JP7349414B2 - Filter medium for air filter and its manufacturing method - Google Patents

Filter medium for air filter and its manufacturing method Download PDF

Info

Publication number
JP7349414B2
JP7349414B2 JP2020115748A JP2020115748A JP7349414B2 JP 7349414 B2 JP7349414 B2 JP 7349414B2 JP 2020115748 A JP2020115748 A JP 2020115748A JP 2020115748 A JP2020115748 A JP 2020115748A JP 7349414 B2 JP7349414 B2 JP 7349414B2
Authority
JP
Japan
Prior art keywords
filter medium
fluororesin
fibers
surfactant
air filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020115748A
Other languages
Japanese (ja)
Other versions
JP2022022750A (en
Inventor
希 田代
正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Corp
Original Assignee
Hokuetsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Corp filed Critical Hokuetsu Corp
Priority to JP2020115748A priority Critical patent/JP7349414B2/en
Publication of JP2022022750A publication Critical patent/JP2022022750A/en
Application granted granted Critical
Publication of JP7349414B2 publication Critical patent/JP7349414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Filtering Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)

Description

本開示は、半導体、液晶、食品工業向けのクリーンルーム、ビル空調又は空気清浄機などに設置されるエアフィルタに用いられるエアフィルタ用濾材に関する。 The present disclosure relates to a filter medium for air filters used in air filters installed in clean rooms, building air conditioners, air cleaners, etc. for the semiconductor, liquid crystal, and food industries.

空気中のサブミクロン又はミクロン単位の粒子を捕集除去するためには、一般的に、エアフィルタ用濾材を備えたエアフィルタが用いられる。エアフィルタは捕集可能な粒子径、捕集効率によって粗塵用フィルタ、中性能フィルタ、HEPAフィルタ、ULPAフィルタに分類され、後者になるほどより高性能となる。 In order to collect and remove submicron or micron particles in the air, an air filter equipped with an air filter medium is generally used. Air filters are classified into coarse dust filters, medium-performance filters, HEPA filters, and ULPA filters depending on the particle size that can be collected and collection efficiency, and the latter have higher performance.

エアフィルタ用濾材の濾過性能を示す特性として、圧力損失及び捕集効率がある。圧力損失が高いほど、通風のために必要なエネルギー消費量が増加するとともにフィルタのランニングコストが高くなるため、圧力損失が低く且つ粒子の捕集効率が高い濾材が望ましい。この観点より示される濾過性能の指標としては、数1の式で定義されるPF値がある。尚、透過率[%]=100-捕集効率[%]であり、高いPF値を有する濾材が望ましい。

Figure 0007349414000001
Pressure loss and collection efficiency are characteristics that indicate the filtration performance of air filter media. The higher the pressure loss, the higher the energy consumption required for ventilation and the higher the running cost of the filter, so a filter medium with low pressure loss and high particle collection efficiency is desirable. As an index of filtration performance shown from this viewpoint, there is a PF value defined by the formula of Equation 1. Note that transmittance [%] = 100 - collection efficiency [%], and a filter medium having a high PF value is desirable.
Figure 0007349414000001

エアフィルタ用濾材のPF値を向上させる方法としては、エアフィルタ用濾材に4級アンモニウム塩であるカチオン性界面活性剤を付与する方法(例えば、特許文献1を参照。)、フッ素樹脂と界面活性剤を付与する方法(例えば、特許文献2を参照。)、バインダー樹脂とフッ素系界面活性剤の混合物を付与する方法(例えば、特許文献3を参照。)が提案されている。 Methods for improving the PF value of air filter media include a method of adding a cationic surfactant, which is a quaternary ammonium salt, to the air filter media (see, for example, Patent Document 1), and a method of adding a cationic surfactant, which is a quaternary ammonium salt, to the air filter media. A method of applying an agent (for example, see Patent Document 2) and a method of applying a mixture of a binder resin and a fluorosurfactant (see, for example, Patent Document 3) have been proposed.

又、含窒素フッ素系界面活性剤を事前に付着させたガラス繊維を構成繊維の一部として用いる方法(例えば、特許文献4を参照。)も提案されている。 Furthermore, a method has also been proposed in which glass fibers to which a nitrogen-containing fluorine-based surfactant is attached in advance are used as part of the constituent fibers (see, for example, Patent Document 4).

一方で、エアフィルタ用濾材に求められる他の物性として、撥水性が挙げられる。撥水性を有する濾材を用いることにより、濾材をエアフィルタユニットに加工する際に使用されるシール剤やホットメルトが染み込む問題や、結露により生じた水滴が濾材の細孔をふさぐ問題の発生を防ぐことができる。更に、高い撥水性を有する濾材を用いることにより、沿岸地域でのフィルタ使用における海塩粒子の侵入を防ぐことができる。 On the other hand, water repellency is another physical property required of air filter media. By using water-repellent filter media, we prevent the problem of sealants and hot melt used when processing the filter media into air filter units seeping in, and the problem of water droplets caused by condensation blocking the pores of the filter media. be able to. Furthermore, by using a filter medium with high water repellency, it is possible to prevent sea salt particles from entering the filter when the filter is used in coastal areas.

特開2010―94580号公報Japanese Patent Application Publication No. 2010-94580 WO2014-171165号公報WO2014-171165 publication 特開2015-85250号公報Japanese Patent Application Publication No. 2015-85250 特開2019-51481号公報JP2019-51481A

前記の通り、エアフィルタ用濾材のPF値を向上させる方法として特許文献1~3の技術が提案されているが、省エネルギーの観点から更なるPF値向上が求められている。例えば、特許文献2で提示されたフッ素樹脂と界面活性剤を付与する方法は、フッ素樹脂100質量部に対してアニオン性界面活性剤を20質量部以下の割合で付着させる事例が示されている。界面活性剤は濾材に吸着し、繊維の分散性を良くすることでPF値を向上させる効果があるが、ガラス繊維は負に帯電しているためアニオン性界面活性剤は繊維に吸着しにくく、繊維に吸着したフッ素樹脂へと優先的に吸着するため、界面活性剤の割合を増やすことによるPF値向上効果には限りがあり、且つ撥水性が低下しやすくなる問題があった。又、特許文献4の方法ではガラス繊維への界面活性剤の付着工程が必要なため、製造効率が低くなり製造コストが高くなる問題があった。 As described above, the techniques disclosed in Patent Documents 1 to 3 have been proposed as methods for improving the PF value of filter media for air filters, but there is a need for further improvement in the PF value from the viewpoint of energy conservation. For example, in the method of applying a fluororesin and a surfactant presented in Patent Document 2, an example is shown in which anionic surfactant is attached at a ratio of 20 parts by mass or less to 100 parts by mass of fluororesin. . Surfactants have the effect of improving the PF value by adsorbing to the filter medium and improving the dispersibility of the fibers, but because glass fibers are negatively charged, anionic surfactants are difficult to adsorb to the fibers. Since the surfactant is preferentially adsorbed to the fluororesin adsorbed to the fibers, the effect of increasing the PF value by increasing the proportion of the surfactant is limited, and there is a problem in that water repellency tends to decrease. Furthermore, since the method of Patent Document 4 requires a step of adhering a surfactant to glass fibers, there is a problem that the manufacturing efficiency is low and the manufacturing cost is high.

前記の通り、エアフィルタ用濾材には、高いPF値と撥水性を有していることと、更には製造が容易であることが求められている。したがって、本開示の課題は、PF値が高く且つ実用上十分な撥水性を有するエアフィルタ用濾材を提供すること及びその濾材を容易な製法で提供することである。 As mentioned above, filter media for air filters are required to have a high PF value and water repellency, and also to be easy to manufacture. Therefore, an object of the present disclosure is to provide a filter medium for an air filter that has a high PF value and has practically sufficient water repellency, and to provide the filter medium by an easy manufacturing method.

本発明に係るエアフィルタ用濾材は、ガラス繊維を含む湿式不織布からなるエアフィルタ用濾材において、該濾材は、フッ素樹脂及びカチオン性の界面活性剤を含み、且つバインダー樹脂を含まず、前記フッ素樹脂と前記界面活性剤との固形分質量比率が40/60~80/20の範囲にあることを特徴とする。フッ素樹脂とカチオン性の界面活性剤を前記の割合で共にガラス繊維に吸着させることにより、PF値が高く且つ実用上十分な撥水性を有するエアフィルタ用濾材が得られる。 A filter medium for an air filter according to the present invention is a filter medium for an air filter made of a wet-laid nonwoven fabric containing glass fibers, the filter medium contains a fluororesin and a cationic surfactant, and does not contain a binder resin, The solid content mass ratio of the surfactant and the surfactant is in the range of 40/60 to 80/20. By adsorbing both the fluororesin and the cationic surfactant on glass fibers in the above ratio, a filter medium for an air filter having a high PF value and sufficient water repellency for practical use can be obtained.

本発明に係るエアフィルタ用濾材では、前記湿式不織布が、更に溶融接着バインダー繊維を含み、前記溶融接着バインダー繊維は、繊維状態で前記ガラス繊維に溶融接着していることが好ましい。濾材の強度をより高めることができる。 In the air filter medium according to the present invention, it is preferable that the wet-laid nonwoven fabric further includes melt-bonded binder fibers, and that the melt-bonded binder fibers are melt-bonded to the glass fibers in a fibrous state . The strength of the filter medium can be further increased.

本発明に係るエアフィルタ用濾材では、前記フッ素樹脂はノニオン性又はカチオン性が好ましい。ガラス繊維は負の表面電荷を有するため、フッ素樹脂がガラス表面により吸着しやすくなり、撥水効果が向上する。 In the air filter medium according to the present invention, the fluororesin is preferably nonionic or cationic. Since glass fiber has a negative surface charge, the fluororesin is more easily adsorbed to the glass surface, improving the water repellent effect.

本発明に係るエアフィルタ用濾材では、前記濾材に含まれる前記フッ素樹脂と前記界面活性剤を合計した固形分質量含有率は、濾材全体に対して0.01~2.00%であることが好ましい。濾材の高強度と高PF値との両立が可能となる。 In the air filter medium according to the present invention, the total solid mass content of the fluororesin and the surfactant contained in the filter medium may be 0.01 to 2.00% with respect to the entire filter medium. preferable. It becomes possible to achieve both high strength and high PF value of the filter medium.

本発明に係るエアフィルタ用濾材では、前記湿式不織布は、前記ガラス繊維として、繊維径が1~10μmのガラスウール繊維、繊維径が1μm未満のガラスウール繊維及び繊維径が4~30μmのチョップドガラス繊維を含むことが好ましい。高PF値及び高強度が得られやすくなる。 In the air filter medium according to the present invention, the wet nonwoven fabric includes, as the glass fibers, glass wool fibers with a fiber diameter of 1 to 10 μm, glass wool fibers with a fiber diameter of less than 1 μm, and chopped glass fibers with a fiber diameter of 4 to 30 μm. Preferably, it contains fibers. It becomes easier to obtain a high PF value and high strength.

本発明に係るエアフィルタ用濾材の製造方法は、ガラス繊維を含むスラリーを湿式抄紙法によりシート化して、湿潤状態のシートを形成する工程と、前記湿潤状態のシートを、フッ素樹脂及びカチオン性の界面活性剤を含み、前記フッ素樹脂と前記界面活性剤との固形分質量比率が40/60~80/20の範囲にあり、且つバインダー樹脂を含まない水性分散液に含浸する工程と、前記水性分散液に含浸した湿潤状態のシートを乾燥して、乾燥シートを得る工程と、を有することを特徴とする。これにより、PF値が高く且つ実用上十分な撥水性を有するエアフィルタ用濾材が得られる。 The method for producing a filter medium for an air filter according to the present invention includes the steps of: forming a wet sheet by forming a slurry containing glass fibers into a sheet by a wet papermaking method; impregnation in an aqueous dispersion containing a surfactant, in which the solid content mass ratio of the fluororesin and the surfactant is in the range of 40/60 to 80/20, and not containing a binder resin; The method is characterized by comprising a step of drying a wet sheet impregnated with a dispersion liquid to obtain a dry sheet. As a result, a filter medium for an air filter having a high PF value and sufficient water repellency for practical use can be obtained.

本開示によって、PF値が高く且つ実用上十分な撥水性を有するエアフィルタ用濾材を提供すること及びその濾材を容易な製法で提供することができる。 According to the present disclosure, it is possible to provide a filter medium for an air filter that has a high PF value and a practically sufficient water repellency, and to provide the filter medium using an easy manufacturing method.

フッ素樹脂/カチオン性界面活性剤の固形分質量比率と0.10~0.15μmのPF値との関係を表したグラフである。It is a graph showing the relationship between the solid content mass ratio of fluororesin/cationic surfactant and the PF value of 0.10 to 0.15 μm. フッ素樹脂/カチオン性界面活性剤の固形分質量比率と撥水性との関係を表したグラフである。It is a graph showing the relationship between the solid content mass ratio of fluororesin/cationic surfactant and water repellency.

次に、本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Next, the present invention will be described in detail by showing embodiments, but the present invention should not be interpreted as being limited to these descriptions. The embodiments may be modified in various ways as long as the effects of the present invention are achieved.

本実施形態に係るエアフィルタ用濾材は、ガラス繊維を含む湿式不織布からなるエアフィルタ用濾材であり、濾材は、フッ素樹脂及びカチオン性の界面活性剤を含み、且つバインダー樹脂を含まず、フッ素樹脂と界面活性剤との固形分質量比率が40/60~80/20の範囲にある。又、濾材の製造工程において、フッ素樹脂及びカチオン性の界面活性剤を含み、フッ素樹脂と界面活性剤との固形分質量比率が40/60~80/20の範囲にあり、且つバインダー樹脂を含まない水性分散液の含浸液を、ガラス繊維を含むスラリーを湿式抄紙法によりシート化した湿潤状態のシートに含浸させる。含浸によってガラス繊維にフッ素樹脂と界面活性剤が共に吸着する。次に含浸したシートを乾燥させる。このような工程を経た濾材は、ガラス繊維が均一に分散してガラス繊維どうしの凝集が防止され、濾材の表面積が大きくなることで捕集効率が向上し、高いPF値を有する濾材となると推定される。 The filter medium for an air filter according to the present embodiment is a filter medium for an air filter made of a wet-laid nonwoven fabric containing glass fiber, and the filter medium contains a fluororesin and a cationic surfactant, and does not contain a binder resin. The solid content mass ratio of the surfactant and the surfactant is in the range of 40/60 to 80/20. In addition, in the manufacturing process of the filter medium, it contains a fluororesin and a cationic surfactant, the solid content mass ratio of the fluororesin and the surfactant is in the range of 40/60 to 80/20, and a binder resin is included. A wet sheet obtained by forming a slurry containing glass fibers into a sheet by a wet paper-making method is impregnated with an impregnating liquid of an aqueous dispersion containing no water. The fluororesin and surfactant are both adsorbed onto the glass fiber through impregnation. The impregnated sheet is then dried. It is estimated that in filter media that has undergone this process, the glass fibers are uniformly dispersed, preventing agglomeration of glass fibers, increasing the surface area of the filter media, improving collection efficiency, and resulting in a filter media with a high PF value. be done.

本実施形態で用いるフッ素樹脂は、分子内にフルオロアルキル基を含有する樹脂であり、フッ素原子によりもたらされる反撥力により、撥水性、撥油性、非粘着性等の特性を有するものである。撥水剤、撥油剤又は防汚剤として市販されているパーフルオロアルキル基含有樹脂からなる水性エマルジョンタイプ又は水性ディスパージョンタイプのものを用いることが好ましい。フッ素樹脂はノニオン性又はカチオン性が好ましく、ガラス繊維に吸着しやすいカチオン性のフッ素樹脂がより好ましい。ガラス繊維は負の表面電荷を有するため、フッ素樹脂がガラス表面により吸着しやすくなり、撥水効果が向上する。ここでいうカチオン性とは、フッ素樹脂自体又は乳化剤等がカチオン性であり、水中に分散されたフッ素樹脂のコロイド粒子が正の表面電荷を有することを意味する。カチオン性のフッ素樹脂を用いることにより、水中において負の表面電荷を有するガラス繊維に吸着しやすくなる。 The fluororesin used in this embodiment is a resin containing a fluoroalkyl group in its molecule, and has properties such as water repellency, oil repellency, and non-adhesion due to the repulsive force provided by fluorine atoms. It is preferable to use an aqueous emulsion type or aqueous dispersion type agent made of a perfluoroalkyl group-containing resin that is commercially available as a water repellent, oil repellent, or antifouling agent. The fluororesin is preferably nonionic or cationic, and more preferably a cationic fluororesin that is easily adsorbed to glass fibers. Since glass fiber has a negative surface charge, the fluororesin is more easily adsorbed to the glass surface, improving the water repellent effect. The term cationic here means that the fluororesin itself or the emulsifier is cationic, and the colloidal particles of the fluororesin dispersed in water have a positive surface charge. By using a cationic fluororesin, it becomes easier to adsorb to glass fibers having a negative surface charge in water.

本実施形態で用いる界面活性剤は、カチオン性のものから選択され、例えば1~3級アミン塩、4級アンモニウム塩等が挙げられる。 The surfactant used in this embodiment is selected from cationic ones, and includes, for example, primary to tertiary amine salts, quaternary ammonium salts, and the like.

本実施形態においては、フッ素樹脂と界面活性剤を含む含浸液の中に、バインダー樹脂を含まない。ここで言うバインダー樹脂とは、含浸や塗布等の方法を用いて不織布に付与した際に不織布の強度を向上させる効果を持つ、ポリアクリル酸エステル樹脂、ポリスチレンブタジエン樹脂、ポリ酢酸ビニル樹脂、ポリウレタン樹脂等の樹脂からなる水性分散液である。このようなバインダー樹脂を用いて十分な強度を得るためには、本実施形態で用いるフッ素樹脂と界面活性剤に比べて大量のバインダー樹脂を用いることが必要となるため、本実施形態の効果を妨げる。尚、本実施形態で用いるフッ素樹脂は、前記の通りフッ素原子による反撥力のために強度付与に対する効果が小さいため、ここで言うバインダー樹脂には含まれない。 In this embodiment, the impregnating liquid containing the fluororesin and the surfactant does not contain a binder resin. The binder resins mentioned here are polyacrylic ester resins, polystyrene butadiene resins, polyvinyl acetate resins, and polyurethane resins that have the effect of improving the strength of nonwoven fabrics when applied to nonwoven fabrics using methods such as impregnation or coating. It is an aqueous dispersion consisting of resins such as. In order to obtain sufficient strength using such a binder resin, it is necessary to use a larger amount of binder resin than the fluororesin and surfactant used in this embodiment. hinder. Note that the fluororesin used in this embodiment is not included in the binder resin referred to herein because, as described above, the effect on imparting strength is small due to the repulsive force of fluorine atoms.

本実施形態におけるフッ素樹脂と界面活性剤の濾材中の固形分質量比率(フッ素樹脂/界面活性剤)は、40/60~80/20である。この質量比率とすることで、非常に高いPF値(例えば、13以上)と、実用上十分な撥水性(例えば、150mm水柱高以上)の両方を有するエアフィルタ用濾材を得ることができる。フッ素樹脂の固形分質量比率が40部未満、界面活性剤の固形分質量比率が60部を超えると、フッ素樹脂がガラス繊維に十分吸着しないために撥水性が得られなくなり、フッ素樹脂の固形分質量比率が80部を超え、界面活性剤の固形分質量比率が20部未満であると、界面活性剤がガラス繊維に十分吸着しないためにPF値が低くなる。 In this embodiment, the solid content mass ratio of the fluororesin and surfactant in the filter medium (fluororesin/surfactant) is 40/60 to 80/20. By setting this mass ratio, it is possible to obtain a filter medium for an air filter that has both a very high PF value (for example, 13 or more) and practically sufficient water repellency (for example, 150 mm water column height or more). If the solid content mass ratio of the fluororesin is less than 40 parts and the solid content mass ratio of the surfactant exceeds 60 parts, water repellency will not be obtained because the fluororesin will not be sufficiently adsorbed to the glass fibers, and the solid content of the fluororesin will decrease. If the mass ratio exceeds 80 parts and the solid content mass ratio of the surfactant is less than 20 parts, the surfactant will not be sufficiently adsorbed to the glass fibers, resulting in a low PF value.

濾材中におけるフッ素樹脂と界面活性剤を合計した固形分質量含有率は、濾材全体に対して0.01~2.00%であることが好ましく、0.10~1.00%であることがより好ましい。これらの成分の含有率が0.01%よりも低いとPF値向上効果が十分でなくなり、含有率が2.00%よりも高いと増量にともなうPF値の更なる向上が望めなくなる。 The total solid mass content of the fluororesin and surfactant in the filter medium is preferably 0.01 to 2.00%, and preferably 0.10 to 1.00% based on the entire filter medium. More preferred. If the content of these components is lower than 0.01%, the effect of improving the PF value will not be sufficient, and if the content is higher than 2.00%, further improvement in the PF value cannot be expected as the amount is increased.

本実施形態におけるエアフィルタ用濾材は、ガラス繊維を含む湿式不織布からなる。ガラス繊維は高い剛性を有しているため、濾材内において、空気が通過するために必要な空隙を十分に維持することができ、高いPF値を得ることができる。ガラス繊維としてはガラスウール繊維とチョップドガラス繊維を使用することができる。ここで言うガラスウール繊維は、火焔延伸法又はロータリー法により延伸されて製造される、繊維径がある程度の分布幅を有する不定形で不連続なウール状のガラス繊維である。繊維径の範囲は一般的に約0.1~約10μmであり、ある程度の分布幅を有することから繊維径の値は一般的に平均繊維径として表され、本実施形態において用いているガラスウール繊維の繊維径も平均繊維径である。一方で、チョップドガラス繊維は、所定の直径を有する口金から紡糸された連続したガラス繊維を所定の繊維長に切断した定形で直線状のガラス繊維であり、繊維径の範囲は一般的に約4~約30μm、繊維長の範囲は一般的に約1.5~約25mmである。本実施形態の濾材において、繊維径が細く不定形のガラスウール繊維は、捕集効率を高くするとともに濾材中の空隙を保持する効果を有する。繊維径が太く直線状のチョップドガラス繊維は、フィルタユニットの加工時及び使用時に必要とされる強度及び剛度を付与する効果を有するが、濾材の製造中に繊維が水平方向に堆積しやすいため、チョップドガラス繊維の配合比率が高いと、濾材の密度を高くする傾向にある。本実施形態において、ガラス繊維としてチョップドガラス繊維を用いる場合、チョップドガラス繊維の配合率は、濾材中の繊維の全繊維質量に対して、1~50質量%が好ましく、3~30%質量%がより好ましく、5~10質量%が更に好ましい。 The air filter medium in this embodiment is made of a wet nonwoven fabric containing glass fibers. Since glass fiber has high rigidity, it is possible to maintain sufficient voids in the filter medium for air to pass through, and a high PF value can be obtained. Glass wool fibers and chopped glass fibers can be used as the glass fibers. The glass wool fibers referred to herein are amorphous, discontinuous, wool-like glass fibers whose fiber diameters have a certain distribution width and are produced by drawing by a flame drawing method or a rotary method. The fiber diameter range is generally about 0.1 to about 10 μm, and since it has a certain degree of distribution width, the fiber diameter value is generally expressed as an average fiber diameter. The fiber diameter of the fiber is also the average fiber diameter. On the other hand, chopped glass fiber is a regular-shaped, straight glass fiber obtained by cutting a continuous glass fiber spun from a spindle with a predetermined diameter into a predetermined fiber length, and the fiber diameter range is generally about 4 to about 30 μm, with fiber lengths generally ranging from about 1.5 to about 25 mm. In the filter medium of this embodiment, the glass wool fibers having a small fiber diameter and an irregular shape have the effect of increasing the collection efficiency and retaining voids in the filter medium. Chopped glass fibers with a thick fiber diameter and a straight shape have the effect of imparting the strength and rigidity required during processing and use of the filter unit, but the fibers tend to accumulate horizontally during the manufacturing of the filter medium. A high blending ratio of chopped glass fiber tends to increase the density of the filter medium. In this embodiment, when chopped glass fibers are used as the glass fibers, the blending ratio of the chopped glass fibers is preferably 1 to 50% by mass, and 3 to 30% by mass, based on the total fiber mass of the fibers in the filter medium. More preferably, 5 to 10% by mass is even more preferred.

本実施形態においては、ガラスウール繊維の平均繊維径は特に限定するものではないが、0.1~10μmであることが好ましく、0.2~7μmであることがより好ましい。又、高いPF値を得るためには、ガラス繊維の少なくとも一部が繊維径1μm未満のガラス繊維であることが好ましい。 In this embodiment, the average fiber diameter of the glass wool fibers is not particularly limited, but is preferably 0.1 to 10 μm, more preferably 0.2 to 7 μm. Furthermore, in order to obtain a high PF value, it is preferable that at least a portion of the glass fibers be glass fibers with a fiber diameter of less than 1 μm.

本実施形態においては、エアフィルタ用濾材に必要とされる強度を付与するために、バインダー繊維を用いることができる。バインダー繊維は、ガラス繊維を含むスラリーに添加され、溶融接着、水素結合、物理的な絡み合い等により強度を付与する繊維であり、本実施形態の効果を損なわない範囲で自由に選択される。例を挙げると、ポリビニルアルコール繊維、ポリエステル繊維、ポリオレフィン繊維等である。本実施形態においては、これらの中でも溶融接着バインダー繊維を用いることが好ましい。溶融接着バインダー繊維の形態としては、溶融する部分と溶融しない部分とが隣り合わせで複合化されたサイドバイサイド型バインダー繊維や、溶融しない芯部と溶融する鞘部を有する芯鞘型バインダー繊維や、全体が溶融してガラス繊維等の主体繊維同士の接着に寄与する全融型バインダー繊維などがある。バインダー繊維の配合率は、濾材中の繊維の全繊維質量に対して、10~70質量%が好ましく、20~60%質量%がより好ましく、30~50質量%が更に好ましい。溶融接着バインダー繊維は、サイドバイサイド型バインダー繊維、芯鞘型バインダー繊維及び全融型バインダー繊維のうち、いずれか一種をエアフィルタ用濾材に含ませる形態のほか、2種又は3種を含ませてもよい。2種を含ませる例としては、サイドバイサイド型バインダー繊維と芯鞘型バインダー繊維の組み合わせ、サイドバイサイド型バインダー繊維と全融型バインダー繊維の組み合わせ、又は芯鞘型バインダー繊維と全融型バインダー繊維の組み合わせがある。 In this embodiment, binder fibers can be used to provide the required strength to the air filter medium. Binder fibers are fibers that are added to a slurry containing glass fibers to impart strength through melt adhesion, hydrogen bonding, physical entanglement, etc., and can be freely selected within a range that does not impair the effects of this embodiment. Examples include polyvinyl alcohol fibers, polyester fibers, polyolefin fibers, etc. In this embodiment, it is preferable to use melt adhesive binder fibers among these. The forms of melt-bonded binder fibers include side-by-side type binder fibers in which a melting part and non-melting part are composited side by side, core-sheath type binder fibers having a core part that does not melt and a sheath part that melts, and There are fully meltable binder fibers that melt and contribute to adhesion between main fibers such as glass fibers. The blending ratio of the binder fiber is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and even more preferably 30 to 50% by mass, based on the total fiber mass of the fibers in the filter medium. Melt adhesive binder fibers include side-by-side type binder fibers, core-sheath type binder fibers, and all-melting type binder fibers, in which any one type is included in the filter medium for air filters, or two or three types thereof may be included. good. Examples of including two types include a combination of a side-by-side type binder fiber and a core-sheath type binder fiber, a combination of a side-by-side type binder fiber and a fully fused type binder fiber, or a combination of a core-sheath type binder fiber and a fully fused type binder fiber. be.

本実施形態に係るエアフィルタ用濾材の製造工程においては、原料繊維を水中で分散して原料スラリーを得て、これを湿式抄紙法によりシート化して、湿潤状態のシートを得る。分散及び抄紙に用いる水は、酸性であることが好ましく、pH2~4であることがより好ましい。酸性下で分散及び抄紙を行うことにより、ガラス繊維の分散が容易になる他、湿紙強度を高くすることができ、操業が容易になる。 In the manufacturing process of the filter medium for an air filter according to the present embodiment, raw material fibers are dispersed in water to obtain a raw material slurry, and this is formed into a sheet by a wet papermaking method to obtain a wet sheet. The water used for dispersion and paper making is preferably acidic, and more preferably has a pH of 2 to 4. By carrying out dispersion and paper making under acidic conditions, glass fibers can be easily dispersed, and the strength of the wet paper can be increased, making operations easier.

本実施形態に係るエアフィルタ用濾材の製造工程においては、前記の方法で得られた乾燥前の湿潤状態のシートに、フッ素樹脂と界面活性剤を含む水性分散液を含浸させ、シートを乾燥することでエアフィルタ用濾材が得られる。乾燥前のシートにフッ素樹脂と界面活性剤を含浸させることにより、本実施形態の効果を高めることができる。シートの乾燥は、抄紙機においては、多筒式ドライヤー、ヤンキードライヤー、熱風乾燥機、手抄装置においては、ロータリードライヤー、循環乾燥機等を用いて、例えば、100~170℃、より好ましくは120~160℃の温度にて乾燥させることが好ましい。 In the manufacturing process of the filter medium for an air filter according to the present embodiment, the sheet in a wet state before drying obtained by the above method is impregnated with an aqueous dispersion containing a fluororesin and a surfactant, and the sheet is dried. In this way, a filter medium for air filters can be obtained. The effects of this embodiment can be enhanced by impregnating the sheet before drying with a fluororesin and a surfactant. The sheet is dried at a temperature of, for example, 100 to 170°C, more preferably 120°C, using a multi-tube dryer, Yankee dryer, or hot air dryer in a paper machine, or a rotary dryer or circulation dryer in a hand paper machine. It is preferred to dry at a temperature of ~160°C.

本実施形態においては、フッ素樹脂と界面活性剤を含む水性分散液に対して、本発明の効果を妨げない範囲で、消泡剤等の添加剤を適宜添加することができる。 In this embodiment, additives such as antifoaming agents can be appropriately added to the aqueous dispersion containing a fluororesin and a surfactant within a range that does not impede the effects of the present invention.

以下に本発明について具体的な実施例を示して説明するが、本発明はこれらの記載に限定されるものではない。尚、例中の「部」は、原料スラリー中の繊維の固形分質量比率、又は含浸液中の成分の固形分質量比率を示し、原料スラリーにおいては全ての繊維の合計量を100部とし、含浸液においてはフッ素樹脂と界面活性剤の合計量を100部とした。又、例中の「%」は、含浸液中の成分の固形分質量濃度、又は濾材中の成分の固形分質量含有率を示す。 The present invention will be described below with reference to specific examples, but the present invention is not limited to these descriptions. In addition, "parts" in the examples indicate the solid content mass ratio of the fibers in the raw material slurry or the solid content mass ratio of the components in the impregnation liquid, and the total amount of all fibers in the raw material slurry is 100 parts, In the impregnation liquid, the total amount of fluororesin and surfactant was 100 parts. Further, "%" in the examples indicates the solid mass concentration of the component in the impregnating liquid or the solid mass content of the component in the filter medium.

<実施例1>
平均繊維径0.65μmのガラスウール繊維(B-06-F、Unifrax Co.製)42部、平均繊維径2.44μmのガラスウール繊維(B-26-R、Unifrax Co.製)5部、繊維径6μm、カット長6mmのチョップドガラス繊維(EC-6-6-SP、Unifrax Co.製)5部、繊度1.1dtex、カット長5mmの芯/鞘がポリエステル/ポリエステルである芯鞘バインダー繊維(メルティ4080、ユニチカ(株)製)18部及び繊度2.2dtex、カット長5mmのポリエステル全融バインダー繊維(メルティ4000、ユニチカ(株)製)30部を、テーブル離解機にてpH3.0の酸性水を用いて離解し、原料スラリーを得た。次に、pH3.0の酸性水を張った手抄装置に原料スラリーを投入し、脱水して湿潤シートを得た。次に、フッ素樹脂(アサヒガードAG-E060、AGC(株)製)40部、カチオン性界面活性剤(カチオーゲンTMP、第一工業製薬(株)製)60部及び水を混合して濃度0.10%に調製した含浸液を湿潤シートに含浸付与し、130℃のロータリードライヤーを用いて乾燥して、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.12%であった。
<Example 1>
42 parts of glass wool fibers with an average fiber diameter of 0.65 μm (B-06-F, manufactured by Unifrax Co.), 5 parts of glass wool fibers with an average fiber diameter of 2.44 μm (B-26-R, manufactured by Unifrax Co.), 5 parts of chopped glass fiber (EC-6-6-SP, manufactured by Unifrax Co.) with a fiber diameter of 6 μm and a cut length of 6 mm, a core/sheath binder fiber whose core/sheath is polyester/polyester with a fineness of 1.1 dtex and a cut length of 5 mm. (Melty 4080, manufactured by Unitika Co., Ltd.) and 30 parts of polyester fully fused binder fiber (Melty 4000, manufactured by Unitika Co., Ltd.) with a fineness of 2.2 dtex and a cut length of 5 mm were heated to pH 3.0 using a table disintegrator. Disintegration was performed using acidic water to obtain a raw material slurry. Next, the raw material slurry was put into a hand paper machine filled with acidic water of pH 3.0, and dehydrated to obtain a wet sheet. Next, 40 parts of a fluororesin (Asahi Guard AG-E060, manufactured by AGC Co., Ltd.), 60 parts of a cationic surfactant (Cationogen TMP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and water were mixed to a concentration of 0. A wet sheet was impregnated with an impregnating solution adjusted to 10% and dried using a rotary dryer at 130° C. to obtain a filter medium for an air filter having a basis weight of 75 g/m 2 . The content of impregnated components in the filter medium was 0.12%.

<実施例2>
フッ素樹脂(アサヒガードAG-E060、AGC(株)製)60部、カチオン性界面活性剤(カチオーゲンTMP、第一工業製薬(株)製)40部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.30%であった。
<Example 2>
Mix 60 parts of a fluororesin (Asahi Guard AG-E060, manufactured by AGC Co., Ltd.), 40 parts of a cationic surfactant (Cationogen TMP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and water to a concentration of 0.10%. A filter medium for an air filter having a basis weight of 75 g/m 2 was obtained in the same manner as in Example 1 except that the prepared impregnating liquid was used. The content of impregnated components in the filter medium was 0.30%.

<実施例3>
フッ素樹脂(アサヒガードAG-E060、AGC(株)製)80部、カチオン性界面活性剤(カチオーゲンTMP、第一工業製薬(株)製)20部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.39%であった。
<Example 3>
Mix 80 parts of a fluororesin (Asahi Guard AG-E060, manufactured by AGC Co., Ltd.), 20 parts of a cationic surfactant (Cationogen TMP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and water to a concentration of 0.10%. A filter medium for an air filter having a basis weight of 75 g/m 2 was obtained in the same manner as in Example 1 except that the prepared impregnating liquid was used. The content of impregnated components in the filter medium was 0.39%.

<実施例4>
平均繊維径0.65μmのガラスウール繊維(B-06-F、Unifrax Co.製)42部、平均繊維径2.44μmのガラスウール繊維(B-26-R、Unifrax Co.製)53部、繊維径6μm、カット長6mmのチョップドガラス繊維(EC-6-6-SP、Unifrax Co.製)5部を、テーブル離解機にてpH3.0の酸性水を用いて離解し、フッ素樹脂(アサヒガードAG-E060、AGC(株)製)60部、カチオン性界面活性剤(カチオーゲンTMP、第一工業製薬(株)製)40部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量70g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.27%であった。
<Example 4>
42 parts of glass wool fibers with an average fiber diameter of 0.65 μm (B-06-F, manufactured by Unifrax Co.), 53 parts of glass wool fibers with an average fiber diameter of 2.44 μm (B-26-R, manufactured by Unifrax Co.), Five parts of chopped glass fiber (EC-6-6-SP, manufactured by Unifrax Co.) with a fiber diameter of 6 μm and a cut length of 6 mm were disintegrated using acidic water with a pH of 3.0 in a table disintegrator, and fluororesin (Asahi Impregnation liquid prepared by mixing 60 parts of Guard AG-E060 (manufactured by AGC Co., Ltd.), 40 parts of a cationic surfactant (Cationogen TMP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and water to a concentration of 0.10%. A filter medium for an air filter having a basis weight of 70 g/m 2 was obtained in the same manner as in Example 1, except that . The content of impregnated components in the filter medium was 0.27%.

<実施例5>
フッ素樹脂(アサヒガードAG-E550D、AGC(株)製)60部、カチオン性界面活性剤(カチオーゲンTMP、第一工業製薬(株)製)40部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.20%であった。
<Example 5>
Mix 60 parts of a fluororesin (Asahi Guard AG-E550D, manufactured by AGC Co., Ltd.), 40 parts of a cationic surfactant (Cationogen TMP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and water to a concentration of 0.10%. A filter medium for an air filter having a basis weight of 75 g/m 2 was obtained in the same manner as in Example 1 except that the prepared impregnating liquid was used. Note that the content of impregnated components in the filter medium was 0.20%.

<比較例1>
カチオン性界面活性剤(カチオーゲンTMP、第一工業製薬(株)製)100部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.20%であった。
<Comparative example 1>
The same procedure as in Example 1 was carried out, except that an impregnating solution prepared by mixing 100 parts of a cationic surfactant (Cationogen TMP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and water to a concentration of 0.10% was used. A filter medium for an air filter having a basis weight of 75 g/m 2 was obtained. Note that the content of impregnated components in the filter medium was 0.20%.

<比較例2>
フッ素樹脂(アサヒガードAG-E060、AGC(株)製)20部、カチオン性界面活性剤(カチオーゲンTMP、第一工業製薬(株)製)80部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.12%であった。
<Comparative example 2>
Mix 20 parts of a fluororesin (Asahi Guard AG-E060, manufactured by AGC Co., Ltd.), 80 parts of a cationic surfactant (Cationogen TMP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and water to a concentration of 0.10%. A filter medium for an air filter having a basis weight of 75 g/m 2 was obtained in the same manner as in Example 1 except that the prepared impregnating liquid was used. The content of impregnated components in the filter medium was 0.12%.

<比較例3>
フッ素樹脂(アサヒガードAG-E060、AGC(株)製)90部、カチオン性界面活性剤(カチオーゲンTMP、第一工業製薬(株)製)10部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.92%であった。
<Comparative example 3>
Mix 90 parts of a fluororesin (Asahi Guard AG-E060, manufactured by AGC Co., Ltd.), 10 parts of a cationic surfactant (Cationogen TMP, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and water to a concentration of 0.10%. A filter medium for an air filter having a basis weight of 75 g/m 2 was obtained in the same manner as in Example 1 except that the prepared impregnating liquid was used. The content of impregnated components in the filter medium was 0.92%.

<比較例4>
フッ素樹脂(アサヒガードAG-E060、AGC(株)製)100部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は1.0%であった。
<Comparative example 4>
A sample with a basis weight of 75 g was prepared in the same manner as in Example 1, except that an impregnating solution prepared by mixing 100 parts of fluororesin (Asahi Guard AG-E060, manufactured by AGC Co., Ltd.) and water to a concentration of 0.10% was used. /m 2 of air filter media was obtained. Note that the content of impregnated components in the filter medium was 1.0%.

<比較例5>
含浸を行わなかった以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。
<Comparative example 5>
A filter medium for an air filter having a basis weight of 75 g/m 2 was obtained in the same manner as in Example 1 except that no impregnation was performed.

<比較例6>
フッ素樹脂(アサヒガードAG-E060、AGC(株)製)60部、ノニオン性界面活性剤(ノイゲンEA-137、第一工業製薬(株)製)40部及び水を混合して濃度0.10%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量75g/mのエアフィルタ用濾材を得た。尚、濾材中の含浸成分の含有率は0.39%であった。
<Comparative example 6>
60 parts of a fluororesin (Asahi Guard AG-E060, manufactured by AGC Co., Ltd.), 40 parts of a nonionic surfactant (Noigen EA-137, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and water were mixed to give a concentration of 0.10. A filter medium for an air filter having a basis weight of 75 g/m 2 was obtained in the same manner as in Example 1, except that an impregnating liquid adjusted to 50% was used. The content of impregnated components in the filter medium was 0.39%.

<比較例7>
フッ素樹脂(アサヒガードAG-E060、AGC(株)製)60部、アニオン性界面活性剤(ハイテノール330T、第一工業製薬(株)製)40部及び水を濃度0.10%となるように混合したところ凝集物を発生した。そのため、この含浸液を用いたエアフィルタは作製しなかった。
<Comparative example 7>
60 parts of a fluororesin (Asahi Guard AG-E060, manufactured by AGC Co., Ltd.), 40 parts of an anionic surfactant (Hitenol 330T, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and water were added to a concentration of 0.10%. When mixed, aggregates were generated. Therefore, no air filter was manufactured using this impregnation liquid.

実施例及び比較例において得られたエアフィルタ用濾材の評価は、以下に示す方法を用いて行った。 Evaluation of the filter media for air filters obtained in Examples and Comparative Examples was performed using the method shown below.

<圧力損失>
圧力損失は、有効面積100cmのエアフィルタ用濾材に面風速5.3cm/秒で通風した際の差圧として、マノメーター(マノスターゲージWO81、(株)山本電機製作所社製)を使用して測定した。
<Pressure loss>
The pressure loss is calculated as the differential pressure when air is passed through an air filter medium with an effective area of 100 cm2 at a surface wind speed of 5.3 cm/sec using a manometer (Manostar Gauge WO81, manufactured by Yamamoto Denki Seisakusho Co., Ltd.). It was measured.

<透過率>
透過率は、ラスキンノズルで発生させた多分散ポリアルファオレフィン(PAO)粒子を含む空気が有効面積100cmのエアフィルタ用濾材に面風速5.3cm/秒で通風した際の上流及び下流のPAO粒子の個数をレーザーパーティクルカウンター(KC-18、リオン(株)社製)を用いて測定し、上流と下流の粒子数の比から求めた。対象粒子径は0.10~0.15μm及び0.30~0.40μmとした。
<Transmittance>
The transmittance is the upstream and downstream PAO when air containing polydisperse polyalphaolefin (PAO) particles generated by a Ruskin nozzle is passed through an air filter medium with an effective area of 100 cm2 at a surface wind velocity of 5.3 cm/sec. The number of particles was measured using a laser particle counter (KC-18, manufactured by Rion Co., Ltd.) and determined from the ratio of the number of particles upstream and downstream. The target particle diameters were 0.10 to 0.15 μm and 0.30 to 0.40 μm.

<PF値>
PF値は、圧力損失及び透過率の値から、数1に示す式を用いて計算した。対象粒子径は0.10~0.15μm及び0.30~0.40μmとした。
<PF value>
The PF value was calculated from the pressure loss and permeability values using the formula shown in Equation 1. The target particle diameters were 0.10 to 0.15 μm and 0.30 to 0.40 μm.

<引張強度>
引張強度はオートグラフAGX-S((株)島津製作所社製)を用いて試験幅1inch、試験長100mm、引張速度15mm/minの条件で測定を行った。
<Tensile strength>
The tensile strength was measured using Autograph AGX-S (manufactured by Shimadzu Corporation) under the conditions of a test width of 1 inch, a test length of 100 mm, and a tensile speed of 15 mm/min.

<撥水性>
撥水性はMIL-STD-282に準拠して測定を行った。
<Water repellency>
Water repellency was measured in accordance with MIL-STD-282.

前記の方法で行ったエアフィルタ用濾材の評価結果を表1及び表2に示した。又、実施例1~3及び比較例1~4の結果を用いて、フッ素樹脂/カチオン性界面活性剤の固形分質量比率と0.10~0.15μmのPF値及び撥水性の関係を表したグラフを、各々、図1及び図2に示した。 Tables 1 and 2 show the evaluation results of the air filter media performed by the above method. In addition, using the results of Examples 1 to 3 and Comparative Examples 1 to 4, the relationship between the solid content mass ratio of fluororesin/cationic surfactant, PF value of 0.10 to 0.15 μm, and water repellency is shown. The graphs obtained are shown in FIGS. 1 and 2, respectively.

Figure 0007349414000002
Figure 0007349414000002

Figure 0007349414000003
Figure 0007349414000003

実施例1~実施例4より、カチオン性フッ素樹脂とカチオン性界面活性剤の質量比率を40/60~80/20の範囲とした場合、非常に高いPF値(13以上)と高い撥水性(200mm以上)を有する濾材を得ることができた。実施例5より、ノニオン性フッ素樹脂とカチオン性界面活性剤を使用した場合、非常に高いPF値(13以上)と実用上必要な撥水性(150mm以上)を有する濾材を得ることができた。 From Examples 1 to 4, when the mass ratio of cationic fluororesin and cationic surfactant is in the range of 40/60 to 80/20, very high PF value (13 or more) and high water repellency ( 200 mm or more) could be obtained. From Example 5, when a nonionic fluororesin and a cationic surfactant were used, a filter medium having a very high PF value (13 or more) and practically necessary water repellency (150 mm or more) could be obtained.

比較例1及び比較例2によれば、フッ素樹脂の質量比率が40部未満の場合、十分な撥水性が得られなかった。比較例3及び比較例4によれば、フッ素樹脂の質量比率が80部を超える場合、PF値が低かった。比較例5によれば、フッ素樹脂と界面活性剤の両方を含有させない場合、撥水性が得られず且つPF値が低かった。比較例6によれば、界面活性剤がノニオン性の場合、PF値が低かった。比較例7によれば、界面活性剤がアニオン性の場合、今回使用したフッ素樹脂と界面活性剤の相性により含浸液が凝集を起こしたため、濾材を作製できなかった。
According to Comparative Examples 1 and 2, when the mass ratio of the fluororesin was less than 40 parts, sufficient water repellency was not obtained. According to Comparative Examples 3 and 4, when the mass ratio of the fluororesin exceeded 80 parts, the PF value was low. According to Comparative Example 5, when both a fluororesin and a surfactant were not contained, water repellency was not obtained and the PF value was low. According to Comparative Example 6, when the surfactant was nonionic, the PF value was low. According to Comparative Example 7, when the surfactant was anionic, the impregnating liquid agglomerated due to the compatibility between the fluororesin used this time and the surfactant, and therefore a filter medium could not be produced.

Claims (6)

ガラス繊維を含む湿式不織布からなるエアフィルタ用濾材において、
該濾材は、フッ素樹脂及びカチオン性の界面活性剤を含み、且つバインダー樹脂を含まず、
前記フッ素樹脂と前記界面活性剤との固形分質量比率が40/60~80/20の範囲にあることを特徴とするエアフィルタ用濾材。
In air filter media made of wet-laid nonwoven fabric containing glass fibers,
The filter medium contains a fluororesin and a cationic surfactant, and does not contain a binder resin,
A filter medium for an air filter, characterized in that the solid content mass ratio of the fluororesin and the surfactant is in the range of 40/60 to 80/20.
前記湿式不織布が、更に溶融接着バインダー繊維を含み、
前記溶融接着バインダー繊維は、繊維状態で前記ガラス繊維に溶融接着していることを特徴とする請求項1に記載のエアフィルタ用濾材。
The wet-laid nonwoven fabric further includes melt adhesive binder fibers,
The filter medium for an air filter according to claim 1 , wherein the melt-bonded binder fiber is melt-bonded to the glass fiber in a fibrous state .
前記フッ素樹脂がノニオン性又はカチオン性のフッ素樹脂であることを特徴とする請求項1又は2に記載のエアフィルタ用濾材。 The filter medium for an air filter according to claim 1 or 2, wherein the fluororesin is a nonionic or cationic fluororesin. 前記濾材に含まれる前記フッ素樹脂と前記界面活性剤を合計した固形分質量含有率は、濾材全体に対して0.01~2.00%であることを特徴とする請求項1~3のいずれか一つに記載のエアフィルタ用濾材。 Any one of claims 1 to 3, wherein the total solid mass content of the fluororesin and the surfactant contained in the filter medium is 0.01 to 2.00% with respect to the entire filter medium. The filter medium for air filters described in one of the above. 前記湿式不織布は、前記ガラス繊維として、繊維径が1~10μmのガラスウール繊維、繊維径が1μm未満のガラスウール繊維及び繊維径が4~30μmのチョップドガラス繊維を含むことを特徴とする請求項1~4のいずれか一つに記載のエアフィルタ用濾材。 The wet-laid nonwoven fabric is characterized in that the glass fibers include glass wool fibers with a fiber diameter of 1 to 10 μm, glass wool fibers with a fiber diameter of less than 1 μm, and chopped glass fibers with a fiber diameter of 4 to 30 μm. The filter medium for an air filter according to any one of 1 to 4. ガラス繊維を含むスラリーを湿式抄紙法によりシート化して、湿潤状態のシートを形成する工程と、
前記湿潤状態のシートを、フッ素樹脂及びカチオン性の界面活性剤を含み、前記フッ素樹脂と前記界面活性剤との固形分質量比率が40/60~80/20の範囲にあり、且つバインダー樹脂を含まない水性分散液に含浸する工程と、
前記水性分散液に含浸した湿潤状態のシートを乾燥して、乾燥シートを得る工程と、を有することを特徴とするエアフィルタ用濾材の製造方法。
forming a slurry containing glass fibers into a sheet using a wet papermaking method to form a wet sheet;
The wet sheet contains a fluororesin and a cationic surfactant, the solid content mass ratio of the fluororesin and the surfactant is in the range of 40/60 to 80/20, and a binder resin is used. a step of impregnating it in an aqueous dispersion free of
A method for producing a filter medium for an air filter, comprising the step of drying a wet sheet impregnated with the aqueous dispersion to obtain a dry sheet.
JP2020115748A 2020-07-03 2020-07-03 Filter medium for air filter and its manufacturing method Active JP7349414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020115748A JP7349414B2 (en) 2020-07-03 2020-07-03 Filter medium for air filter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115748A JP7349414B2 (en) 2020-07-03 2020-07-03 Filter medium for air filter and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022022750A JP2022022750A (en) 2022-02-07
JP7349414B2 true JP7349414B2 (en) 2023-09-22

Family

ID=80224961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020115748A Active JP7349414B2 (en) 2020-07-03 2020-07-03 Filter medium for air filter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7349414B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518772A (en) 2004-11-05 2008-06-05 ドナルドソン カンパニー,インコーポレイティド Filter media and structure
JP2010094580A (en) 2008-10-14 2010-04-30 Hokuetsu Kishu Paper Co Ltd Filter medium for air filter and manufacturing method thereof
WO2014171165A1 (en) 2013-04-15 2014-10-23 北越紀州製紙株式会社 Filter material for air filter, method for manufacturing same, and air filter provided with same
US20150157969A1 (en) 2013-12-05 2015-06-11 Hollingsworth & Vose Company Fine glass filter media

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110999A (en) * 1985-11-01 1987-05-22 株式会社クラレ Production of glass fiber paper
JP3279425B2 (en) * 1994-02-16 2002-04-30 花王株式会社 Water repellent composition, water repellent article, and water repellent treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518772A (en) 2004-11-05 2008-06-05 ドナルドソン カンパニー,インコーポレイティド Filter media and structure
JP2010094580A (en) 2008-10-14 2010-04-30 Hokuetsu Kishu Paper Co Ltd Filter medium for air filter and manufacturing method thereof
WO2014171165A1 (en) 2013-04-15 2014-10-23 北越紀州製紙株式会社 Filter material for air filter, method for manufacturing same, and air filter provided with same
US20150157969A1 (en) 2013-12-05 2015-06-11 Hollingsworth & Vose Company Fine glass filter media

Also Published As

Publication number Publication date
JP2022022750A (en) 2022-02-07

Similar Documents

Publication Publication Date Title
JP5319380B2 (en) Low basis weight air filter media
JP6212619B2 (en) Air filter medium and air filter including the same
EP2401146B1 (en) Filter media suitable for ashrae applications
JP6668203B2 (en) Manufacturing method of filter medium for air filter
JP6527800B2 (en) Filter paper for filter and manufacturing method thereof
JP7055261B1 (en) Filter media for air filters and their manufacturing methods
JP6087207B2 (en) Filter material for air filter and method for producing the same
JP6270971B2 (en) Filter material for air filter and method for producing the same
JP7349414B2 (en) Filter medium for air filter and its manufacturing method
JP7453375B2 (en) Filter medium for air filter and its manufacturing method
JP5797175B2 (en) Air filter media
JP7215871B2 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
WO2023062964A1 (en) Filter medium for high-performance air filter, and method for manufacturing same
JP7157270B1 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
WO2023175894A1 (en) Air-filter filter material and method for producing filter material
JP5426589B2 (en) Air filter media
JP2015085250A (en) Filter medium for air filter and production method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R150 Certificate of patent or registration of utility model

Ref document number: 7349414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150