JP4990203B2 - Air filter medium for hot emboss molding and air filter using the same - Google Patents

Air filter medium for hot emboss molding and air filter using the same Download PDF

Info

Publication number
JP4990203B2
JP4990203B2 JP2008072008A JP2008072008A JP4990203B2 JP 4990203 B2 JP4990203 B2 JP 4990203B2 JP 2008072008 A JP2008072008 A JP 2008072008A JP 2008072008 A JP2008072008 A JP 2008072008A JP 4990203 B2 JP4990203 B2 JP 4990203B2
Authority
JP
Japan
Prior art keywords
air filter
filter medium
filter
air
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008072008A
Other languages
Japanese (ja)
Other versions
JP2009226260A (en
Inventor
智彦 楚山
信之 坂爪
雅彦 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Hokuetsu Kishu Paper Co Ltd
Original Assignee
Nitta Corp
Hokuetsu Kishu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp, Hokuetsu Kishu Paper Co Ltd filed Critical Nitta Corp
Priority to JP2008072008A priority Critical patent/JP4990203B2/en
Publication of JP2009226260A publication Critical patent/JP2009226260A/en
Application granted granted Critical
Publication of JP4990203B2 publication Critical patent/JP4990203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Description

本発明は、エアフィルタ用濾材、特に半導体、液晶、バイオ・食品工業関係のクリーンルーム、クリーンベンチ等又はビル空調用エアフィルタ、空気清浄機用途などに使用される熱エンボス成形可能なエアフィルタ用濾材及び前記濾材を用いたエアフィルタに関する。 The present invention relates to a filter medium for air filters, particularly semiconductor, liquid crystal, bio-food industry related clean rooms, clean benches, etc., air filters for building air conditioning, and air emboss moldable air filter filter media. And an air filter using the filter medium.

従来、空気中のサブミクロン、又はミクロン単位の粒子を効率的に捕集するために、エアフィルタの捕集技術が用いられている。エアフィルタは、その対象とする粒子径や除塵効率の違いによって粗塵用フィルタ、中性能フィルタ、HEPAフィルタ、ULPAフィルタなどに大別される。これらエアフィルタの多くには、不織布状、織状、マット状などの繊維層エアフィルタ濾材が使用され、特に中性能フィルタ、HEPAフィルタ、ULPAフィルタには、不織布状のガラス繊維製エアフィルタ用濾材が多く使われている。これは、ガラス繊維のもつ不燃性に加え、エアフィルタの基本性能である圧力損失と捕集効率との特性が高いことに由来する。   Conventionally, in order to efficiently collect submicron or micron particles in the air, an air filter collecting technique is used. Air filters are broadly classified into coarse dust filters, medium performance filters, HEPA filters, ULPA filters, etc., depending on the target particle size and dust removal efficiency. Many of these air filters use non-woven fabric, woven fabric, mat-like fiber layer air filter media, especially non-woven glass fiber air filter media for medium performance filters, HEPA filters, and ULPA filters. Is often used. This originates in the characteristic of the pressure loss and the collection efficiency which are the basic performance of an air filter in addition to the nonflammability which glass fiber has.

通常、エアフィルタ用濾材は、濾過面積を大きくするために、山谷のあるジグザグ状にプリーツ加工されたパックをアルミ枠、木枠などに収めてエアフィルタとする。ここで、プリーツされた濾材が互いに接触すると通風使用時に構造抵抗を起こすので、アルミ板製、紙製などのセパレーターを入れるか、ホットメルトリボン、糸などを濾材上に付着させてスペーサーとし、間隔を保持させることによって、濾材同士が直接接触させないようにしている。   Usually, in order to increase the filtration area, a filter medium for an air filter is used as an air filter by placing a pack pleated in a zigzag shape with a valley in an aluminum frame, a wooden frame, or the like. Here, if the pleated filter media come into contact with each other, structural resistance will occur during ventilation, so insert a separator made of aluminum plate, paper, etc., or attach a hot melt ribbon, thread, etc. By holding the filter medium, the filter media are prevented from contacting each other directly.

これとは別の考え方で、エアフィルタ濾材に熱エンボス加工を行い、濾材に浅いくぼみを形成させ、これをスペーサーとする方法が提案されている(特許文献1、特許文献2、特許文献3)。   A method different from this is proposed in which a heat embossing process is performed on the air filter medium to form a shallow recess in the filter medium, and this is used as a spacer (Patent Document 1, Patent Document 2, and Patent Document 3). .

この方法で行うと、エアフィルタの濾過面積を大きく取れると同時に、セパレーターやスペーサーによる構造抵抗が少なくできるので、エアフィルタを低圧力損失化できるという特徴がある。   When this method is used, the air filter can have a large filtration area, and at the same time, the structural resistance due to the separator and the spacer can be reduced, so that the air filter can be reduced in pressure loss.

ところが、エアフィルタ濾材を直接成形加工してくぼみをもたせるため、その熱加工方法や熱加工機の条件によって、くぼみ(エンボス)の深さが十分でない問題、濾材に亀裂や割れが生じる問題があった。エアフィルタ濾材を構成する繊維に有機繊維、特に熱可塑性の合成繊維を使用している場合は、この影響が少ないが、剛直で脆い特性をもつガラス繊維で構成された濾材の場合は、この問題が深刻である。これを解決する熱エンボス加工方法が提案されている(特許文献4、特許文献5)。   However, since the air filter medium is directly molded to give a dent, there are problems that the depth of the embossment is not sufficient and the filter medium is cracked or cracked depending on the heat processing method and conditions of the heat processing machine. It was. This effect is small when organic fibers, especially thermoplastic synthetic fibers, are used as the fibers that make up the air filter medium, but this problem is not the case when the filter medium is composed of glass fibers that are rigid and brittle. Is serious. A hot embossing method for solving this problem has been proposed (Patent Documents 4 and 5).

しかし一方で、エアフィルタ濾材においても、エンボス深さなどの加工性の改善が求められている。ところが、本発明者らが調査した結果、エアフィルタ用濾材のシートを所定温度で予備加熱し、直後にエンボス成形加工した場合は、その後の放冷中にエンボス部の「戻り現象」が生じ、エンボス部の深さが浅くなってしまうことがわかった。これは、濾材シートが放冷されて表面温度が室温に冷めるまでの間に、エンボス部の歪エネルギーによって元に復元しようとする力が働いていたためと推定される。エンボス深さが浅くなるので、出来上がったエアフィルタのプリーツ折込数が多くなりすぎて設計どおりのフィルタにならない。そのため、予備加熱温度を上げたり、エンボスロールの突起高さを高くしたりするなどの対策を取ったが、ランニングコストが上がったり、突起部が高すぎてエンボス部分が破れたりするなどの問題があった。   However, on the other hand, improvement in workability such as emboss depth is also demanded for air filter media. However, as a result of investigations by the present inventors, the sheet of the filter material for air filter is preheated at a predetermined temperature, and if it is embossed immediately after processing, a "return phenomenon" of the embossed portion occurs during the subsequent cooling. It turned out that the depth of an embossing part will become shallow. This is presumably because a force to restore the filter material sheet to its original state by the strain energy of the embossed part worked until the filter medium sheet was allowed to cool and the surface temperature cooled to room temperature. Since the emboss depth is shallow, the number of pleats in the completed air filter becomes too large, and the filter does not become as designed. For this reason, measures such as increasing the preheating temperature and increasing the height of the embossing roll protrusions were taken, but there were problems such as increased running costs and excessively high protrusions that could break the embossed part. It was.

さらに、エアフィルタを高温雰囲気下で通風使用する場合があり、このときにおいてもエンボス部深さの「戻り現象」が起こって、エアフィルタの圧力損失が経時で上昇してしまうことによって使用できなくなる問題があった。   In addition, the air filter may be used in a high-temperature atmosphere, and even at this time, the embossed part depth “return phenomenon” occurs, and the pressure loss of the air filter increases over time, making it unusable. There was a problem.

したがって、これら問題についての改善が求められている。
特開平3−101804 特開平3−196805(特許第2935432号)号公報 特開平3−196807(特許第2935433号)号公報 特開平09−221269(特許第2865606号)号公報 特開平09−221270(特許第2865607号)号公報
Therefore, there is a need for improvements on these issues.
JP-A-3-101804 Japanese Patent Laid-Open No. 3-196805 (Japanese Patent No. 2935432) Japanese Patent Laid-Open No. 3-196807 (Japanese Patent No. 2935433) JP 09-212269 (Patent No. 2865606) Japanese Patent Laid-Open No. 09-212270 (Patent No. 2865607)

本発明の課題は、エンボス成形可能なエアフィルタ用濾材において、低コストで、突起部が高くてもエンボス部分の破れがなくエンボス成形加工性が従来に比べて良好であり、エンボス部の「戻り現象」の生じない本濾材を使用したエアフィルタを70℃という高温雰囲気下で通風使用するときの経時の圧力損失上昇を抑制するエアフィルタ用濾材と前記濾材を用いたエアフィルタとを提供することである。   An object of the present invention is to provide a filter medium for an air filter that can be embossed at low cost, and even if the protrusion is high, the embossed part is not torn and the embossing processability is better than before. To provide a filter medium for an air filter that suppresses an increase in pressure loss over time when an air filter using the present filter medium that does not cause a phenomenon is used in a high-temperature atmosphere of 70 ° C., and an air filter using the filter medium. It is.

この発明は、ガラス繊維を主体繊維としたエアフィルタ用濾材において、その構成がガラス繊維を主体とした繊維97〜90質量%及びガラス転移温度80℃以上の熱可塑性バインダー3〜10質量%であり、かつ、前記濾材の40℃における貯蔵弾性率に対する80℃における貯蔵弾性率の低下率を5%以下としたものである。また、前記熱可塑性バインダーを、ガラス転移温度80℃以上の熱可塑性樹脂としたものである。さらに、前記エアフィルタ用濾材を熱エンボス成形し、プリーツ加工してフィルタカートリッジを作成した後、70℃熱風を面風速2.5m/sec.の条件で通風しても、エンボス成形部の戻りが無い構造としたものである。 This invention is a filter medium for an air filter whose main fiber is glass fiber, whose composition is 97 to 90% by mass of fiber mainly composed of glass fiber and 3 to 10% by mass of thermoplastic binder having a glass transition temperature of 80 ° C. or more . And the decreasing rate of the storage elastic modulus in 80 degreeC with respect to the storage elastic modulus in 40 degreeC of the said filter medium shall be 5% or less. Further, the thermoplastic binder is a thermoplastic resin having a glass transition temperature of 80 ° C. or higher. Further, the filter medium for air filter was hot embossed and pleated to prepare a filter cartridge, and then a 70 ° C. hot air was applied at a surface wind speed of 2.5 m / sec. Even if it ventilates on the conditions of this, it is set as the structure where an embossing molding part does not return.

本発明のエアフィルタ用濾材を使用することによって、低コストで、突起部が高くてもエンボス部分の破れがないのでエンボス成形加工性が従来に比べて良好であり、エンボス部の「戻り現象」が生じないためセパレーター、スペーサーなどを用いなくともよく、かつ、この「戻り現象」が生じないために、本濾材を使用したエアフィルタを70℃という高温雰囲気下で通風使用するときの経時の圧力損失上昇を抑制することができる。   By using the filter medium for an air filter of the present invention, the embossing processability is better than the conventional one because the embossed part is not torn even at a low cost even if the protruding part is high. Since there is no need to use separators, spacers, etc., and this “return phenomenon” does not occur, the pressure over time when an air filter using this filter medium is used in a high-temperature atmosphere of 70 ° C. Loss increase can be suppressed.

本発明のエアフィルタ用濾材は、ガラス繊維を主体繊維としたエアフィルタ用濾材において、その構成がガラス繊維97〜90質量%及びガラス転移温度80℃以上の熱可塑性バインダー3〜10質量%で構成される。ガラス繊維を主体繊維としたエアフィルタ用濾材は、ガラス繊維だけでシート化しても強度が非常に弱いため、通常、有機系のバインダーを付与することで、所定強度をもたせている。エンボス成形加工用のエアフィルタ用濾材は、前述の強度物性に加えて、このバインダーに熱成形機能をもたせる必要がある。ガラス繊維だけでは、熱エンボス成形を行ってもシートにはエンボスのくぼみができないか、又は加工した突起・エッジ部分などで破れてしまう。ガラス繊維に熱成形機能をもったバインダーを付与することによって、はじめてシートの熱流動性が発現する。このため、バインダーは、熱可塑性であるものを用いる。問題なく熱成形を行うためには、3質量%以上のバインダーを配合することが必要であり、バインダー分が高いほど熱流動特性が良好になる。ただし、バインダーを増やすことは逆に濾材の不燃・難燃性を悪化させるので、配合率10質量%以下が望ましい。より好ましくは、4〜7質量%である。 The filter medium for an air filter of the present invention is a filter medium for an air filter mainly composed of glass fibers, and the structure is composed of 97 to 90% by mass of glass fibers and 3 to 10% by mass of a thermoplastic binder having a glass transition temperature of 80 ° C. or higher. Is done. Since the filter medium for air filters using glass fiber as the main fiber has a very low strength even if it is made of glass fiber alone, it usually has a predetermined strength by adding an organic binder. In addition to the above-described strength properties, the air filter medium for embossing processing needs to have a thermoforming function in this binder. With glass fiber alone, the sheet cannot be embossed even if hot embossing is performed, or it can be broken by processed protrusions / edge portions. Only when a binder having a thermoforming function is added to glass fiber, the thermal fluidity of the sheet is manifested. Therefore, a binder that is thermoplastic is used. In order to perform thermoforming without any problem, it is necessary to blend 3% by mass or more of a binder, and the higher the binder content, the better the heat flow characteristics. However, increasing the binder adversely deteriorates the incombustibility and flame retardancy of the filter medium, so a blending ratio of 10% by mass or less is desirable. More preferably, it is 4-7 mass%.

ここで、本発明者らが鋭意検討を行った結果、エンボス成形時及びエアフィルタを高温雰囲気下で通風使用するときにおける濾材の「戻り現象」は、濾材を動的粘弾性装置で測定した結果で求められる式(1)の貯蔵弾性率と関係があることが分かった。   Here, as a result of intensive studies by the present inventors, the "return phenomenon" of the filter medium at the time of embossing molding and when the air filter is used in a high-temperature atmosphere is the result of measuring the filter medium with a dynamic viscoelastic device It was found that there is a relationship with the storage elastic modulus of the formula (1) obtained by

貯蔵弾性率 E’= |σ/ε|cosδ (1)
式中、σは応力を、εは歪をそしてδは位相差を意味する。
Storage elastic modulus E '= | σ / ε | cosδ (1)
In the formula, σ means stress, ε means strain, and δ means phase difference.

一般的に高分子材料に正弦的に変化する応力を与えるとき、歪は、同じ周波数となり、位相は、δだけ遅れた正弦波形となる。貯蔵弾性率は、1周期当たりに貯蔵され完全に回復するエネルギーの尺度であり、物質の弾性要素と考えることができる。すなわち、貯蔵弾性率が大きい値ほど、力を加えたときに押し返そうとする力が強いことを示している。   In general, when a sinusoidal stress is applied to a polymer material, the strain has the same frequency and the phase has a sine waveform delayed by δ. Storage modulus is a measure of the energy stored and fully recovered per cycle and can be considered as an elastic element of matter. That is, the larger the storage elastic modulus, the stronger the force that pushes back when a force is applied.

濾材に熱を加えて昇温していくと、熱可塑性であるバインダーは、軟化し貯蔵弾性率が低下していく。熱エンボス成形時においては、濾材の表面温度が通常100〜200℃となるよう予備加熱した後、エンボスロールなどを使ってエンボス成形加工を行う。加工後の濾材表面温度が室温に戻るまでの冷却時間にはある程度の時間がかかるので、濾材が軟化状態から硬化するまでの間に前述の「戻り現象」が生じてしまう。本発明者らの検討では、40℃と80℃の貯蔵弾性率の差が少ない場合に、「戻り現象」を抑えることができることを新たに見出した。具体的には、エアフィルタ用濾材の40℃における貯蔵弾性率に対する80℃における貯蔵弾性率の低下率(以下、「貯蔵弾性率の低下率」と略す。)が5%以下であることが望ましい。貯蔵弾性率の低下率が5%以上では、「戻り現象」が明らかに生じ始めるので、エンボス深さが浅くなってしまう。より好ましくは、3%以下である。また、貯蔵弾性率の絶対値は、本発明では特に限定しないが、40℃における貯蔵弾性率が低すぎると加工後の濾材表面温度が室温に戻るまでの軟化状態が長時間続いて「戻り現象」が生じやすくなるので、少なくとも1.0×108Pa以上であることが好ましい。より好ましくは、5.0×108Pa以上である。 When the temperature of the filter medium is increased by heating, the thermoplastic binder softens and the storage elastic modulus decreases. At the time of hot embossing, after preheating so that the surface temperature of the filter medium is usually 100 to 200 ° C., embossing is performed using an embossing roll or the like. Since a certain amount of time is required for the cooling time until the surface temperature of the filter medium after processing returns to room temperature, the aforementioned “return phenomenon” occurs before the filter medium hardens from the softened state. The inventors have newly found that the “return phenomenon” can be suppressed when the difference in storage modulus between 40 ° C. and 80 ° C. is small. Specifically, the rate of decrease in storage elastic modulus at 80 ° C. relative to the storage elastic modulus at 40 ° C. of the filter medium for air filter (hereinafter abbreviated as “the rate of decrease in storage elastic modulus”) is preferably 5% or less. . When the rate of decrease in the storage elastic modulus is 5% or more, the “return phenomenon” clearly starts to occur, and thus the emboss depth becomes shallow. More preferably, it is 3% or less. Further, the absolute value of the storage elastic modulus is not particularly limited in the present invention, but if the storage elastic modulus at 40 ° C. is too low, the softening state until the filter medium surface temperature after processing returns to room temperature continues for a long time. ”Is likely to occur, and is preferably at least 1.0 × 10 8 Pa or more. More preferably, it is 5.0 × 10 8 Pa or more.

エアフィルタ濾材において、貯蔵弾性率の低下率を5%以下とする方法としては一つに限定しないが、エアフィルタ濾材の熱可塑性バインダーの組成をガラス転移温度80℃以上とすることは特に有効な方法である。ガラス転移温度を80℃以上と高くすることによって濾材のガラス様状態が比較的高温まで保たれるため、放冷中の「戻り現象」が起る前に直ぐに固化する、いわゆる熱応答性が良好になると見られ、エンボス部の深さが設定のまま保持される。ガラス転移温度80℃の指標は、本発明者らが検討して結果得られた経験値であり、80℃以下の場合は、エンボス部の「戻り現象」が生じてしまう。     In the air filter medium, the method of reducing the storage elastic modulus reduction rate to 5% or less is not limited to one, but it is particularly effective to set the composition of the thermoplastic binder of the air filter medium to a glass transition temperature of 80 ° C. or higher. Is the method. By increasing the glass transition temperature to 80 ° C or higher, the glass-like state of the filter medium is maintained at a relatively high temperature, so that the so-called thermal responsiveness that solidifies immediately before the "return phenomenon" during cooling is good. The depth of the embossed part is maintained as set. The index of the glass transition temperature of 80 ° C. is an empirical value obtained as a result of the study by the present inventors.

前述のガラス転移温度80℃以上の熱可塑性バインダーは、スチレン−アクリル酸エステル樹脂、アクリル酸エステル樹脂、酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ウレタン樹脂などが挙げられる。この中で、特にスチレン−アクリル酸エステル樹脂が特に好ましい。スチレン−アクリル酸エステル樹脂は、前記樹脂の中でも特に熱流動性と熱応答性がよく、「戻り現象」が生じにくいと見られる。   The above-mentioned thermoplastic binder having a glass transition temperature of 80 ° C. or higher is styrene-acrylate resin, acrylate resin, vinyl acetate resin, ethylene vinyl acetate resin, polyester resin, polyvinyl chloride resin, polyvinylidene chloride resin, urethane resin. Etc. Of these, styrene-acrylic ester resins are particularly preferred. Styrene-acrylic acid ester resins have particularly good thermal fluidity and thermal responsiveness among the above resins, and it is considered that the “return phenomenon” hardly occurs.

スチレン−アクリル酸エステル樹脂は、基本骨格の構成として、スチレンモノマーとアクリル酸エチルモノマーの組み合わせ、スチレンモノマーとアクリル酸ブチルの組み合わせ、スチレンモノマーとアクリル酸2エチルヘキシルの組み合わせなどを共重合させた樹脂が挙げられる。ガラス転移温度は樹脂の分子量、橋かけ度及び結晶化度などにより若干変化するが、共重合体組成によって最も変化し、そのガラス転移温度は基本骨格を構成するホモポリマーのガラス転移温度とモノマーの重量分率からFoxの式を用いて理論計算できる。このことから、ガラス転移温度80℃以上においてのスチレンモノマーの構成割合(重量分率)は、理論計算値として、前述の順番に83.7%以上、87.0%以上、88.2%以上となる。また、本発明の効果を変えないならば、これら基本骨格にメタクリル酸メチル、アクリロニトリル、メタクリル酸エチル、酢酸ビニル、メタクリル酸ブチルなどの各モノマー成分、−COOH基、その他の官能基を、樹脂特性を変更する目的で適宜併用しても構わない。   Styrene-acrylic acid ester resin is a resin composed of a combination of styrene monomer and ethyl acrylate monomer, a combination of styrene monomer and butyl acrylate, a combination of styrene monomer and 2-ethylhexyl acrylate, etc. Can be mentioned. The glass transition temperature varies slightly depending on the molecular weight of the resin, the degree of crosslinking, the degree of crystallinity, etc., but it varies most depending on the copolymer composition, and the glass transition temperature of the homopolymer constituting the basic skeleton and the monomer Theoretically calculated from the weight fraction using the Fox equation. From this, the composition ratio (weight fraction) of the styrene monomer at a glass transition temperature of 80 ° C. or higher is 83.7% or higher, 87.0% or higher, or 88.2% or higher in the above order as a theoretical calculation value. It becomes. Further, if the effect of the present invention is not changed, each monomer component such as methyl methacrylate, acrylonitrile, ethyl methacrylate, vinyl acetate, butyl methacrylate, -COOH group, and other functional groups are added to these basic skeletons. You may use together suitably for the purpose of changing.

本発明で主体繊維として使用するガラス繊維は、必要とする濾過性能、その他物性に応じて、種々の繊維径、繊維長を有する極細ガラス繊維、チョップドガラス繊維の中から自由に選ぶことができる。特に、極細ガラス繊維は、火焔延伸法やロータリー法で製造されるウール状のガラス繊維であり、濾材の圧力損失を所定の値に保ち、適正な捕集効率とするための必須成分である。繊維径が細くなるほど捕集効率は高くなるため、高性能の濾材を得るためには、平均繊維径の細かい極細ガラス繊維を配合する必要がある。ただし、繊維径が細くなると圧力損失が上昇しすぎる場合があるので、この範囲内で適正な繊維径のものを選択すべきである。なお、数種の繊維径のものをブレンドして配合しても構わない。また、半導体工程用途などでシリコンウエハーのボロン汚染を防止する目的で、ローボロンガラス繊維、シリカガラス繊維を使用することもできる。さらに、副資材として、エンボス成形加工性に影響を与えない範囲内で、天然繊維、有機合成繊維などをガラス繊維中に配合しても差し支えない。その配合率は主体繊維中の20質量%以下が望ましく、さらに望ましくは10質量%以下である。   The glass fiber used as the main fiber in the present invention can be freely selected from ultrafine glass fibers and chopped glass fibers having various fiber diameters and fiber lengths according to required filtration performance and other physical properties. In particular, the ultrafine glass fiber is a woolen glass fiber manufactured by a flame stretching method or a rotary method, and is an essential component for maintaining the pressure loss of the filter medium at a predetermined value and achieving an appropriate collection efficiency. As the fiber diameter becomes smaller, the collection efficiency becomes higher. Therefore, in order to obtain a high-performance filter medium, it is necessary to blend ultrafine glass fibers having a fine average fiber diameter. However, since the pressure loss may increase excessively when the fiber diameter is reduced, an appropriate fiber diameter should be selected within this range. In addition, you may blend and mix the thing of several types of fiber diameters. Moreover, low boron glass fiber and silica glass fiber can also be used for the purpose of preventing boron contamination of silicon wafers in semiconductor process applications. Further, natural fibers, organic synthetic fibers, and the like may be blended in the glass fiber as a secondary material within a range that does not affect the embossing processability. The blending ratio is desirably 20% by mass or less in the main fiber, and more desirably 10% by mass or less.

本発明のエアフィルタ用濾材は、次に示す製造方法などを用いて得ることができる。すなわち、濾材を構成するガラス繊維をパルパーなどの分散機を用いて水中に分散させ、このスラリーを抄紙機で湿式抄紙して湿紙を得る。次に、本発明のバインダーを前述の湿紙に付着させ、その後乾燥させる方法である。また、湿紙をいったん乾燥した乾紙に、これら処理液を単独又は混合して付与しても、その効果は変わらない。   The filter medium for an air filter of the present invention can be obtained using the following production method or the like. That is, the glass fibers constituting the filter medium are dispersed in water using a dispersing machine such as a pulper, and the slurry is subjected to wet paper making with a paper machine to obtain a wet paper. Next, there is a method in which the binder of the present invention is adhered to the aforementioned wet paper and then dried. Moreover, even if these treatment liquids are applied to dry paper once dried with wet paper, the effect does not change.

原料繊維の分散工程では、分散性を良好にするために、硫酸酸性でpH2〜4の範囲で調整する方法が好ましいが、pH中性で分散剤などの界面活性剤を使用してもよい。また、撥水性及び/又は難燃性を付与するため、本発明の目的の範囲内でバインダー液に撥水剤及び/又は難燃剤を添加することも可能である。   In the raw fiber dispersion step, in order to improve the dispersibility, a method of adjusting to pH 2 to 4 with sulfuric acid acid is preferable, but a surfactant such as a dispersant having a neutral pH may be used. Further, in order to impart water repellency and / or flame retardancy, it is possible to add a water repellant and / or a flame retardant to the binder liquid within the scope of the object of the present invention.

バインダー液の付与方法としては特に限定されるものではないが、湿紙又は乾紙をバインダー液に浸漬する方法、湿紙又は乾紙にバインダー液をスプレーで吹き付ける方法、ロールにバインダー液を付着させ湿紙又は乾紙に転写する方法が挙げられる。   The method for applying the binder liquid is not particularly limited, but is a method in which wet paper or dry paper is immersed in the binder liquid, a method in which the binder liquid is sprayed on the wet paper or dry paper, and the binder liquid is adhered to the roll. Examples thereof include a method of transferring to wet paper or dry paper.

乾燥方法としては、熱風乾燥機、ロールドライヤーなどを利用し、120℃以上、好ましくは140℃以上の乾燥温度が望ましい。
[実施例]
As a drying method, a hot air dryer, a roll dryer or the like is used, and a drying temperature of 120 ° C. or higher, preferably 140 ° C. or higher is desirable.
[Example]

次に、実施例及び比較例によって本発明をより具体的に説明するが、本発明はこれによって何ら限定されるものではない。
本発明のエアフィルタ用濾材の熱エンボス成形方法の一例としては、図1のようにエアフィルタ濾材は、加熱ステーションで加熱されエンボスマーキングロールを通過して走行する。これによって連続的に、エンボス成形とマーキング(=折り筋)とが形成される。本発明のエアフィルタ用濾材は、エンボスマーキングロールを通過する前では表面温度が150〜175℃であり、150℃未満の温度では、エンボス成形部に亀裂、割れが発生することが分かった。
その他、エアフィルタ濾材を加熱する方法としては、電熱、蒸気などで加熱されたロール、プレス金型を通過させてもよい。
Next, although an Example and a comparative example demonstrate this invention more concretely, this invention is not limited at all by this.
As an example of the heat embossing method of the air filter medium of the present invention, as shown in FIG. 1, the air filter medium is heated at a heating station and passes through an embossing marking roll. This continuously forms embossing and marking (= folding lines). It has been found that the air filter medium of the present invention has a surface temperature of 150 to 175 ° C. before passing through the embossing marking roll, and cracks and cracks are generated in the embossed molded part at temperatures lower than 150 ° C.
In addition, as a method of heating the air filter medium, a roll heated by electric heat, steam, or a press die may be passed.

平均繊維径0.65μmの極細ガラス繊維65質量%、平均繊維径2.70μmの極細ガラス繊維30質量%、平均繊維径6μmのチョップドガラス繊維5質量%を、濃度0.5質量%、硫酸酸性pH3.5でミキサーを用いて離解した。次いで手抄装置を用いて抄紙し、湿紙を得た。次に、ガラス転移温度85℃でポリスチレン−アクリル酸エチル樹脂を組成とするエマルジョン製品の市販品Aを固形分濃度2.0質量%水溶液に希釈し、これをバインダー液として前記湿紙に付与し、その後120℃の熱風ドライヤーで乾燥し、坪量70g/m、バインダー付着量6.0質量%のエアフィルタ用濾材を得た。 65% by mass of ultrafine glass fiber with an average fiber diameter of 0.65 μm, 30% by mass of ultrafine glass fiber with an average fiber diameter of 2.70 μm, 5% by mass of chopped glass fiber with an average fiber diameter of 6 μm, concentration of 0.5% by mass, sulfuric acid acidity Disaggregation using a mixer at pH 3.5. Subsequently, paper was made using a hand-drawing apparatus to obtain wet paper. Next, a commercial product A of an emulsion product having a composition of polystyrene-ethyl acrylate resin at a glass transition temperature of 85 ° C. is diluted to an aqueous solution having a solid concentration of 2.0% by mass, and this is applied to the wet paper as a binder liquid. Then, it was dried with a hot air dryer at 120 ° C. to obtain a filter medium for an air filter having a basis weight of 70 g / m 2 and a binder adhesion amount of 6.0% by mass.

実施例1において、エマルジョン製品の市販品Aの代わりに、ガラス転移温度86℃でポリスチレン−アクリル酸エチル樹脂を組成とするエマルジョン製品の市販品Bを固形分濃度2.0質量%水溶液に希釈し、これをバインダー液として使用した以外は実施例1と同様にして、坪量70g/m、バインダー付着量6.0質量%のエアフィルタ用濾材を得た。 In Example 1, instead of the commercial product A of the emulsion product, the commercial product B of the emulsion product composed of polystyrene-ethyl acrylate resin at a glass transition temperature of 86 ° C. was diluted to an aqueous solution with a solid content concentration of 2.0% by mass. A filter medium for an air filter having a basis weight of 70 g / m 2 and a binder adhesion amount of 6.0% by mass was obtained in the same manner as in Example 1 except that this was used as a binder liquid.

実施例1において、エマルジョン製品の市販品Aの代わりに、ガラス転移温度92℃でポリスチレン−アクリル酸エチル樹脂を組成とするエマルジョン製品の市販品Cを固形分濃度2.0質量%水溶液に希釈し、これをバインダー液として使用した以外は実施例1と同様にして、坪量70g/m、バインダー付着量5.9質量%のエアフィルタ用濾材を得た。
[比較例1]
In Example 1, instead of the commercial product A of the emulsion product, the commercial product C of the emulsion product composed of polystyrene-ethyl acrylate resin at a glass transition temperature of 92 ° C. was diluted to an aqueous solution with a solid content of 2.0% by mass. A filter medium for an air filter having a basis weight of 70 g / m 2 and a binder adhesion amount of 5.9% by mass was obtained in the same manner as in Example 1 except that this was used as a binder liquid.
[Comparative Example 1]

実施例1において、エマルジョン製品の市販品Aの代わりに、ガラス転移温度75℃でポリスチレン−アクリル酸エチル樹脂を組成とするエマルジョン製品の市販品Dを固形分濃度2.0質量%水溶液に希釈し、これをバインダー液として使用した以外は実施例1と同様にして、坪量70g/m、バインダー付着量5.9質量%のエアフィルタ用濾材を得た。
[比較例2]
In Example 1, instead of the commercial product A of the emulsion product, the commercial product D of the emulsion product having a composition of polystyrene-ethyl acrylate resin at a glass transition temperature of 75 ° C. was diluted to an aqueous solution with a solid content of 2.0% by mass. A filter medium for an air filter having a basis weight of 70 g / m 2 and a binder adhesion amount of 5.9% by mass was obtained in the same manner as in Example 1 except that this was used as a binder liquid.
[Comparative Example 2]

実施例1において、エマルジョン製品の市販品Aの代わりに、ガラス転移温度60℃でポリスチレン−アクリル酸エチル樹脂を組成とするエマルジョン製品の市販品Eを固形分濃度2.0質量%水溶液に希釈し、これをバインダー液として使用した以外は実施例1と同様にして、坪量70g/m、バインダー付着量6.1質量%のエアフィルタ用濾材を得た。
[比較例3]
In Example 1, instead of the commercial product A of the emulsion product, the commercial product E of the emulsion product having a composition of polystyrene-ethyl acrylate resin at a glass transition temperature of 60 ° C. was diluted to an aqueous solution with a solid content of 2.0% by mass. A filter medium for an air filter having a basis weight of 70 g / m 2 and a binder adhesion amount of 6.1% by mass was obtained in the same manner as in Example 1 except that this was used as a binder liquid.
[Comparative Example 3]

実施例1において、エマルジョン製品の市販品Aの代わりに、ガラス転移温度35℃でポリスチレン−アクリル酸エチル樹脂を組成とするエマルジョン製品の市販品Fを固形分濃度2.0質量%水溶液に希釈し、これをバインダー液として使用した以外は実施例1と同様にして、坪量70g/m、バインダー付着量5.9質量%のエアフィルタ用濾材を得た。 In Example 1, instead of the commercial product A of the emulsion product, the commercial product F of the emulsion product composed of polystyrene-ethyl acrylate resin at a glass transition temperature of 35 ° C. was diluted to an aqueous solution with a solid content concentration of 2.0% by mass. A filter medium for an air filter having a basis weight of 70 g / m 2 and a binder adhesion amount of 5.9% by mass was obtained in the same manner as in Example 1 except that this was used as a binder liquid.

実施例1において、実施例1の配合原料を硫酸酸性PH3.5の水中にて、10m3パルパー分散機を用い離解した。次いで抄紙機にて連続的に抄紙を行い、抄紙によって得られた湿紙に、実施例1のエマルジョン製品市販品Aを固形分濃度2.0質量%水溶液に希釈したバインダー液を付与し、これを120℃のロールドライヤーで乾燥し、坪量80g/m、バインダー付着量6.0質量%である610mm幅、300m長のエアフィルタ用濾材連続シートの巻取り品を作成した。次いで、これを図1の熱エンボス成形方法によってフィルタカートリッジを作成し、このフィルタカートリッジをアルミ製支持枠にはめ込み、外寸縦610mm、横610mm、奥行き292mmの本発明のエアフィルタを作成した。
[比較例4]
In Example 1, the blended raw material of Example 1 was disaggregated using 10 m 3 pulper disperser in sulfuric acid acidic pH 3.5 water. Next, paper is continuously produced by a paper machine, and a binder liquid obtained by diluting the commercial product A of the emulsion product of Example 1 to an aqueous solution having a solid content of 2.0% by mass is applied to the wet paper obtained by paper making. Was dried with a roll dryer at 120 ° C. to prepare a wound product of a continuous sheet of filter media for an air filter having a basis weight of 80 g / m 2 , a binder adhesion amount of 6.0% by mass and a width of 610 mm and a length of 300 m. Next, a filter cartridge was prepared by the hot embossing method shown in FIG. 1, and this filter cartridge was fitted into an aluminum support frame to produce an air filter of the present invention having outer dimensions of 610 mm, a width of 610 mm, and a depth of 292 mm.
[Comparative Example 4]

実施例4において、エマルジョン製品の市販品Aの代わりに、ガラス転移温度60℃でポリスチレン−アクリル酸エチル樹脂を組成とするエマルジョン製品の市販品Eを固形分濃度2.0質量%水溶液に希釈し、これをバインダー液として使用した以外は実施例4と同様にして、坪量70g/m、バインダー付着量6.1質量%であるエアフィルタ用濾材連続シートの巻取り品を得た。次いで、実施例4と同様の熱エンボス成形方法によってフィルタカートリッジを作成し、このフィルタカートリッジを実施例4と同様のアルミ製支持枠にはめ込み、エアフィルタ用濾材成形装置にて加工を行い、外寸縦610mm、横610mm、奥行き292mmのエアフィルタを作成した。 In Example 4, instead of the commercial product A of the emulsion product, the commercial product E of the emulsion product having a composition of polystyrene-ethyl acrylate resin at a glass transition temperature of 60 ° C. was diluted to an aqueous solution with a solid content of 2.0% by mass. In the same manner as in Example 4 except that this was used as a binder liquid, a wound product of a continuous filter medium for air filter having a basis weight of 70 g / m 2 and a binder adhesion amount of 6.1% by mass was obtained. Next, a filter cartridge was prepared by the same hot embossing method as in Example 4, this filter cartridge was fitted into the same aluminum support frame as in Example 4, and processed by a filter medium molding device for air filter. An air filter having a length of 610 mm, a width of 610 mm, and a depth of 292 mm was prepared.

なお、これら実施例、比較例におけるガラス転移温度は、メーカーの公称値である。   In addition, the glass transition temperature in these Examples and Comparative Examples is a manufacturer's nominal value.

実施例及び比較例の物性評価は、次に示す方法で行った。   The physical properties of Examples and Comparative Examples were evaluated by the following methods.

(1)濾材圧力損失
実施例1〜3及び比較例1〜3の濾材について、自製の装置を用いて有効面積100cmの濾紙に面風速5.3cm/sec.で通風したときの圧力損失を微差圧計で測定した。
(1) Filter media pressure loss About the filter media of Examples 1 to 3 and Comparative Examples 1 to 3, the pressure loss when passing through a filter paper with an effective area of 100 cm 2 at a surface wind speed of 5.3 cm / sec. Measured with a differential pressure gauge.

(2)0.3μm濾材DOP透過率
実施例1〜3及び比較例1〜3の濾材について、ラスキンノズルで発生させた多分散DOP粒子を含む空気を、有効面積100cmの濾紙に面風速5.3cm/sec.で通風したときの上流及び下流の個数比からDOPの透過率を、リオン社製レーザーパーティクルカウンターを使用して測定した。なお、対象粒径を0.3μmとし、透過率を粒径区分0.2−0.3μm透過率と0.3−0.4μm透過率との幾何平均から求めた。
(2) 0.3 μm filter medium DOP permeability For the filter mediums of Examples 1 to 3 and Comparative Examples 1 to 3, air containing polydisperse DOP particles generated by a Ruskin nozzle was applied to filter paper having an effective area of 100 cm 2 with a surface wind speed of 5 The transmittance of DOP was measured by using a laser particle counter manufactured by Rion Co., Ltd. from the number ratio of upstream and downstream when ventilated at 3 cm / sec. The target particle size was 0.3 μm, and the transmittance was determined from the geometric mean of the particle size classification 0.2-0.3 μm transmittance and 0.3-0.4 μm transmittance.

(3)貯蔵弾性率及び貯蔵弾性率の低下率
実施例1〜3及び比較例1〜3の濾材について、試料から8×40mmの試験片を切り取り、粘弾性測定装置(DMS210 セイコーインスツルメンツ社製)にセットし、初期28℃から昇温させて、40℃及び80℃の貯蔵弾性率を測定した。
また、これらの測定値から、貯蔵弾性率の低下率も計算によって求めた。
(3) Storage elastic modulus and decrease rate of storage elastic modulus About the filter media of Examples 1 to 3 and Comparative Examples 1 to 3, an 8 × 40 mm test piece was cut out from a sample, and a viscoelasticity measuring device (DMS210 manufactured by Seiko Instruments Inc.) was used. The temperature was raised from the initial 28 ° C., and the storage elastic modulus at 40 ° C. and 80 ° C. was measured.
Further, from these measured values, the rate of decrease in storage elastic modulus was also obtained by calculation.

(4)エンボス評価
濾材加工時のエンボス部の戻りをラボラトリー的に評価するため、幅10mm、長さ70mm、深さ2mm及び幅10mm、長さ70mm、深さ3mmの2種類の凹凸金型を作成し、実施例1〜3及び比較例1〜3の濾材を150℃に加熱した凹凸金型の間に挟み、所定圧力で5秒間加圧した。このときのエンボスのつきかたを○(実用に耐える)、△(実用に耐えない)、×(実用に耐えない)で視感評価した。
(4) Embossing evaluation In order to evaluate the return of the embossed part at the time of processing a filter medium, two types of concave and convex molds having a width of 10 mm, a length of 70 mm, a depth of 2 mm, a width of 10 mm, a length of 70 mm, and a depth of 3 mm are used. The filter media of Examples 1 to 3 and Comparative Examples 1 to 3 were prepared and sandwiched between concavo-convex molds heated to 150 ° C., and pressurized at a predetermined pressure for 5 seconds. The embossing at this time was evaluated by visual evaluation with ○ (withstanding practical use), Δ (not withstanding practical use), and × (not withstanding practical use).

(5)エアフィルタエンボス評価
実施例4と比較例4のエアフィルタについて、70℃の熱風を面風速2.5m/sec.の条件で48時間通風した前後のエンボス成形部の深さを実測し、エンボス深さに変化が無いものを○(実用に耐える)、浅くなったものを×(実用に耐えない)と評価した。
(5) Evaluation of air filter embossing For the air filters of Example 4 and Comparative Example 4, hot air at 70 ° C. was applied with a surface wind speed of 2.5 m / sec. Measure the depth of the embossed part before and after 48 hours of ventilation under the above conditions, and evaluated that the emboss depth did not change as ○ (withstands practical use), and the shallower as x (not into practical use). .

Figure 0004990203
Figure 0004990203

Figure 0004990203
実施例1、2、3と比較例1、2、3との比較によれば、ガラス転移温度80℃未満では、貯蔵弾性率の低下率が5%以上と大きく、ガラス転移温度75℃である比較例1のエンボス評価では、エンボス深さ2mmでやや不良程度であったが、更に厳しい深さ3mmでエンボスの戻り現象が顕著であった。また、更にガラス転移温度の低い比較例2,3では、エンボス深さ2mmと3mmでともにエンボスの戻り現象が顕著であった。一方、本発明のガラス転移温度80℃以上である実施例1、2及び3では、貯蔵弾性率の低下率が5%以下であり、エンボスの戻り現象が見られず、本発明の効果のあることが分かる。
Figure 0004990203
According to the comparison between Examples 1, 2, and 3 and Comparative Examples 1, 2, and 3, when the glass transition temperature is less than 80 ° C., the decrease rate of the storage elastic modulus is as large as 5% or more, and the glass transition temperature is 75 ° C. In the embossing evaluation of Comparative Example 1, although the embossing depth was 2 mm, it was slightly poor, but the embossing return phenomenon was remarkable at a more severe depth of 3 mm. Further, in Comparative Examples 2 and 3 having a lower glass transition temperature, the embossing return phenomenon was remarkable at both emboss depths of 2 mm and 3 mm. On the other hand, in Examples 1, 2 and 3 having a glass transition temperature of 80 ° C. or higher according to the present invention, the reduction rate of the storage elastic modulus is 5% or less, the embossing return phenomenon is not observed, and the present invention is effective. I understand that.

実施例4と比較例4との比較によれば、ガラス転移温度80℃以上のバインダーを付与した貯蔵弾性率の低下率が5%以下である濾材を使用した実施例4のエアフィルタは、70℃の熱風を面風速2.5m/sec.の条件で通風した後のエンボスの戻り現象が起こっていないことがわかる。一方、比較例4のエアフィルタは、エンボス深さが浅くなっており、エンボスの戻り現象が顕著に起っていることが分かる。   According to a comparison between Example 4 and Comparative Example 4, the air filter of Example 4 using a filter medium having a storage elastic modulus reduction rate of 5% or less to which a binder having a glass transition temperature of 80 ° C. or higher was applied was 70 ℃ hot air was applied to the surface wind speed 2.5m / sec. It can be seen that the embossing return phenomenon does not occur after ventilating under the above conditions. On the other hand, in the air filter of Comparative Example 4, the emboss depth is shallow, and it can be seen that the emboss return phenomenon is remarkable.

は、この発明の実施の形態におけるエアフィルタ用濾材カートリッジ製造装置の斜視図である。These are the perspective views of the filter medium cartridge manufacturing apparatus for air filters in embodiment of this invention. は、この発明の実施の形態におけるエアフィルタ用濾材カートリッジ製造装置内エンボスマーキングロール部の斜視図である。These are the perspective views of the embossing marking roll part in the filter medium cartridge manufacturing apparatus for air filters in embodiment of this invention. は、実施例1における濾材の貯蔵弾性率測定データのグラフである。These are the graphs of the storage elastic modulus measurement data of the filter medium in Example 1. は、比較例2における濾材の貯蔵弾性率測定データのグラフである。These are the graphs of the storage elastic modulus measurement data of the filter medium in Comparative Example 2.

符号の説明Explanation of symbols

A・・・濾材供給ステーション
B・・・加熱ステーション
C・・・エンボスマーキングステーション
D・・・冷却ステーション
E・・・接着剤塗布ステーション
F・・・濾材幅断ちステーション
G・・・プリーティングステーション
I・・・養生ステーション
J・・・定長切断ステーション
A: Filter media supply station
B ... Heating station
C ... Embossing marking station
D ... Cooling station
E ・ ・ ・ Adhesive application station
F ... Filter media width cutting station
G ・ ・ ・ Pleating station
I ... Curing station
J: Constant length cutting station

Claims (3)

ガラス繊維を主体繊維としたエアフィルタ用濾材において、その構成がガラス繊維を主体とした繊維97〜90質量%及び熱可塑性バインダー3〜10質量%であり、かつ、前記濾材の40℃における貯蔵弾性率に対する80℃における貯蔵弾性率の低下率が5%以下であること及び前記熱可塑性バインダーがガラス転移温度80℃以上の熱可塑性樹脂であることを特徴とする熱エンボス成形加工用のエアフィルタ用濾材。 The filter medium for an air filter using glass fiber as a main fiber, the constitution of which is 97 to 90% by mass of fiber mainly composed of glass fiber and 3 to 10% by mass of a thermoplastic binder, and the storage elasticity of the filter medium at 40 ° C. For an air filter for hot embossing processing , characterized in that the rate of decrease in storage modulus at 80 ° C. relative to the modulus is 5% or less, and the thermoplastic binder is a thermoplastic resin having a glass transition temperature of 80 ° C. or higher Filter media. 可塑性樹脂がスチレン−アクリル酸エステル樹脂であることを特徴とする請求項1記載の熱エンボス成形加工用のエアフィルタ用濾材。 2. The air filter medium for hot emboss molding according to claim 1, wherein the thermoplastic resin is a styrene-acrylate resin. 請求項1又は2記載のエアフィルタ用濾材を熱エンボス成形加工してフィルタカートリッジを作成した後、70℃の熱風を面風速2.5m/sec.の条件で通風しても、エンボス成形部の戻りが無いことを特徴とするエアフィルタ。 After the claim 1 or 2 medium for an air filter according to create a filter cartridge with hot embossing molding, a hot air of 70 ° C. face velocity 2.5 m / sec. The air filter is characterized in that the embossed part does not return even when ventilated under the conditions described above.
JP2008072008A 2008-03-19 2008-03-19 Air filter medium for hot emboss molding and air filter using the same Active JP4990203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072008A JP4990203B2 (en) 2008-03-19 2008-03-19 Air filter medium for hot emboss molding and air filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072008A JP4990203B2 (en) 2008-03-19 2008-03-19 Air filter medium for hot emboss molding and air filter using the same

Publications (2)

Publication Number Publication Date
JP2009226260A JP2009226260A (en) 2009-10-08
JP4990203B2 true JP4990203B2 (en) 2012-08-01

Family

ID=41242326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072008A Active JP4990203B2 (en) 2008-03-19 2008-03-19 Air filter medium for hot emboss molding and air filter using the same

Country Status (1)

Country Link
JP (1) JP4990203B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102293B2 (en) * 1989-03-24 1995-11-08 北越製紙株式会社 Glass fiber filter paper for high performance air filter and method for producing the same
DE4017184A1 (en) * 1989-06-01 1990-12-06 Hollingsworth & Vose Co PRESERVABLE FILTER FABRIC
JPH03249251A (en) * 1990-02-23 1991-11-07 Ohtsu Tire & Rubber Co Ltd :The Production of nonwoven fabric of porous glass yarn
JP3331651B2 (en) * 1993-01-07 2002-10-07 東レ株式会社 Composite sheet and method for producing the same
JP3001408B2 (en) * 1996-02-19 2000-01-24 ニッタ株式会社 Filter medium for air filter and molding device for filter medium for air filter
JPH1072752A (en) * 1996-05-15 1998-03-17 Matsushita Electric Ind Co Ltd Nonwoven fabric base material for printed circuit board and prepreg using the same
JP2000000886A (en) * 1998-06-18 2000-01-07 Idemitsu Petrochem Co Ltd Inflation film of styrene resin and its production

Also Published As

Publication number Publication date
JP2009226260A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP6212619B2 (en) Air filter medium and air filter including the same
JP5319380B2 (en) Low basis weight air filter media
JP2008246321A (en) Filter medium for dust removing air filter and its manufacturing method
JP6527800B2 (en) Filter paper for filter and manufacturing method thereof
JP4990203B2 (en) Air filter medium for hot emboss molding and air filter using the same
JP7055261B1 (en) Filter media for air filters and their manufacturing methods
JP6578673B2 (en) Flame retardant support
JP6270971B2 (en) Filter material for air filter and method for producing the same
JP5797175B2 (en) Air filter media
JP7215871B2 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP3669798B2 (en) Flame retardant volume reducing high performance air filter medium and method for producing the same
JP5290507B2 (en) Air filter medium and air filter including the same
JP6964033B2 (en) Filter material for air filter
JPH0757293B2 (en) Filter material for air filter
JP7157270B1 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP7453375B2 (en) Filter medium for air filter and its manufacturing method
JP7349414B2 (en) Filter medium for air filter and its manufacturing method
JP5426589B2 (en) Air filter media
EP4417291A1 (en) Filter medium for high-performance air filter, and method for manufacturing same
JP6699150B2 (en) Filter media, filters and filter units
JP2015085250A (en) Filter medium for air filter and production method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4990203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250