include the monomers described above. It is preferable that a monovinyl compound contains 25-100 mol% of monovinyl aromatic compounds. Moreover, when using other monovinyl compounds chosen from monofunctional ethylenically unsaturated bond containing compounds other than a monovinyl aromatic compound, it is preferable to use 50 mol% or less of all the monomers, Preferably it is 10 mol% or less.

好ましいモノビニル化合物としては、スチレン、アルキルスチレン、フェニルスチレン等のモノビニル芳香族化合物が挙げられ、より好ましくはスチレン又はC1〜C2のアルキルスチレンが挙げられる。ジビニル化合物としては、ジビニルベンゼン、ジビニルビフェニル等が好ましく挙げられる。   Preferable monovinyl compounds include monovinyl aromatic compounds such as styrene, alkylstyrene, and phenylstyrene, and more preferably styrene or C1-C2 alkylstyrene. Preferred examples of the divinyl compound include divinylbenzene and divinylbiphenyl.

多官能ビニル化合物共重合体の製造方法としては、例えば、ジビニル芳香族化合物、モノビニル芳香族化合物及び他のモノビニル化合物から選ばれる2種以上の化合物を、ルイス酸触媒、エステル化合物から選ばれる助触媒の存在下、カチオン共重合させることにより得ることができる。   As a method for producing a polyfunctional vinyl compound copolymer, for example, two or more kinds of compounds selected from divinyl aromatic compounds, monovinyl aromatic compounds and other monovinyl compounds are used as promoters selected from Lewis acid catalysts and ester compounds. Can be obtained by cationic copolymerization in the presence of.

ジビニル化合物とモノビニル化合物の使用量は、本発明で使用される多官能ビニル化合物共重合体の組成を与えるように決められるが、ジビニル化合物を、好ましくは全モノマーの10〜50モル%、より好ましくは30〜50モル%使用する。モノビニル化合物は好ましくは全モノマーの90〜50モル%、より好ましくは70〜50モル%使用する。ここで、2−フェノキシエチルメタクリレートのようなカチオン重合においては末端変性剤として作用するものはモノマーとしては計算しない。   The amount of divinyl compound and monovinyl compound used is determined so as to give the composition of the polyfunctional vinyl compound copolymer used in the present invention, but the divinyl compound is preferably 10 to 50 mol% of the total monomer, more preferably Is used in an amount of 30-50 mol%. The monovinyl compound is preferably used in an amount of 90 to 50 mol%, more preferably 70 to 50 mol% of the total monomers. Here, in cationic polymerization such as 2-phenoxyethyl methacrylate, what acts as a terminal modifier is not calculated as a monomer.

多官能ビニル化合物共重合体の製造で用いられるルイス酸触媒としては、金属イオン(酸)と配位子(塩基)からなる化合物であって、電子対を受け取ることのできるものであれば特に制限なく使用できる。分子量及び分子量分布の制御及び重合活性の観点から、三フッ化ホウ素のエーテル(ジエチルエーテル、ジメチルエーテル等)錯体が最も好ましく使用される。ルイス酸触媒はモノマー1モルに対して、0.001〜10モルの範囲内で用いるが、より好ましくは0.001〜0.01モルである。ルイス酸触媒の使用量が過大であると、重合速度が大きくなりすぎるため、分子量分布の制御が困難となるので好ましくない。   The Lewis acid catalyst used in the production of the polyfunctional vinyl compound copolymer is particularly limited as long as it is a compound composed of a metal ion (acid) and a ligand (base) and can receive an electron pair. Can be used without From the viewpoints of control of molecular weight and molecular weight distribution and polymerization activity, boron trifluoride ether (diethyl ether, dimethyl ether, etc.) complexes are most preferably used. The Lewis acid catalyst is used in the range of 0.001 to 10 mol, more preferably 0.001 to 0.01 mol, per 1 mol of the monomer. An excessive amount of the Lewis acid catalyst is not preferable because the polymerization rate becomes too high and it becomes difficult to control the molecular weight distribution.

助触媒としてはエステル化合物から選ばれる1種以上が挙げられる。その中で、重合速度及び共重合体の分子量分布制御の観点から炭素数4〜30のエステル化合物が好適に使用される。入手の容易さの観点から、酢酸エチル、酢酸プロピル及び酢酸ブチルが好適に使用される。助触媒はモノマー1モルに対して0.001〜10モルの範囲内で使用するが、より好ましくは0.01〜1モルである。助触媒の使用量が過大であると、重合速度が減少し、共重合体の収率が低下する。一方、助触媒の使用量が過少であると、重合反応の選択性が低下し、分子量分布の増大、ゲルの生成等が生じる他、重合反応の制御が困難となる。   Examples of the cocatalyst include one or more selected from ester compounds. Among them, an ester compound having 4 to 30 carbon atoms is preferably used from the viewpoint of controlling the polymerization rate and the molecular weight distribution of the copolymer. From the viewpoint of availability, ethyl acetate, propyl acetate and butyl acetate are preferably used. The cocatalyst is used in the range of 0.001 to 10 moles per mole of monomer, more preferably 0.01 to 1 mole. When the amount of the cocatalyst used is excessive, the polymerization rate decreases and the yield of the copolymer decreases. On the other hand, when the amount of the cocatalyst used is too small, the selectivity of the polymerization reaction is lowered, the molecular weight distribution is increased, the gel is generated, and the polymerization reaction is difficult to control.

本発明に係る多官能ビニル化合物共重合体は上記のような製造方法で得ることができるが、モノマーとして使用するジビニル化合物のビニル基の一部は重合させずに残すことが必要である。そして、少なくとも平均して1分子中に2以上、好ましくは3以上のビニル基が存在するようにする。このビニル基は主として上記式(I)で表わされる構造単位として存在する。そして、ビニル基の一部は重合させずに残すことにより架橋反応を抑制し、溶剤可溶性を与えることができる。ここで、溶剤可溶性とは、トルエン、キシレン、THF、ジクロロエタン又はクロロホルムに可溶であることをいい、具体的にはこれらの溶媒100gに、25℃において5g以上が溶解し、ゲルが発生しないことをいう。一方、ジビニル化合物の一部は2つのビニル基が反応して架橋又は分岐することが必要であり、これにより分岐構造を有する共重合体とすることができる。このように、ジビニル化合物の一部については2つのビニル基の一つは反応させ、一つは重合させずに残し、他の一部については2つビニル基を反応させることにより本発明で使用する多官能ビニル化合物共重合体を得ることができる。このような多官能ビニル化合物共重合体を得る重合方法は、上記のように公知であり、上記のようにして製造することができる。   The polyfunctional vinyl compound copolymer according to the present invention can be obtained by the production method as described above, but it is necessary to leave a part of the vinyl group of the divinyl compound used as a monomer without being polymerized. Then, on average, 2 or more, preferably 3 or more vinyl groups are present in one molecule. This vinyl group exists mainly as a structural unit represented by the above formula (I). Then, by leaving a part of the vinyl group without being polymerized, the crosslinking reaction can be suppressed and solvent solubility can be imparted. Here, solvent-soluble means that it is soluble in toluene, xylene, THF, dichloroethane, or chloroform. Specifically, in 100 g of these solvents, 5 g or more dissolves at 25 ° C., and no gel is generated. Say. On the other hand, a part of the divinyl compound needs to be crosslinked or branched by the reaction of two vinyl groups, whereby a copolymer having a branched structure can be obtained. Thus, for some divinyl compounds, one of the two vinyl groups is reacted, one is left unpolymerized and the other is used in the present invention by reacting two vinyl groups. A polyfunctional vinyl compound copolymer can be obtained. The polymerization method for obtaining such a polyfunctional vinyl compound copolymer is known as described above, and can be produced as described above.

多官能ビニル化合物共重合体の質量平均分子量(Mw)は、1,000〜100,000であることが好ましく、5,000〜70,000がより好ましい。1000より小さい場合は、芳香族ジビニル化合物を用いた場合と同様に連続重合におけるゲル化の進行抑制効果が小さくなり、連続重合において十分な効果を得られないため好ましくない。   The mass average molecular weight (Mw) of the polyfunctional vinyl compound copolymer is preferably 1,000 to 100,000, and more preferably 5,000 to 70,000. If it is less than 1000, the effect of inhibiting the progress of gelation in continuous polymerization is reduced as in the case of using an aromatic divinyl compound, and a sufficient effect cannot be obtained in continuous polymerization.

本発明に係る多官能ビニル化合物共重合体は、導入されるジビニル化合物由来のビニル基を含有する上記式(I)で表わされる構造単位を有するが、この構造単位(I)のモル分率は、0.05〜0.50であることがよく、好ましくは0.1〜0.3である。係るモル分率が0.05より少ない場合は、高分子量の多分岐型共重合体が得られにくいため好ましくない。一方、モル分率が0.50を超える場合は、多分岐型共重合体の分子量が過度に増大し、ゲル化が起こりやすくなるため好ましくない。   The polyfunctional vinyl compound copolymer according to the present invention has a structural unit represented by the above formula (I) containing a vinyl group derived from a divinyl compound to be introduced, and the molar fraction of the structural unit (I) is , 0.05 to 0.50, and preferably 0.1 to 0.3. When the molar fraction is less than 0.05, it is not preferable because a high molecular weight multi-branched copolymer is difficult to obtain. On the other hand, when the molar fraction exceeds 0.50, the molecular weight of the multi-branched copolymer increases excessively and gelation tends to occur, which is not preferable.

また、多官能ビニル化合物共重合体は、その慣性半径(nm)と上記構造単位(I)のモル分率との比が1〜100の範囲にあることが好ましい。歪み硬化性を付与するための超高分子量多分岐型共重合体成分をゲル化を伴わずに調整するためには、5〜70の範囲が更に好ましい。上記の比が100を超える場合は、ゲル化は進行しないが、高分子量の多分岐型共重合体が得られにくいため好ましくない。一方、1より小さい場合は、多分岐型共重合体の分子量が過度に増大し、ゲル化が起こりやすくなるため好ましくない。ここで、慣性半径は、実施例に記載した方法により測定される値である。   Further, the polyfunctional vinyl compound copolymer preferably has a ratio of the radius of inertia (nm) to the molar fraction of the structural unit (I) in the range of 1 to 100. In order to adjust the ultrahigh molecular weight multi-branched copolymer component for imparting strain hardening without gelation, the range of 5 to 70 is more preferable. When the above ratio exceeds 100, gelation does not proceed, but it is not preferable because a high molecular weight multibranched copolymer is difficult to obtain. On the other hand, when it is smaller than 1, the molecular weight of the multi-branched copolymer is excessively increased, and gelation tends to occur, which is not preferable. Here, the inertial radius is a value measured by the method described in the examples.

ここで定義した慣性半径と二重結合の含有量を表わす指標である構造単位(I)のモル分率の比は、超高分子量分岐型共重合体成分を構成する際に、核となる多官能ビニル化合物共重合体が重合反応溶液中でどのような広がりの中に、どれだけの反応点を有しているかを表す指標といえる。この比が小さ過ぎると、反応点が近傍にあり、ゲル化を引き起こしやすくなり、またこの比が大き過ぎると多分岐型共重合体成分の高分子量化が困難となる。このような意味で、構造単位(I)の他に重合性二重結合の含有基が存在する場合は、二重結合の含有基(ビニル基)の合計がモル分率として0.05〜0.50の範囲で、慣性半径(nm)と上記モル分率の比が1〜100の範囲内にあることが好ましい。   The ratio of the molar fraction of the structural unit (I), which is an index representing the content of double bonds and the radius of inertia defined here, is the core of the ultrahigh molecular weight branched copolymer component. It can be said that the functional vinyl compound copolymer is an index indicating how much reaction points the spread of the functional vinyl compound copolymer has in the polymerization reaction solution. If this ratio is too small, the reaction point is in the vicinity and gelation tends to occur, and if this ratio is too large, it is difficult to increase the molecular weight of the multibranched copolymer component. In this sense, when there is a polymerizable double bond-containing group in addition to the structural unit (I), the total of the double bond-containing groups (vinyl group) is 0.05 to 0 as a molar fraction. In the range of .50, the ratio of the radius of inertia (nm) to the molar fraction is preferably in the range of 1 to 100.

スチレン系モノマーに対する多官能ビニル化合物共重合体の配合率としては、質量基準で50ppm〜5000ppmであり、100ppm〜3000ppmが好ましい。多官能ビニル化合物共重合体の配合率が50ppmより少ない場合は、本発明の十分な効果が得られにくいため好ましくない。一方、5000ppmを超える場合は、ゲルを生じる可能性がある。   As a compounding ratio of the polyfunctional vinyl compound copolymer with respect to a styrene-type monomer, it is 50 ppm-5000 ppm on a mass basis, and 100 ppm-3000 ppm is preferable. When the blending ratio of the polyfunctional vinyl compound copolymer is less than 50 ppm, it is difficult to obtain a sufficient effect of the present invention, which is not preferable. On the other hand, when it exceeds 5000 ppm, a gel may be produced.

前記多官能ビニル化合物共重合体とスチレン系モノマーとを重合させることにより、多官能ビニル化合物共重合体とスチレン系モノマーとの共重合体である超高分子量多分岐型共重合体と、スチレン系モノマーだけから生成する線状重合体との混合物である本発明のスチレン系樹脂組成物が得られる。スチレン系モノマーとして2種類以上のモノマーを用いた場合は、線状重合体は共重合体となる。   By polymerizing the polyfunctional vinyl compound copolymer and a styrenic monomer, an ultrahigh molecular weight multi-branched copolymer that is a copolymer of the polyfunctional vinyl compound copolymer and the styrenic monomer, and a styrenic monomer The styrenic resin composition of the present invention which is a mixture with a linear polymer produced only from monomers is obtained. When two or more types of monomers are used as the styrenic monomer, the linear polymer becomes a copolymer.

本発明に係るスチレン系樹脂組成物のMwは、20万〜80万であることが好ましい。25万〜70万であることがより好ましい。Mwが20万未満では成形体の衝撃強度が不十分であり、Mwが80万よりも大きいと粘度が増大し、成形性が不十分になる。   The Mw of the styrene resin composition according to the present invention is preferably 200,000 to 800,000. More preferably, it is 250,000 to 700,000. When the Mw is less than 200,000, the impact strength of the molded product is insufficient, and when the Mw is greater than 800,000, the viscosity increases and the moldability becomes insufficient.

上記のようなスチレン系樹脂組成物は、多分岐型共重合体と線状重合体を含むが、上記のようなMwを示すスチレン系樹脂組成物とすることにより、超多分岐型共重合体はMwが100万以上の超高分子量となり、線状重合体は10万〜50万となる。そして、スチレン系樹脂組成物全体としてのMwは、上記範囲となる。そして、Mwが100万以上の多分岐型共重合体とMwが10万〜50万の線状重合体の割合は2.0:98.0〜20.0:80.0であることが好ましい。これらの割合は、スチレン系モノマーに対する多官能ビニル化合物共重合体の配合割合や重合条件を調整することにより制御可能である。また、Mwが100万以上の多分岐型共重合体3.5〜10.0質量%と、Mwが15万〜35万の線状重合体90.0〜96.5質量%とを含有することがより好ましい。   The styrenic resin composition as described above includes a multi-branched copolymer and a linear polymer. By using a styrenic resin composition exhibiting Mw as described above, a hyper-branched copolymer is obtained. Mw has an ultra high molecular weight of 1 million or more, and the linear polymer is 100,000 to 500,000. And Mw as the whole styrene-type resin composition becomes the said range. The ratio of the multi-branched copolymer having Mw of 1 million or more and the linear polymer having Mw of 100,000 to 500,000 is preferably 2.0: 98.0 to 20.0: 80.0. . These ratios can be controlled by adjusting the blending ratio of the polyfunctional vinyl compound copolymer to the styrene monomer and the polymerization conditions. Further, it contains 3.5 to 10.0% by mass of a multi-branched copolymer having an Mw of 1 million or more and 90.0 to 96.5% by mass of a linear polymer having an Mw of 150,000 to 350,000. It is more preferable.

重合反応の制御の観点から、必要に応じて重合溶剤、有機過酸化物等の重合開始剤や脂肪族メルカプタン等の連鎖移動剤を使用できる。   From the viewpoint of controlling the polymerization reaction, a polymerization initiator such as a polymerization solvent or an organic peroxide or a chain transfer agent such as an aliphatic mercaptan can be used as necessary.

重合溶剤は重合反応での反応物の粘性を低下させるために、反応系に有機溶剤を添加してもよく、その有機溶剤は、トルエン、エチルベンゼン、キシレン、アセトニトリル、ベンゼン、クロロベンゼン、ジクロロベンゼン、アニソール、シアノベンゼン、ジメチルフォルムアミド、N,N−ジメチルアセトアミド、メチルエチルケトン等が挙げられる。   In order to lower the viscosity of the reaction product in the polymerization reaction, an organic solvent may be added to the reaction system, and the organic solvent is toluene, ethylbenzene, xylene, acetonitrile, benzene, chlorobenzene, dichlorobenzene, anisole. , Cyanobenzene, dimethylformamide, N, N-dimethylacetamide, methyl ethyl ketone and the like.

特に多官能ビニル化合物共重合体の添加量を多くしたい場合には、ゲル化を抑制する観点からも有機溶剤を使用することが好ましい。これにより、先に示した多官能ビニル化合物共重合体の添加量を飛躍的に増量させることができ、ゲルが生じにくい。   In particular, when it is desired to increase the amount of the polyfunctional vinyl compound copolymer, it is preferable to use an organic solvent from the viewpoint of suppressing gelation. Thereby, the addition amount of the polyfunctional vinyl compound copolymer shown previously can be increased dramatically, and a gel is hardly generated.

有機溶剤の使用量は、特に限定されるものではないが、ゲル化を制御するという観点から、通常、モノマー成分の合計量100質量部に対して、1〜50質量部であることが好ましく、5〜30質量部の範囲内であることがより好ましい。50質量部を超える場合は、生産性が著しく低下したり、スチレン系モノマーからなる線状重合体の分子量が過度に低下するため好ましくない。   The amount of the organic solvent used is not particularly limited, but from the viewpoint of controlling gelation, it is usually preferably 1 to 50 parts by mass with respect to 100 parts by mass of the total amount of monomer components, More preferably, it is in the range of 5 to 30 parts by mass. When the amount exceeds 50 parts by mass, productivity is remarkably reduced, and the molecular weight of the linear polymer composed of the styrene monomer is excessively lowered, which is not preferable.

重合開始剤としては、ラジカル重合開始剤が好ましく、公知慣用の例えば、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(t−ブチルパーオキシ)ブタン、2,2−ビス(4,4−ジ−ブチルパーオキシシクロヘキシル)プロパン等のパーオキシケタール類、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド等のジアルキルパーオキサイド類、ベンゾイルパーオキサイド、ジシナモイルパーオキサイド等のジアシルパーオキサイド類、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシイソプロピルモノカーボネート等のパーオキシエステル類、N,N’−アゾビスイソブチルニトリル、N,N’−アゾビス(シクロヘキサン−1−カルボニトリル)、N,N’−アゾビス(2−メチルブチロニトリル)、N,N’−アゾビス(2,4−ジメチルバレロニトリル)、N,N’−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種或いは2種以上を組み合わせて使用することができる。   As the polymerization initiator, a radical polymerization initiator is preferable. For example, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) butane, 2,2- Peroxyketals such as bis (4,4-di-butylperoxycyclohexyl) propane, hydroperoxides such as cumene hydroperoxide, t-butyl hydroperoxide, di-t-butyl peroxide, dicumylper Dialkyl peroxides such as oxide, di-t-hexyl peroxide, diacyl peroxides such as benzoyl peroxide, disinamoyl peroxide, t-butyl peroxybenzoate, di-t-butyl peroxyisophthalate, t -Butylperoxyisopropyl monocarbonate Peroxyesters such as N, N′-azobisisobutylnitrile, N, N′-azobis (cyclohexane-1-carbonitrile), N, N′-azobis (2-methylbutyronitrile), N, N '-Azobis (2,4-dimethylvaleronitrile), N, N'-azobis [2- (hydroxymethyl) propionitrile] and the like may be mentioned, and these may be used alone or in combination. it can.

連鎖移動剤はスチレン系樹脂組成物の分子量が過度に大きくなりすぎないように添加するもので、連鎖移動基を1つ有する単官能連鎖移動剤でも連鎖移動剤を複数有する多官能連鎖移動剤を使用できる。単官能連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸エステル類等が挙げられる。   The chain transfer agent is added so that the molecular weight of the styrenic resin composition does not become excessively large. A monofunctional chain transfer agent having one chain transfer group or a polyfunctional chain transfer agent having a plurality of chain transfer agents. Can be used. Examples of the monofunctional chain transfer agent include alkyl mercaptans and thioglycolic acid esters.

多官能連鎖移動剤としては、エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3−メルカプトプロピオン酸でエステル化したものが挙げられる。   Polyfunctional chain transfer agents such as ethylene glycol, neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, etc. are esterified with thioglycolic acid or 3-mercaptopropionic acid. The thing which was done is mentioned.

本発明において、上記スチレン系樹脂組成物の130℃におけるHencky歪が2.5及び0.5の時の伸長粘度をη2.5及びη0.5とした時、η2.5/η0.5で示される一軸伸長粘度比が19〜28である。係るη2.5/η0.5が19未満の場合、及び、28を超える場合には、該スチレン系樹脂組成物で成形した二軸延伸シートの厚さムラが大きくなり、該シートを真空圧空成形して得られる容器において、座屈強度に劣る。好ましくは21〜28、望ましくは23〜28である。   In the present invention, when the elongation viscosity when the Henky strain at 130 ° C. of the styrenic resin composition is 2.5 and 0.5 is η2.5 and η0.5, it is expressed as η2.5 / η0.5. The uniaxial elongational viscosity ratio is 19-28. When the η2.5 / η0.5 is less than 19 and exceeds 28, the thickness unevenness of the biaxially stretched sheet formed with the styrene resin composition becomes large, and the sheet is vacuum-pressure formed. Thus, the container obtained is inferior in buckling strength. Preferably it is 21-28, desirably 23-28.

本発明の二軸延伸シートの製造方法としては、前記スチレン系樹脂組成物を押出機により溶融混練してダイ(特にTダイ)から押し出し、次いで、二軸方向に逐次又は同時で延伸する製造方法である。二軸延伸シートの厚みは特に限定されないが、通常0.6mm以上2.0mm未満である。好ましくは0.6mm以上1.5mm未満である。   As a method for producing the biaxially stretched sheet of the present invention, the styrenic resin composition is melt-kneaded by an extruder, extruded from a die (particularly a T die), and then stretched sequentially or simultaneously in a biaxial direction. It is. Although the thickness of a biaxially stretched sheet is not specifically limited, Usually, it is 0.6 mm or more and less than 2.0 mm. Preferably it is 0.6 mm or more and less than 1.5 mm.

本発明の二軸延伸シートの、MD(Machine Direction;シート流れ方向)延伸倍率をA、TD(Transverse Direction;シート流れ方向に垂直な方向)延伸倍率をBとした時、A×Bで示される面倍率が、4〜10倍であることが好ましい。尚、係る面倍率において、MD延伸倍率及びTD延伸倍率は、いずれも1.5〜3.5倍が好ましい。A,B,A×Bのいずれかが上記範囲外の場合、シートに厚さムラが生じ、該シートを真空圧空成形して得られる容器において、座屈強度が低下する恐れがあり、好ましくない。尚、より好ましくは、面倍率が4〜8倍で、MD延伸倍率及びTD延伸倍率がそれぞれ2.0〜3.0倍である。   When the MD (Machine Direction; sheet flow direction) stretch ratio of the biaxially stretched sheet of the present invention is A and the TD (Transverse Direction; stretch direction perpendicular to the sheet flow direction) stretch ratio is B, it is indicated by A × B. The surface magnification is preferably 4 to 10 times. In addition, as for the surface magnification which concerns, both MD draw ratio and TD draw ratio have preferable 1.5 to 3.5 times. If any of A, B, and A × B is out of the above range, thickness unevenness occurs in the sheet, and the buckling strength may decrease in a container obtained by vacuum-pressure forming the sheet, which is not preferable. . More preferably, the surface magnification is 4 to 8 times, and the MD stretching ratio and the TD stretching ratio are 2.0 to 3.0 times, respectively.

また、本発明の二軸延伸シートは、MD方向の最大配向緩和応力をa、TD方向の最大配向緩和応力をbとした時、a,bがそれぞれ0.3MPa〜2.0MPaであり、|a−b|が0.5MPa以下であることが好ましい。a,b,|a−b|のいずれかが上記範囲外の場合、シートに厚さムラが生じ、該シートを真空圧空成形して得られる容器において、座屈強度が低下する恐れがあり、好ましくない。より好ましくは、a,bが0.3MPa〜1.0MPaで|a−b|が0.4MPa以下、望ましくは、a,bが0.3MPa〜0.7MPaで|a−b|が0.3MPa以下である。   In the biaxially stretched sheet of the present invention, when the maximum orientation relaxation stress in the MD direction is a and the maximum orientation relaxation stress in the TD direction is b, a and b are 0.3 MPa to 2.0 MPa, respectively. ab | is preferably 0.5 MPa or less. If any of a, b, and | a−b | is outside the above range, thickness unevenness occurs in the sheet, and in the container obtained by vacuum-pressure forming the sheet, the buckling strength may decrease, It is not preferable. More preferably, a and b are 0.3 MPa to 1.0 MPa and | a−b | is 0.4 MPa or less, and desirably a and b are 0.3 MPa to 0.7 MPa and | a−b | 3 MPa or less.

本発明の容器は、上記本発明の二軸延伸シートを真空圧空成形して得られ、容器の深さをH[mm]、容器の開口部の最小内寸をL[mm]とした時に、H/Lで示される容器の絞り比が0.4〜2.0である。換言すれば、本発明の二軸延伸シートを用いることによって、本発明に係る絞り比の容器を再現性良く成形することができる。より好ましくは絞り比が0.6〜2.0であり、望ましくは1.0〜2.0である。   The container of the present invention is obtained by vacuum-pressure forming the biaxially stretched sheet of the present invention. When the depth of the container is H [mm] and the minimum inner dimension of the opening of the container is L [mm], The squeezing ratio of the container indicated by H / L is 0.4 to 2.0. In other words, by using the biaxially stretched sheet of the present invention, the container having a drawing ratio according to the present invention can be molded with good reproducibility. More preferably, the aperture ratio is 0.6 to 2.0, and desirably 1.0 to 2.0.

本発明の容器を成形するための成形方法としては、真空圧空成形方法である。該成形方法は間接加熱により二軸延伸シートを軟化させた後に真空や圧空をかけ、二軸延伸シートを金型に密着させ、次いで、冷却後、空気を吹き込んで成形品を取り出す成形方法である。該成形方法を用いることで、透明性が良好な成形品が得られる。さらにプラグアシストにより深絞り成形も可能である。   The molding method for molding the container of the present invention is a vacuum / pressure forming method. The molding method is a molding method in which a biaxially stretched sheet is softened by indirect heating and then vacuum or compressed air is applied, the biaxially stretched sheet is brought into close contact with a mold, and after cooling, air is blown to take out a molded product. . By using this molding method, a molded product having good transparency can be obtained. Further, deep drawing can be performed by plug assist.

〔溶剤可溶性多官能ビニル化合物共重合体(α)〕
ジビニルベンゼン160g、エチルビニルベンゼン94g、スチレン223g、2−フェノキシエチルメタクリレート633g、トルエン1080gを3Lの反応容器に投入し、50℃で57gの三フッ化ホウ素のジエチルエーテル錯体を添加し、6時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回、油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、秤量して、溶剤可溶性多官能ビニル化合物共重合体(α)を得た。
[Solvent-soluble polyfunctional vinyl compound copolymer (α)]
160 g of divinylbenzene, 94 g of ethylvinylbenzene, 223 g of styrene, 633 g of 2-phenoxyethyl methacrylate, and 1080 g of toluene are put into a 3 L reaction vessel, and 57 g of diethyl ether complex of boron trifluoride is added at 50 ° C. for 6 hours. I let you. After the polymerization solution was stopped with an aqueous sodium hydrogen carbonate solution, the oil layer was washed three times with pure water, and the reaction mixture was poured into a large amount of methanol at room temperature to precipitate a polymer. The obtained polymer was washed with methanol, filtered, dried and weighed to obtain a solvent-soluble polyfunctional vinyl compound copolymer (α).

〔スチレン系樹脂組成物〕
(樹脂(1))
直列に接続された内容積40Lの完全混合性を有する槽型反応器を2個と、プラグフロー性を有する静的混合機を内蔵した内容積20Lの塔型反応器と、予熱器と真空槽を有するフラッシュチャンバー型の揮発分除去設備と、を有した連続塊状重合設備に、スチレン85質量部、エチルベンゼン15質量部、溶剤可溶性多官能ビニル化合物共重合体(α)0.2質量部を均一に混合した後に15L/hrで連続的に送入した。第1の槽型反応器は135℃、第2の槽型反応器は135℃、第3の塔型反応器は入口部を145℃、出口部が165℃になるように段階的に温度を上昇させた後、225℃に加熱した予熱器に移送し、圧力を665Pa(5Torr)に調整した予熱器の真下の真空槽に投入することにより、未反応モノマーと溶剤とを除去した後、真空槽からギアポンプにてストランド状に樹脂を抜き出しながらカットすることでスチレン系樹脂組成物(樹脂(1))を得た。
[Styrene resin composition]
(Resin (1))
Two tank reactors with a total mixing capacity of 40 L connected in series, a 20 L internal reactor with a built-in static mixer with plug flow, a preheater and a vacuum tank And a flash chamber type devolatilization equipment having a uniform mass polymerization equipment having 85 parts by mass of styrene, 15 parts by mass of ethylbenzene, and 0.2 parts by mass of a solvent-soluble polyfunctional vinyl compound copolymer (α). And mixed continuously at 15 L / hr. The temperature of the first tank reactor is 135 ° C., the second tank reactor is 135 ° C., the third tower reactor is 145 ° C. at the inlet, and 165 ° C. at the outlet. After the temperature is raised, it is transferred to a preheater heated to 225 ° C., and put into a vacuum tank directly under the preheater whose pressure is adjusted to 665 Pa (5 Torr) to remove unreacted monomers and solvent, and then vacuum. A styrenic resin composition (resin (1)) was obtained by cutting while removing the resin in a strand form from the tank with a gear pump.

(樹脂(2))
上記樹脂(1)の重合における溶剤可溶性多官能ビニル化合物共重合体(α)の添加量を0.06質量部とした以外は樹脂(1)と同じ方法で重合し、スチレン系樹脂組成物(樹脂(2))を得た。
(Resin (2))
Polymerization is carried out in the same manner as the resin (1) except that the amount of the solvent-soluble polyfunctional vinyl compound copolymer (α) added in the polymerization of the resin (1) is 0.06 parts by mass, and the styrene resin composition ( Resin (2)) was obtained.

(樹脂(3))
上記樹脂(1)の重合における溶剤可溶性多官能ビニル化合物共重合体(α)の添加量を0.03質量部とした以外は樹脂(1)と同じ方法で重合し、スチレン系樹脂組成物(樹脂(3))を得た。
(Resin (3))
Polymerization is carried out in the same manner as the resin (1) except that the amount of the solvent-soluble polyfunctional vinyl compound copolymer (α) in the polymerization of the resin (1) is 0.03 parts by mass, and a styrene resin composition ( Resin (3)) was obtained.

(樹脂(4))
上記樹脂(1)の重合における溶剤可溶性多官能ビニル化合物共重合体(α)の添加量を0.003質量部とした以外は樹脂(1)と同じ方法で重合し、スチレン系樹脂組成物(樹脂(4))を得た。
(Resin (4))
Polymerization is carried out in the same manner as the resin (1) except that the amount of the solvent-soluble polyfunctional vinyl compound copolymer (α) added in the polymerization of the resin (1) is 0.003 parts by mass, and a styrene resin composition ( Resin (4)) was obtained.

(樹脂(5))
上記樹脂(1)の重合における溶剤可溶性多官能ビニル化合物共重合体(α)の添加量を0.004質量部とし、さらにt−ドデシルメルカプタン0.05質量部を加えた以外は樹脂(1)と同じ方法で重合し、スチレン系樹脂組成物(樹脂(5))を得た。
(Resin (5))
Resin (1) except that the amount of the solvent-soluble polyfunctional vinyl compound copolymer (α) in the polymerization of the resin (1) is 0.004 parts by mass, and 0.05 parts by mass of t-dodecyl mercaptan is further added. The styrene resin composition (resin (5)) was obtained by polymerization in the same manner as described above.

(樹脂(6))
上記樹脂(1)の重合における溶剤可溶性多官能ビニル化合物共重合体(α)の添加量を0.48質量部とし、第1の槽型反応器は120℃、第2の槽型反応器は125℃、第3の塔型反応器は入口部が130℃、出口部が160℃となるように段階的に温度を上昇させた以外は樹脂(1)と同じ方法で重合し、スチレン系樹脂組成物(樹脂(6))を得た。
(Resin (6))
The amount of addition of the solvent-soluble polyfunctional vinyl compound copolymer (α) in the polymerization of the resin (1) is 0.48 parts by mass, the first tank reactor is 120 ° C., and the second tank reactor is 125 ° C, the third tower reactor was polymerized in the same manner as the resin (1) except that the temperature was increased stepwise so that the inlet portion was 130 ° C and the outlet portion was 160 ° C. A composition (resin (6)) was obtained.

(樹脂(7))
上記樹脂(1)の重合における溶剤可溶性多官能ビニル化合物共重合体(α)の添加量を0.8質量部とした以外は樹脂(1)と同じ方法で重合し、スチレン系樹脂組成物(樹脂(7))を得た。
(Resin (7))
Polymerization is carried out in the same manner as the resin (1) except that the amount of the solvent-soluble polyfunctional vinyl compound copolymer (α) added in the polymerization of the resin (1) is 0.8 parts by mass, and a styrene resin composition ( Resin (7)) was obtained.

(樹脂(8))
東洋スチレン社製の汎用ポリスチレン(GPPS)である「HRM61」を使用した。
(Resin (8))
“HRM61” which is general-purpose polystyrene (GPPS) manufactured by Toyo Styrene Co., Ltd. was used.

(樹脂(9))
電気化学工業社製のスチレン・ブタジエン・スチレンブロック共重合体(SBS)である「クリアレン850L」を使用した。
(Resin (9))
“Clearene 850L” which is a styrene / butadiene / styrene block copolymer (SBS) manufactured by Denki Kagaku Kogyo Co., Ltd. was used.

〔実施例1〕
樹脂(1)を用い、シート押出機(Tダイ幅500mm、φ40mmのエキストルーダー(田辺プラスチック機械社製))を用い、押出温度230℃で、厚さ3.8mmの未延伸シートを得た。このシートを130℃に予熱し、歪み速度0.1/secでMD方向2.5倍、TD方向2.5倍(面倍率6.3倍)に延伸し、厚さ0.6mmの二軸延伸シートを得た。
[Example 1]
Using the resin (1), an unstretched sheet having a thickness of 3.8 mm was obtained at an extrusion temperature of 230 ° C. using a sheet extruder (T-die width 500 mm, φ40 mm extruder (manufactured by Tanabe Plastic Machinery Co., Ltd.)). The sheet was preheated to 130 ° C., stretched 2.5 times in the MD direction and 2.5 times in the TD direction (surface magnification: 6.3 times) at a strain rate of 0.1 / sec, and biaxial with a thickness of 0.6 mm. A stretched sheet was obtained.

得られた二軸延伸シートを用いて、真空圧空成形機を用い、上下ヒーター温度350℃の輻射熱で15sec加熱後、真空圧空成形し、下記絞り比の容器(1)〜(4)をそれぞれ20個ずつ得た。
容器(1):開口部φ100mmの円形、高さ150mm、テーパー角度5°、絞り比1.5
容器(2):開口部φ100mmの円形、高さ70mm、テーパー角度5°、絞り比0.7
容器(3):開口部φ100mmの円形、高さ50mm、テーパー角度5°、絞り比0.5
容器(4):開口部φ100mmの円形、高さ30mm、テーパー角度5°、絞り比0.3
Using the resulting biaxially stretched sheet, using a vacuum / pressure forming machine, heated for 15 seconds with radiant heat at an upper and lower heater temperature of 350 ° C., and then subjected to vacuum / pressure forming, and each of the containers (1) to (4) having the following drawing ratios of 20 I got one by one.
Container (1): circular shape with opening φ100 mm, height 150 mm, taper angle 5 °, drawing ratio 1.5
Container (2): circular shape with opening φ100 mm, height 70 mm, taper angle 5 °, drawing ratio 0.7
Container (3): circular shape with opening φ100 mm, height 50 mm, taper angle 5 °, drawing ratio 0.5
Container (4): circular shape with opening φ100 mm, height 30 mm, taper angle 5 °, drawing ratio 0.3

使用した樹脂(1)について一軸伸長粘度比を後述する測定方法により測定した。また、二軸延伸シートの平均厚さと厚さムラとを後述する方法により測定し、さらに、該二軸延伸シートから得られた容器について、後述する方法により評価した。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。   About the resin (1) used, the uniaxial elongation viscosity ratio was measured with the measuring method mentioned later. Further, the average thickness and thickness unevenness of the biaxially stretched sheet were measured by the method described later, and the container obtained from the biaxially stretched sheet was evaluated by the method described later. Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例2〕
樹脂(1)の替わりに樹脂(2)を使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
[Example 2]
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (2) was used instead of the resin (1). Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例3〕
樹脂(1)の替わりに樹脂(3)を使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
Example 3
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (3) was used instead of the resin (1). Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例4〕
樹脂(1)の替わりに樹脂(1)と樹脂(8)とを質量比で80/20の割合で使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
Example 4
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (1) and the resin (8) were used in a mass ratio of 80/20 instead of the resin (1). Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例5〕
樹脂(1)の替わりに樹脂(1)と樹脂(9)とを質量比で95/5の割合で使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
Example 5
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (1) and the resin (9) were used in a mass ratio of 95/5 instead of the resin (1). Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例6〕
未延伸シートの厚さを5.8mmとし、MD方向3.1倍、TD方向3.1倍(面倍率9.6倍)に延伸した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
Example 6
A biaxially stretched sheet and a biaxially stretched sheet were formed in the same manner as in Example 1 except that the thickness of the unstretched sheet was 5.8 mm and the sheet was stretched 3.1 times in the MD direction and 3.1 times in the TD direction (area magnification: 9.6 times). A container was obtained. Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例7〕
未延伸シートの厚さを8.7mmとし、MD方向3.8倍、TD方向3.8倍(面倍率14.4倍)に延伸した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
Example 7
A biaxially stretched sheet and a biaxially stretched sheet were formed in the same manner as in Example 1 except that the thickness of the unstretched sheet was 8.7 mm and the sheet was stretched 3.8 times in the MD direction and 3.8 times in the TD direction (14.4 times the surface magnification). A container was obtained. Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例8〕
未延伸シートの厚さを1.5mmとし、MD方向1.8倍、TD方向1.4倍(面倍率2.5倍)に延伸した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
Example 8
A biaxially stretched sheet and a biaxially stretched sheet were formed in the same manner as in Example 1 except that the thickness of the unstretched sheet was 1.5 mm and the sheet was stretched 1.8 times in the MD direction and 1.4 times in the TD direction (surface magnification 2.5 times). A container was obtained. Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例9〕
未延伸シートを歪み速度0.13/secでMD方向2.5倍、歪み速度0.07/secでTD方向2.5倍(面倍率6.3倍)に二軸延伸した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
Example 9
Example except that the unstretched sheet was biaxially stretched 2.5 times in the MD direction at a strain rate of 0.13 / sec and 2.5 times in the TD direction (surface magnification: 6.3 times) at a strain rate of 0.07 / sec. In the same manner as in No. 1, a biaxially stretched sheet and a container were obtained. Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔実施例10〕
未延伸シートを歪み速度0.18/secでMD方向2.5倍、歪み速度0.09/secでTD方向2.5倍(面倍率6.3倍)に二軸延伸した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
Example 10
Except that the unstretched sheet was biaxially stretched at a strain rate of 0.18 / sec in the MD direction 2.5 times, and at a strain rate of 0.09 / sec in the TD direction 2.5 times (surface magnification 6.3 times). In the same manner as in No. 1, a biaxially stretched sheet and a container were obtained. Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

参考実施例11〕
未延伸シートを120℃に予熱し、歪み速度0.2/secでMD方向2.5倍、歪み速度0.13/secでTD方向2.5倍(面倍率6.3倍)に二軸延伸した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表1に示す。
[ Reference Example 11]
The unstretched sheet is preheated to 120 ° C. and biaxial in the MD direction 2.5 times at a strain rate of 0.2 / sec and 2.5 times in the TD direction (surface magnification 6.3 times) at a strain rate of 0.13 / sec A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except for stretching. Table 1 shows the physical properties and evaluation results of the resin used, the biaxially stretched sheet, and the container.

〔比較例1〕
樹脂(1)の替わりに樹脂(4)を使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表2に示す。
[Comparative Example 1]
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (4) was used instead of the resin (1). Table 2 shows the physical properties and evaluation results of the resins used, biaxially stretched sheets, and containers.

〔比較例2〕
樹脂(1)の替わりに樹脂(5)を使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表2に示す。
[Comparative Example 2]
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (5) was used instead of the resin (1). Table 2 shows the physical properties and evaluation results of the resins used, biaxially stretched sheets, and containers.

〔比較例3〕
樹脂(1)の替わりに樹脂(6)を使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表2に示す。
[Comparative Example 3]
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (6) was used instead of the resin (1). Table 2 shows the physical properties and evaluation results of the resins used, biaxially stretched sheets, and containers.

〔比較例4〕
樹脂(1)の替わりに樹脂(7)を使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表2に示す。
[Comparative Example 4]
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (7) was used instead of the resin (1). Table 2 shows the physical properties and evaluation results of the resins used, biaxially stretched sheets, and containers.

〔比較例5〕
樹脂(1)の替わりに樹脂(8)を使用した以外は実施例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表2に示す。
[Comparative Example 5]
A biaxially stretched sheet and a container were obtained in the same manner as in Example 1 except that the resin (8) was used instead of the resin (1). Table 2 shows the physical properties and evaluation results of the resins used, biaxially stretched sheets, and containers.

〔比較例6〕
未延伸シートの厚さを8.7mmとし、MD方向3.8倍、TD方向3.8倍(面倍率14.4倍)に二軸延伸した以外は比較例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表2に示す。
[Comparative Example 6]
Biaxial stretching was performed in the same manner as in Comparative Example 1 except that the thickness of the unstretched sheet was 8.7 mm and biaxial stretching was performed 3.8 times in the MD direction and 3.8 times in the TD direction (surface magnification 14.4 times). Sheets and containers were obtained. Table 2 shows the physical properties and evaluation results of the resins used, biaxially stretched sheets, and containers.

〔比較例7〕
未延伸シートの厚さを1.5mmとし、MD方向1.8倍、TD方向1.4倍(面倍率2.5倍)に延伸した以外は比較例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表2に示す。
[Comparative Example 7]
A biaxially stretched sheet and a biaxially stretched sheet were formed in the same manner as in Comparative Example 1 except that the thickness of the unstretched sheet was 1.5 mm and the film was stretched 1.8 times in the MD direction and 1.4 times in the TD direction (2.5 times the surface magnification) A container was obtained. Table 2 shows the physical properties and evaluation results of the resins used, biaxially stretched sheets, and containers.

〔比較例8〕
未延伸シートを120℃に予熱し、歪み速度0.2/secでMD方向2.5倍、歪み速度0.13/secでTD方向2.5倍(面倍率6.3倍)に二軸延伸した以外は比較例1と同様にして二軸延伸シート及び容器を得た。使用した樹脂、二軸延伸シート及び容器の物性と評価結果を表2に示す。
[Comparative Example 8]
The unstretched sheet is preheated to 120 ° C. and biaxial in the MD direction 2.5 times at a strain rate of 0.2 / sec and 2.5 times in the TD direction (surface magnification 6.3 times) at a strain rate of 0.13 / sec A biaxially stretched sheet and a container were obtained in the same manner as in Comparative Example 1 except that the film was stretched. Table 2 shows the physical properties and evaluation results of the resins used, biaxially stretched sheets, and containers.

〔一軸伸長粘度比の測定方法〕
スチレン系樹脂組成物を230℃で加熱プレスし、20mm×10mm×0.7mmの試験片を得た。その試験片を用い、温度130℃、歪み速度0.1/secで、Hencky歪が2.5と0.5での伸長粘度(η2.5とη0.5)を測定し、その比(η2.5/η0.5)を求めた。尚、伸長粘度測定器はティー・エイ・インスツルメント社製「AR2000ex」を使用した。
[Measurement method of uniaxial elongational viscosity ratio]
The styrene resin composition was heated and pressed at 230 ° C. to obtain a test piece of 20 mm × 10 mm × 0.7 mm. Using the test piece, the elongational viscosity (η2.5 and η0.5) was measured at a temperature of 130 ° C., a strain rate of 0.1 / sec, and a Henky strain of 2.5 and 0.5, and the ratio (η2 .5 / η0.5). In addition, “AR2000ex” manufactured by TA Instruments Co., Ltd. was used as the extension viscosity measuring device.

〔最大配向緩和応力〕
二軸延伸シートから20mm×200mm×0.6mmの試験片を得た。その試験片の両端を固定し、130℃のオイルバスに浸漬した後、荷重が最大となった時の応力値を算出した。その時のMD方向の応力値を最大配向緩和応力aとし、TD方向の応力値を最大緩和応力bとし、|a−b|を求めた。
[Maximum orientation relaxation stress]
A test piece of 20 mm × 200 mm × 0.6 mm was obtained from the biaxially stretched sheet. Both ends of the test piece were fixed, immersed in a 130 ° C. oil bath, and then the stress value when the load reached the maximum was calculated. The stress value in the MD direction at that time was defined as the maximum orientation relaxation stress a, the stress value in the TD direction was defined as the maximum relaxation stress b, and | a−b | was determined.

〔二軸延伸シートの平均厚さと厚さムラの評価〕
二軸延伸シートをMD方向及びTD方向に50mm間隔で格子状にした時の交点25点についてマイクロゲージを用いて厚さを測定し、平均厚さとその標準偏差σを算出し、厚さについては数値で、厚さムラについては標準偏差σを下記基準で評価した。
◎:σが0.05mm未満
○:σが0.05mm以上、0.07mm未満
△:σが0.07mm以上、0.10mm未満
×:σが0.10mm以上
[Evaluation of average thickness and thickness unevenness of biaxially oriented sheet]
The thickness is measured using a microgauge at the intersection 25 points when the biaxially stretched sheet is made into a grid shape at intervals of 50 mm in the MD direction and the TD direction, and the average thickness and its standard deviation σ are calculated. With respect to thickness unevenness, the standard deviation σ was evaluated according to the following criteria.
A: σ is less than 0.05 mm O: σ is 0.05 mm or more and less than 0.07 mm Δ: σ is 0.07 mm or more, less than 0.10 mm x: σ is 0.10 mm or more

〔容器外観の評価〕
容器(1)〜(4)について、破れやしわ、白化の発生した容器数を下記指標で評価した。
◎:0個
○:1〜2個
△:3〜5個
×:6個以上
[Evaluation of container appearance]
For containers (1) to (4), the number of containers in which tears, wrinkles, and whitening occurred were evaluated using the following indices.
◎: 0 ◯: 1 to 2 △: 3 to 5 ×: 6 or more

〔容器の座屈強度〕
容器(1)〜(4)について、500mm/minの速度で圧縮した時の最大となった荷重をもとに下記指標で評価した。
◎:100Nより大
○:90N以上、100N未満
△:80N以上、90N未満
×:80N未満
[Buckling strength of container]
The containers (1) to (4) were evaluated by the following indices based on the maximum load when compressed at a speed of 500 mm / min.
◎: Greater than 100N ○: 90N or more, less than 100N Δ: 80N or more, less than 90N ×: Less than 80N

〔総合評価〕
容器(1)〜(4)の外観と座屈強度の評価を下記基準で総合評価した。◎または○の例については合格とした。
◎:評価結果が◎のみの場合
○:評価結果に○か△の少なくとも一方が有り、△が1以下で×がない場合
△:評価結果に△が2以上有り、×がない場合
×:評価結果に×が有る場合
〔Comprehensive evaluation〕
Evaluation of the appearance and buckling strength of the containers (1) to (4) was comprehensively evaluated according to the following criteria. The example of ◎ or ○ was accepted.
◎: When the evaluation result is ◎ only ○: There is at least one of ○ or △ in the evaluation result, △ is 1 or less and there is no x △: The evaluation result is 2 or more and there is no x ×: Evaluation If there is a cross in the result

Figure 0006290530
Figure 0006290530

Figure 0006290530
Figure 0006290530

尚、表1において、実施例4,5の多官能ビニル化合物共重合体の添加量は、樹脂(1)と樹脂(8)及び樹脂(1)と樹脂(9)とを混合したスチレン系樹脂組成物中に含まれる多官能ビニル化合物共重合体の量を示している。   In Table 1, the addition amount of the polyfunctional vinyl compound copolymer of Examples 4 and 5 is the styrene resin in which the resin (1) and the resin (8) and the resin (1) and the resin (9) are mixed. The amount of the polyfunctional vinyl compound copolymer contained in the composition is shown.

Claims (5)

スチレンを必須とするビニル系モノマーと、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体との重合物である超高分子量多分岐型共重合体と、
前記ビニル系モノマーからなる線状重合体と、を含むスチレン系樹脂組成物であって、
前記溶剤可溶性多官能ビニル化合物共重合体が、前記超高分子量多分岐型共重合体及び前記線状重合体に含まれる前記ビニル系モノマー単位の全量に対して質量基準で100ppm〜3000ppmであるスチレン系樹脂組成物からなる二軸延伸シートであって、
前記スチレン系樹脂組成物の130℃におけるHencky歪が2.5及び0.5の時の伸長粘度をη2.5及びη0.5とした時、η2.5/η0.5で示される一軸伸長粘度比が19〜28であり、
前記二軸延伸シートのMD方向の最大配向緩和応力(a)とTD方向の最大配向緩和応力(b)とが、いずれも0.3MPa〜2.0MPaであり、且つ、(a)と(b)との差の絶対値が0.5MPa以下であることを特徴とする真空圧空成形用の二軸延伸シート。
Ultra-high molecular weight multi-branched type, which is a polymer of a vinyl-based monomer essential to styrene and a solvent-soluble polyfunctional vinyl compound copolymer having an average of two or more vinyl groups in one molecule and having a branched structure A copolymer;
A linear polymer comprising the vinyl monomer, and a styrene resin composition comprising:
The solvent-soluble polyfunctional vinyl compound copolymer is 100 ppm to 3000 ppm on a mass basis with respect to the total amount of the vinyl monomer units contained in the ultrahigh molecular weight multi-branched copolymer and the linear polymer. A biaxially stretched sheet comprising a resin-based resin composition,
Uniaxial elongational viscosity represented by η2.5 / η0.5 when the elongational viscosity when the Henky strain at 130 ° C. of the styrenic resin composition is 2.5 and 0.5 is η2.5 and η0.5. The ratio is 19-28,
The maximum orientation relaxation stress (a) in the MD direction and the maximum orientation relaxation stress (b) in the TD direction of the biaxially stretched sheet are both 0.3 MPa to 2.0 MPa, and (a) and (b The biaxially stretched sheet for vacuum / pressure forming is characterized in that the absolute value of the difference with respect to) is 0.5 MPa or less.
スチレンを必須とするビニル系モノマーに、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体を、質量基準で100ppm〜3000ppm添加し、均一混合した後に、連続的に配置された重合反応器に供給して重合反応を進行させ、前記溶剤可溶性多官能ビニル化合物共重合体と前記ビニル系モノマーが重合して生じる超高分子量多分岐型共重合体と、前記ビニル系モノマーが重合して生じる線状重合体とを含み、
130℃におけるHencky歪が2.5及び0.5の時の伸長粘度をη2.5及びη0.5とした時、η2.5/η0.5で示される一軸伸長粘度比が19〜28であるスチレン系樹脂組成物を押出機により溶融混練してダイから押し出し、次いで二軸延伸することを特徴とする真空圧空成形用の二軸延伸シートの製造方法。
A solvent-soluble polyfunctional vinyl compound copolymer having two or more vinyl groups in one molecule on average and having a branched structure is added to 100% to 3000 ppm on a mass basis to a vinyl monomer essentially containing styrene, and uniform. After mixing, the mixture is fed to a continuously arranged polymerization reactor to advance the polymerization reaction, and the solvent-soluble polyfunctional vinyl compound copolymer and the vinyl monomer are polymerized to produce an ultrahigh molecular weight multi-branched copolymer. A polymer and a linear polymer produced by polymerization of the vinyl monomer,
When the elongational viscosity at 130 ° C. when the Hencky strain is 2.5 and 0.5 is η2.5 and η0.5, the uniaxial elongational viscosity ratio represented by η2.5 / η0.5 is 19 to 28. A method for producing a biaxially stretched sheet for vacuum / pressure forming , which comprises melt-kneading a styrene resin composition with an extruder, extruding from a die, and then biaxially stretching.
前記二軸延伸シートの二軸延伸の面倍率が4〜10倍であることを特徴とする請求項2に記載の真空圧空成形用の二軸延伸シートの製造方法。 The method for producing a biaxially stretched sheet for vacuum / pressure forming according to claim 2, wherein the biaxially stretched sheet has a surface magnification of 4 to 10 times. 容器の深さをH[mm]、容器の開口部の最小内寸をL[mm]とした時に、H/Lが0.4〜2.0であり、請求項1に記載の真空圧空成形用の二軸延伸シートからなることを特徴とする容器。 The vacuum / compressed air molding according to claim 1, wherein H / L is 0.4 to 2.0 when the depth of the container is H [mm] and the minimum inner dimension of the opening of the container is L [mm]. A container comprising a biaxially oriented sheet for use . 容器の深さをH[mm]、容器の開口部の最小内寸をL[mm]とした時に、H/Lで示される容器の絞り比が0.4〜2.0である容器を、請求項1に記載の真空圧空成形用の二軸延伸シートを用いて真空圧空成形することを特徴とする容器の製造方法。 When the depth of the container is H [mm] and the minimum inner dimension of the opening of the container is L [mm], a container having a squeezing ratio of 0.4 to 2.0 represented by H / L, A method for producing a container, comprising vacuum-pressure forming using the biaxially stretched sheet for vacuum-pressure forming according to claim 1.
JP2012238459A 2012-10-30 2012-10-30 Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them Active JP6290530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238459A JP6290530B2 (en) 2012-10-30 2012-10-30 Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238459A JP6290530B2 (en) 2012-10-30 2012-10-30 Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2014087955A JP2014087955A (en) 2014-05-15
JP6290530B2 true JP6290530B2 (en) 2018-03-07

Family

ID=50790314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238459A Active JP6290530B2 (en) 2012-10-30 2012-10-30 Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them

Country Status (1)

Country Link
JP (1) JP6290530B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393125B2 (en) * 2014-09-08 2018-09-19 デンカ株式会社 Fitting container using styrene biaxially stretched sheet
CN106573410B (en) * 2014-09-08 2019-10-29 电化株式会社 Biaxial stretch-formed sheet material and container for packing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211018A (en) * 1999-01-26 2000-08-02 Daicel Chem Ind Ltd Container and its preparation
JP5658607B2 (en) * 2010-03-31 2015-01-28 新日鉄住金化学株式会社 Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof

Also Published As

Publication number Publication date
JP2014087955A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP4990995B2 (en) Biaxially stretched styrene resin sheet and molded product using the same
WO2013069077A1 (en) Method for producing styrene-based resin composition comprising highly branched ultra-high-molecular-weight polymer, and composition
JP2013100433A (en) Manufacturing method of styrene-methacrylate based copolymer resin composition and the composition
JP5658607B2 (en) Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof
JP2013100427A (en) Highly branched styrenic resin composition for foaming
JP5951230B2 (en) Highly branched styrenic resin composition and foam sheet
JP6481848B2 (en) Styrene resin composition, biaxially stretched styrene resin sheet and molded article
JP6290530B2 (en) Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them
KR20180102540A (en) Biaxially oriented sheet and its molded product
TWI306105B (en) Styrene resin composition
JP2005281475A (en) Styrene polymer and its production method
JPH0971606A (en) Production of styrene-based polymer, styrene-based resin composition and molded product thereof
JP6290529B2 (en) Biaxially stretched sheet and container for hot plate molding, and production methods thereof
JP5930666B2 (en) Styrenic resin composition for highly branched biaxially stretched sheet and biaxially stretched sheet
JP6242602B2 (en) Styrene resin composition, styrene resin film, styrene laminate sheet and molded article
JP2013100436A (en) Highly branched rubber-modified styrenic resin composition for blow molding, and molded article
TWI538946B (en) A method for producing a styrene-based resin composition containing a high-branch type ultra-high molecular weight body and a composition thereof
JP5930667B2 (en) Styrenic resin composition for hyperbranched film and styrene resin film
JP6457898B2 (en) Styrenic resin for molding, molded product, and manufacturing method of molded product
JP7025998B2 (en) Biaxially stretched sheet and its molded products
JP2012116875A (en) Resin composition for heat-shrinkable film and heat-shrinkable film
JP2018024819A (en) Heat-resistant styrenic resin composition, foamed sheet, and food product container
JP2011202071A (en) Styrene-based resin composition and molding of the same
JP5858705B2 (en) Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof
JP5036122B2 (en) Heat-resistant styrene resin stretched sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161011

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180208

R150 Certificate of patent or registration of utility model

Ref document number: 6290530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250